
Connect

1/326

Connect

Developing with Connect

Getting Started

Overview

Connect Quick-Start Guide (PDF)

Fundamentals

Overview

Connect Fundamentals (PDF)

Using Silicon Labs Connect v3.x with IEEE 802.15.4 (PDF)

Wireless Networking Fundamentals (PDF)

Connect Developer's Guide

Overview

Developing and Debugging

Overview

Architecture of the Silicon Labs Connect Stack v3.x (PDF)

Customizing Applications with Silicon Labs Connect v3.x (PDF)

Network Co-Processor Applications with Silicon Labs Connect v3.x (PDF)

Using Real Time Operating Systems with Silicon Labs Connect v3.x (PDF)

Energy Saving with Silicon Labs Connect v3.x (PDF)

Building Low Power Networks with the Silicon Labs Connect Stack v3.x (PDF)

EFR32 Radio Configurator Guide for Simplicity Studio 5 (PDF)

PHY Limitations and Timing Optimization

Bootloading

Overview

Bootloader Fundamentals (PDF)

Bootloading and OTA with Silicon Labs Connect v3.x (PDF)

Using the Gecko Bootloader with Silicon Labs Connect (PDF)

Gecko Bootloader User's Guide (PDF)

Series 2 Secure Boot with RTSL (PDF)

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher (PDF)

Multiprotocol

Overview

Multiprotocol Fundamentals (PDF)

Dynamic Multiprotocol User's Guide (PDF)

Non-Volatile Data Storage

Overview

Non-Volatile Data Storage Fundamentals (PDF)

Using NVM3 Data Storage (PDF)

Bringing Up Custom Devices for the EFR32MG and EFR32FG Families (PDF)

https://www.silabs.com/documents/public/quick-start-guides/qsg168-proprietary-flex-sdk-v3x-quick-start-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-12-fundamentals-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug435-02-using-connect-v3x-with-ieee-802-15-4.pdf
https://www.silabs.com/documents/public/user-guides/ug103-01-fundamentals-wireless-network.pdf
https://www.silabs.com/documents/public/user-guides/ug435-03-architecture-of-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-04-customizing-applications-with-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-08-network-co-processor-applications-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-05-using-micrium-with-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-07-energy-savings-with-connect-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1252-connect-v3x-low-power-networks.pdf
https://www.silabs.com/documents/public/application-notes/an1253-efr32-radio-configurator-guide-for-ssv5.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug435-06-bootloading-and-ota-with-connect-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1085-gecko-bootloader-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/application-notes/an961-custom-nodes-efr32.pdf

Connect

2/326

Using Tokens for Non-Volatile Data Storage (PDF)

Security

Overview

IoT Endpoint Security Fundamentals (PDF)

Series 2 Secure Debug (PDF)

Production Programming of Series 2 Devices (PDF)

Anti-Tamper Protection Configuration and Use (PDF)

Authenticating Silicon Labs Devices using Device Certificates (PDF)

Secure Key Storage (PDF)

Programming Series 2 Devices Using the DCI and SWD (PDF)

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS (PDF)

Connect API Reference Guide

Connect Stack API Reference

Connect Stack Version

EMBER_MAJOR_VERSION

EMBER_MINOR_VERSION

EMBER_PATCH_VERSION

EMBER_SPECIAL_VERSION

EMBER_BUILD_NUMBER

EMBER_FULL_VERSION

EMBER_VERSION_TYPE

SOFTWARE_VERSION

Connect Data Types

EmberNetworkParameters

panId

radioTxPower

radioChannel

EmberIncomingMessage

options

source

endpoint

rssi

length

payload

timestamp

lqi

EmberOutgoingMessage

options

destination

endpoint

tag

length

payload

ackRssi

https://www.silabs.com/documents/public/application-notes/an1154-tokens-for-non-volatile-storage.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Connect

3/326

timestamp

EmberMacAddress

longAddress

shortAddress

addr

mode

EmberMacFrame

srcAddress

dstAddress

srcPanId

dstPanId

srcPanIdSpecified

dstPanIdSpecified

EmberIncomingMacMessage

options

macFrame

rssi

lqi

frameCounter

length

payload

timestamp

EmberOutgoingMacMessage

options

macFrame

tag

frameCounter

length

payload

ackRssi

timestamp

EmberKeyData

contents

EventActions

queue

handler

marker

name

Event_s

actions

next

timeToExecute

EventQueue_s

isrEvents

Connect

4/326

events

EmberEventControl

status

taskid

timeToExecute

EmberEventData_S

control

handler

EmberTaskControl

nextEventTime

events

busy

EmberNodeType

EmberNetworkStatus

EmberChildFlags

EmberMessageOptions

EmberMacAddressMode

EmberEventUnits

@2

EmberCounterType

EmberPhyType

EmberCalType

EmberTxStreamParameters

EmberEUI64

EmberNodeId

EmberPanId

EmberMessageLength

EmberTaskId

Event

EventQueue

EmberEventData

EmberBuffer

emberKeyContents

EXTENDED_PAN_ID_SIZE

EUI64_SIZE

EMBER_ENCRYPTION_KEY_SIZE

EMBER_NULL_NODE_ID

EMBER_BROADCAST_ADDRESS

EMBER_USE_LONG_ADDRESS

EMBER_COORDINATOR_ADDRESS

EMBER_CAL_INVALID_VALUE

Stack Information

Stack Counters

emberGetCounter

Connect

5/326

emberStackStatusHandler

emberStackIsrHandler

emberStackIdleHandler

emberRadioNeedsCalibratingHandler

emberChildJoinHandler

emberStackPowerDown

emberStackPowerUp

emberNetworkState

emberStackIsUp

emberSetSecurityKey

emberGetSecurityKey

emberSetRadioChannelExtended

emberSetRadioChannel

emberGetRadioChannel

emberGetDefaultChannel

emberPhyConfigInit

emberCalibrateCurrentChannelExtended

emberCalibrateCurrentChannel

emberApplyIrCalibration

emberTempCalibration

emberGetCalType

emberSetRadioPower

emberGetRadioPower

emberSetRadioPowerMode

emberSetMacParams

emberMacGetParentAddress

emberStackIdleTimeMs

emberGetInt32uMillisecondTick

emberCurrentStackTasks

emberOkToNap

emberOkToHibernate

emberGetEui64

emberIsLocalEui64

emberGetNodeId

emberGetPanId

emberGetNodeType

emberGetParentId

emberGetVersionInfo

EMBER_HIGH_PRIORITY_TASKS

EMBER_INVALID_CHANNEL

Network Management

Frequency Hopping

emberFrequencyHoppingStartClientCompleteHandler

emberFrequencyHoppingSetChannelMask

Connect

6/326

emberFrequencyHoppingStartServer

emberFrequencyHoppingStartClient

emberFrequencyHoppingStop

Parent Support

emberChildJoinHandler

emberPurgeIndirectMessages

emberSetIndirectQueueTimeout

emberFormNetwork

emberGetChildFlags

emberGetChildInfo

emberRemoveChild

emberIncomingBeaconHandler

emberActiveScanCompleteHandler

emberEnergyScanCompleteHandler

emberInit

emberTick

emberNetworkInit

emberStartActiveScan

emberSetActiveScanDuration

emberGetActiveScanDuration

emberStartEnergyScan

emberSetApplicationBeaconPayload

emberJoinNetworkExtended

emberJoinNetwork

emberPermitJoining

emberJoinCommissioned

emberSetSelectiveJoinPayload

emberClearSelectiveJoinPayload

emberSetAuxiliaryAddressFilteringEntry

emberGetAuxiliaryAddressFilteringEntry

emberResetNetworkState

emberMacFormNetwork

emberMacSetPanCoordinator

emberNetworkLeave

emberMacAddShortToLongAddressMapping

emberMacClearShortToLongAddressMappings

emberOfdmSetMcs

emberOfdmGetMcs

EMBER_MAC_MAX_APP_BEACON_PAYLOAD_LENGTH

EMBER_MAC_STACK_BEACON_PAYLOAD

EMBER_MAC_STACK_BEACON_PAYLOAD_LENGTH

EMBER_MAC_MAX_BEACON_FIELDS_LENGTH

EMBER_CHILD_TABLE_AGING_DISABLED

EMBER_CHILD_TABLE_MAX_TIMEOUT_S

Connect

7/326

EMBER_MAX_SELECTIVE_JOIN_PAYLOAD_LENGTH

EMBER_MAX_AUXILIARY_ADDRESS_FILTERING_TABLE_LENGTH

Radio Stream

emberStartTxStream

emberStopTxStream

Configuration

EMBER_HEAP_SIZE

EMBER_CHILD_TABLE_SIZE

EMBER_CHILD_TABLE_TOKEN_SIZE

EMBER_CHILD_TIMEOUT_SEC

EMBER_INDIRECT_QUEUE_SIZE

EMBER_MAC_OUTGOING_QUEUE_SIZE

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS

EMBER_NWK_RANGE_EXTENDER_UPDATE_PERIOD_SEC

EMBER_MAC_ACK_TIMEOUT_MS

EMBER_RADIO_CCA_THRESHOLD

EMBER_FREQUENCY_HOPPING_SEED

EMBER_FREQUENCY_HOPPING_START_CHANNEL

EMBER_FREQUENCY_HOPPING_END_CHANNEL

EMBER_FREQUENCY_HOPPING_CHANNEL_DURATION_MS

EMBER_FREQUENCY_HOPPING_CHANNEL_GUARD_DURATION_MS

EMBER_FREQUENCY_HOPPING_SERVER_FREQ_INFO_BROADCAST_PERIOD_S

EMBER_FREQUENCY_HOPPING_SLEEPY_CLIENT_RESYNC_PERIOD_S

EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_TIMEOUT_S

EMBER_FREQUENCY_HOPPING_SERVER_ADVERTISING_ITERATION_COUNT

EMBER_COORDINATOR_FIRST_SHORT_ID_TO_BE_ASSIGNED

EMBER_SECURITY_SHORT_TO_LONG_MAPPING_TABLE_SIZE

EMBER_CSP_CALLBACK_MESSAGE_BUFFER_SIZE

Status Codes

EmberStatus

Stack Tokens

tokTypeStackKey

networkKey

tokTypeStackNodeData

panId

radioTxPower

radioFreqChannel

nodeType

nodeId

parentId

tokTypeStackChildTableEntry

longId

shortId

flags

Connect

8/326

tokTypeStackNvdataVersion

tokTypeStackNonceCounter

tokTypeStackKeyID

tokTypeStackLastAllocatedId

tokTypeStackBootCounter

tokTypeParentLongId

CURRENT_STACK_TOKEN_VERSION

Event Scheduling

sli_event_control_set_active

emEventControlSetDelayMS

emEventControlGetRemainingMS

emberRunEvents

emberRunTask

emberMsToNextEvent

emberMsToNextEventExtended

emberMsToNextStackEvent

emberTaskInit

emberMarkTaskIdle

emTaskEnableIdling

emMarkTaskActive

elapsedTimeInt8u

elapsedTimeInt16u

elapsedTimeInt32u

MAX_INT8U_VALUE

HALF_MAX_INT8U_VALUE

timeGTorEqualInt8u

MAX_INT16U_VALUE

HALF_MAX_INT16U_VALUE

timeGTorEqualInt16u

MAX_INT32U_VALUE

HALF_MAX_INT32U_VALUE

timeGTorEqualInt32u

MILLISECOND_TICKS_PER_SECOND

MILLISECOND_TICKS_PER_DECISECOND

MILLISECOND_TICKS_PER_QUARTERSECOND

MILLISECOND_TICKS_PER_MINUTE

MILLISECOND_TICKS_PER_HOUR

MILLISECOND_TICKS_PER_DAY

EMBER_TASK_COUNT

emberEventControlSetInactive

emberEventControlGetActive

emberEventControlSetActive

EMBER_MAX_EVENT_CONTROL_DELAY_MS

emberEventControlSetDelayMS

Connect

9/326

EMBER_MAX_EVENT_CONTROL_DELAY_QS

emberEventControlSetDelayQS

EMBER_MAX_EVENT_CONTROL_DELAY_MINUTES

emberEventControlSetDelayMinutes

emberEventControlGetRemainingMS

emberTaskEnableIdling

emberMarkTaskActive

__EVENT_H__

Memory Buffer

emberAllocateBuffer

emberMarkBuffer

emberGetBufferPointer

emberGetBufferLength

emberGetAvailableBufferMemory

EMBER_NULL_BUFFER

Messaging

emberMessageSentHandler

emberMacMessageSentHandler

emberIncomingMessageHandler

emberIncomingMacMessageHandler

emberMessageSend

emberMacMessageSend

emberPollForData

emberSetPollDestinationAddress

emberGetMaximumPayloadLength

emberUsingLongMessages

emberNcpSetLongMessagesUse

emberPurgeIndirectMessages

emberSetIndirectQueueTimeout

EMBER_MAX_UNSECURED_APPLICATION_PAYLOAD_LENGTH

EMBER_MAX_SECURED_APPLICATION_PAYLOAD_LENGTH

EMBER_MAX_ENDPOINT

Connect Application Framework API Reference

Application Framework Common

emberAfInitCallback

emberAfTickCallback

emberAfStackStatusCallback

emberAfIncomingMessageCallback

emberAfIncomingMacMessageCallback

emberAfMessageSentCallback

emberAfMacMessageSentCallback

emberAfChildJoinCallback

emberAfActiveScanCompleteCallback

emberAfEnergyScanCompleteCallback

Connect

10/326

emberAfMarkApplicationBuffersCallback

emberAfIncomingBeaconCallback

emberAfFrequencyHoppingStartClientCompleteCallback

emberAfRadioNeedsCalibratingCallback

emberAfStackIdleCallback

emberAfCommonOkToEnterLowPowerCallback

emberAfGetResetCause

emberAfAllocateEvent

Command Interpreter Plugin

Debug Print Plugin

Mailbox Client Plugin

emberAfPluginMailboxClientMessageSubmitCallback

emberAfPluginMailboxClientMessageDeliveredCallback

emberAfPluginMailboxClientCheckInboxCallback

emberAfPluginMailboxClientMessageSubmit

emberAfPluginMailboxClientCheckInbox

Mailbox Server Plugin

emberAfPluginMailboxServerMessageDeliveredCallback

emberAfPluginMailboxServerAddMessage

Mailbox Common

EmberAfMailboxStatus

Ota Unicast Bootloader Client Plugin

emberAfPluginOtaUnicastBootloaderClientNewIncomingImageCallback

emberAfPluginOtaUnicastBootloaderClientIncomingImageSegmentCallback

emberAfPluginOtaUnicastBootloaderClientImageDownloadCompleteCallback

emberAfPluginOtaUnicastBootloaderClientIncomingRequestBootloadCallback

emberAfPluginOtaUnicastBootloaderClientAbortImageDownload

Ota Unicast Bootloader Server Plugin

emberAfPluginOtaUnicastBootloaderServerGetImageSegmentCallback

emberAfPluginOtaUnicastBootloaderServerImageDistributionCompleteCallback

emberAfPluginOtaUnicastBootloaderServerRequestTargetBootloadCompleteCallback

emberAfPluginOtaUnicastBootloaderServerInitiateImageDistribution

emberAfPluginUnicastBootloaderServerInitiateRequestTargetBootload

emberAfPluginOtaUnicastBootloaderServerAbortCurrentProcess

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

Ota Unicast Bootloader Common

EmberAfOtaUnicastBootloaderStatus

Ota Broadcast Bootloader Client Plugin

emberAfPluginOtaBootloaderClientNewIncomingImageCallback

emberAfPluginOtaBootloaderClientIncomingImageSegmentCallback

emberAfPluginOtaBootloaderClientImageDownloadCompleteCallback

emberAfPluginOtaBootloaderClientIncomingRequestStatusCallback

Connect

11/326

emberAfPluginOtaBootloaderClientIncomingRequestBootloadCallback

emberAfPluginOtaBootloaderClientAbortImageDownload

Ota Broadcast Bootloader Server Plugin

emberAfPluginOtaBootloaderServerGetImageSegmentCallback

emberAfPluginOtaBootloaderServerImageDistributionCompleteCallback

emberAfPluginBootloaderServerRequestTargetsStatusCompleteCallback

emberAfPluginBootloaderServerRequestTargetsBootloadCompleteCallback

emberAfPluginOtaBootloaderServerInitiateImageDistribution

emberAfPluginBootloaderServerInitiateRequestTargetsStatus

emberAfPluginBootloaderServerInitiateRequestTargetsBootload

emberAfPluginBootloaderServerGetTargetStatus

emberAfPluginOtaBootloaderServerAbortCurrentProcess

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_BROADCAST_ROUNDS

Ota Broadcast Bootloader Common

EmberAfOtaBootloaderStatus

EmberAfOtaBootloaderTargetStatus

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_INVALID_APPLICATION_TARGET_STATUS

Poll Plugin

emberAfPluginPollSetShortPollInterval

emberAfPluginPollSetLongPollInterval

emberAfPluginPollEnableShortPolling

WSTK Sensors Plugin

Hardware Abstraction Layer (HAL) API Reference

Hardware Abstraction Layer (HAL)

Common Microcontroller Functions

RTCCRamData

outgoingNwkFrameCounter

incomingParentNwkFrameCounter

outgoingLinkKeyFrameCounter

incomingLinkKeyFrameCounter

SleepModes

WakeEvents

WakeMask

halCommonVreg1v8EnableCount

halStackProcessBootCount

halGetResetInfo

halGetResetString

halInit

halReboot

halPowerUp

halPowerDown

Connect

12/326

halResume

halSuspend

halInternalEnableWatchDog

halInternalDisableWatchDog

halInternalWatchDogEnabled

halSleep

halSleepPreserveInts

halCommonDelayMicroseconds

halCommonDisableVreg1v8

halCommonEnableVreg1v8

halBeforeEM4

halAfterEM4

halGetEm2xxResetInfo

MICRO_DISABLE_WATCH_DOG_KEY

GPIO_MASK_SIZE

GPIO_MASK

WAKE_GPIO_MASK

WAKE_GPIO_SIZE

WAKE_MASK_INVALID

WAKE_EVENT_SIZE

DEBUG_TOGGLE

Token Access

Tokens

halStackInitTokens

halCommonGetToken

halCommonGetMfgToken

halCommonGetIndexedToken

halCommonSetToken

halCommonSetIndexedToken

halCommonIncrementCounterToken

Simulated EEPROM

halSimEepromCallback

halSimEepromErasePage

halSimEepromPagesRemainingToBeErased

halSimEepromStatus

Sample APIs for Peripheral Access

Serial UART Communication

halInternalUartInit

halInternalPowerDownUart

halInternalPowerUpUart

halInternalStartUartTx

halInternalStopUartTx

halInternalForceWriteUartData

halInternalForceReadUartByte

Connect

13/326

halInternalWaitUartTxComplete

halInternalRestartUart

halInternalUartFlowControlRxIsEnabled

halInternalUartXonRefreshDone

halInternalUartTxIsIdle

serialDropPacket

halInternalUartFlowControl

halInternalUartRxPump

halInternalUart1FlowControlRxIsEnabled

halInternalUart1XonRefreshDone

halInternalUart1TxIsIdle

halStackReceiveVuartMessage

EMBER_SERIAL_UNUSED

EMBER_SERIAL_FIFO

EMBER_SERIAL_LOWLEVEL

FIFO_ENQUEUE

FIFO_DEQUEUE

SerialBaudRate

SerialParity

halHostFlushBuffers

halHostEnqueueTx

halHostFlushTx

serialCopyFromRx

emLoadSerialTx

Button Control

BUTTON_PRESSED

BUTTON_RELEASED

halInternalInitButton

halButtonState

halButtonPinState

halButtonIsr

Buzzer Control

LED Control

HalBoardLed

halInternalInitLed

halToggleLed

halSetLed

halClearLed

halStackIndicateActivity

Flash Memory Control

halFlashEraseIsActive

System Timer Control

halInternalStartSystemTimer

halCommonGetInt16uMillisecondTick

Connect

14/326

halCommonGetInt32uMillisecondTick

halCommonGetInt64uMillisecondTick

halCommonGetInt16uQuarterSecondTick

halSleepForQuarterSeconds

halSleepForMilliseconds

halCommonIdleForMilliseconds

halIdleForMilliseconds

Symbol Timer Control

HAL Configuration

Sample Breakout Board Configuration

IAR PLATFORM_HEADER Configuration

boolean

int8u

int8s

int16u

int16s

int32u

int32s

int64u

int64s

PointerType

HAL_HAS_INT64

_HAL_USE_COMMON_PGM_

halInternalAssertFailed

halInternalResetWatchDog

BIGENDIAN_CPU

NTOHS

NTOHL

NO_STRIPPING

EEPROM

__SOURCEFILE__

assert

halResetWatchdog

UNUSED

SIGNED_ENUM

STACK_FILL_VALUE

RAMFUNC

NO_OPERATION

SET_REG_FIELD

SET_CMSIS_REG

SET_CMSIS_REG_FIELD

simulatedTimePasses

simulatedTimePassesMs

simulatedSerialTimePasses

Connect

15/326

_HAL_USE_COMMON_DIVMOD_

VAR_AT_SEGMENT

STRINGIZE

ALIGNMENT

WEAK

NO_INIT

STATIC_ASSERT

abs

PLATCOMMONOKTOINCLUDE

MAIN_FUNCTION_PARAMETERS

MAIN_FUNCTION_ARGUMENTS

__NO_INIT__

__DEBUG_CHANNEL__

__INTVEC__

__CSTACK__

__RESETINFO__

__DATA_INIT__

__DATA__

__BSS__

__CONST__

__TEXT__

__TEXTRW_INIT__

__TEXTRW__

__AAT__

__BAT__

__BAT_INIT__

__FAT__

__RAT__

__SIMEE__

__PSSTORE__

__LONGTOKEN__

__EMHEAP__

__GUARD_REGION__

__DLIB_PERTHREAD_INIT__

__DLIB_PERTHREAD_INITIALIZED_DATA__

__DLIB_PERTHREAD_ZERO_DATA__

__INTERNAL_STORAGE__

__LOCKBITS_IN_MAINFLASH__

__UNRETAINED_RAM__

_NO_INIT_SEGMENT_BEGIN

_DEBUG_CHANNEL_SEGMENT_BEGIN

_INTVEC_SEGMENT_BEGIN

_CSTACK_SEGMENT_BEGIN

_RESETINFO_SEGMENT_BEGIN

Connect

16/326

_DATA_INIT_SEGMENT_BEGIN

_DATA_SEGMENT_BEGIN

_BSS_SEGMENT_BEGIN

_CONST_SEGMENT_BEGIN

_TEXT_SEGMENT_BEGIN

_TEXTRW_INIT_SEGMENT_BEGIN

_TEXTRW_SEGMENT_BEGIN

_AAT_SEGMENT_BEGIN

_BAT_SEGMENT_BEGIN

_BAT_INIT_SEGMENT_BEGIN

_FAT_SEGMENT_BEGIN

_RAT_SEGMENT_BEGIN

_SIMEE_SEGMENT_BEGIN

_PSSTORE_SEGMENT_BEGIN

_LONGTOKEN_SEGMENT_BEGIN

_EMHEAP_SEGMENT_BEGIN

_GUARD_REGION_SEGMENT_BEGIN

_DLIB_PERTHREAD_INIT_SEGMENT_BEGIN

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_BEGIN

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_BEGIN

_INTERNAL_STORAGE_SEGMENT_BEGIN

_LOCKBITS_IN_MAINFLASH_SEGMENT_BEGIN

_UNRETAINED_RAM_SEGMENT_BEGIN

_NO_INIT_SEGMENT_END

_DEBUG_CHANNEL_SEGMENT_END

_INTVEC_SEGMENT_END

_CSTACK_SEGMENT_END

_RESETINFO_SEGMENT_END

_DATA_INIT_SEGMENT_END

_DATA_SEGMENT_END

_BSS_SEGMENT_END

_CONST_SEGMENT_END

_TEXT_SEGMENT_END

_TEXTRW_INIT_SEGMENT_END

_TEXTRW_SEGMENT_END

_AAT_SEGMENT_END

_BAT_SEGMENT_END

_BAT_INIT_SEGMENT_END

_FAT_SEGMENT_END

_RAT_SEGMENT_END

_SIMEE_SEGMENT_END

_PSSTORE_SEGMENT_END

_LONGTOKEN_SEGMENT_END

_EMHEAP_SEGMENT_END

Connect

17/326

_GUARD_REGION_SEGMENT_END

_DLIB_PERTHREAD_INIT_SEGMENT_END

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_END

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_END

_INTERNAL_STORAGE_SEGMENT_END

_LOCKBITS_IN_MAINFLASH_SEGMENT_END

_UNRETAINED_RAM_SEGMENT_END

_NO_INIT_SEGMENT_SIZE

_DEBUG_CHANNEL_SEGMENT_SIZE

_INTVEC_SEGMENT_SIZE

_CSTACK_SEGMENT_SIZE

_RESETINFO_SEGMENT_SIZE

_DATA_INIT_SEGMENT_SIZE

_DATA_SEGMENT_SIZE

_BSS_SEGMENT_SIZE

_CONST_SEGMENT_SIZE

_TEXT_SEGMENT_SIZE

_TEXTRW_INIT_SEGMENT_SIZE

_TEXTRW_SEGMENT_SIZE

_AAT_SEGMENT_SIZE

_BAT_SEGMENT_SIZE

_BAT_INIT_SEGMENT_SIZE

_FAT_SEGMENT_SIZE

_RAT_SEGMENT_SIZE

_SIMEE_SEGMENT_SIZE

_PSSTORE_SEGMENT_SIZE

_LONGTOKEN_SEGMENT_SIZE

_EMHEAP_SEGMENT_SIZE

_GUARD_REGION_SEGMENT_SIZE

_DLIB_PERTHREAD_INIT_SEGMENT_SIZE

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_SIZE

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_SIZE

_INTERNAL_STORAGE_SEGMENT_SIZE

_LOCKBITS_IN_MAINFLASH_SEGMENT_SIZE

_UNRETAINED_RAM_SEGMENT_SIZE

_executeBarrierInstructions

Common PLATFORM_HEADER Configuration

TRUE

FALSE

NULL

BIT

BIT32

SETBIT

SETBITS

Connect

18/326

CLEARBIT

CLEARBITS

READBIT

READBITS

LOW_BYTE

HIGH_BYTE

HIGH_LOW_TO_INT

INT8U_TO_INT32U

BYTE_0

BYTE_1

BYTE_2

BYTE_3

BYTE_4

BYTE_5

BYTE_6

BYTE_7

COUNTOF

elapsedTimeInt8u

elapsedTimeInt16u

elapsedTimeInt32u

MAX_INT8U_VALUE

HALF_MAX_INT8U_VALUE

timeGTorEqualInt8u

MAX_INT16U_VALUE

HALF_MAX_INT16U_VALUE

timeGTorEqualInt16u

MAX_INT32U_VALUE

HALF_MAX_INT32U_VALUE

timeGTorEqualInt32u

UNUSED_VAR

DEBUG_LEVEL

STATIC_ASSERT

MEMSET

MEMCOPY

MEMMOVE

MEMPGMCOPY

MEMCOMPARE

MEMPGMCOMPARE

NVIC Configuration

Reset Cause Type Definitions

HAL Utilities

Crash and Watchdog Diagnostics

Cyclic Redundancy Code (CRC)

halCommonCrc16

Connect

19/326

halCommonCrc32

INITIAL_CRC

CRC32_START

CRC32_END

Random Number Generation

halStackSeedRandom

halCommonGetRandom

Network to Host Byte Order Conversion

NTOHS

NTOHL

SwapEndiannessInt32u

HTONL

HTONS

Deprecated List

Connect

Training

Developing with Connect

20/326

Developing with Connect

Developing Proprietary Connect Applications
S ilicon Labs Connect is an IEEE 802.15.4 MAC-based wireless networking stack for a variety of proprietary applications

optimized for low-power devices. This full-featured, easily customizable networking stack is designed for compliance with

regulatory specifications across worldwide geographic regions and supports both Sub-GHz and 2.4 GHz frequency bands.

The S ilicon Labs Connect stack supports many combinations of radio modulation, frequency and data rates. The stack

provides support for end nodes, coordinators, and range extenders. It includes all wireless MAC (Medium Access Control)

layer functions such as scanning and joining, setting up a point-to-point or star network, and managing device types such as

sleepy end devices, routers, and coordinators. With all this functionality already implemented in the stack, users can focus

on their end application development and not worry about the lower-level radio and network details.

The Connect stack is part of the S ilicon Labs Flex SDK (Software Development K it), installed through S implicity Studio.

Connect runs on top of RAIL (Radio Abstraction Interface Layer), also included with the Flex SDK. RAIL provides an

intuitive, easily-customizable radio interface layer that is designed to support proprietary or standards-based wireless

protocols.

The content on these pages is intended for those who want to experiment with or are already developing an application

using the S ilicon Labs Connect Stack.

For details about this release: Links to the Flex SDK release notes are available on the silabs.com Gecko SDK page.

For Silicon Labs' Connect product information: See the product pages on silabs.com.

For background about the Connect stack and other wireless networking topics: The Fundamentals section is a good place

to start.

To get started with development: See the Getting Started section to get started working with example applications.

If you are already in development: See the Developer's Guide for details or go directly to the API Reference.

https://www.silabs.com/developers/gecko-software-development-kit
https://www.silabs.com/developers/flex-sdk-connect-networking-stack
https://docs.silabs.com/connect-stack/3.7.0/connect-fundamentals-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-getting-started-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-developers-guide-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-api

Overview

21/326

Overview

Getting Started with Silicon Labs Connect
Development
To get started with S ilicon Labs Connect development, download the S implicity Studio Development environment
as

described in the S implicity Studio 5 User's Guide.

This will also prompt you to install the Gecko SDK (GSDK). The GSDK combines S ilicon Labs wireless software

development kits (SDKs) such as the Flex SDK and Gecko Platform into a single, integrated package. The GSDK is your

primary tool for developing in the S ilicon Labs IoT Software ecosystem. All of S ilicon Labs' stacks are written in-house to

provide a seamless experience from silicon to tools, allowing you to unlock powerful features with ease, including:

Abstraction of complex requirements like multiprotocol and pre-certification

Industry-leading ability to support a large number of nodes

Ultra-low power consumption

Strong network reliability

S ilicon Labs also helps future-proof your devices with over-the-air software and security updates, helping to minimize

maintenance cost and improve your end user product experience!

The Flex SDK includes both the Connect library and examples and the RAIL (Radio Abstraction Interface Layer) Library and

examples. Once you have downloaded S implicity Studio and the GSDK, detailed instructions for using the Connect examples

and configuration tools are provided in the Proprietary Flex SDK Quick-Start Guide (QSG168).

Note: The recommended method to get started with the GSDK is to first install S implicity Studio 5, which will set up your

development environment and walk you through the GSDK installation. Alternatively, GSDK and other required tools may be

installed manually from the G itHub GSDK site.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/
https://www.silabs.com/documents/public/quick-start-guides/qsg168-proprietary-flex-sdk-v3x-quick-start-guide.pdf
https://github.com/SiliconLabs/gecko_sdk/#README.MD

Overview

22/326

Overview

Connect Fundamentals
S ilicon Labs has produced a series of documents on topics that provide useful background for S ilicon Labs Connect

developers.

Silicon Labs Connect Fundamentals (PDF): Describes the features and functions of the S ilicon Labs Connect stack, including

its device types, network topologies, and its 'building block' development methodology using components.

Using Silicon Labs Connect v3.x with IEEE 802.15.4 (PDF): Introduces the IEEE 802.15.4 standard on which Connect v3.x is

based.

Wireless Networking Application Development Fundamentals (PDF): For those new to wireless networking, introduces some

fundamental concepts of wireless networking.

https://www.silabs.com/documents/public/user-guides/ug103-12-fundamentals-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug435-02-using-connect-v3x-with-ieee-802-15-4.pdf
https://www.silabs.com/documents/public/user-guides/ug103-01-fundamentals-wireless-network.pdf

Overview

23/326

Overview

Connect Developers Guide
The Developer's Guide content is organized in the following groups:

Developing and Debugging: A description of development resources as well as detailed information on a variety of topics.

Bootloading: Information on using the Gecko Bootloader with Connect applications.

Multiprotocol: Background on implementing multiprotocol applications and information on different multiprotocol models.

Non-Volatile Data Storage : Background on managing device memory.

Security: Describes S ilicon Labs security resources and how to manage Connect security.

https://docs.silabs.com/connect-stack/3.7.0/connect-developing-debugging-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-bootloading-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-multiprotocol-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-memory-use-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-security-overview

Overview

24/326

Overview

Developing and Debugging Connect Applications
These pages provide details on developing and debugging applications using the Connect stack. Content
includes:

Architecture of the Silicon Labs Connect Stack v3.x (PDF): Describes the architecture of the S ilicon Labs Connect stack

v3.x an how it implements IEEE 802.15.4.

Customizing Applications with Silicon Labs Connect v3.x (PDF): Describes how to use components, callbacks, and events

on top of the Gecko Platform application framework to configure features and application behavior.

Network Co-Processor Applications with Silicon Labs Connect v3.x (PDF): Describes how to run the S ilicon Labs Connect

stack in Network Co-Processor (NCP) mode, where the NCP runs on the EFR32 while the Host application and the Co-

processor Communication daemon (CPCd) run on the Host device.

Using Real Time Operating Systems with Silicon Labs Connect v3.x (PDF): Describes the process to implement a Connect-

based application on top of one of the supported Real Time Operating Systems (RTOS).

Energy Saving with Silicon Labs Connect v3.x (PDF): Describes the features available in Connect v3.x to reduce power

consumption. Using those features is described in AN1252: Building Low Power Networks with the S ilicon Labs Connect

Stack v3.x.

Building Low Power Networks with the Silicon Labs Connect Stack v3.x (PDF): Illustrates reducing power consumption in a

Connect v3.x application using the sensor example.

EFR32 Radio Configurator Guide for Simplicity Studio 5 (PDF): Documents the Radio Configurator tool, which can be used to

create customizations at the PHY level.

PHY Limitations and Timing Optimization: Connect specific recommendations on radio config customizations.

Development Tools

Simplicity Studio and the Simplicity IDE: S implicity Studio is the unified development environment for all S ilicon Labs

technologies, SoCs, and modules. It provides you with access to the target device-specific web and SDK resources,

software and hardware configuration tools, and an integrated development environment (IDE) featuring industry-standard

code editors, compilers, and debuggers. See the silabs.com S implicity Studio page to download the tools and for more

information.

Network Analyzer: S implicity Studio® 5 (SSv5)'s Network Analyzer enables debugging of complex wireless systems. This

tool captures a trace of wireless network activity that can be examined in detail live or at a later time. See the Network

Analyzer section of the S implicity Studio 5 User's Guide for more information.

Wireshark: Wireshark is the recommended network protocol analyzer for the use with Wi-SUN networks. Download

instructions are provided for Windows/Mac users or Linux users. S implicity Studio® 5 supports live interaction between the

application running on a S ilicon Labs device and Wireshark.

Energy Profiler: S implicity Studio® 5 (SSv5)'s Energy Profiler enables you to visualize the energy consumption of individual

devices, multiple devices on one target system, or a network of interacting wireless devices to analyze and improve the

power performance of these systems. Real-time information on current consumption is correlated with the program counter

providing advanced energy software monitoring capabilities. It also provides a basic level of integration with the Network

Analyzer network analysis tool. See the Energy Profiler section of the S implicity Studio 5 User's Guide for more information.

Simplicity Commander: S implicity Commander is a single, all-purpose tool to be used in a production environment. It is

invoked using a simple Command Line Interface (CLI) that is also scriptable. S implicity Commander enables customers to

complete essential tasks such as configuring and building applications and bootloaders and flashing images to their devices.

S implicity Commander is available through S implicity Studio or can be downloaded through system-specific installers. The

Simplicity Commander User's Guide provides more information.

https://www.silabs.com/documents/public/user-guides/ug435-03-architecture-of-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-04-customizing-applications-with-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-08-network-co-processor-applications-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-05-using-micrium-with-connect-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug435-07-energy-savings-with-connect-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1252-connect-v3x-low-power-networks.pdf
https://www.silabs.com/documents/public/application-notes/an1253-efr32-radio-configurator-guide-for-ssv5.pdf
https://docs.silabs.com/connect-stack/3.7.0/connect-phy
https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-network-analyzer/
https://www.wireshark.org/download.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-wireshark
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-energy-profiler/
https://www.silabs.com/developers/mcu-programming-options#programming
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Overview

25/326

Silicon Labs Configurator (SLC): SLC offers command-line access to application configuration and generation functions.

Software Project Generation and Configuration with SLC-CLI provides instructions on downloading and using the SLC-CLI

tool.

https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

PHY Limitations and T iming Optimization

26/326

PHY Limitations and Timing Optimization

PHY Limitations and Timing Optimization

Supported profiles

Connect supports a wide range of radio configurations, including pre-configured
and customized PHYs. The pre-configured

PHYs are under the following profiles:

Connect Profile

Connect OFDM Profile

Long Range Profile

Under these profiles, any customization is supported by Connect. Note, however,
that using the radio configurator requires

basic knowledge of digital
modulations. It is possible to misconfigure modulation parameters to the level
where

communication might be impossible.

Base Profile

The Base profile allows the widest configuration options. However, Connect is
only compatible with the IEEE 802.15.4 frame

configuration. For the modulations
available in the Base Profile, Connect only supports 1 Byte PHR frame
configurations. To

set this up, follow these settings:

Check Header Enable

Set Header S ize to 1

Set Frame Length Encoding to VARIABLE_LENGTH

Set Frame Bit Endian to LSB_FIRST

Check Length Includes CRC Bytes

Set Minimum Length to 0

Set Maximum Length to 127

Set Variable Length Bit S ize to 7

Set Variable Frame Length Adjust to 0

Set Variable Length Bit Endian to LSB_FIRST

Set Variable Length Bit Location to 0

The frame setting also requires a 2 Byte long CRC, so make sure to select a 2
Byte long CRC Polynomial.

Although Connect can handle 2 Byte PHR and the PHR required for OFDM, those
settings can only be activated by

selecting a PHY from the Connect profiles.

OFDM Settings

The Connect OFDM PHYs are essentially same as Wi-SUN OFDM PHYs. However,
without the limitation of the Wi-SUN

spec, we allow changing the channel map and
carrier frequency.

OFDM bitrate depends on bandwidth and MCS (modulation coding scheme). The
bandwidth can be configured on the radio

configurator, while MCS can be changed
run-time, with the emberOfdmSetMcs() API. The default MCS is 0.

The available bitrates in kb/s, depending on bandwidth and MCS:

0.2 MHz 0.4 MHz 0.8 MHz 1.2 MHz

MCS=0 12.5 25 50 100

MCS=1 25 50 100 200

PHY Limitations and T iming Optimization

27/326

0.2 MHz 0.4 MHz 0.8 MHz 1.2 MHz

MCS=2 50 100 200 400

MCS=3 100 200 400 800

MCS=4 150 300 600 1200

MCS=5 200 400 800 1600

MCS=6 300 600 1200 2400

Multi-PHY Considerations

Connect has limited support for the Multi-PHY capabilities of EFR32.
Channel-based Multi-PHY (i.e., configuration changes

are applied by changing the
channel) is fully supported. However, Connect always loads the first protocol in
a protocol-

based Multi-PHY configuration. For more details on this term, see
AN1253
(PDF).

Optimizing Connect for a PHY

Although Connect is set up to be usable with a wide range of PHYs, there are
certain features that depend on the PHY.

These are usually configured
conservatively, so it will probably work with most configurations, but not all.
Furthermore, even

if it works, it might be necessary to optimize these
parameters for more effective operation.

CSMA/CA

The default configuration in Connect follows the recommendation from IEEE
802.15.4. All timing parameters are symbolrate

dependent, while the threshold is
-65dBm. All of the parameters can be changed via emberSetMacParams() . These

parameters very rarely need modification. Perhaps, on a very low symbolrate, it
is worth setting an overall timout via

csmaTimeout .

Turnaround Time and Acknowledgement Timeout

Turnaround time (delay between received packet and transmitted acknowledgement)
in Connect is not configurable; it is

always 12 symbol time.

Acknowledgement timeout by default is 25ms. This is much more than most PHY
needs. Turnaround time +

acknowledgement frame transmission time should be
enough in theory. This can be tuned via emberSetMacParams() , with

the
 ackTimeout argument.

Note though that in practice, optimizing the timeout doesn't improve efficiency
much. The timeout only blocks the stack to

transmit another packet while waiting
on the acknowledgement.

Active Scan Duration

Active scan is used when a device joins a network. The joining device sends a
beacon request, and waits a predefined

duration for beacons of the joinable
devices. This is the active scan duration, which is 960*2^5=30720 symbol time by

default. This is however way too much for low bitrate; e.g. at 9.6kbps, this
results in 3.2s.

This can be configured via emberSetActiveScanDuration() . The beacons are
transmitted with a 50ms jitter after the beacon

request frame (with additional
delay caused by CSMA/CA).

https://www.silabs.com/documents/public/application-notes/an1253-efr32-radio-configurator-guide-for-ssv5.pdf

Overview

28/326

Overview

Bootloading Embedded Applications
Bootloading allows you to update application firmware images on your devices. This section provides background

information about bootloading using the S ilicon
Labs Gecko Bootloader.

Bootloader Fundamentals (PDF): Bootloader Fundamentals - Introduces bootloading for S ilicon Labs networking devices.

Discusses the Gecko Bootloader as well as legacy Ember and Bluetooth bootloaders, and describes the file formats used by

each.

Bootloading and OTA with Silicon Labs Connect v3.x (PDF): Explains standalone (serial) and application (OTA) bootloader

options available for use within Connect v3.x-based applications.

Using the Gecko Bootloader with Silicon Labs Connect (PDF): Includes detailed information on using the S ilicon Labs Gecko

Bootloader with Connect. It supplements the general Gecko Bootloader implementation information provided in UG489:

S ilicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Gecko Bootloader User's Guide for GSDK 4.0 and Higher (PDF): Describes the high-level implementation of the S ilicon Labs

Gecko Bootloader for EFR32 SoCs and NCPs, and provides information on how to get started using the Gecko Bootloader

with S ilicon Labs wireless protocol stacks in GSDK 4.0 and higher.

Series 2 Secure Boot with RTSL (PDF): Contains detailed information on configuring and using the Secure Boot with

hardware Root of Trust and Secure Loader on Series 2 devices, including how to provision the signing key. This is a

companion document to UG266: S ilicon Labs Gecko Bootloader User's Guide.

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher (PDF): Gecko Bootloader v2.x, introduced in GSDK

4.0, contains a number of changes compared to Gecko Bootloader v1.x. This document describes the differences between

the versions, including how to configure the new Gecko Bootloader in S implicity Studio 5.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug435-06-bootloading-and-ota-with-connect-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1085-gecko-bootloader-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf

Overview

29/326

Overview

Multiprotocol
This section provides background information on multiprotocol applications.

Multiprotocol Fundamentals (PDF): Describes the four multiprotocol modes, discusses considerations when selecting

protocols for multiprotocol implementations, and reviews the Radio Scheduler, a required component of a dynamic

multiprotocol solution.

Dynamic Multiprotocol User's Guide (PDF): Describes how to implement a dynamic multiprotocol solution.

https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf

Overview

30/326

Overview

Non-Volatile Data Storage
This section offers an introduction to non-volatile data storage and describes how to use NVM3 data storage.

Non-Volatile Data Storage Fundamentals (PDF): Introduces non-volatile data storage using flash and the three different

storage implementations offered for S ilicon Labs microcontrollers and SoCs: S imulated EEPROM, PS Store, and NVM3.

Using Third Generation Non-Volatile Memory (NVM3) Data Storage (PDF): Explains how NVM3 can be used as non-volatile

data storage in various protocol implementations.

Bringing Up Custom Devices for the EFR32MG and EFR32FG Families (PDF): Describes how to initialize a piece of custom

hardware (a 'device') based on the EFR32MG and EFR32FG families so that it interfaces correctly with a network stack. The

same procedures can be used to restore devices whose settings have been corrupted or erased.

Using Tokens for Non-Volatile Data Storage (PDF): Describes tokens and shows how to use them for non-volatile data

storage in EmberZNet PRO and S ilicon Labs Flex applications.

https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/application-notes/an961-custom-nodes-efr32.pdf
https://www.silabs.com/documents/public/application-notes/an1154-tokens-for-non-volatile-storage.pdf

Overview

31/326

Overview

Security
S ilicon Labs offers a range of security features depending on the part you are using and your application and production

needs. This section provides background on security and how to use the available security features.

IoT Security Fundamentals (PDF): Introduces the security concepts that must be considered when implementing an Internet

of Things (IoT) system. Using the ioXt Alliance's eight security principles as a structure, it clearly delineates the solutions

S ilicon Labs provides to support endpoint security and what you must do outside of the S ilicon Labs framework.

Series 2 Secure Debug (PDF): Describes how to lock and unlock the debug access of EFR32 Gecko Series 2 devices. Many

aspects of the debug access, including the secure debug unlock are described. The Debug Challenge Interface (DCI) and

Secure Engine (SE) Mailbox Interface for locking and unlocking debug access are also included.

Production Programming of Series 2 Devices (PDF): Provides details on programming, provisioning, and configuring Series 2

devices in production environments. Covers Secure Engine Subsystem of Series 2 devices, which runs easily upgradeable

Secure Engine (SE) or Virtual Secure Engine (VSE) firmware.

Anti-Tamper Protection Configuration and Use (PDF): Anti-Tamper Protection Configuration and Use - Shows how to

program, provision, and configure the anti-tamper module on EFR32 Series 2 devices with Secure Vault.

Authenticating Silicon Labs Devices using Device Certificates (PDF): How to authenticate an EFR32 Series 2 device with

Secure Vault, using secure device certificates and signatures.

Secure Key Storage (PDF): Explains how to securely "wrap" keys in EFR32 Series 2 devices with Secure Vault, so they can

be stored in non-volatile storage.

Programming Series 2 Devices Using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD) (PDF): Describes

how to provision and configure Series 2 devices through the DCI and SWD.

Integrating Crypto Functionality Using PSA Crypto Compared to Mbed TLS (PDF): Describes how to integrate crypto

functionality into applications using PSA Crypto compared to Mbed TLS.

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Connect

32/326

Connect

Connect
Silicon Labs Connect Stack API

Connect stack API is the primary Application Programming Interface (API) for applications running on S ilicon Labs EFR32

Wireless Gecko SoCs to interact with the S ilicon Labs Connect wireless stack.

S ilicon Labs is developing products designed to meet the demands of customers moving to a connected world of devices in

the home, often referred to as the IoT (Internet of Things). At a high level, the IoT goals for S ilicon Labs are as follows:

Connect all devices in the home with best-in-class mesh networking, either with Ember ZigBee PRO or other emerging

standards.

Leverage the company expertise in low-power, constrained devices.

Enhance established low-power, mixed-signal chips.

Provide low-cost bridging to existing Ethernet and Wi-Fi devices.

Enable cloud services and connectivity to smartphones and tablets that promote ease of use and a common user

experience for customers.

Connect Stack API Reference

33/326

Connect Stack API Reference

Connect Stack API Reference
The primary API towards the Connect radio stack.

Modules

Connect Stack Version

Connect Data Types

Stack Information

Network Management

Radio Stream

Configuration

Status Codes

Stack Tokens

Event Scheduling

Memory Buffer

Connect Stack Version

34/326

Connect Stack Version

Connect Stack Version
Macros to determine the stack version.

Note that the Connect Stack version might not match the version of Flex SDK.

See config.h for source code.

Macros

#define EMBER_MAJOR_VERSION 4
The major version of the release . First digit of A.B.C.D.

#define EMBER_MINOR_VERSION 0
The minor version of the release . Second digit of A.B.C.D.

#define EMBER_PATCH_VERSION 1
The patch version of the release . Third digit of A.B.C.D.

#define EMBER_SPECIAL_VERSION 0
Special version of the release . Fourth digit of A.B.C.D.

#define EMBER_BUILD_NUMBER 0
Build number of the release . Should be stored on 2 bytes.

#define EMBER_FULL_VERSION undefined
Full version number stored on 2 bytes, with each of the four digits stored on 4 bits.

#define EMBER_VERSION_TYPE EMBER_VERSION_TYPE_GA
Version type of the release . EMBER_VERSION_TYPE_GA means generally available .

#define SOFTWARE_VERSION EMBER_FULL_VERSION
Full version number stored on 2 bytes, with each of the four digits stored on 4 bits.

Macro Definition Documentation

EMBER_MAJOR_VERSION

#define EMBER_MAJOR_VERSION

Value:

4

The major version of the release. First digit of A.B.C.D.

Definition at line 43 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_MINOR_VERSION

#define EMBER_MINOR_VERSION

Connect Stack Version

35/326

Value:

0

The minor version of the release. Second digit of A.B.C.D.

Definition at line 48 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_PATCH_VERSION

#define EMBER_PATCH_VERSION

Value:

1

The patch version of the release. Third digit of A.B.C.D.

Patch versions are fully backwards compatible as long as the major and minor version matches.

Definition at line 56 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_SPECIAL_VERSION

#define EMBER_SPECIAL_VERSION

Value:

0

Special version of the release. Fourth digit of A.B.C.D.

Definition at line 61 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_BUILD_NUMBER

#define EMBER_BUILD_NUMBER

Value:

0

Build number of the release. Should be stored on 2 bytes.

Definition at line 66 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_FULL_VERSION

#define EMBER_FULL_VERSION

Value:

0 (((uint16_t)EMBER_MAJOR_VERSION << 12) \
0 | ((uint16_t)EMBER_MINOR_VERSION << 8) \
0 | ((uint16_t)EMBER_PATCH_VERSION << 4) \
0 | ((uint16_t)EMBER_SPECIAL_VERSION))

Connect Stack Version

36/326

Full version number stored on 2 bytes, with each of the four digits stored on 4 bits.

Definition at line 72 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

EMBER_VERSION_TYPE

#define EMBER_VERSION_TYPE

Value:

EMBER_VERSION_TYPE_GA

Version type of the release. EMBER_VERSION_TYPE_GA means generally available.

Definition at line 81 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

SOFTWARE_VERSION

#define SOFTWARE_VERSION

Value:

EMBER_FULL_VERSION

Full version number stored on 2 bytes, with each of the four digits stored on 4 bits.

Definition at line 86 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/config.h

Connect Data Types

37/326

Connect Data Types

Connect Data Types
Definitions of Connect data types used by various Connect API functions.

See ember-types.h for source code.

Modules

EmberNetworkParameters

EmberIncomingMessage

EmberOutgoingMessage

EmberMacAddress

EmberMacFrame

EmberIncomingMacMessage

EmberOutgoingMacMessage

EmberKeyData

EventActions

Event_s

EventQueue_s

EmberEventControl

EmberEventData_S

EmberTaskControl

Enumerations

enum EmberNodeType {

EMBER_UNKNOWN_DEVICE = 0
EMBER_STAR_COORDINATOR = 1
EMBER_STAR_RANGE_EXTENDER = 2
EMBER_STAR_END_DEVICE = 3
EMBER_STAR_SLEEPY_END_DEVICE = 4
EMBER_DIRECT_DEVICE = 5
EMBER_MAC_MODE_DEVICE = 6
EMBER_MAC_MODE_SLEEPY_DEVICE = 7

}
Define the possible types of nodes and the ro les that a node might play in a network.

enum EmberNetworkStatus {

EMBER_NO_NETWORK
EMBER_JOINING_NETWORK
EMBER_JOINED_NETWORK
EMBER_RADIO_TEST

Connect Data Types

38/326

}
Defines the possible

jo in states for a node .

enum EmberChildFlags {

EMBER_CHILD_FLAGS_DEVICE_IS_RANGE_EXTENDER_BIT = 0x02
EMBER_CHILD_FLAGS_DEVICE_IS_SLEEPY_BIT = 0x04
EMBER_CHILD_FLAGS_HAVE_PENDING_DATA_BIT = 0x08
EMBER_CHILD_FLAGS_AES_SECURITY_CAPABLE_BIT = 0x10
EMBER_CHILD_FLAG_DEVICE_IS_EXTENDED_BIT = 0x20

}
Child flags.

enum EmberMessageOptions {

EMBER_OPTIONS_NONE = 0x00
EMBER_OPTIONS_SECURITY_ENABLED = 0x01
EMBER_OPTIONS_ACK_REQUESTED = 0x02
EMBER_OPTIONS_HIGH_PRIORITY = 0x04
EMBER_OPTIONS_INDIRECT = 0x08

}
Message options.

enum EmberMacAddressMode {

EMBER_MAC_ADDRESS_MODE_NONE = 0x00
EMBER_MAC_ADDRESS_MODE_SHORT = 0x02
EMBER_MAC_ADDRESS_MODE_LONG = 0x03

}
802.15.4 addressing mode .

enum EmberEventUnits {

EMBER_EVENT_INACTIVE = 0
EMBER_EVENT_MS_TIME
EMBER_EVENT_QS_TIME
EMBER_EVENT_MINUTE_TIME
EMBER_EVENT_ZERO_DELAY

}
Either marks an event as inactive or specifies the units for the event execution time .

enum @2 {

EMBER_OUTGOING_MESSAGES = 0x0001
EMBER_INCOMING_MESSAGES = 0x0002
EMBER_RADIO_IS_ON = 0x0004
EMBER_ASSOCIATING = 0x0008
EMBER_SCANNING = 0x0010

}
Define tasks that prevent the stack from sleeping.

Connect Data Types

39/326

enum EmberCounterType {

EMBER_COUNTER_PHY_IN_PACKETS
EMBER_COUNTER_PHY_OUT_PACKETS
EMBER_COUNTER_MAC_IN_UNICAST
EMBER_COUNTER_MAC_IN_BROADCAST
EMBER_COUNTER_MAC_OUT_UNICAST_NO_ACK
EMBER_COUNTER_MAC_OUT_UNICAST_ACK_SUCCESS
EMBER_COUNTER_MAC_OUT_UNICAST_ACK_FAIL
EMBER_COUNTER_MAC_OUT_UNICAST_CCA_FAIL
EMBER_COUNTER_MAC_OUT_UNICAST_RETRY
EMBER_COUNTER_MAC_OUT_BROADCAST
EMBER_COUNTER_MAC_OUT_BROADCAST_CCA_FAIL
EMBER_COUNTER_MAC_OUT_ENCRYPT_FAIL
EMBER_COUNTER_MAC_DROP_IN_MEMORY
EMBER_COUNTER_MAC_DROP_IN_FRAME_COUNTER
EMBER_COUNTER_MAC_DROP_IN_DECRYPT
EMBER_COUNTER_NWK_OUT_FORWARDING
EMBER_COUNTER_NWK_IN_SUCCESS
EMBER_COUNTER_NWK_DROP_IN_WRONG_SOURCE
EMBER_COUNTER_NWK_DROP_IN_FORWARDING
EMBER_COUNTER_UART_IN_DATA
EMBER_COUNTER_UART_IN_MANAGEMENT
EMBER_COUNTER_UART_IN_FAIL
EMBER_COUNTER_UART_OUT_DATA
EMBER_COUNTER_UART_OUT_MANAGEMENT
EMBER_COUNTER_UART_OUT_FAIL
EMBER_COUNTER_ROUTE_2_HOP_LOOP
EMBER_COUNTER_BUFFER_ALLOCATION_FAIL
EMBER_ASH_V3_ACK_SENT
EMBER_ASH_V3_ACK_RECEIVED
EMBER_ASH_V3_NACK_SENT
EMBER_ASH_V3_NACK_RECEIVED
EMBER_ASH_V3_RESEND
EMBER_ASH_V3_BYTES_SENT
EMBER_ASH_V3_TOTAL_BYTES_RECEIVED
EMBER_ASH_V3_VALID_BYTES_RECEIVED
EMBER_ASH_V3_PAYLOAD_BYTES_SENT
EMBER_COUNTER_TYPE_COUNT

}
Define the event counters that can be requested from the application using emberGetCounter()

enum EmberPhyType {

EMBER_RADIO_CONFIGURATOR
EMBER_STANDARD_PHY_2_4GHZ
EMBER_STANDARD_PHY_915MHZ
EMBER_STANDARD_PHY_863MHZ

}
Define the PHY configuration of connect stack.

enum EmberCalType {

EMBER_CAL_TEMP_VCO = 0x00000001
EMBER_CAL_IRCAL = 0x00010000
EMBER_CAL_ALL = 0x00010001

}
Define the type of calibration requested.

enum EmberTxStreamParameters {

TX_STREAM_PN9
TX_STREAM_CW

}
Radio Stream mode .

Connect Data Types

40/326

Typedefs

typedef uint8_t EmberEUI64[EUI64_SIZE]
EUI 64-bit ID (IEEE 802.15.4 long address).

typedef uint16_t EmberNodeId
IEEE 802.15.4 node ID. Also known as short address.

typedef uint16_t EmberPanId
IEEE 802.15.4 PAN ID.

typedef uint16_t EmberMessageLength
Message length in bytes.

typedef uint8_t EmberTaskId
An identifier for a task.

typedef struct
Event_s

Event

typedef struct
EventQueue_s

EventQueue
An event queue is currently just a list of events ordered by execution time .

typedef const
struct

EmberEventData_
S

EmberEventData
Complete events with a contro l and a handler procedure .

typedef uint16_t EmberBuffer
Buffers used by the memory buffer system.

Functions

uint8_t * emberKeyContents(EmberKeyData *key)
This macro allows the programmer to gain access to the key data bytes of the EmberKeyData structure .

Macros

#define EXTENDED_PAN_ID_SIZE 8
Size of an extended PAN identifier in bytes (8).

#define EUI64_SIZE 8
Size of EUI64 (an IEEE address) in bytes (8).

#define EMBER_ENCRYPTION_KEY_SIZE 16
Size of an encryption key in bytes (16).

#define EMBER_NULL_NODE_ID 0xFFFFu
A distinguished network ID that will never be assigned to any node . Used to indicate the absence of a node ID.

#define EMBER_BROADCAST_ADDRESS 0xFFFF
Broadcast address.

#define EMBER_USE_LONG_ADDRESS 0xFFFE
Special short address indicating the node should use long addressing as source address.

#define EMBER_COORDINATOR_ADDRESS 0x0000
The coordinator short address.

#define EMBER_CAL_INVALID_VALUE (0xFFFFFFFF)

Connect Data Types

41/326

Enumeration Documentation

EmberNodeType

EmberNodeType

Define the possible types of nodes and the roles that a node might play in a network.

Enumerator

EMBER_UNKNOWN_DEVICE

EMBER_STAR_COORDINATOR

EMBER_STAR_RANGE_EXTENDER

EMBER_STAR_END_DEVICE

EMBER_STAR_SLEEPY_END_DEVICE

EMBER_DIRECT_DEVICE

EMBER_MAC_MODE_DEVICE

EMBER_MAC_MODE_SLEEPY_DEVICE

Definition at line 106 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberNetworkStatus

EmberNetworkStatus

Defines the possible join states for a node.

Enumerator

EMBER_NO_NETWORK

EMBER_JOINING_NETWORK

EMBER_JOINED_NETWORK

EMBER_RADIO_TEST

Definition at line 162 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberChildFlags

EmberChildFlags

Child flags.

Enumerator

EMBER_CHILD_FLAGS_DEVICE_IS_RANGE_EXTENDER_BIT

EMBER_CHILD_FLAGS_DEVICE_IS_SLEEPY_BIT

EMBER_CHILD_FLAGS_HAVE_PENDING_DATA_BIT

EMBER_CHILD_FLAGS_AES_SECURITY_CAPABLE_BIT

EMBER_CHILD_FLAG_DEVICE_IS_EXTENDED_BIT

Definition at line 198 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberMessageOptions

Connect Data Types

42/326

EmberMessageOptions

Message options.

Enumerator

EMBER_OPTIONS_NONE

EMBER_OPTIONS_SECURITY_ENABLED

EMBER_OPTIONS_ACK_REQUESTED

EMBER_OPTIONS_HIGH_PRIORITY

EMBER_OPTIONS_INDIRECT

Definition at line 225 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberMacAddressMode

EmberMacAddressMode

802.15.4 addressing mode.

Enumerator

EMBER_MAC_ADDRESS_MODE_NONE

EMBER_MAC_ADDRESS_MODE_SHORT

EMBER_MAC_ADDRESS_MODE_LONG

Definition at line 338 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberEventUnits

EmberEventUnits

Either marks an event as inactive or specifies the units for the event execution time.

Enumerator

EMBER_EVENT_INACTIVE

EMBER_EVENT_MS_TIME

EMBER_EVENT_QS_TIME

EMBER_EVENT_MINUTE_TIME

EMBER_EVENT_ZERO_DELAY

Definition at line 521 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

@2

@2

Define tasks that prevent the stack from sleeping.

Enumerator

EMBER_OUTGOING_MESSAGES

EMBER_INCOMING_MESSAGES

EMBER_RADIO_IS_ON

Connect Data Types

43/326

EMBER_ASSOCIATING

EMBER_SCANNING

Definition at line 623 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberCounterType

EmberCounterType

Define the event counters that can be requested from the application using emberGetCounter()

Enumerator

EMBER_COUNTER_PHY_IN_PACKETS

EMBER_COUNTER_PHY_OUT_PACKETS

EMBER_COUNTER_MAC_IN_UNICAST

EMBER_COUNTER_MAC_IN_BROADCAST

EMBER_COUNTER_MAC_OUT_UNICAST_NO_ACK

EMBER_COUNTER_MAC_OUT_UNICAST_ACK_SUCCESS

EMBER_COUNTER_MAC_OUT_UNICAST_ACK_FAIL

EMBER_COUNTER_MAC_OUT_UNICAST_CCA_FAIL

EMBER_COUNTER_MAC_OUT_UNICAST_RETRY

EMBER_COUNTER_MAC_OUT_BROADCAST

EMBER_COUNTER_MAC_OUT_BROADCAST_CCA_FAIL

EMBER_COUNTER_MAC_OUT_ENCRYPT_FAIL

EMBER_COUNTER_MAC_DROP_IN_MEMORY

EMBER_COUNTER_MAC_DROP_IN_FRAME_COUNTER

EMBER_COUNTER_MAC_DROP_IN_DECRYPT

EMBER_COUNTER_NWK_OUT_FORWARDING

EMBER_COUNTER_NWK_IN_SUCCESS

EMBER_COUNTER_NWK_DROP_IN_WRONG_SOURCE

EMBER_COUNTER_NWK_DROP_IN_FORWARDING

EMBER_COUNTER_UART_IN_DATA

EMBER_COUNTER_UART_IN_MANAGEMENT

EMBER_COUNTER_UART_IN_FAIL

EMBER_COUNTER_UART_OUT_DATA

EMBER_COUNTER_UART_OUT_MANAGEMENT

EMBER_COUNTER_UART_OUT_FAIL

EMBER_COUNTER_ROUTE_2_HOP_LOOP

EMBER_COUNTER_BUFFER_ALLOCATION_FAIL

EMBER_ASH_V3_ACK_SENT

EMBER_ASH_V3_ACK_RECEIVED

EMBER_ASH_V3_NACK_SENT

EMBER_ASH_V3_NACK_RECEIVED

EMBER_ASH_V3_RESEND

EMBER_ASH_V3_BYTES_SENT

EMBER_ASH_V3_TOTAL_BYTES_RECEIVED

EMBER_ASH_V3_VALID_BYTES_RECEIVED

EMBER_ASH_V3_PAYLOAD_BYTES_SENT

EMBER_COUNTER_TYPE_COUNT

Connect Data Types

44/326

Definition at line 646 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberPhyType

EmberPhyType

Define the PHY configuration of connect stack.

Enumerator

EMBER_RADIO_CONFIGURATOR

EMBER_STANDARD_PHY_2_4GHZ

EMBER_STANDARD_PHY_915MHZ

EMBER_STANDARD_PHY_863MHZ

Definition at line 765 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberCalType

EmberCalType

Define the type of calibration requested.

Enumerator

EMBER_CAL_TEMP_VCO

EMBER_CAL_IRCAL

EMBER_CAL_ALL

Definition at line 788 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberTxStreamParameters

EmberTxStreamParameters

Radio Stream mode.

Enumerator

TX_STREAM_PN9

TX_STREAM_CW

Definition at line 874 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Typedef Documentation

EmberEUI64

typedef uint8_t EmberEUI64[EUI64_SIZE] [EUI64_SIZE]

EUI 64-bit ID (IEEE 802.15.4 long address).

Definition at line 73 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberNodeId

Connect Data Types

45/326

typedef uint16_t EmberNodeId

IEEE 802.15.4 node ID. Also known as short address.

Definition at line 78 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberPanId

typedef uint16_t EmberPanId

IEEE 802.15.4 PAN ID.

Definition at line 83 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberMessageLength

typedef uint16_t EmberMessageLength

Message length in bytes.

Definition at line 219 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberTaskId

typedef uint8_t EmberTaskId

An identifier for a task.

Definition at line 540 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Event

typedef struct Event_s Event

Definition at line 567 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EventQueue

typedef struct EventQueue_s EventQueue

An event queue is currently just a list of events ordered by execution time.

Definition at line 575 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberEventData

typedef const struct EmberEventData_S EmberEventData

Connect Data Types

46/326

Complete events with a control and a handler procedure.

An application typically creates an array of events along with their handlers. The main loop passes the array to

emberRunEvents() to call the handlers of any events whose time has arrived.

Definition at line 606 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberBuffer

typedef uint16_t EmberBuffer

Buffers used by the memory buffer system.

Definition at line 759 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Function Documentation

emberKeyContents

uint8_t * emberKeyContents (EmberKeyData *key)

This macro allows the programmer to gain access to the key data bytes of the EmberKeyData structure.

Parameters

[in] key A Pointer to an EmberKeyData structure.

Returns

uint8_t* Returns a pointer to the first byte of the key data.

Definition at line 511 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Macro Definition Documentation

EXTENDED_PAN_ID_SIZE

#define EXTENDED_PAN_ID_SIZE

Value:

8

S ize of an extended PAN identifier in bytes (8).

Definition at line 58 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EUI64_SIZE

#define EUI64_SIZE

Value:

8

Connect Data Types

47/326

S ize of EUI64 (an IEEE address) in bytes (8).

Definition at line 63 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_ENCRYPTION_KEY_SIZE

#define EMBER_ENCRYPTION_KEY_SIZE

Value:

16

S ize of an encryption key in bytes (16).

Definition at line 68 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_NULL_NODE_ID

#define EMBER_NULL_NODE_ID

Value:

0xFFFFu

A distinguished network ID that will never be assigned to any node. Used to indicate the absence of a node ID.

Definition at line 89 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_BROADCAST_ADDRESS

#define EMBER_BROADCAST_ADDRESS

Value:

0xFFFF

Broadcast address.

Definition at line 92 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_USE_LONG_ADDRESS

#define EMBER_USE_LONG_ADDRESS

Value:

0xFFFE

Special short address indicating the node should use long addressing as source address.

Definition at line 96 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_COORDINATOR_ADDRESS

Connect Data Types

48/326

#define EMBER_COORDINATOR_ADDRESS

Value:

0x0000

The coordinator short address.

Definition at line 99 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EMBER_CAL_INVALID_VALUE

#define EMBER_CAL_INVALID_VALUE

Value:

(0xFFFFFFFF)

Definition at line 804 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberNetworkParameters

49/326

EmberNetworkParameters

Hold network parameters.

For information about power settings and radio channels, see the technical specification for the RF communication module

in your Developer K it and the Radio Configurator Guide (AN971).

Public Attributes

uint16_t panId

int16_t radioTxPower

uint16_t radioChannel

Public Attribute Documentation

panId

uint16_t EmberNetworkParameters::panId

The network's PAN identifier.

Definition at line 187 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

radioTxPower

int16_t EmberNetworkParameters::radioTxPower

The transmit power setting, in deci-dBm.

Definition at line 189 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

radioChannel

uint16_t EmberNetworkParameters::radioChannel

The radio channel. Be sure to specify a channel supported by the radio.

Definition at line 191 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberIncomingMessage

50/326

EmberIncomingMessage

An instance of this structure is passed to emberIncomingMessageHandler(). It describes the incoming message.

Public Attributes

EmberMessageO
ptions

options

EmberNodeId source

uint8_t endpoint

int8_t rssi

EmberMessageLe
ngth

length

uint8_t * payload

uint32_t timestamp

uint8_t lqi

Public Attribute Documentation

options

EmberMessageOptions EmberIncomingMessage::options

An EmberMessageOptions value indicating the options used for the incoming packet.

Definition at line 256 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

source

EmberNodeId EmberIncomingMessage::source

An EmberNodeId value indicating source node ID.

Definition at line 260 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

endpoint

uint8_t EmberIncomingMessage::endpoint

The endpoint the message is destined to.

Definition at line 264 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberIncomingMessage

51/326

int8_t EmberIncomingMessage::rssi

The RSSI in dBm the packet was received with.

Definition at line 268 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

length

EmberMessageLength EmberIncomingMessage::length

An EmberMessageLength value indicating the length in bytes of the incoming message.

Definition at line 273 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

payload

uint8_t* EmberIncomingMessage::payload

A pointer to the message payload.

Definition at line 277 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timestamp

uint32_t EmberIncomingMessage::timestamp

The millisecond system time returned by emberGetInt32uMillisecondTick() at the time the sync word was detected.

Definition at line 282 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

lqi

uint8_t EmberIncomingMessage::lqi

The LQI the packet was received with.

Definition at line 286 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberOutgoingMessage

52/326

EmberOutgoingMessage

An instance of this structure is passed to emberMessageSentHandler(). It describes the outgoing packet.

Public Attributes

EmberMessageO
ptions

options

EmberNodeId destination

uint8_t endpoint

uint8_t tag

EmberMessageLe
ngth

length

uint8_t * payload

int8_t ackRssi

uint32_t timestamp

Public Attribute Documentation

options

EmberMessageOptions EmberOutgoingMessage::options

An EmberMessageOptions value indicating the options used for transmitting the outgoing message.

Definition at line 298 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

destination

EmberNodeId EmberOutgoingMessage::destination

An EmberNodeId value indicating the destination short ID.

Definition at line 302 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

endpoint

uint8_t EmberOutgoingMessage::endpoint

The endpoint the message is destined to.

Definition at line 306 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberOutgoingMessage

53/326

uint8_t EmberOutgoingMessage::tag

A tag value the application can use to match emberMessageSend() calls to the corresponding

emberMessageSentHandler() calls.

Definition at line 311 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

length

EmberMessageLength EmberOutgoingMessage::length

An EmberMessageLength value indicating the length in bytes of the incoming message.

Definition at line 316 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

payload

uint8_t* EmberOutgoingMessage::payload

A pointer to the message payload.

Definition at line 320 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

ackRssi

int8_t EmberOutgoingMessage::ackRssi

The RSSI in dBm of the ACK corresponding to this message. This field is meaningful only if

EMBER_OPTIONS_ACK_REQUESTED flag is set in the options field.

Definition at line 326 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timestamp

uint32_t EmberOutgoingMessage::timestamp

The millisecond system time returned by ::sl_sleeptimer at the time the sync word was transmitted.

Definition at line 331 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberMacAddress

54/326

EmberMacAddress

A structure that stores an 802.15.4 address.

Public Attributes

uint8_t longAddress
Long (EUI-64) address. Valid if mode is EMBER_MAC_ADDRESS_MODE_LONG.

uint16_t shortAddress
Short address (node ID). Valid if mode is EMBER_MAC_ADDRESS_MODE_SHORT.

union
EmberMacAddres

s::@3

addr

EmberMacAddres
sMode

mode

Public Attribute Documentation

longAddress

uint8_t EmberMacAddress::longAddress[EUI64_SIZE]

Long (EUI-64) address. Valid if mode is EMBER_MAC_ADDRESS_MODE_LONG.

Definition at line 361 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

shortAddress

uint16_t EmberMacAddress::shortAddress

Short address (node ID). Valid if mode is EMBER_MAC_ADDRESS_MODE_SHORT.

Definition at line 366 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

addr

union EmberMacAddress::@3 EmberMacAddress::addr

Definition at line 367 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

mode

EmberMacAddressMode EmberMacAddress::mode

Addressing mode

EmberMacAddress

55/326

Definition at line 369 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberMacFrame

56/326

EmberMacFrame

A structure that describes the addressing fields of a 802.15.4 frame.

Public Attributes

EmberMacAddres
s

srcAddress

EmberMacAddres
s

dstAddress

EmberPanId srcPanId

EmberPanId dstPanId

bool srcPanIdSpecified

bool dstPanIdSpecified

Public Attribute Documentation

srcAddress

EmberMacAddress EmberMacFrame::srcAddress

An EmberMacAddress structure indicating the source address of a MAC frame.

Definition at line 380 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

dstAddress

EmberMacAddress EmberMacFrame::dstAddress

An EmberMacAddress structure indicating the destination address of a MAC frame.

Definition at line 385 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

srcPanId

EmberPanId EmberMacFrame::srcPanId

An EmberPanId struct indicating the source PAN ID of a MAC frame. This field is meaningful only if srcPanIdSpecified is set

to true.

Definition at line 390 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

dstPanId

EmberMacFrame

57/326

EmberPanId EmberMacFrame::dstPanId

An EmberPanId struct indicating the destination PAN ID of a MAC frame. This field is meaningful only if dstPanIdSpecified is

set to true.

Definition at line 395 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

srcPanIdSpecified

bool EmberMacFrame::srcPanIdSpecified

True if the srcPanId field is set, false otherwise.

Definition at line 399 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

dstPanIdSpecified

bool EmberMacFrame::dstPanIdSpecified

True if the dstPanId field is set, false otherwise.

Definition at line 403 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberIncomingMacMessage

58/326

EmberIncomingMacMessage

An instance of this structure is passed to emberIncomingMacMessageHandler(). It describes the incoming MAC frame.

Public Attributes

EmberMessageO
ptions

options

EmberMacFrame macFrame

int8_t rssi

uint8_t lqi

uint32_t frameCounter

EmberMessageLe
ngth

length

uint8_t * payload

uint32_t timestamp

Public Attribute Documentation

options

EmberMessageOptions EmberIncomingMacMessage::options

An EmberMessageOptions value indicating the options used for the incoming packet.

Definition at line 415 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

macFrame

EmberMacFrame EmberIncomingMacMessage::macFrame

An EmberMacFrame structure indicating the source and destination addresses and source and destination PAN IDs.

Definition at line 420 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

rssi

int8_t EmberIncomingMacMessage::rssi

The RSSI in dBm the packet was received with.

Definition at line 424 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberIncomingMacMessage

59/326

uint8_t EmberIncomingMacMessage::lqi

The LQI the packet was received with.

Definition at line 428 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

frameCounter

uint32_t EmberIncomingMacMessage::frameCounter

The security MAC frame counter (if any).

Definition at line 432 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

length

EmberMessageLength EmberIncomingMacMessage::length

An EmberMessageLength value indicating the length in bytes of the MAC payload of the incoming message.

Definition at line 437 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

payload

uint8_t* EmberIncomingMacMessage::payload

A pointer to the message MAC payload.

Definition at line 441 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timestamp

uint32_t EmberIncomingMacMessage::timestamp

The millisecond system time returned by ::sl_sleeptimer at the time the sync word was detected.

Definition at line 446 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberOutgoingMacMessage

60/326

EmberOutgoingMacMessage

An instance of this structure is passed to emberMacMessageSentHandler(). It describes the outgoing MAC frame.

Public Attributes

EmberMessageO
ptions

options

EmberMacFrame macFrame

uint8_t tag

uint32_t frameCounter

EmberMessageLe
ngth

length

uint8_t * payload

int8_t ackRssi

uint32_t timestamp

Public Attribute Documentation

options

EmberMessageOptions EmberOutgoingMacMessage::options

An EmberMessageOptions value indicating the options used for transmitting the outgoing message.

Definition at line 458 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

macFrame

EmberMacFrame EmberOutgoingMacMessage::macFrame

An EmberMacFrame struct indicating the source and destination addresses and source and destination PAN IDs of the

outgoing MAC frame.

Definition at line 463 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

tag

uint8_t EmberOutgoingMacMessage::tag

A tag value the application can use to match emberMacMessageSend() calls to the corresponding

emberMacMessageSentHandler() calls.

Definition at line 468 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberOutgoingMacMessage

61/326

frameCounter

uint32_t EmberOutgoingMacMessage::frameCounter

The security frame counter of the outgoing MAC frame (if any).

Definition at line 472 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

length

EmberMessageLength EmberOutgoingMacMessage::length

An EmberMessageLength value indicating the length in bytes of the incoming message.

Definition at line 477 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

payload

uint8_t* EmberOutgoingMacMessage::payload

A pointer to the message payload.

Definition at line 481 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

ackRssi

int8_t EmberOutgoingMacMessage::ackRssi

The RSSI in dBm of the ACK corresponding to this message. This field is meaningful only if

EMBER_OPTIONS_ACK_REQUESTED flag is set in the options field.

Definition at line 487 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timestamp

uint32_t EmberOutgoingMacMessage::timestamp

The millisecond system time returned by ::sl_sleeptimer at the time the sync word was transmitted.

Definition at line 492 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberKeyData

62/326

EmberKeyData

This data structure contains the security key, most prominently used by emberSetSecurityKey.

Public Attributes

uint8_t contents

Public Attribute Documentation

contents

uint8_t EmberKeyData::contents[EMBER_ENCRYPTION_KEY_SIZE]

This is the key byte data.

Definition at line 500 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EventActions

63/326

EventActions

The static part of an event. Each event can be used with only one event queue.

Public Attributes

struct
EventQueue_s *

queue

void(* handler

void(* marker

const char * name

Public Attribute Documentation

queue

struct EventQueue_s* EventActions::queue

Definition at line 554 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

handler

void(* EventActions::handler) (struct Event_s *)

Definition at line 555 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

marker

void(* EventActions::marker) (struct Event_s *)

Definition at line 556 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

name

const char* EventActions::name

Definition at line 557 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Event_s

64/326

Event_s

Public Attributes

EventActions * actions

struct Event_s * next

uint32_t timeToExecute

Public Attribute Documentation

actions

EventActions* Event_s::actions

Definition at line 561 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

next

struct Event_s* Event_s::next

Definition at line 565 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timeToExecute

uint32_t Event_s::timeToExecute

Definition at line 566 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EventQueue_s

65/326

EventQueue_s

An event queue is currently just a list of events ordered by execution time.

Public Attributes

Event * isrEvents

Event * events

Public Attribute Documentation

isrEvents

Event* EventQueue_s::isrEvents

Definition at line 573 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

events

Event* EventQueue_s::events

Definition at line 574 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberEventControl

66/326

EmberEventControl

Control structure for events.

This structure should not be accessed directly. It holds the event status (one of the EMBER_EVENT_ values) and the time

left before the event fires.

Public Attributes

EmberEventUnits status

EmberTaskId taskid

uint32_t timeToExecute

Public Attribute Documentation

status

EmberEventUnits EmberEventControl::status

The event's status, either inactive or the units for timeToExecute.

Definition at line 585 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

taskid

EmberTaskId EmberEventControl::taskid

The task ID this event belongs to.

Definition at line 587 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

timeToExecute

uint32_t EmberEventControl::timeToExecute

How long before the event fires. Units are always in milliseconds.

Definition at line 591 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberEventData_S

67/326

EmberEventData_S

Complete events with a control and a handler procedure.

An application typically creates an array of events along with their handlers. The main loop passes the array to

emberRunEvents() to call the handlers of any events whose time has arrived.

Public Attributes

EmberEventContr
ol *

control

void(* handler

Public Attribute Documentation

control

EmberEventControl* EmberEventData_S::control

The control structure for the event.

Definition at line 603 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

handler

void(* EmberEventData_S::handler) (void)

The procedure to call when the event fires.

Definition at line 605 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

EmberTaskControl

68/326

EmberTaskControl

Control structure for tasks.

This structure should not be accessed directly.

Public Attributes

uint32_t nextEventTime

EmberEventData
*

events

bool busy

Public Attribute Documentation

nextEventTime

uint32_t EmberTaskControl::nextEventTime

The time when the next event associated with this task will fire

Definition at line 614 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

events

EmberEventData* EmberTaskControl::events

The list of events associated with this task

Definition at line 616 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

busy

bool EmberTaskControl::busy

A flag that indicates the task has something to do other than events

Definition at line 618 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/ember-types.h

Stack Information

69/326

Stack Information

Stack Information
Connect API for accessing and modifying stack states and behaviors.

See stack-info.h for source code.

Modules

Stack Counters

Handlers

void emberStackStatusHandler(EmberStatus status)
A callback invoked when the status of the stack changes.

void emberStackIsrHandler(void)
This handler is invoked in ISR context when certain stack-related ISR routines fire .

bool emberStackIdleHandler(uint32_t *idleTimeMs)
A callback to allow the application to manage idling the MCU.

void emberRadioNeedsCalibratingHandler(void)
The radio calibration callback function.

void emberChildJoinHandler(EmberNodeType nodeType, EmberNodeId nodeId)
Invoked at coordinator, range extender, or mac mode nodes when a new child has jo ined the device .

APIs

void emberStackPowerDown(void)
Immediately turns the radio power completely off.

void emberStackPowerUp(void)
Power up the radio. Typically called coming out of sleep.

EmberNetworkSt
atus

emberNetworkState(void)
Return the current jo in status.

bool emberStackIsUp(void)
Indicate whether the stack is currently up.

EmberStatus emberSetSecurityKey(EmberKeyData *key)
Write a key at the address of the formerly used security key. The key set by this function will not be used by the stack.

The API is meant to be used to erase a key as it is now managed by PSA Crypto API.

EmberStatus emberGetSecurityKey(EmberKeyData *key)
Get the legacy security key. This function does not return the value set with the PSA Crypto API.

EmberStatus emberSetRadioChannelExtended(uint16_t channel, bool persistent)
Set the channel for sending and receiving messages on the current network. The available channels depend on the

radio config you use . Channels can differ more than the frequency if it's a multi-PHY config.

Stack Information

70/326

EmberStatus emberSetRadioChannel(uint16_t channel)
Set the channel for sending and receiving messages on the current network. The available channels depend on the

radio config you use . Channels can differ more than the frequency if it's a multi-PHY config.

uint16_t emberGetRadioChannel(void)
Get the radio channel, to which a node is set, on the current network. The available channels depend on the radio

config you use . Channels can differ more than the frequency if it's a multi-PHY config.

uint16_t emberGetDefaultChannel(void)
Get the first available channel in the current radio configuration.

EmberStatus emberPhyConfigInit(EmberPhyType phyType)
Indicate if the PHY configuration of the stack. Currently only supporting EMBER_RADIO_CONFIGURATOR and

EMBER_STANDARD_PHY_2_4GHZ. It must be called before initializing the stack.

EmberStatus emberCalibrateCurrentChannelExtended(uint32_t calValueIn, uint32_t *calValueOut)
Perform image rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only

be called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is

called when the radio is off, it will turn the radio on and leave it on.

EmberStatus emberCalibrateCurrentChannel(void)
Perform image rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only

be called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is

called when the radio is off, it will turn the radio on and leave it on.

EmberStatus emberApplyIrCalibration(uint32_t calValue)
Apply Image Rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only

be called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is

called when the radio is off, it will turn the radio on and leave it on.

EmberStatus emberTempCalibration(void)
Perform Temperature VCO calibration calibration on the current channel. The stack will notify the application that it

needs channel calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This

function should only be called from within the context of the emberRadioNeedsCalibratingHandler() callback function.

Note if this function is called when the radio is off, it will turn the radio on and leave it on.

EmberCalType emberGetCalType(void)
Fetch calibration type associated to the latest emberRadioNeedsCalibratingHandler() callback.

EmberStatus emberSetRadioPower(int16_t power, bool persistent)
Set the radio output power at which a node is to operate for the current network. The radio has a finite power

reso lution, so it will approximate the requested power with the closest possible value at or below the requested value .

int16_t emberGetRadioPower(void)
Get the radio output power of the current network at which a node is operating. This might be different to what you

set using emberSetRadioPower because the radio has a finite power reso lution, and emberSetRadioPower must

approximate to the closest possible value at or below the requested value . This API however returns with the actual

setting.

EmberStatus emberSetRadioPowerMode(bool radioOn)
Allow the application to turn the radio on/off. This API is intended for use with direct devices only.

EmberStatus emberSetMacParams(int8_t ccaThreshold, uint8_t maxCcaAttempts, uint8_t minBackoffExp, uint8_t
maxBackoffExp, uint16_t ccaBackoff, uint16_t ccaDuration, uint8_t maxRetries, uint32_t csmaTimeout, uint16_t
ackTimeout)
Set the MAC layer transmission parameters.

EmberStatus emberMacGetParentAddress(EmberMacAddress *parentAddress)
Retrieve the parent address. This API can be invoked only for nodes of EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE type .

Stack Information

71/326

uint32_t emberStackIdleTimeMs(uint16_t *currentStackTasks)
Return the time in milliseconds the stack could idle for.

uint32_t emberGetInt32uMillisecondTick(void)
Return the current time in milliseconds.

uint16_t emberCurrentStackTasks(void)
Return a bitmask indicating the stack's current tasks.

bool emberOkToNap(void)
Indicate whether the stack is currently in a state with no high-priority tasks and may sleep.

bool emberOkToHibernate(void)
Indicate whether the stack currently has any pending tasks.

uint8_t * emberGetEui64(void)
Return the EUI64 ID of the local node .

bool emberIsLocalEui64(EmberEUI64 eui64)
Determine whether eui64 is the local node 's EUI64 ID. EUI64 is easily accessible in SoC mode , but in Host-NCP, the

address is stored on the NCP. This API can be used on the Host to compare a value with the locally stored one .

EmberNodeId emberGetNodeId(void)
Return the 16-bit node ID of local node on the current network.

EmberPanId emberGetPanId(void)
Return the local node 's PAN ID of the current network.

EmberNodeType emberGetNodeType(void)
Return an EmberNodeType value indicating the type of the node .

EmberNodeId emberGetParentId(void)
Return the parent's node ID.

EmberStatus emberGetVersionInfo(uint16_t *gsdk_version, uint16_t *connect_stack_version, uint32_t *bootloader_version)
Get the GSDK, Stack and bootloader versions all at once . The version format are not all the same . Please refer to the

corresponding documentation to handle the information correctly.

Macros

#define EMBER_HIGH_PRIORITY_TASKS (EMBER_OUTGOING_MESSAGES | EMBER_INCOMING_MESSAGES |
EMBER_RADIO_IS_ON)
A mask of the tasks that prevent a device from sleeping.

#define EMBER_INVALID_CHANNEL 65535
Invalid channel number.

Handlers Documentation

emberStackStatusHandler

void emberStackStatusHandler (EmberStatus status)

A callback invoked when the status of the stack changes.

Parameters

Stack Information

72/326

[in] status Stack status. One of the following:

EMBER_NETWORK_UP

EMBER_NETWORK_DOWN

EMBER_NO_VALID_BEACONS

EMBER_JOIN_SCAN_FAILED

EMBER_JOIN_FAILED

EMBER_JOIN_DENIED

EMBER_JOIN_TIMEOUT

EMBER_MAC_SYNC_TIMEOUT

The application is free to begin messaging once it receives the EMBER_NETWORK_UP status.

Definition at line 72 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberStackIsrHandler

void emberStackIsrHandler (void)

This handler is invoked in ISR context when certain stack-related ISR routines fire.

Parameters

N/A

Definition at line 77 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberStackIdleHandler

bool emberStackIdleHandler (uint32_t *idleTimeMs)

A callback to allow the application to manage idling the MCU.

Parameters

[inout] idleTimeMs A pointer to the time in millisecond the stack is allowed to idle. If the application decides to manage

idling the MCU, it should update the passed value with the actual time the MCU was idled.

Returns

true if the application is managing idling the MCU, false otherwise. If this function returns false, the stack will manage idling

the MCU.

Definition at line 88 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberRadioNeedsCalibratingHandler

void emberRadioNeedsCalibratingHandler (void)

The radio calibration callback function.

Parameters

N/A

This handler is invoked by the stack upon receiving a "calibration needed" event from the radio to inform the application

that it should perform calibration of the current channel as soon as possible using the emberCalibrateCurrentChannel() API.

Stack Information

73/326

While calibration only takes tens of microseconds, the application can failsafe any critical processes or peripherals before

calling emberCalibrateCurrentChannel(). The application must call emberCalibrateCurrentChannel() in response to this

callback to maintain expected radio performance.

Definition at line 102 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberChildJoinHandler

void emberChildJoinHandler (EmberNodeType nodeType, EmberNodeId nodeId)

Invoked at coordinator, range extender, or mac mode nodes when a new child has joined the device.

Parameters

[in] nodeType The role of the joining device (EMBER_STAR_RANGE_EXTENDER, EMBER_STAR_END_DEVICE,

EMBER_STAR_SLEEPY_END_DEVICE, EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE).

[in] nodeId The node ID of the joining device.

Definition at line 601 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

APIs Documentation

emberStackPowerDown

void emberStackPowerDown (void)

Immediately turns the radio power completely off.

Parameters

N/A

After calling this function, do not call any other stack function except emberStackPowerUp() because all other stack

functions require that the radio is powered to operate properly.

Definition at line 118 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberStackPowerUp

void emberStackPowerUp (void)

Power up the radio. Typically called coming out of sleep.

Parameters

N/A

For non-sleepy devices, also turns the radio on and leaves it in RX mode.

Definition at line 124 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberNetworkState

EmberNetworkStatus emberNetworkState (void)

Stack Information

74/326

Return the current join status.

Parameters

N/A

Returns a value indicating whether the node is joining, joined to, or leaving a network.

Returns

An EmberNetworkStatus value indicating the current join status.

Definition at line 133 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberStackIsUp

bool emberStackIsUp (void)

Indicate whether the stack is currently up.

Parameters

N/A

Returns true if the stack is joined to a network and ready to send and receive messages. This reflects only the state of the

local node and does not indicate whether or not other nodes are able to communicate with this node.

Returns

true if the stack is up, false otherwise.

Definition at line 144 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetSecurityKey

EmberStatus emberSetSecurityKey (EmberKeyData *key)

Write a key at the address of the formerly used security key. The key set by this function will not be used by the stack. The

API is meant to be used to erase a key as it is now managed by PSA Crypto API.

Parameters

[in] key An EmberKeyData value containing the security key to be set.

Returns

An EmberStatus value of EMBER_SUCCESS if the key was successfully set. Otherwise, it returns an EmberStatus value of

EMBER_INVALID_CALL.

Definition at line 156 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetSecurityKey

EmberStatus emberGetSecurityKey (EmberKeyData *key)

Get the legacy security key. This function does not return the value set with the PSA Crypto API.

Parameters

Stack Information

75/326

[in] key An EmberKeyData where the legcay security key will be stored

Returns

An EmberStatus value of EMBER_SUCCESS if the key was successfully read.

Definition at line 166 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetRadioChannelExtended

EmberStatus emberSetRadioChannelExtended (uint16_t channel, bool persistent)

Set the channel for sending and receiving messages on the current network. The available channels depend on the radio

config you use. Channels can differ more than the frequency if it's a multi-PHY config.

Parameters

[in] channel A desired radio channel.

[in] persistent A flag to instruct the stack to save the channel setting in persistent or not. Each persistent call triggers

a token write. Excessive usage might cause flash to wear-out.

Note

Care should be taken when using this API. All devices on a network must use the same channel.

Returns

An EmberStatus value of:

EMBER_SUCCESS if the stack accepted the channel change.

EMBER_INVALID_CALL if the node is currently performing frequency hopping.

EMBER_PHY_INVALID_CHANNEL if the passed channel is invalid.

EMBER_MAC_BUSY if the MAC is currently performing a high priority task.

Definition at line 222 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetRadioChannel

EmberStatus emberSetRadioChannel (uint16_t channel)

Set the channel for sending and receiving messages on the current network. The available channels depend on the radio

config you use. Channels can differ more than the frequency if it's a multi-PHY config.

Parameters

[in] channel A desired radio channel.

Note

Care should be taken when using this API. All devices on a network must use the same channel. Each call triggers a token

write. Excessive usage might cause flash to wear-out.

Returns

An EmberStatus value of:

EMBER_SUCCESS if the stack accepted the channel change.

EMBER_INVALID_CALL if the node is currently performing frequency hopping.

EMBER_PHY_INVALID_CHANNEL if the passed channel is invalid.

EMBER_MAC_BUSY if the MAC is currently performing a high priority task.

Stack Information

76/326

Definition at line 242 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetRadioChannel

uint16_t emberGetRadioChannel (void)

Get the radio channel, to which a node is set, on the current network. The available channels depend on the radio config

you use. Channels can differ more than the frequency if it's a multi-PHY config.

Parameters

N/A

Returns

The current radio channel.

Definition at line 250 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetDefaultChannel

uint16_t emberGetDefaultChannel (void)

Get the first available channel in the current radio configuration.

Parameters

N/A

Returns

The first available channel in the radio configuration. 0xffff if error

Definition at line 257 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberPhyConfigInit

EmberStatus emberPhyConfigInit (EmberPhyType phyType)

Indicate if the PHY configuration of the stack. Currently only supporting EMBER_RADIO_CONFIGURATOR and

EMBER_STANDARD_PHY_2_4GHZ. It must be called before initializing the stack.

Parameters

N/A phyType

Returns

EMBER_BAD_ARGUMENT if phyType is incorrect EMBER_INVALID_CALL if API is called after stack initialization

EMBER_SUCCESS otherwise

Definition at line 267 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberCalibrateCurrentChannelExtended

EmberStatus emberCalibrateCurrentChannelExtended (uint32_t calValueIn, uint32_t *calValueOut)

Stack Information

77/326

Perform image rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only be

called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is called

when the radio is off, it will turn the radio on and leave it on.

Parameters

[in] calValueIn the calibration value to use. Set to EMBER_CAL_INVALID_VALUE to perform automatic calibration.

[out] calValueOut a pointer to the calibration value that was used. This parameter is ignored when set to NULL.

Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 286 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberCalibrateCurrentChannel

EmberStatus emberCalibrateCurrentChannel (void)

Perform image rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only be

called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is called

when the radio is off, it will turn the radio on and leave it on.

Parameters

N/A

Definition at line 297 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberApplyIrCalibration

EmberStatus emberApplyIrCalibration (uint32_t calValue)

Apply Image Rejection calibration on the current channel. The stack will notify the application that it needs channel

calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should only be

called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is called

when the radio is off, it will turn the radio on and leave it on.

Parameters

[in] calValue the calibration value to apply. Should not be set to EMBER_CAL_INVALID_VALUE.

Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 313 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberTempCalibration

EmberStatus emberTempCalibration (void)

Perform Temperature VCO calibration calibration on the current channel. The stack will notify the application that it needs

channel calibration via the emberRadioNeedsCalibratingHandler() callback function during emberTick(). This function should

Stack Information

78/326

only be called from within the context of the emberRadioNeedsCalibratingHandler() callback function. Note if this function is

called when the radio is off, it will turn the radio on and leave it on.

Parameters

N/A

Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 326 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetCalType

EmberCalType emberGetCalType (void)

Fetch calibration type associated to the latest emberRadioNeedsCalibratingHandler() callback.

Parameters

N/A

Returns

An EmberCalType value indicating which type of calibration should be performed.

Definition at line 334 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetRadioPower

EmberStatus emberSetRadioPower (int16_t power, bool persistent)

Set the radio output power at which a node is to operate for the current network. The radio has a finite power resolution,

so it will approximate the requested power with the closest possible value at or below the requested value.

Parameters

[in] power Desired radio output power, in deci-dBm.

[in] persistent A flag to instruct the stack to save the power setting in persistent or not.

Note

Care should be taken when using this API on a running network, because it directly impacts the established link qualities

neighboring nodes have with the node on which it is called. This can lead to disruption of existing routes and erratic network

behavior.

Returns

An EmberStatus value indicating the success or failure of the command. Failure indicates that the requested power level is

out of range.

Definition at line 353 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetRadioPower

int16_t emberGetRadioPower (void)

Stack Information

79/326

Get the radio output power of the current network at which a node is operating. This might be different to what you set

using emberSetRadioPower because the radio has a finite power resolution, and emberSetRadioPower must approximate to

the closest possible value at or below the requested value. This API however returns with the actual setting.

Parameters

N/A

Returns

Current radio output power, in deci-dBm.

Definition at line 363 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetRadioPowerMode

EmberStatus emberSetRadioPowerMode (bool radioOn)

Allow the application to turn the radio on/off. This API is intended for use with direct devices only.

Parameters

[in] radioOn If this parameter is true, the radio is turned on, otherwise it's turned off.

Returns

An EmberStatus value indicating the success or failure of the command. Failure indicates that the node type is a type other

than EMBER_DIRECT_DEVICE.

Definition at line 375 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberSetMacParams

EmberStatus emberSetMacParams (int8_t ccaThreshold, uint8_t maxCcaAttempts, uint8_t minBackoffExp, uint8_t
maxBackoffExp, uint16_t ccaBackoff, uint16_t ccaDuration, uint8_t maxRetries, uint32_t csmaTimeout, uint16_t ackTimeout)

Set the MAC layer transmission parameters.

Parameters

[in] ccaThreshold The CCA RSSI threshold, in dBm, above which the channel is considered 'busy'. This parameter is

by default set to EMBER_RADIO_CCA_THRESHOLD.

[in] maxCcaAttempts The maximum number of clear channel assessment attempts that are performed prior to fail to

transmit a packet with EMBER_PHY_TX_CCA_FAIL status. This parameter is set by default to 4. If

this parameter is set to 0, the CCA assessment shall not be performed.

[in] minBackoffExp The backoff exponent used if the initial channel clear assessment fails. This parameter is set by

default to 3. Note: this is meaningful only if the checkCca parameter is set to true.

[in] maxBackoffExp The backoff exponent used if the final channel clear assessment fails. This parameter is set by

default to 5. Note: this is meaningful only if the checkCca parameter is set to true.

[in] ccaBackoff The backoff unit period in microsecond. It is multiplied by the random backoff exponential

controlled by minBackoffExp and maxBackoffExp to determine the overall backoff period. This

parameter is set by default to the PHY symbol time in microseconds multiplied by 20.

[in] ccaDuration The minimum desired CCA check duration in microseconds. This parameter is set by default to the

PHY symbol time in microseconds multiplied by 8.

Stack Information

80/326

[in] maxRetries The number of transmission retries that is performed if no acknowledgment was received. This

parameter is set by default to 3 (which means that a total of 4 transmission attempts will be

performed).

[in] csmaTimeout An overall timeout in microsecond time base for the the CSMA operations. This value is set by

default to 0 which means that no timeout is imposed.

[in] ackTimeout The ack timeout in microseconds after which the transmitting gives up waiting for an

acknowledgment. This parameter is set by default to (EMBER_MAC_ACK_TIMEOUT_MS * 1000).

Note

The CSMA/CA (CCA) values are directly used in RAIL's RAIL_CsmaConfig_t and further information can be found in the RAIL

API documentation.

Returns

An EmberStatus value indicating whether the MAC parameters were successfully set or the reason of failure.

Definition at line 432 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberMacGetParentAddress

EmberStatus emberMacGetParentAddress (EmberMacAddress *parentAddress)

Retrieve the parent address. This API can be invoked only for nodes of EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE type.

Parameters

N/A parentAddress

Returns

An EmberStatus value of EMBER_SUCCESS if the parent address was successfully retrieved, otherwise an EmberStatus

value indicating the reason of failure.

Definition at line 449 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberStackIdleTimeMs

uint32_t emberStackIdleTimeMs (uint16_t *currentStackTasks)

Return the time in milliseconds the stack could idle for.

Parameters

[in] currentStackTasks A pointer to an integer that is written with the active stack tasks at the time of the API call.

Returns

Allowed idle time in milliseconds.

Definition at line 458 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetInt32uMillisecondTick

uint32_t emberGetInt32uMillisecondTick (void)

Stack Information

81/326

Return the current time in milliseconds.

Parameters

N/A

Returns

Current time in milliseconds.

Definition at line 464 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberCurrentStackTasks

uint16_t emberCurrentStackTasks (void)

Return a bitmask indicating the stack's current tasks.

Parameters

N/A

The mask EMBER_HIGH_PRIORITY_TASKS defines which tasks are high-priority. Devices should not sleep if any high-priority

tasks are active. Active tasks that are not high-priority are waiting for messages to arrive from other devices. If there are

active tasks, but no high-priority ones, the device may sleep but should periodically wake up and call emberPollForData() to

receive messages. Parents will hold messages for EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS milliseconds before

discarding them.

Returns

A bitmask of the stack's active tasks.

Definition at line 479 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberOkToNap

bool emberOkToNap (void)

Indicate whether the stack is currently in a state with no high-priority tasks and may sleep.

Parameters

N/A

Tasks may be expecting incoming messages, in which case the device should periodically wake up and call

emberPollForData() to receive messages. This function can only be called when the node type is

EMBER_STAR_SLEEPY_END_DEVICE.

Returns

true if the application may sleep but the stack may be expecting incoming messages.

Definition at line 492 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberOkToHibernate

bool emberOkToHibernate (void)

Stack Information

82/326

Indicate whether the stack currently has any pending tasks.

Parameters

N/A

If no tasks are pending , emberTick() does not need to be called until next stack API function is called. This function can

only be called when the node type is EMBER_STAR_SLEEPY_END_DEVICE.

Returns

true if the application may sleep for as long as it wishes.

Definition at line 502 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetEui64

uint8_t * emberGetEui64 (void)

Return the EUI64 ID of the local node.

Parameters

N/A

Returns

The 64-bit ID.

Definition at line 508 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberIsLocalEui64

bool emberIsLocalEui64 (EmberEUI64 eui64)

Determine whether eui64 is the local node's EUI64 ID. EUI64 is easily accessible in SoC mode, but in Host-NCP, the

address is stored on the NCP. This API can be used on the Host to compare a value with the locally stored one.

Parameters

[in] eui64 An EUI64 ID.

Returns

true if eui64 is the local node's ID, otherwise false.

Definition at line 519 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetNodeId

EmberNodeId emberGetNodeId (void)

Return the 16-bit node ID of local node on the current network.

Parameters

N/A

Returns

Stack Information

83/326

The 16-bit ID. Byte order is little endian.

Definition at line 525 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetPanId

EmberPanId emberGetPanId (void)

Return the local node's PAN ID of the current network.

Parameters

N/A

Returns

The PAN ID.

Definition at line 531 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetNodeType

EmberNodeType emberGetNodeType (void)

Return an EmberNodeType value indicating the type of the node.

Parameters

N/A

Returns

The node type.

Definition at line 537 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetParentId

EmberNodeId emberGetParentId (void)

Return the parent's node ID.

Parameters

N/A

Returns

The parent's node ID.

Definition at line 543 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

emberGetVersionInfo

EmberStatus emberGetVersionInfo (uint16_t *gsdk_version, uint16_t *connect_stack_version, uint32_t *bootloader_version)

Stack Information

84/326

Get the GSDK, Stack and bootloader versions all at once. The version format are not all the same. Please refer to the

corresponding documentation to handle the information correctly.

Parameters

N/A gsdk_version

N/A connect_stack_version

N/A bootloader_version

Returns

EMBER_SUCCESS if successful

Definition at line 550 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

Macro Definition Documentation

EMBER_HIGH_PRIORITY_TASKS

#define EMBER_HIGH_PRIORITY_TASKS

Value:

 (EMBER_OUTGOING_MESSAGES | EMBER_INCOMING_MESSAGES | EMBER_RADIO_IS_ON)

A mask of the tasks that prevent a device from sleeping.

Definition at line 44 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

EMBER_INVALID_CHANNEL

#define EMBER_INVALID_CHANNEL

Value:

65535

Invalid channel number.

Definition at line 51 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

Stack Counters

85/326

Stack Counters

Stack Counters
Stack counters API.

Functions

EmberStatus emberGetCounter(EmberCounterType counterType, uint32_t *count)
Retrieve the stack counter corresponding to the passed counter type .

Function Documentation

emberGetCounter

EmberStatus emberGetCounter (EmberCounterType counterType, uint32_t *count)

Retrieve the stack counter corresponding to the passed counter type.

Parameters

[in] counterType An EmberCounterType value indicating the stack counter to be retrieved.

[out] count The counter of the requested counterType is returned here

Returns

An EmberStatus value of EMBER_SUCCESS if the stack counter was successfully retrieved. An EmberStatus value of

EMBER_INVALID_CALL if the passed counterType is invalid. An EmberStatus value of EMBER_LIBRARY_NOT_PRESENT if the

stack counter library is not present.

Definition at line 578 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

Network Management

86/326

Network Management

Network Management
Connect API for finding, forming, joining, and leaving Connect networks.

See network-management.h for source code.

Modules

Frequency Hopping

Parent Support

Handlers

void emberIncomingBeaconHandler(EmberPanId panId, EmberMacAddress *source, int8_t rssi, bool permitJoining,
uint8_t beaconFieldsLength, uint8_t *beaconFields, uint8_t beaconPayloadLength, uint8_t *beaconPayload)
Invoked if a beacon is received during the scanning procedure if the handler was initiated by the application with the

emberStartActiveScan() stack APIs.

void emberActiveScanCompleteHandler(void)
Invoked after the application calls the emberStartActiveScan() stack API to inform the application that the scanning

procedure is complete .

void emberEnergyScanCompleteHandler(int8_t mean, int8_t min, int8_t max, uint16_t variance)
Invoked after the application calls the emberStartEnergyScan() stack API to inform the application that the energy scan

procedure is complete and to provide statistics.

Functions

EmberStatus emberInit(void)
Initialize the radio and the Ember stack.

void emberTick(void)
A periodic tick routine that should be called in the main loop in the application.

EmberStatus emberNetworkInit(void)
Resume the network operation after a reboot.

EmberStatus emberStartActiveScan(uint16_t channel)
Start an active scan. EMBER_SUCCESS signals that the scan successfully started. Upon receiving a beacon, the

emberIncomingBeaconHandler() stack handler is called. At the end of the scanning procedure , the

emberActiveScanCompleteHandler() stack handler is called. Note that, while a scan can be initiated when the node is

currently jo ined to a network, the node will generally be unable to communicate with its PAN during the scan period. In

particular, time-sensitive network operations might be affected because a scan operation will prevent any network

operation for the duration of the scan.

EmberStatus emberSetActiveScanDuration(uint16_t durationMs)
Set the time in milliseconds the node will spend listening for incoming beacons during an active scan. The default value

is set based on the symbo l time of the current PHY configuration according to the 802.15.4 specs.

uint16_t emberGetActiveScanDuration(void)
Get the current active scan duration in milliseconds.

Network Management

87/326

EmberStatus emberStartEnergyScan(uint16_t channel, uint8_t samples)
Start an energy scan. EMBER_SUCCESS signals that the scan successfully started. At the end of the scanning

procedure , the emberEnergyScanCompleteHandler() stack handler is called. Note that, while a scan can be initiated

when the node is currently jo ined to a network, the node is generally unable to communicate with its PAN during the

scan period. In particular, time-sensitive network operations might be affected because a scan operation will prevent

any network operation for the duration of the scan.

EmberStatus emberSetApplicationBeaconPayload(uint8_t payloadLength, uint8_t *payload)
Allow the application to set the application portion of the beacon payload. It's by default set to the empty string.

EmberStatus emberJoinNetworkExtended(EmberNodeType nodeType, EmberNodeId nodeId, EmberNetworkParameters
*parameters)
Cause the stack to associate with the network using the specified network parameters. It can take several seconds for

the stack to associate with the local network. Do not send messages until a call to the emberStackStatusHandler()

callback informs you that the stack is up. Notice that forming a network causes the node 's security frame counter to be

reset.

EmberStatus emberJoinNetwork(EmberNodeType nodeType, EmberNetworkParameters *parameters)
Cause the stack to associate with the network using the specified network parameters. The network ID is assigned by

the network coordinator. It can take several seconds for the stack to associate with the local network. Do not send

messages until a call to the emberStackStatusHandler() callback informs you that the stack is up. Notice that jo ining a

network causes the node 's security frame counter to be reset.

EmberStatus emberPermitJoining(uint8_t duration)
Tell the stack to allow other nodes to jo in the network with this node as their parent. Jo ining is initially disabled by

default. This function may only be called after the node is part of a network and the stack is up.

EmberStatus emberJoinCommissioned(EmberNodeType nodeType, EmberNodeId nodeId, EmberNetworkParameters
*parameters)
Cause the stack to go up with the passed network parameters without performing any over-the-air message exchange .

Notice that commissioning a network causes the node 's security frame counter to be reset.

EmberStatus emberSetSelectiveJoinPayload(uint8_t payloadLength, uint8_t *payload)
When invoked at a EMBER_STAR_COORDINATOR or a EMBER_STAR_RANGE_EXTENDER, it causes the stack to only

accept subsequent jo ining nodes with matching jo ining payload. When invoked at a node that has not yet jo ined a

network, it sets the jo ining payload that will be included in the jo ining process. Notice , the jo in payload is included in a

non-standard 802.15.4 command, therefore this feature is not available for nodes operating as

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE.

EmberStatus emberClearSelectiveJoinPayload(void)
Clear the jo in payload previously set with the emberSetSelectiveJo inPayload() API. When invoked at an

EMBER_STAR_COORDINATOR or an EMBER_STAR_RANGE_EXTENDER it causes the stack to accept jo ining nodes with

any jo in payload pattern. When invoked at a node that has not yet jo ined a network, it clears the jo in payload.

Subsequent jo ining attempts will not include any jo in payload in the over-the-air jo ining handshake .

EmberStatus emberSetAuxiliaryAddressFilteringEntry(EmberNodeId nodeId, uint8_t entryIndex)
Set an entry in the auxiliary address filtering table at a given address. Nodes of EMBER_DIRECT_DEVICE device type

can receive incoming messages destined to any of the node IDs in the auxiliary address filtering table (while also

receiving messages destined to actual node ID). If the passed node ID is EMBER_NULL_NODE_ID, the entry is cleared.

EmberNodeId emberGetAuxiliaryAddressFilteringEntry(uint8_t entryIndex)
Retrieve the content of the auxiliary address filtering table at a given address. See

emberSetAuxiliaryAddressFilteringEntry() for details.

void emberResetNetworkState(void)
Forget the current network and reverts to a network status of EMBER_NO_NETWORK.

EmberStatus emberMacFormNetwork(EmberNetworkParameters *parameters)
Form a new network as an EMBER_MAC_MODE_DEVICE by becoming the coordinator. This API should be used to form a

compliant 802.15.4 PAN and to inter-operate with other 802.15.4 devices. Notice that forming a network causes the

node 's security frame counter to be reset.

Network Management

88/326

EmberStatus emberMacSetPanCoordinator(bool isCoordinator)
Configure a EMBER_MAC_MODE_DEVICE node to be a PAN coordinator. Note , this only applies to nodes that have been

commissioned as EMBER_MAC_MODE_DEVICE.

EmberStatus emberNetworkLeave(void)
Allow a star topo logy node that previously jo ined a network to leave the network. The node will notify the parent node

and eventually leave the network. The application is notified that the leave procedure completed via the

emberStackStatusHandler() handler.

EmberStatus emberMacAddShortToLongAddressMapping(EmberNodeId shortId, EmberEUI64 longId)
Populate the short-to-long address mapping table at the MAC layer. The table is meaningful only when running as

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE. The standard 802.15.4 encryption and

authentication process requires the security nonce to be populated with the source node long ID. A receiver must do

the same to decrypt a secured incoming message . This short-to-long mapping table is used to decrypt a secured

incoming packet from a node using short source addressing. If no entry is found in this table , the incoming message will

be dropped. This table is also used to encrypt secured outgo ing messages with short source addressing in case the

node is sending out a secured message with a short source address other than its own.

EmberStatus emberMacClearShortToLongAddressMappings(void)
Clear the short-to-long address mapping table at the MAC layer.

EmberStatus emberOfdmSetMcs(uint8_t mcs)
Set the MCS in case of an OFDM PHY. MCS can range from 0 to 6.

EmberStatus emberOfdmGetMcs(uint8_t *mcs)
Get the MCS in case of an OFDM PHY.

Macros

#define EMBER_MAC_MAX_APP_BEACON_PAYLOAD_LENGTH 16
The maximum length in bytes of the application beacon payload.

#define EMBER_MAC_STACK_BEACON_PAYLOAD "silabs-connect"

#define EMBER_MAC_STACK_BEACON_PAYLOAD_LENGTH 14
The length in bytes of the stack beacon payload.

#define EMBER_MAC_MAX_BEACON_FIELDS_LENGTH 84
The maximum length in bytes of the beacon fields (superframe , GTS, pending address) as per 802.15.4 specs.

#define EMBER_CHILD_TABLE_AGING_DISABLED 0x20C400
A special timeout value that disables aging of the child table .

#define EMBER_CHILD_TABLE_MAX_TIMEOUT_S (EMBER_CHILD_TABLE_AGING_DISABLED - 1)
The maximum timeout in seconds after which a stale entry may be removed from the child table .

#define EMBER_MAX_SELECTIVE_JOIN_PAYLOAD_LENGTH 50
The maximum length in bytes of the jo in payload.

#define EMBER_MAX_AUXILIARY_ADDRESS_FILTERING_TABLE_LENGTH 2
The maximum number of entries the auxiliary address filtering table can ho ld.

Handlers Documentation

emberIncomingBeaconHandler

void emberIncomingBeaconHandler (EmberPanId panId, EmberMacAddress *source, int8_t rssi, bool permitJoining, uint8_t
beaconFieldsLength, uint8_t *beaconFields, uint8_t beaconPayloadLength, uint8_t *beaconPayload)

Network Management

89/326

Invoked if a beacon is received during the scanning procedure if the handler was initiated by the application with the

emberStartActiveScan() stack APIs.

Parameters

[in] panId The source pan ID of the received beacon.

[in] source The source node address of the received beacon.

[in] rssi The RSSI the beacon was received with.

[in] permitJoining The permit joining flag in the received beacon.

[in] beaconFieldsLength The length in bytes of the beacon fields defined as per 802.15.4 specs (superframe, GTS

fields and pending address fields) of the received beacon.

[in] beaconFields A pointer to the beacon fields defined as per 802.15.4 specs (superframe, GTS fields and

pending address fields) of the received beacon.

[in] beaconPayloadLength The length in bytes of the application beacon payload of the received beacon.

[in] beaconPayload A pointer to the application beacon payload of the received beacon.

Definition at line 94 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberActiveScanCompleteHandler

void emberActiveScanCompleteHandler (void)

Invoked after the application calls the emberStartActiveScan() stack API to inform the application that the scanning

procedure is complete.

Parameters

N/A

Definition at line 106 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberEnergyScanCompleteHandler

void emberEnergyScanCompleteHandler (int8_t mean, int8_t min, int8_t max, uint16_t variance)

Invoked after the application calls the emberStartEnergyScan() stack API to inform the application that the energy scan

procedure is complete and to provide statistics.

Parameters

[in] mean The average energy detected in dBm.

[in] min The minimum energy detected in dBm.

[in] max The maximum energy detected in dBm.

[in] variance The variance of the energy detected in dBm.

Definition at line 117 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Function Documentation

emberInit

EmberStatus emberInit (void)

Network Management

90/326

Initialize the radio and the Ember stack.

Parameters

N/A

Device configuration functions must be called before emberInit() is called.

Note

The application must check the return value of this function. If the initialization fails, normal messaging functions are not

available. Some failure modes are not fatal, but the application must follow certain procedures to permit recovery. Ignoring

the return code results in unpredictable radio and API behavior. (In particular, problems with association will occur.)

Returns

An EmberStatus value indicating successful initialization or the reason for failure.

Definition at line 141 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberTick

void emberTick (void)

A periodic tick routine that should be called in the main loop in the application.

Parameters

N/A

Definition at line 146 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberNetworkInit

EmberStatus emberNetworkInit (void)

Resume the network operation after a reboot.

Parameters

N/A

This API must be called on boot prior to ANY network operations. It initializes the networking system and attempts to

resume the previous network identity and configuration. If the node was not previously joined, this routine should still be

called.

If the node was previously joined to a network, it will retain its original type (e.g., coordinator, router, end device, and so on.)

EMBER_NOT_JOINED is returned if the node is not part of a network.

Returns

An EmberStatus value that indicates one of the following:

successful initialization,

EMBER_NOT_JOINED if the node is not part of a network, or

the reason for failure.

Definition at line 165 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberStartActiveScan

Network Management

91/326

EmberStatus emberStartActiveScan (uint16_t channel)

Start an active scan. EMBER_SUCCESS signals that the scan successfully started. Upon receiving a beacon, the

emberIncomingBeaconHandler() stack handler is called. At the end of the scanning procedure, the

emberActiveScanCompleteHandler() stack handler is called. Note that, while a scan can be initiated when the node is

currently joined to a network, the node will generally be unable to communicate with its PAN during the scan period. In

particular, time-sensitive network operations might be affected because a scan operation will prevent any network

operation for the duration of the scan.

Parameters

[in] channel The channel to scan.

Possible error responses and their meanings:

EMBER_INVALID_CALL, the node is currently frequency hopping.

EMBER_MAC_SCANNING, indicates an ongoing scan.

EMBER_PHY_INVALID_CHANNEL, the specified channel is not a valid channel on the current platform.

Definition at line 186 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberSetActiveScanDuration

EmberStatus emberSetActiveScanDuration (uint16_t durationMs)

Set the time in milliseconds the node will spend listening for incoming beacons during an active scan. The default value is

set based on the symbol time of the current PHY configuration according to the 802.15.4 specs.

Parameters

[in] durationMs The active scan duration in milliseconds. A value of 0xFFFF restores the default value.

Returns

an EmberStatus value of EMBER_SUCCESS if the active scan duration was successfully set, otherwise an EmberStatus

value indicating the reason of failure.

Definition at line 199 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberGetActiveScanDuration

uint16_t emberGetActiveScanDuration (void)

Get the current active scan duration in milliseconds.

Parameters

N/A

Returns

a 16-bit integer indicating the current duration in millisecond of the active scan.

Definition at line 206 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberStartEnergyScan

Network Management

92/326

EmberStatus emberStartEnergyScan (uint16_t channel, uint8_t samples)

Start an energy scan. EMBER_SUCCESS signals that the scan successfully started. At the end of the scanning procedure,

the emberEnergyScanCompleteHandler() stack handler is called. Note that, while a scan can be initiated when the node is

currently joined to a network, the node is generally unable to communicate with its PAN during the scan period. In particular,

time-sensitive network operations might be affected because a scan operation will prevent any network operation for the

duration of the scan.

Parameters

[in] channel The channel to scan.

[in] samples The number of energy samples to be produced. Each sample is performed averaging the detected energy

over X symbols time, whereas X depends on the selected PHY configuration and set by default to 8. The

symbol time duration also depends on the selected PHY configuration.

Possible error responses and their meanings:

EMBER_INVALID_CALL, the node is currently frequency hopping.

EMBER_BAD_ARGUMENT, the samples parameter is invalid.

EMBER_MAC_SCANNING, indicates an ongoing scan.

EMBER_PHY_INVALID_CHANNEL, the specified channel is not a valid channel on the current platform.

EMBER_NO_BUFFERS, the stack doesn't have enough memory at the moment to perform the requested scan.

Definition at line 233 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberSetApplicationBeaconPayload

EmberStatus emberSetApplicationBeaconPayload (uint8_t payloadLength, uint8_t *payload)

Allow the application to set the application portion of the beacon payload. It's by default set to the empty string.

Parameters

[in] payloadLength The length in bytes of the application beacon payload to be set. This value can not exceed

EMBER_MAC_MAX_APP_BEACON_PAYLOAD_LENGTH.

[out] payload A pointer to the application beacon payload to be set.

Returns

an EmberStatus value of EMBER_SUCCESS if the application beacon payload was successfully set, otherwise an

EmberStatus value indicating the reason of failure.

Definition at line 248 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberJoinNetworkExtended

EmberStatus emberJoinNetworkExtended (EmberNodeType nodeType, EmberNodeId nodeId, EmberNetworkParameters
*parameters)

Cause the stack to associate with the network using the specified network parameters. It can take several seconds for the

stack to associate with the local network. Do not send messages until a call to the emberStackStatusHandler() callback

informs you that the stack is up. Notice that forming a network causes the node's security frame counter to be reset.

Parameters

Network Management

93/326

[in] nodeType Specification of the role that this node will have in the network. This role can be

EMBER_STAR_RANGE_EXTENDER, EMBER_STAR_END_DEVICE, EMBER_STAR_SLEEPY_END_DEVICE,

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE. If the node is frequency

hopping, the role can not be EMBER_STAR_RANGE_EXTENDER.

[in] nodeId An EmberNodeId value indicating the short ID the node intends to use for addressing purposes. If this

value is EMBER_NULL_NODE_ID, the network coordinator will allocate a new short address. Addresses

should be allocated by the coordinator unless there is a specific need to join a network with a specific

ID. If a specific ID is used, uniqueness should be guaranteed across the entire network by the

application, via some out of band means. Notice that nodes of EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE require this parameter to be set to EMBER_NULL_NODE_ID.

[in] parameters An EmberNetworkParameters value that specifies the network parameters of the network with which

the node should associate.

Returns

An EmberStatus value that indicates either:

that the association process began successfully or

the reason for failure.

Definition at line 295 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberJoinNetwork

EmberStatus emberJoinNetwork (EmberNodeType nodeType, EmberNetworkParameters *parameters)

Cause the stack to associate with the network using the specified network parameters. The network ID is assigned by the

network coordinator. It can take several seconds for the stack to associate with the local network. Do not send messages

until a call to the emberStackStatusHandler() callback informs you that the stack is up. Notice that joining a network causes

the node's security frame counter to be reset.

Parameters

[in] nodeType Specification of the role that this node will have in the network. This role can be

EMBER_STAR_RANGE_EXTENDER, EMBER_STAR_END_DEVICE, EMBER_STAR_SLEEPY_END_DEVICE,

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE. If the node is frequency

hopping, the role can not be EMBER_STAR_RANGE_EXTENDER.

[in] parameters An EmberNetworkParameters value that specifies the network parameters of the network with which

the node should associate.

Returns

An EmberStatus value that indicates either:

that the association process began successfully or

the reason for failure.

Definition at line 321 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberPermitJoining

EmberStatus emberPermitJoining (uint8_t duration)

Tell the stack to allow other nodes to join the network with this node as their parent. Joining is initially disabled by default.

This function may only be called after the node is part of a network and the stack is up.

Parameters

Network Management

94/326

[in] duration A value of 0x00 disables joining. A value of 0xFF enables joining indefinitely. Any other value enables

joining for that number of seconds.

Returns

an EmberStatus value of EMBER_SUCCESS if the permit joining was successfully set, otherwise an EmberStatus value

indicating the reason of failure.

Definition at line 337 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberJoinCommissioned

EmberStatus emberJoinCommissioned (EmberNodeType nodeType, EmberNodeId nodeId, EmberNetworkParameters
*parameters)

Cause the stack to go up with the passed network parameters without performing any over-the-air message exchange.

Notice that commissioning a network causes the node's security frame counter to be reset.

Parameters

[in] nodeType Specifies the role that this node will have in the network. The only device types allowed in the

commissioning API are EMBER_DIRECT_DEVICE, EMBER_MAC_MODE_DEVICE and

EMBER_MAC_MODE_SLEEPY_DEVICE.

[in] nodeId An EmberNodeId value that specifies the short ID the node will have. The passed node ID must be a

valid short address (any value other than EMBER_NULL_NODE_ID or EMBER_BROADCAST_ADDRESS).

A value of EMBER_USE_LONG_ADDRESS is allowed only when commissioning the node as

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE and will cause the node to send

MAC level control messages such as data polls or beacons using long source addressing.

[in] parameters An EmberNetworkParameters value that specifies the network parameters of the network the node

should participate in.

Returns

An EmberStatus value that indicates either:

that the node successfully commissioned the passed network parameters

the reason for failure.

Definition at line 364 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberSetSelectiveJoinPayload

EmberStatus emberSetSelectiveJoinPayload (uint8_t payloadLength, uint8_t *payload)

When invoked at a EMBER_STAR_COORDINATOR or a EMBER_STAR_RANGE_EXTENDER, it causes the stack to only accept

subsequent joining nodes with matching joining payload. When invoked at a node that has not yet joined a network, it sets

the joining payload that will be included in the joining process. Notice, the join payload is included in a non-standard 802.15.4

command, therefore this feature is not available for nodes operating as EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

Parameters

[in] payloadLength The length in bytes of the passed joining payload. This can not exceed

EMBER_MAX_SELECTIVE_JOIN_PAYLOAD_LENGTH.

[in] payload A pointer to the payload to be set.

Returns

An EmberStatus value that indicates either:

Network Management

95/326

that the node successfully set the join payload.

the reason for failure.

Definition at line 389 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberClearSelectiveJoinPayload

EmberStatus emberClearSelectiveJoinPayload (void)

Clear the join payload previously set with the emberSetSelectiveJoinPayload() API. When invoked at an

EMBER_STAR_COORDINATOR or an EMBER_STAR_RANGE_EXTENDER it causes the stack to accept joining nodes with any

join payload pattern. When invoked at a node that has not yet joined a network, it clears the join payload. Subsequent

joining attempts will not include any join payload in the over-the-air joining handshake.

Parameters

N/A

Returns

An EmberStatus value that indicates either:

that the node successfully cleared the join payload.

the reason for failure.

Definition at line 404 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberSetAuxiliaryAddressFilteringEntry

EmberStatus emberSetAuxiliaryAddressFilteringEntry (EmberNodeId nodeId, uint8_t entryIndex)

Set an entry in the auxiliary address filtering table at a given address. Nodes of EMBER_DIRECT_DEVICE device type can

receive incoming messages destined to any of the node IDs in the auxiliary address filtering table (while also receiving

messages destined to actual node ID). If the passed node ID is EMBER_NULL_NODE_ID, the entry is cleared.

Parameters

[in] nodeId An EmberNodeId value to be added to the auxiliary address filtering table at the passed entry index.

[in] entryIndex The index of the auxiliary address filtering table entry to be set.

Returns

An EmberStatus value of EMBER_SUCCESS if auxiliary address filtering table entry was successfully set. An EmberStatus

value of EMBER_INVALID_CALL if the passed entry index is invalid.

Definition at line 427 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberGetAuxiliaryAddressFilteringEntry

EmberNodeId emberGetAuxiliaryAddressFilteringEntry (uint8_t entryIndex)

Retrieve the content of the auxiliary address filtering table at a given address. See emberSetAuxiliaryAddressFilteringEntry()

for details.

Parameters

[in] entryIndex The index in the auxiliary address filtering table entry to be retrieved.

Network Management

96/326

Returns

An EmberNodeId value of EMBER_NULL_NODE_ID if the passed entry index is invalid or if the passed entry index refers to an

unused entry. Otherwise, it returns the content of the auxiliary address filtering table entry corresponding to the passed

entry index.

Definition at line 442 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberResetNetworkState

void emberResetNetworkState (void)

Forget the current network and reverts to a network status of EMBER_NO_NETWORK.

Parameters

N/A

Definition at line 447 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberMacFormNetwork

EmberStatus emberMacFormNetwork (EmberNetworkParameters *parameters)

Form a new network as an EMBER_MAC_MODE_DEVICE by becoming the coordinator. This API should be used to form a

compliant 802.15.4 PAN and to inter-operate with other 802.15.4 devices. Notice that forming a network causes the node's

security frame counter to be reset.

Parameters

[in] parameters An EmberNetworkParameters value that specifies the network parameters of the network to be

formed.

Returns

An EmberStatus value that indicates either the successful formation of the new network or the reason that the network

formation failed.

Definition at line 461 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberMacSetPanCoordinator

EmberStatus emberMacSetPanCoordinator (bool isCoordinator)

Configure a EMBER_MAC_MODE_DEVICE node to be a PAN coordinator. Note, this only applies to nodes that have been

commissioned as EMBER_MAC_MODE_DEVICE.

Parameters

[in] isCoordinator If set to true, the node will identify itself as the PAN coordinator.

Returns

An EmberStatus value of EMBER_SUCCESS if the coordinator flag was successfully set, or another EmberStatus value

indicating the reason of failure.

Definition at line 474 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Network Management

97/326

emberNetworkLeave

EmberStatus emberNetworkLeave (void)

Allow a star topology node that previously joined a network to leave the network. The node will notify the parent node and

eventually leave the network. The application is notified that the leave procedure completed via the

emberStackStatusHandler() handler.

Parameters

N/A

Returns

An EmberStatus value of EMBER_SUCCESS if the node successfully initiated the network leave procedure, or another

EmberStatus value indicating the reason of failure.

Definition at line 548 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberMacAddShortToLongAddressMapping

EmberStatus emberMacAddShortToLongAddressMapping (EmberNodeId shortId, EmberEUI64 longId)

Populate the short-to-long address mapping table at the MAC layer. The table is meaningful only when running as

EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE. The standard 802.15.4 encryption and authentication

process requires the security nonce to be populated with the source node long ID. A receiver must do the same to decrypt

a secured incoming message. This short-to-long mapping table is used to decrypt a secured incoming packet from a node

using short source addressing. If no entry is found in this table, the incoming message will be dropped. This table is also

used to encrypt secured outgoing messages with short source addressing in case the node is sending out a secured

message with a short source address other than its own.

Parameters

[in] shortId The short address of the [short, long] entry to be added to the table.

[in] longId The long address of the [short, long] entry to be added to the table.

Note

Because the table is stored in RAM, the application should ensure it gets correctly re-populated upon reboot.

Adding a new entry will cause the removal of existing entries matching the passed short ID or long ID.

Returns

an EmberStatus value of:

EMBER_SUCCESS if the mapping was successfully added to the table.

EMBER_INVALID_CALL if the node is not running as EMBER_MAC_MODE_DEVICE or as

EMBER_MAC_MODE_SLEEPY_DEVICE.

EMBER_TABLE_FULL if the table is currently full.

EMBER_NO_BUFFERS if the heap does not currently have enough space for the new entry. The size of the table is

controlled by the EMBER_SECURITY_SHORT_TO_LONG_MAPPING_TABLE_SIZE.

Definition at line 584 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberMacClearShortToLongAddressMappings

EmberStatus emberMacClearShortToLongAddressMappings (void)

Network Management

98/326

Clear the short-to-long address mapping table at the MAC layer.

Parameters

N/A

Returns

an EmberStatus value of EMBER_SUCCESS if table was cleared, or another EmberStatus value indicating the reason of

failure.

Definition at line 593 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberOfdmSetMcs

EmberStatus emberOfdmSetMcs (uint8_t mcs)

Set the MCS in case of an OFDM PHY. MCS can range from 0 to 6.

Parameters

[in] mcs The MCS value to set.

Returns

an EmberStatus value of EMBER_SUCCESS if the MCS is valid, an EmberStatus value of EMBER_INVALID_CALL if the

current PHY is not OFDM or an EmberStatus value of EMBER_BAD_ARGUMENT if the MCS value is not valid.

Definition at line 605 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberOfdmGetMcs

EmberStatus emberOfdmGetMcs (uint8_t *mcs)

Get the MCS in case of an OFDM PHY.

Parameters

[out] mcs A pointer to the uint8_t that should hold the current MCS value.

Returns

an EmberStatus value of EMBER_INVALID_CALL if the current PHY is not OFDM or an EmberStatus value of

EMBER_SUCCESS if the current PHY is OFDM.

Definition at line 617 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Macro Definition Documentation

EMBER_MAC_MAX_APP_BEACON_PAYLOAD_LENGTH

#define EMBER_MAC_MAX_APP_BEACON_PAYLOAD_LENGTH

Value:

16

The maximum length in bytes of the application beacon payload.

Network Management

99/326

Definition at line 44 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_MAC_STACK_BEACON_PAYLOAD

#define EMBER_MAC_STACK_BEACON_PAYLOAD

Value:

"s ilabs-connect"

Definition at line 45 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_MAC_STACK_BEACON_PAYLOAD_LENGTH

#define EMBER_MAC_STACK_BEACON_PAYLOAD_LENGTH

Value:

14

The length in bytes of the stack beacon payload.

Definition at line 48 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_MAC_MAX_BEACON_FIELDS_LENGTH

#define EMBER_MAC_MAX_BEACON_FIELDS_LENGTH

Value:

84

The maximum length in bytes of the beacon fields (superframe, GTS, pending address) as per 802.15.4 specs.

Definition at line 53 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_CHILD_TABLE_AGING_DISABLED

#define EMBER_CHILD_TABLE_AGING_DISABLED

Value:

0x20C400

A special timeout value that disables aging of the child table.

Definition at line 57 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_CHILD_TABLE_MAX_TIMEOUT_S

#define EMBER_CHILD_TABLE_MAX_TIMEOUT_S

Value:

(EMBER_CHILD_TABLE_AGING_DISABLED - 1)

Network Management

100/326

The maximum timeout in seconds after which a stale entry may be removed from the child table.

Definition at line 62 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_MAX_SELECTIVE_JOIN_PAYLOAD_LENGTH

#define EMBER_MAX_SELECTIVE_JOIN_PAYLOAD_LENGTH

Value:

50

The maximum length in bytes of the join payload.

Definition at line 370 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

EMBER_MAX_AUXILIARY_ADDRESS_FILTERING_TABLE_LENGTH

#define EMBER_MAX_AUXILIARY_ADDRESS_FILTERING_TABLE_LENGTH

Value:

2

The maximum number of entries the auxiliary address filtering table can hold.

Definition at line 409 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Frequency Hopping

101/326

Frequency Hopping

Frequency Hopping
API and callbacks for frequency hopping configuration.

See network-management.h for source code.

Callbacks

void emberFrequencyHoppingStartClientCompleteHandler(EmberStatus status)
This stack handler is invoked after the application calls the emberFrequencyHoppingStartClient() stack API to inform

the application that the synchronization process with the server is complete . See emberFrequencyHoppingStartClient()

for details.

Functions

EmberStatus emberFrequencyHoppingSetChannelMask(uint8_t channelMaskLength, uint8_t *channelMask)
Set the channel mask for frequency hopping. This API can only be invoked when the node is not frequency hopping.

EmberStatus emberFrequencyHoppingStartServer(void)
Start the device operating as a frequency hopping server. This API can only be invoked when the node is jo ined to a

network. Notice that the server upon starting hopping shall perform an initial advertisement across the entire channel

hopping sequence . This is done to resynchronize clients in case the server was started as result of a reboot.

EmberStatus emberFrequencyHoppingStartClient(EmberNodeId serverNodeId, EmberPanId serverPanId)
Start operating as a frequency hopping client and synchronize with the specified server. This API can be invoked on

nodes that are already jo ined to a network (with the exception of nodes started as EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE) and nodes that are not jo ined to a network yet. If the node is already performing

frequency hopping, this API returns EMBER_INVALID_CALL. If this API returns EMBER_SUCCESS, the

emberFrequencyHoppingStartClientCompleteHandler() is invoked asynchronously to inform the application whether the

node successfully synchronized with the specified server or to inform the application of the reason of failure . After the

client is synced to a server, it may seamlessly perform the resynchronization process if needed. Sleepy devices in

particular periodically perform the resynchronization process. If the client fails a resynchronization process, it informs

the application by invoking the emberStackStatusHandler() handler with EMBER_MAC_SYNC_TIMEOUT status. When this

occurs, the client will no longer be synced to the server. The application may elect to attempt a new synchronization

process by invoking this API again.

EmberStatus emberFrequencyHoppingStop(void)
Stop frequency hopping. This API can only be invoked when the node is frequency hopping. Applicable for both server

and client.

Callbacks Documentation

emberFrequencyHoppingStartClientCompleteHandler

void emberFrequencyHoppingStartClientCompleteHandler (EmberStatus status)

This stack handler is invoked after the application calls the emberFrequencyHoppingStartClient() stack API to inform the

application that the synchronization process with the server is complete. See emberFrequencyHoppingStartClient() for

details.

Parameters

Frequency Hopping

102/326

[in] status An EmberStatus value indicating whether the synchronization process with the server was completed

successfully or the reason for failure.

Definition at line 733 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Function Documentation

emberFrequencyHoppingSetChannelMask

EmberStatus emberFrequencyHoppingSetChannelMask (uint8_t channelMaskLength, uint8_t *channelMask)

Set the channel mask for frequency hopping. This API can only be invoked when the node is not frequency hopping.

Parameters

[in] channelMaskLength Length of the bitmap in bytes

[in] channelMask A pointer to a bitmap representing allowed channels for frequency hopping.

Note

The application is responsible for applying this setting to both the server and clients.

Note

The bitmap size needs to be at least (EMBER_FREQUENCY_HOPPING_END_CHANNEL + 8) >> 3 or an error is thrown.

The bitmap needs to be set again after stopping frequency hopping.

Returns

An EmberStatus value of EMBER_SUCCESS if the node successfully set the bitmask. An EmberStatus value of

EMBER_INVALID_CALL if the node is currently performing frequency hopping. An EmberStatus value of

EMBER_BAD_ARGUMENT if the resulting channel list is empty, or if channelMaskLength is shorter than expected.

Definition at line 661 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberFrequencyHoppingStartServer

EmberStatus emberFrequencyHoppingStartServer (void)

Start the device operating as a frequency hopping server. This API can only be invoked when the node is joined to a

network. Notice that the server upon starting hopping shall perform an initial advertisement across the entire channel

hopping sequence. This is done to resynchronize clients in case the server was started as result of a reboot.

Parameters

N/A

Returns

An EmberStatus value of EMBER_SUCCESS if the node successfully initiated frequency hopping server operations. An

EmberStatus value of EMBER_INVALID_CALL if the node is not currently joined to a network or if the node is already

performing frequency hopping.

Definition at line 675 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberFrequencyHoppingStartClient

EmberStatus emberFrequencyHoppingStartClient (EmberNodeId serverNodeId, EmberPanId serverPanId)

Frequency Hopping

103/326

Start operating as a frequency hopping client and synchronize with the specified server. This API can be invoked on nodes

that are already joined to a network (with the exception of nodes started as EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE) and nodes that are not joined to a network yet. If the node is already performing

frequency hopping, this API returns EMBER_INVALID_CALL. If this API returns EMBER_SUCCESS, the

emberFrequencyHoppingStartClientCompleteHandler() is invoked asynchronously to inform the application whether the

node successfully synchronized with the specified server or to inform the application of the reason of failure. After the

client is synced to a server, it may seamlessly perform the resynchronization process if needed. S leepy devices in particular

periodically perform the resynchronization process. If the client fails a resynchronization process, it informs the application

by invoking the emberStackStatusHandler() handler with EMBER_MAC_SYNC_TIMEOUT status. When this occurs, the client

will no longer be synced to the server. The application may elect to attempt a new synchronization process by invoking this

API again.

Parameters

[in] serverNodeId An EmberNodeId value indicating the node ID of the server to synchronize with.

[in] serverPanId An EmberPanId value indicating the PAN ID of the server to synchronize with. Note that this

parameter is meaningful only if the node is not currently joined to any network.

Returns

An EmberStatus value of EMBER_SUCCESS indicating that the node successfully initiated the synchronization process with

the server, otherwise an EmberStatus value indicating the reason of failure.

Definition at line 708 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberFrequencyHoppingStop

EmberStatus emberFrequencyHoppingStop (void)

Stop frequency hopping. This API can only be invoked when the node is frequency hopping. Applicable for both server and

client.

Parameters

N/A

Returns

An EmberStatus value of EMBER_SUCCESS indicating that the node successfully stopped frequency hopping. An

EmberStatus value of EMBER_INVALID_CALL if the node is not currently frequency hopping.

Definition at line 718 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Parent Support

104/326

Parent Support

Parent Support

Handlers

void emberChildJoinHandler(EmberNodeType nodeType, EmberNodeId nodeId)
Invoked at coordinator, range extender, or mac mode nodes when a new child has jo ined the device .

Handlers

The Application Framework implements all handlers, directly calling their associated callbacks. By default, Connect projects

declare such callbacks as stubs in flex-callbacks-stubs.c. Hence, to use an enabled Connect feature, applications should

replace the stub with their own implementation of the associated callback (typically in flex-callbacks.c). See UG235.04 for

more info.

EmberStatus emberPurgeIndirectMessages(void)
Purge all indirect transmissions from the indirect message queue .

EmberStatus emberSetIndirectQueueTimeout(uint32_t timeoutMs)
Set indirect queue timeout value . The indirect queue timeout is set by default to

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS.

Functions

EmberStatus emberFormNetwork(EmberNetworkParameters *parameters)
Form a new network by becoming the coordinator. This API requires the parent-support library to be present.

EmberStatus emberGetChildFlags(EmberMacAddress *address, EmberChildFlags *flags)
Return an EmberChildFlags bitmask indicating the child flags of the child corresponding to the passed MAC address.

EmberStatus emberGetChildInfo(EmberMacAddress *address, EmberMacAddress *addressResp, EmberChildFlags *flags)
Return info on the child corresponding to the passed MAC address.

EmberStatus emberRemoveChild(EmberMacAddress *address)
Remove the node corresponding to the passed MAC address from the child table .

Handlers Documentation

emberChildJoinHandler

void emberChildJoinHandler (EmberNodeType nodeType, EmberNodeId nodeId)

Invoked at coordinator, range extender, or mac mode nodes when a new child has joined the device.

Parameters

[in] nodeType The role of the joining device (EMBER_STAR_RANGE_EXTENDER, EMBER_STAR_END_DEVICE,

EMBER_STAR_SLEEPY_END_DEVICE, EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE).

[in] nodeId The node ID of the joining device.

Parent Support

105/326

Definition at line 601 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/stack-info.h

Handlers Documentation

emberPurgeIndirectMessages

EmberStatus emberPurgeIndirectMessages (void)

Purge all indirect transmissions from the indirect message queue.

Parameters

N/A

Returns

an EmberStatus value of EMBER_SUCCESS if all indirect messages were purged, or another EmberStatus value indicating

the reason of failure.

Definition at line 299 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberSetIndirectQueueTimeout

EmberStatus emberSetIndirectQueueTimeout (uint32_t timeoutMs)

Set indirect queue timeout value. The indirect queue timeout is set by default to

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS.

Parameters

N/A timeoutMs The timeout in milliseconds to be set.

Returns

an EmberStatus value of EMBER_SUCCESS if the passed timeout was successfully set, or a value of

EMBER_BAD_ARGUMENT if the passed value is invalid.

Definition at line 313 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

Function Documentation

emberFormNetwork

EmberStatus emberFormNetwork (EmberNetworkParameters *parameters)

Form a new network by becoming the coordinator. This API requires the parent-support library to be present.

Parameters

[in] parameters An EmberNetworkParameters value that specifies the network parameters of the network to be

formed.

Returns

An EmberStatus value that indicates either the successful formation of the new network or an EmberStatus value indicating

the reason of failure.

Definition at line 263 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Parent Support

106/326

emberGetChildFlags

EmberStatus emberGetChildFlags (EmberMacAddress *address, EmberChildFlags *flags)

Return an EmberChildFlags bitmask indicating the child flags of the child corresponding to the passed MAC address.

Parameters

[in] address A pointer to an EmberMacAddress that specifies the MAC address of the child.

[out] flags A pointer to an EmberChildFlags containing the child flags of the child corresponding to the passed MAC

address.

Note

Deprecated, use emberGetChildInfo instead

Returns

An EmberStatus value of EMBER_SUCCESS if the child was found in the child table, or another EmberStatus value indicating

the reason of failure.

Definition at line 493 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberGetChildInfo

EmberStatus emberGetChildInfo (EmberMacAddress *address, EmberMacAddress *addressResp, EmberChildFlags *flags)

Return info on the child corresponding to the passed MAC address.

Parameters

[in] address A pointer to an EmberMacAddress that specifies the MAC address of the child (short or long).

[out] addressResp A pointer to an EmberMacAddress that returns the other address (respectively long or short).

[out] flags A pointer to an EmberChildFlags containing the child flags of the child corresponding to the passed

MAC address.

Note

For star coordinators, if the input address is short, the corresponding child will also be searched in the list of devices

connected through range extender. Long address and additional flags for these devices are not available to the coordinator.

Note

Both out parameters are optional. If set to NULL, the API will at least indicate if the child was found in the network.

Returns

An EmberStatus value of EMBER_SUCCESS if the child was found in the child table, EMBER_CHILD_NOT_FOUND if it was

not, or another EmberStatus value indicating the reason of failure.

Definition at line 521 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

emberRemoveChild

EmberStatus emberRemoveChild (EmberMacAddress *address)

Remove the node corresponding to the passed MAC address from the child table.

Parent Support

107/326

Parameters

[in] address A pointer to an EmberMacAddress that specifies the MAC address of the child to be removed.

Returns

An EmberStatus value of EMBER_SUCCESS if the node was successfully removed from the child table, or another

EmberStatus value indicating the reason of failure.

Definition at line 537 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/network-management.h

Radio Stream

108/326

Radio Stream

Radio Stream
Radio stream API.

License

Copyright 2018 Silicon Laboratories Inc. www.silabs.com

SPDX-License-Identifier: Zlib

The licensor of this software is S ilicon Laboratories Inc.

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any

damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and

redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use

this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Connect API managing radio stream for RF testing purpose

See radio-stream.h for source code.

Functions

EmberStatus emberStartTxStream(EmberTxStreamParameters parameters, uint16_t channel)
Start a continuous TX stream to test RF.

EmberStatus emberStopTxStream(void)
Stop an RF stream in progress.

Function Documentation

emberStartTxStream

EmberStatus emberStartTxStream (EmberTxStreamParameters parameters, uint16_t channel)

Start a continuous TX stream to test RF.

Parameters

[in] parameters Stream mode. See EmberTxStreamParameters.

[in] channel RF channel.

Returns

EMBER_INVALID_CALL if the stack can not process the request
EMBER_BAD_ARGUMENT if the parameters are wrong

EMBER_SUCCESS if the stream can be started

Radio Stream

109/326

Definition at line 50 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/radio-stream.h

emberStopTxStream

EmberStatus emberStopTxStream (void)

Stop an RF stream in progress.

Parameters

N/A

Returns

EMBER_INVALID_CALL if no stream is in progress
EMBER_SUCCESS otherwise

Definition at line 58 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/radio-stream.h

Configuration

110/326

Configuration

Configuration
User-configurable stack configuration macros and defaults.

Connect stack provides various interfaces to apply configuration:

APIs to change configuration run-time

Manufacturing tokens to change configuration during device flashing

Macros to change configuration at compile-time

The compile time configuration macros and their default values are listed here.

The default values are always chosen to make it usable for most applications, but in some cases, you might need to

change it. The recommended way is to either define the macro you need to change in the compilation command (e.g. gcc -

D) or you by manipulating the configuration options in the configurator GUI.

See ember-configuration-defaults.h for source code.

Macros

#define EMBER_HEAP_SIZE 2000
The size in bytes of the Ember heap. See Memory Buffer for more details.

#define EMBER_CHILD_TABLE_SIZE 0
The maximum number of children supported by the device . Can be configured from 0 to 64. 11B of token space is

allocated for each child in the table .

#define EMBER_CHILD_TABLE_TOKEN_SIZE EMBER_CHILD_TABLE_SIZE

#define EMBER_CHILD_TIMEOUT_SEC 3600
Every child should exchange regularly some sort of traffic with the parent. Eventually, if traffic is not exchanged for a

pro longed period of time , the parent may remove the child from the child table . In particular the parent shall remove

the o ldest stale child whenever the child table is full and there is the need of making room for a new child. Range

extenders periodically exchange network-level commands with the coordinator. End devices and sleepy end devices

can use emberPo llForData() as keep alive mechanism, or use the Po ll Plugin plugin. The maximum allowed timeout value

is EMBER_CHILD_TABLE_MAX_TIMEOUT_S. Setting the timeout value to EMBER_CHILD_TABLE_AGING_DISABLED disables

aging of the child table .

#define EMBER_INDIRECT_QUEUE_SIZE 0
Indirect queue is used on a parent to store a message intended for a sleepy end device , this configures the size of

that queue . Configure it to 0 if parent support plugin is not used.

#define EMBER_MAC_OUTGOING_QUEUE_SIZE 0
MAC Outgo ing paclet queue is to store messages until the radio is available to send it (In most cases, the radio is

unavailable because it's already transmitting). The configures the size of that queue .

#define EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS 8000
The maximum amount of time (in milliseconds) that the MAC will ho ld a message for indirect transmission to a child. The

maximum value is 30 seconds (30000 milliseconds).

#define EMBER_NWK_RANGE_EXTENDER_UPDATE_PERIOD_SEC 60
The period in seconds a range extender sends an update command to the coordinator containing the list of its

children.

Configuration

111/326

#define EMBER_MAC_ACK_TIMEOUT_MS 25
The ACK timeout in milliseconds. This parameter should be fine-tuned to reduce energy consumption for sleepy

devices and depends on the data rate of the PHY configuration used. The maximum allowed value is 65.

#define EMBER_RADIO_CCA_THRESHOLD -65
The CCA thresho ld used at the MAC layer for CSMA/CA, in dBm.

#define EMBER_FREQUENCY_HOPPING_SEED 0
The frequency hopping channel sequence generation seed. Can be configured between 0 and 65535. See the

Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_START_CHANNEL 0
The lowest channel on the frequency hopping list. See the Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_END_CHANNEL 24
The highest channel on the frequency hopping list. See the Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_CHANNEL_DURATION_MS 400
The time in milliseconds to stay on each channel for frequency hopping. See the Frequency Hopping chapter of

UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_CHANNEL_GUARD_DURATION_MS 20
The time in milliseconds to guard each channel while frequency hopping. No MAC activity is allowed when entering or

exiting the slot. See the Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_SERVER_FREQ_INFO_BROADCAST_PERIOD_S 15
The duration in seconds after which the server should broadcast its frequency hopping information to allow clients to

realign. See the Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_SLEEPY_CLIENT_RESYNC_PERIOD_S 60
The duration in seconds after which a sleepy client should resync with the server if the last resync happened more

than this duration ago. See the Frequency Hopping chapter of UG235.03 for more details.

#define EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_TIMEOUT_S (100)
The maximum duration in seconds a non sleepy client would keep hopping without receiving frequency hopping

information from the server, after which the synchronization with the server is deemed lost. A special value of

EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_DISABLE_TIMEOUT disables this timeout.

#define EMBER_FREQUENCY_HOPPING_SERVER_ADVERTISING_ITERATION_COUNT (3)
When a node is started a frequency hopping server, it will first advertise on all channels to resynchronize all existing

clients in case the server was started as result of a reboot. This parameter defines the number of iterations over the

entire hopping sequence .

#define EMBER_COORDINATOR_FIRST_SHORT_ID_TO_BE_ASSIGNED 1
An EMBER_STAR_COORDINATOR assigns short IDs to other nodes in the star network sequentially starting from this

short ID. This option provides a simple effective way to reserve an poo l of short addresses for commissioning.

#define EMBER_SECURITY_SHORT_TO_LONG_MAPPING_TABLE_SIZE 10
The size of the short-to-long address mapping table . See emberMacAddShortToLongAddressMapping for more

details.

#define EMBER_CSP_CALLBACK_MESSAGE_BUFFER_SIZE 127
The size of the the receiving buffer in CSP Callbacks.

Macro Definition Documentation

EMBER_HEAP_SIZE

#define EMBER_HEAP_SIZE

Value:

Configuration

112/326

2000

The size in bytes of the Ember heap. See Memory Buffer for more details.

Warnings

This should be configured from the Parent Support plugin options.

Definition at line 90 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_CHILD_TABLE_SIZE

#define EMBER_CHILD_TABLE_SIZE

Value:

0

The maximum number of children supported by the device. Can be configured from 0 to 64. 11B of token space is allocated

for each child in the table.

Note

It's recommended to set it to 64 for EMBER_STAR_COORDINATOR, 32 for EMBER_STAR_RANGE_EXTENDER and 0 for

anything else.

Warnings

This should be configured from the Parent Support plugin options.

Definition at line 102 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_CHILD_TABLE_TOKEN_SIZE

#define EMBER_CHILD_TABLE_TOKEN_SIZE

Value:

EMBER_CHILD_TABLE_SIZE

Definition at line 105 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_CHILD_TIMEOUT_SEC

#define EMBER_CHILD_TIMEOUT_SEC

Value:

3600

Every child should exchange regularly some sort of traffic with the parent. Eventually, if traffic is not exchanged for a

prolonged period of time, the parent may remove the child from the child table. In particular the parent shall remove the

oldest stale child whenever the child table is full and there is the need of making room for a new child. Range extenders

periodically exchange network-level commands with the coordinator. End devices and sleepy end devices can use

emberPollForData() as keep alive mechanism, or use the Poll Plugin plugin. The maximum allowed timeout value is

Configuration

113/326

EMBER_CHILD_TABLE_MAX_TIMEOUT_S. Setting the timeout value to EMBER_CHILD_TABLE_AGING_DISABLED disables

aging of the child table.

Warnings

This should be configured from the Parent Support plugin options.

Definition at line 123 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_INDIRECT_QUEUE_SIZE

#define EMBER_INDIRECT_QUEUE_SIZE

Value:

0

Indirect queue is used on a parent to store a message intended for a sleepy end device, this configures the size of that

queue. Configure it to 0 if parent support plugin is not used.

Warnings

This should be configured from the Parent Support plugin options.

Definition at line 139 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_MAC_OUTGOING_QUEUE_SIZE

#define EMBER_MAC_OUTGOING_QUEUE_SIZE

Value:

0

MAC Outgoing paclet queue is to store messages until the radio is available to send it (In most cases, the radio is

unavailable because it's already transmitting). The configures the size of that queue.

Warnings

This should be configured from the MAC Packet Queue plugin options.

Definition at line 149 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS

#define EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS

Value:

8000

The maximum amount of time (in milliseconds) that the MAC will hold a message for indirect transmission to a child. The

maximum value is 30 seconds (30000 milliseconds).

Warnings

Configuration

114/326

This should be configured from the Parent Support plugin options.

Definition at line 159 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_NWK_RANGE_EXTENDER_UPDATE_PERIOD_SEC

#define EMBER_NWK_RANGE_EXTENDER_UPDATE_PERIOD_SEC

Value:

60

The period in seconds a range extender sends an update command to the coordinator containing the list of its children.

This option is only used on EMBER_STAR_RANGE_EXTENDER device.

Definition at line 168 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_MAC_ACK_TIMEOUT_MS

#define EMBER_MAC_ACK_TIMEOUT_MS

Value:

25

The ACK timeout in milliseconds. This parameter should be fine-tuned to reduce energy consumption for sleepy devices and

depends on the data rate of the PHY configuration used. The maximum allowed value is 65.

Definition at line 177 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_RADIO_CCA_THRESHOLD

#define EMBER_RADIO_CCA_THRESHOLD

Value:

-65

The CCA threshold used at the MAC layer for CSMA/CA, in dBm.

Warnings

This should be configured from the Connect Stack plugin options.

Definition at line 185 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_SEED

#define EMBER_FREQUENCY_HOPPING_SEED

Value:

0

Configuration

115/326

The frequency hopping channel sequence generation seed. Can be configured between 0 and 65535. See the Frequency

Hopping chapter of UG235.03 for more details.

Definition at line 194 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_START_CHANNEL

#define EMBER_FREQUENCY_HOPPING_START_CHANNEL

Value:

0

The lowest channel on the frequency hopping list. See the Frequency Hopping chapter of UG235.03 for more details.

Definition at line 202 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_END_CHANNEL

#define EMBER_FREQUENCY_HOPPING_END_CHANNEL

Value:

24

The highest channel on the frequency hopping list. See the Frequency Hopping chapter of UG235.03 for more details.

Definition at line 210 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_CHANNEL_DURATION_MS

#define EMBER_FREQUENCY_HOPPING_CHANNEL_DURATION_MS

Value:

400

The time in milliseconds to stay on each channel for frequency hopping. See the Frequency Hopping chapter of UG235.03

for more details.

Definition at line 218 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_CHANNEL_GUARD_DURATION_MS

#define EMBER_FREQUENCY_HOPPING_CHANNEL_GUARD_DURATION_MS

Value:

20

The time in milliseconds to guard each channel while frequency hopping. No MAC activity is allowed when entering or exiting

the slot. See the Frequency Hopping chapter of UG235.03 for more details.

Configuration

116/326

Definition at line 227 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_SERVER_FREQ_INFO_BROADCAST_PERIOD_S

#define EMBER_FREQUENCY_HOPPING_SERVER_FREQ_INFO_BROADCAST_PERIOD_S

Value:

15

The duration in seconds after which the server should broadcast its frequency hopping information to allow clients to

realign. See the Frequency Hopping chapter of UG235.03 for more details.

Definition at line 236 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_SLEEPY_CLIENT_RESYNC_PERIOD_S

#define EMBER_FREQUENCY_HOPPING_SLEEPY_CLIENT_RESYNC_PERIOD_S

Value:

60

The duration in seconds after which a sleepy client should resync with the server if the last resync happened more than this

duration ago. See the Frequency Hopping chapter of UG235.03 for more details.

Definition at line 245 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_TIMEOUT_S

#define EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_TIMEOUT_S

Value:

(100)

The maximum duration in seconds a non sleepy client would keep hopping without receiving frequency hopping information

from the server, after which the synchronization with the server is deemed lost. A special value of

EMBER_FREQUENCY_HOPPING_ALWAYS_ON_CLIENT_SYNC_DISABLE_TIMEOUT disables this timeout.

Definition at line 256 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_FREQUENCY_HOPPING_SERVER_ADVERTISING_ITERATION_COUNT

#define EMBER_FREQUENCY_HOPPING_SERVER_ADVERTISING_ITERATION_COUNT

Value:

(3)

When a node is started a frequency hopping server, it will first advertise on all channels to resynchronize all existing clients

in case the server was started as result of a reboot. This parameter defines the number of iterations over the entire

hopping sequence.

Configuration

117/326

Definition at line 266 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_COORDINATOR_FIRST_SHORT_ID_TO_BE_ASSIGNED

#define EMBER_COORDINATOR_FIRST_SHORT_ID_TO_BE_ASSIGNED

Value:

1

An EMBER_STAR_COORDINATOR assigns short IDs to other nodes in the star network sequentially starting from this short

ID. This option provides a simple effective way to reserve an pool of short addresses for commissioning.

Definition at line 276 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_SECURITY_SHORT_TO_LONG_MAPPING_TABLE_SIZE

#define EMBER_SECURITY_SHORT_TO_LONG_MAPPING_TABLE_SIZE

Value:

10

The size of the short-to-long address mapping table. See emberMacAddShortToLongAddressMapping for more details.

This table is only used for EMBER_MAC_MODE_DEVICE and EMBER_MAC_MODE_SLEEPY_DEVICE, but the memory will be

allocated on all device types.

Definition at line 287 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

EMBER_CSP_CALLBACK_MESSAGE_BUFFER_SIZE

#define EMBER_CSP_CALLBACK_MESSAGE_BUFFER_SIZE

Value:

127

The size of the the receiving buffer in CSP Callbacks.

This must be set high enough depending on the PHY to prevent buffer overflow. In SUN PHYs (OFDM and FSK), the max

message length is 2048. Considering the impact of this parameter on the stack size, this needs to be fine tuned according

the need of the application

Definition at line 298 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/ember-configuration-defaults.h

Status Codes

118/326

Status Codes

Status Codes
Return-code definitions for Connect stack API functions.

Many Connect API functions return an EmberStatus value to indicate the success or failure of the call.

Return codes are one byte long.

This page documents the possible status codes and their meanings.

See error-def.h for source code.

See also error.h for information on how the values for the return codes are built up from these definitions. The file error-

def.h is separated from error.h because utilities will use this file to parse the return codes.

Note

Do not include error-def.h directly. It is included by error.h inside an enum typedef, which is in turn included by ember.h.

Enumerations

Status Codes

119/326

enum EmberStatus {

EMBER_SUCCESS = 0x00
EMBER_ERR_FATAL = 0x01
EMBER_BAD_ARGUMENT = 0x02
EMBER_EEPROM_MFG_STACK_VERSION_MISMATCH = 0x04
EMBER_INVALID_CALL = 0x70
EMBER_EEPROM_MFG_VERSION_MISMATCH = 0x06
EMBER_EEPROM_STACK_VERSION_MISMATCH = 0x07
EMBER_NO_BUFFERS = 0x18
EMBER_SERIAL_INVALID_BAUD_RATE = 0x20
EMBER_SERIAL_INVALID_PORT = 0x21
EMBER_SERIAL_TX_OVERFLOW = 0x22
EMBER_SERIAL_RX_OVERFLOW = 0x23
EMBER_SERIAL_RX_FRAME_ERROR = 0x24
EMBER_SERIAL_RX_PARITY_ERROR = 0x25
EMBER_SERIAL_RX_EMPTY = 0x26
EMBER_SERIAL_RX_OVERRUN_ERROR = 0x27
EMBER_MAC_NO_DATA = 0x31
EMBER_MAC_SYNC_TIMEOUT = 0x33
EMBER_MAC_SYNC_WRONG_SEED = 0x34
EMBER_MAC_SECURITY_FAILED = 0x35
EMBER_MAC_UNKNOWN_DESTINATION = 0x37
EMBER_MAC_SECURITY_NOT_SUPPORTED = 0x38
EMBER_MAC_TRANSMIT_QUEUE_FULL = 0x39
EMBER_MAC_ACK_HEADER_TYPE = 0x3B
EMBER_MAC_SCANNING = 0x3D
EMBER_MAC_BUSY = 0x3E
EMBER_MAC_NO_ACK_RECEIVED = 0x40
EMBER_MAC_INDIRECT_TIMEOUT = 0x41
EMBER_MAC_INDIRECT_MESSAGE_PURGED = 0x42
EMBER_SIM_EEPROM_ERASE_PAGE_GREEN = 0x43
EMBER_SIM_EEPROM_ERASE_PAGE_RED = 0x44
EMBER_SIM_EEPROM_FULL = 0x45
EMBER_SIM_EEPROM_INIT_2_FAILED = 0x49
EMBER_SIM_EEPROM_INIT_3_FAILED = 0x4A
EMBER_SIM_EEPROM_REPAIRING = 0x4D
EMBER_ERR_FLASH_WRITE_INHIBITED = 0x46
EMBER_ERR_FLASH_VERIFY_FAILED = 0x47
EMBER_ERR_FLASH_PROG_FAIL = 0x4B
EMBER_MESSAGE_TOO_LONG = 0x74
EMBER_ADC_CONVERSION_DONE = 0x80
EMBER_ADC_CONVERSION_BUSY = 0x81
EMBER_ADC_CONVERSION_DEFERRED = 0x82
EMBER_ADC_NO_CONVERSION_PENDING = 0x84
EMBER_SLEEP_INTERRUPTED = 0x85
EMBER_PHY_TX_INCOMPLETE = 0x89
EMBER_PHY_INVALID_CHANNEL = 0x8A
EMBER_PHY_INVALID_POWER = 0x8B
EMBER_PHY_TX_BUSY = 0x8C
EMBER_PHY_TX_CCA_FAIL = 0x8D
EMBER_PHY_CALIBRATING = 0x8E
EMBER_PHY_ACK_RECEIVED = 0x8F
EMBER_NETWORK_UP = 0x90
EMBER_NETWORK_DOWN = 0x91
EMBER_JOIN_SCAN_FAILED = 0x92
EMBER_JOIN_FAILED = 0x94
EMBER_JOIN_DENIED = 0x95
EMBER_JOIN_TIMEOUT = 0x96
EMBER_NO_VALID_BEACONS = 0xAB
EMBER_SECURITY_DATA_INVALID = 0xBD
EMBER_NOT_JOINED = 0x93
EMBER_TABLE_FULL = 0xB4
EMBER_LIBRARY_NOT_PRESENT = 0xB5
EMBER_CHILD_NOT_FOUND = 0xB6
EMBER_NVM3_ERR_OPENED_WITH_OTHER_PARAMETERS = 0xC1
EMBER_NVM3_ERR_ALIGNMENT_INVALID = 0xC2
EMBER_NVM3_ERR_SIZE_TOO_SMALL = 0xC3
EMBER_NVM3_ERR_PAGE_SIZE_NOT_SUPPORTED = 0xC4
EMBER_NVM3_ERR_TOKEN_INIT = 0xC5
EMBER_NVM3_ERR_UPGRADE = 0xC6

Status Codes

120/326

EMBER_NVM3_ERR_UNKNOWN = 0xC7
EMBER_NCP_UNKNOWN_COMMAND_ID
= 0xD0
EMBER_APPLICATION_ERROR_0 = 0xF0
EMBER_APPLICATION_ERROR_1 = 0xF1
EMBER_APPLICATION_ERROR_2 = 0xF2
EMBER_APPLICATION_ERROR_3 = 0xF3
EMBER_APPLICATION_ERROR_4 = 0xF4
EMBER_APPLICATION_ERROR_5 = 0xF5
EMBER_APPLICATION_ERROR_6 = 0xF6
EMBER_APPLICATION_ERROR_7 = 0xF7
EMBER_APPLICATION_ERROR_8 = 0xF8
EMBER_APPLICATION_ERROR_9 = 0xF9
EMBER_APPLICATION_ERROR_10 =
0xFA
EMBER_APPLICATION_ERROR_11 =
0xFB
EMBER_APPLICATION_ERROR_12 =
0xFC
EMBER_APPLICATION_ERROR_13 =
0xFD
EMBER_APPLICATION_ERROR_14 =
0xFE
EMBER_APPLICATION_ERROR_15 =
0xFF

}

Enumeration Documentation

EmberStatus

EmberStatus

Enumerator

EMBER_SUCCESS The generic "no error" message.

EMBER_ERR_FATAL The generic "fatal error" message.

EMBER_BAD_ARGUMENT An invalid value was passed as an argument to a function.

EMBER_EEPROM_MFG_STACK_VERSION_MISMATCH The manufacturing and stack token format in non-volatile memory is

different than what the stack expects (returned at initialization).

EMBER_INVALID_CALL The API call is not allowed given the current state of the stack.

EMBER_EEPROM_MFG_VERSION_MISMATCH The manufacturing token format in non-volatile memory is different

than what the stack expects (returned at initialization).

EMBER_EEPROM_STACK_VERSION_MISMATCH The stack token format in non-volatile memory is different than

what the stack expects (returned at initialization).

EMBER_NO_BUFFERS There are no more buffers (either in the stack heap or the queue

used by the associated module, such as indirect queue).

EMBER_SERIAL_INVALID_BAUD_RATE Specified an invalid baud rate.

EMBER_SERIAL_INVALID_PORT Specified an invalid serial port.

EMBER_SERIAL_TX_OVERFLOW Tried to send too much data.

EMBER_SERIAL_RX_OVERFLOW There was not enough space to store a received character and

some characters were dropped.

EMBER_SERIAL_RX_FRAME_ERROR Detected a UART framing error.

EMBER_SERIAL_RX_PARITY_ERROR Detected a UART parity error.

EMBER_SERIAL_RX_EMPTY There is no received data to process.

Status Codes

121/326

EMBER_SERIAL_RX_OVERRUN_ERROR The receive interrupt was not handled in time and some characters were

dropped.

EMBER_MAC_NO_DATA No pending data exists for device doing a data poll.

EMBER_MAC_SYNC_TIMEOUT The frequency hopping client failed the frequency hopping synchronization

procedure. It timed out trying to reach the frequency hopping server.

EMBER_MAC_SYNC_WRONG_SEED The frequency hopping client failed the frequency hopping synchronization

procedure. The server is currently using a different seed.

EMBER_MAC_SECURITY_FAILED MAC security operation failed.

EMBER_MAC_UNKNOWN_DESTINATION Transmission failed: the destination node does not appear in the neighbor or

child tables.

EMBER_MAC_SECURITY_NOT_SUPPORTED Transmission failed: the local node does not support security or a secured

transmission has been requested to a child that does not support security.

EMBER_MAC_TRANSMIT_QUEUE_FULL The MAC transmit queue is full.

EMBER_MAC_ACK_HEADER_TYPE MAC ACK header received.

EMBER_MAC_SCANNING The MAC can't complete this task because it is scanning.

EMBER_MAC_BUSY The requested operation cannot be completed because MAC is currently

busy performing a high-priority task.

EMBER_MAC_NO_ACK_RECEIVED Expected to receive an ACK following the transmission, but the MAC level

ACK was never received.

EMBER_MAC_INDIRECT_TIMEOUT Indirect data message timed out before polled.

EMBER_MAC_INDIRECT_MESSAGE_PURGED Transmission failed: the indirect message was purged because the

destination child has been removed or updated, or because

emberPurgeIndirectMessages() was called.

EMBER_SIM_EEPROM_ERASE_PAGE_GREEN The S imulated EEPROM is telling the application that there is at least one

flash page to be erased. The GREEN status means the current page has not

filled above the ::ERASE_CRITICAL_THRESHOLD.

EMBER_SIM_EEPROM_ERASE_PAGE_RED The S imulated EEPROM is telling the application that there is at least one

flash page to be erased. The RED status means the current page has filled

above the ::ERASE_CRITICAL_THRESHOLD.

EMBER_SIM_EEPROM_FULL The S imulated EEPROM has run out of room to write any new data and the

data trying to be set has been lost. This error code is the result of ignoring

the EMBER_SIM_EEPROM_ERASE_PAGE_RED error code.

EMBER_SIM_EEPROM_INIT_2_FAILED Attempt 2 to initialize the S imulated EEPROM has failed.

EMBER_SIM_EEPROM_INIT_3_FAILED Attempt 3 to initialize the S imulated EEPROM has failed.

EMBER_SIM_EEPROM_REPAIRING The S imulated EEPROM is repairing itself.

EMBER_ERR_FLASH_WRITE_INHIBITED A fatal error has occurred while trying to write data to the flash. The target

memory attempting to be programmed is already programmed. The flash

write routines were asked to flip a bit from a 0 to 1, which is physically

impossible and the write was therefore inhibited. The data in the flash

cannot be trusted after this error.

EMBER_ERR_FLASH_VERIFY_FAILED A fatal error has occurred while trying to write data to the flash and the

write verification has failed. The data in the flash cannot be trusted after

this error, and it is possible this error is the result of exceeding the life

cycles of the flash.

EMBER_ERR_FLASH_PROG_FAIL A fatal error has occurred while trying to write data to the flash, possibly

due to write protection or an invalid address. The data in the flash cannot be

trusted after this error, and it is possible this error is the result of exceeding

the life cycles of the flash.

EMBER_MESSAGE_TOO_LONG The message to be transmitted is too big to fit into a single over-the-air

packet.

Status Codes

122/326

EMBER_ADC_CONVERSION_DONE Conversion is complete.

EMBER_ADC_CONVERSION_BUSY Conversion cannot be done because a request is being

processed.

EMBER_ADC_CONVERSION_DEFERRED Conversion is deferred until the current request has been

processed.

EMBER_ADC_NO_CONVERSION_PENDING No results are pending.

EMBER_SLEEP_INTERRUPTED S leeping (for a duration) has been abnormally interrupted and

exited prematurely.

EMBER_PHY_TX_INCOMPLETE The transmit hardware did not finish transmitting a packet.

EMBER_PHY_INVALID_CHANNEL An unsupported channel setting was specified.

EMBER_PHY_INVALID_POWER An unsupported power setting was specified.

EMBER_PHY_TX_BUSY The requested operation cannot be completed because the

radio is currently busy, either transmitting a packet or

performing calibration.

EMBER_PHY_TX_CCA_FAIL The transmit attempt failed because all CCA attempts

indicated that the channel was busy.

EMBER_PHY_CALIBRATING The requested operation cannot be completed because the

stack has triggered a radio calibration. Wait for about one

second for it to complete.

EMBER_PHY_ACK_RECEIVED The expected ACK was received after the last transmission.

EMBER_NETWORK_UP The stack software has completed initialization required to be

in a network and is ready to send and receive packets over

the air.

EMBER_NETWORK_DOWN The network is not operating.

EMBER_JOIN_SCAN_FAILED The node failed to initiate the scanning process during the

joining process.

EMBER_JOIN_FAILED An attempt to join a network failed.

EMBER_JOIN_DENIED An attempt to join a network was rejected.

EMBER_JOIN_TIMEOUT The node timed out waiting for a response during the joining

process.

EMBER_NO_VALID_BEACONS An attempt to join or rejoin the network failed because no

valid beacons was received by the joining node.

EMBER_SECURITY_DATA_INVALID The security data provided was not valid, or an integrity check

failed.

EMBER_NOT_JOINED The node has not joined a network. Returned by

emberNetworkInit() if there was no connection data saved in

tokens.

EMBER_TABLE_FULL There are no empty entries left in the table.

EMBER_LIBRARY_NOT_PRESENT The requested function cannot be executed because the

library (plugin) that contains the necessary functionality is not

present.

EMBER_CHILD_NOT_FOUND The requested NodeId has not been found in the child list or

grandchildren list (start network only).

EMBER_NVM3_ERR_OPENED_WITH_OTHER_PARAMETERS NVM3 is telling the application that the initialization was

aborted as the NVM3 instance was already opened with other

parameters.

EMBER_NVM3_ERR_ALIGNMENT_INVALID NVM3 is telling the application that the initialization was

aborted as the NVM3 instance is not aligned properly in

memory.

Status Codes

123/326

EMBER_NVM3_ERR_SIZE_TOO_SMALL NVM3 is telling the application that the initialization was aborted as

the size of the NVM3 instance is too small.

EMBER_NVM3_ERR_PAGE_SIZE_NOT_SUPPORTED NVM3 is telling the application that the initialization was aborted as

the NVM3 page size is not supported.

EMBER_NVM3_ERR_TOKEN_INIT NVM3 is telling the application that there was an error initializing some

of the tokens.

EMBER_NVM3_ERR_UPGRADE NVM3 is telling the application there has been an error when

attempting to upgrade S imEE tokens.

EMBER_NVM3_ERR_UNKNOWN NVM3 is telling the application that there has been an unknown error.

EMBER_NCP_UNKNOWN_COMMAND_ID The NCP does not know the command ID that the host sent. This can

correspond to a version mismatch, where an API is available on the

host but not on the NCP.

EMBER_APPLICATION_ERROR_0 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_1 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_2 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_3 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_4 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_5 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_6 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_7 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_8 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_9 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_10 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_11 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_12 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_13 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_14 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

EMBER_APPLICATION_ERROR_15 This error is reserved for customer application use. This will never be

returned from any portion of the network stack or HAL.

Definition at line 58 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/error-def.h

Stack Tokens

124/326

Stack Tokens

Stack Tokens
Definitions for stack tokens.

Stack tokens are used by the stack to store information in non-volatile memory. A typical use case is to store the network

information, so after an accidental reset it can be part of the network without going through the association process again.

Note

For the application tokens, refer to Token Access and AN1154.

Warnings

While stack tokens can be accessed through the Token Access API, they must not be written directly. Most stack tokens

have APIs to read/write them. This documentation is intended for those who need more information on the internal details of

the connect stack.

See token-stack.h for source code.

Modules

tokTypeStackKey

tokTypeStackNodeData

tokTypeStackChildTableEntry

Token types

The types used for each stack token.

typedef uint16_t tokTypeStackNvdataVersion
Type for TOKEN_STACK_NVDATA_VERSION. Keeps the version number of stack tokens.

typedef uint32_t tokTypeStackNonceCounter
Type for TOKEN_STACK_NONCE_COUNTER. Used to make sure that Nonce used for security is not repeated even after

unexpected reboot.

typedef uint32_t tokTypeStackKeyID
Type for TOKEN_STACK_SECURITY_KEY_ID. Used to make sure that Nonce used for security is not repeated even after

unexpected reboot.

typedef uint16_t tokTypeStackLastAllocatedId
Type for TOKEN_STACK_LAST_ASSIGNED_ID. Stores the last assigned Node Id if the device is

EMBER_STAR_COORDINATOR.

typedef uint32_t tokTypeStackBootCounter
Type for TOKEN_STACK_BOOT_COUNTER. Increments at boot (during emberInit()).

typedef
EmberEUI64

tokTypeParentLongId
Type for TOKEN_STACK_PARENT_LONG_ID. Stores the Long Id of the parent of this device . Only used for

EMBER_MAC_MODE_DEVICE and EMBER_MAC_MODE_SLEEPY_DEVICE device types.

Stack Tokens

125/326

Macros

#define CURRENT_STACK_TOKEN_VERSION 0x03FC
The current version number of the stack tokens. MSB is the version. LSB is a complement.

Token types Documentation

tokTypeStackNvdataVersion

typedef uint16_t tokTypeStackNvdataVersion

Type for TOKEN_STACK_NVDATA_VERSION. Keeps the version number of stack tokens.

Definition at line 220 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackNonceCounter

typedef uint32_t tokTypeStackNonceCounter

Type for TOKEN_STACK_NONCE_COUNTER. Used to make sure that Nonce used for security is not repeated even after

unexpected reboot.

Definition at line 226 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackKeyID

typedef uint32_t tokTypeStackKeyID

Type for TOKEN_STACK_SECURITY_KEY_ID. Used to make sure that Nonce used for security is not repeated even after

unexpected reboot.

Definition at line 241 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackLastAllocatedId

typedef uint16_t tokTypeStackLastAllocatedId

Type for TOKEN_STACK_LAST_ASSIGNED_ID. Stores the last assigned NodeId if the device is

EMBER_STAR_COORDINATOR.

Definition at line 272 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackBootCounter

typedef uint32_t tokTypeStackBootCounter

Type for TOKEN_STACK_BOOT_COUNTER. Increments at boot (during emberInit()).

Definition at line 278 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

Stack Tokens

126/326

tokTypeParentLongId

typedef EmberEUI64 tokTypeParentLongId

Type for TOKEN_STACK_PARENT_LONG_ID. Stores the Long Id of the parent of this device. Only used for

EMBER_MAC_MODE_DEVICE and EMBER_MAC_MODE_SLEEPY_DEVICE device types.

Definition at line 285 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

Macro Definition Documentation

CURRENT_STACK_TOKEN_VERSION

#define CURRENT_STACK_TOKEN_VERSION

Value:

0x03FC

The current version number of the stack tokens. MSB is the version. LSB is a complement.

See hal/micro/token.h for a more complete explanation.

Definition at line 206 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackKey

127/326

tokTypeStackKey

Type for TOKEN_STACK_SECURITY_KEY. Keeps the security key for MAC layer security.

Public Attributes

uint8_t networkKey

Public Attribute Documentation

networkKey

uint8_t tokTypeStackKey::networkKey[16]

The key itself

Definition at line 234 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackNodeData

128/326

tokTypeStackNodeData

Type for TOKEN_STACK_NODE_DATA. Generic information of the node is stored in this token.

Public Attributes

uint16_t panId

int16_t radioTxPower

uint16_t radioFreqChannel

uint8_t nodeType

uint16_t nodeId

uint16_t parentId

Public Attribute Documentation

panId

uint16_t tokTypeStackNodeData::panId

The PanId of the device

Definition at line 249 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

radioTxPower

int16_t tokTypeStackNodeData::radioTxPower

The TX power configured for the device in deci-dBm

Definition at line 250 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

radioFreqChannel

uint16_t tokTypeStackNodeData::radioFreqChannel

The radio channel configured for the device

Definition at line 251 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

nodeType

uint8_t tokTypeStackNodeData::nodeType

The EmberNodeType configured for the device

tokTypeStackNodeData

129/326

Definition at line 252 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

nodeId

uint16_t tokTypeStackNodeData::nodeId

The NodeId (short address) of the device

Definition at line 253 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

parentId

uint16_t tokTypeStackNodeData::parentId

The NodeId of the device's parent, if any

Definition at line 254 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

tokTypeStackChildTableEntry

130/326

tokTypeStackChildTableEntry

Type of an element of TOKEN_STACK_CHILD_TABLE (indexed token). Keeps children information of a device, which has

parent support enabled.

Public Attributes

EmberEUI64 longId

EmberNodeId shortId

uint8_t flags

Public Attribute Documentation

longId

EmberEUI64 tokTypeStackChildTableEntry::longId

The Long Id of the child

Definition at line 263 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

shortId

EmberNodeId tokTypeStackChildTableEntry::shortId

The NodeId of the child

Definition at line 264 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

flags

uint8_t tokTypeStackChildTableEntry::flags

Flags for the child required by the stack

Definition at line 265 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/config/token-stack.h

Event Scheduling

131/326

Event Scheduling

Event Scheduling
Scheduling events for future execution.

See Event Scheduling for documentation. These macros implement an event abstraction that allows the application to

schedule code to run after a specified time interval. An event consists of a procedure to be called at some point in the

future and a control object that determines which procedure should be called. Events are also useful when an ISR needs to

initiate an action that should run outside the ISR context.

See event.h for source code.

Note that, while not required, it is recommended that the event-handling procedure explicitly define the recurrence of the

next event, either by rescheduling via some kind of emberEventControlSetDelayXX() call or by deactivating via a call to

emberEventControlSetInactive().

When the handler does not explicitly reschedule or cancel the event, the default behavior of the event control system is to

keep the event immediately active as if the handler function had called emberEventControlSetActive(someEvent) or

emberEventControlSetDelayMS(someEvent, 0).

The base time units for events are ticks. A tick equals 1 ms on every platform supported by Connect. Note, however, that

the accuracy of the base tick depends on the timer source, which by default is the LF RC oscillator on EFR32 platforms.

Furthermore, the scheduled delay is the minimum delay. If emberRunEvents() or emberRunTask() are not called frequently

enough, the actual delay may be longer than the scheduled delay.

Additionally, the APIs for quarter second and minute delays (emberEventControlSetDelayQS() and

emberEventControlSetDelayMinutes()) use "binary" units. One quarter second is 256 ticks and one minute is 65536 ticks.

These APIs are therefore doesn't actually mean a quarter of second or a minute on platforms supported by Connect.

However, in the future, Connect support might become available on platforms where one tick is not exactly 1 ms. For

example, on the EM357 SoC, 1 s is 1024 ticks, so each tick is 1000 / 1024 = ~0.98 milliseconds. If you need platform

independent accurate delays, use the macros MILLISECOND_TICKS_PER_SECOND and MILLISECOND_TICKS_PER_MINUTE.

For example, calling emberEventControlSetDelayMS(someEvent, 3 * MILLISECOND_TICKS_PER_MINUTE) will delay for 3

minutes on any platform.

The following are brief usage examples.

Event Scheduling

132/326

EmberEventControl delayEvent;

EmberEventControl signalEvent;

EmberEventControl periodicEvent;

void delayEventHandler(void)

{

// Disable this event until its next use.

emberEventControlSetInactive(delayEvent);

}

void signalEventHandler(void)

{

// Disable this event until its next use.

emberEventControlSetInactive(signalEvent);

// Sometimes an action has to occur 100 ms later.

if (somethingIsExpected)

emberEventControlSetDelayMS(delayEvent, 100);

}

void periodicEventHandler(void)

{

emberEventControlSetDelayQS(periodicEvent, 4);

}

void someIsr(void)

{

// Set the signal event to run at the first opportunity.

emberEventControlSetActive(signalEvent);

}

// Put the controls and handlers in an array. They will be run in

// this order (this is usually generated)

EmberEventData events[] =

{

{ &delayEvent, delayEventHandler },

{ &signalEvent, signalEentHandler },

{ &periodicEvent, periodicEventHandler },

{ NULL, NULL } // terminator

};

void main(void)

{

// Cause the periodic event to occur once a second.

emberEventControlSetDelayQS(periodicEvent, 4);

while (true) {

emberRunEvents(events);

}

}

Time Manipulation Macros

void sli_event_control_set_active(EmberEventControl *event)
Set EmberEventContro l to run at the next available opportunity.

void emEventControlSetDelayMS(EmberEventControl *event, uint32_t delay)
Set EmberEventContro l to run some milliseconds in the future .

uint32_t emEventControlGetRemainingMS(EmberEventControl *event)
Check when the event is scheduled to run.

Event Scheduling

133/326

void emberRunEvents(EmberEventData *events)
Start an event handler if anything is scheduled when this function is called.

void emberRunTask(EmberTaskId taskid)
Start an event handler if there is anything scheduled at the moment this function is called.

uint32_t emberMsToNextEvent(EmberEventData *events, uint32_t maxMs)
Check when the next event is scheduled to run.

uint32_t emberMsToNextEventExtended(EmberEventData *events, uint32_t maxMs, uint8_t *returnIndex)
Check when the next event is scheduled to run.

uint32_t emberMsToNextStackEvent(void)
Check when the next stack event is scheduled to run.

EmberTaskId emberTaskInit(EmberEventData *events)
Initialize a task for managing events and processor idling state .

bool emberMarkTaskIdle(EmberTaskId taskid)
Try to idle the CPU, unless any events in any tasks are pending.

void emTaskEnableIdling(bool allow)
Enable or disable idling.

void emMarkTaskActive(EmberTaskId taskid)
Calling it indicates that a task has something to do, so it should prevent the CPU from idling until emberMarkTaskIdle is

next called on this task.

#define elapsedTimeInt8u (oldTime, newTime)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define elapsedTimeInt16u (oldTime, newTime)
Returns the elapsed time between two 16 bit values. Result may not be valid if the time samples differ by more than

32767.

#define elapsedTimeInt32u (oldTime, newTime)
Returns the elapsed time between two 32 bit values. Result may not be valid if the time samples differ by more than

2147483647.

#define MAX_INT8U_VALUE (0xFF)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

#define HALF_MAX_INT8U_VALUE (0x80)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define timeGTorEqualInt8u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MAX_INT16U_VALUE (0xFFFF)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

#define HALF_MAX_INT16U_VALUE (0x8000)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define timeGTorEqualInt16u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MAX_INT32U_VALUE (0xFFFFFFFFUL)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

#define HALF_MAX_INT32U_VALUE (0x80000000UL)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Event Scheduling

134/326

#define timeGTorEqualInt32u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_SECOND 1000UL
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_DECISECOND (MILLISECOND_TICKS_PER_SECOND / 10)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_QUARTERSECOND (MILLISECOND_TICKS_PER_SECOND >> 2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_MINUTE (60UL * MILLISECOND_TICKS_PER_SECOND)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_HOUR (60UL * MILLISECOND_TICKS_PER_MINUTE)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MILLISECOND_TICKS_PER_DAY (24UL * MILLISECOND_TICKS_PER_HOUR)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define EMBER_TASK_COUNT (3)
The number of event tasks that can be used to schedule and run events. Connect stack requires one , while another is

used for Application Framework events.

#define emberEventControlSetInactive (control)
Set EmberEventContro l as inactive (no pending event).

#define emberEventControlGetActive (control)
Check whether EmberEventContro l is currently active . An event is considered active if it is set to run some time in the

future (activated by emberEventContro lSetActive(), emberEventContro lSetDelayMS() or any other

emberEventContro lSetDelay* functions)

#define emberEventControlSetActive (control)
Set EmberEventContro l to run at the next available opportunity.

#define EMBER_MAX_EVENT_CONTROL_DELAY_MS (HALF_MAX_INT32U_VALUE - 1)
The maximum delay that may be passed to emberEventContro lSetDelayMS().

#define emberEventControlSetDelayMS (control, delay)
Set EmberEventContro l to run some milliseconds in the future .

#define EMBER_MAX_EVENT_CONTROL_DELAY_QS (EMBER_MAX_EVENT_CONTROL_DELAY_MS >> 8)
The maximum delay that may be passed to emberEventContro lSetDelayQS().

#define emberEventControlSetDelayQS (control, delay)
Set EmberEventContro l to run some quarter seconds in the future .

#define EMBER_MAX_EVENT_CONTROL_DELAY_MINUTES (EMBER_MAX_EVENT_CONTROL_DELAY_MS >> 16)
The maximum delay that may be passed to emberEventContro lSetDelayMinutes().

#define emberEventControlSetDelayMinutes (control, delay)
Set EmberEventContro l to run some minutes in the future .

#define emberEventControlGetRemainingMS (control)
Check when the event is scheduled to run.

#define emberTaskEnableIdling (allow)
Enable or disable idling.

#define emberMarkTaskActive (taskid)
Calling it indicates that a task has something to do, so it should prevent the CPU from idling until emberMarkTaskIdle is

next called on this task.

Event Scheduling

135/326

Macros

#define __EVENT_H__ undefined

Time Manipulation Macros Documentation

sli_event_control_set_active

void sli_event_control_set_active (EmberEventControl *event)

Set EmberEventControl to run at the next available opportunity.

Parameters

[in] event Pointer to the control of the event to set active

Warnings

Applications should use emberEventControlSetActive() instead.

Definition at line 299 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emEventControlSetDelayMS

void emEventControlSetDelayMS (EmberEventControl *event, uint32_t delay)

Set EmberEventControl to run some milliseconds in the future.

Parameters

[in] event Pointer to the control of the event to run.

[in] delay The delay in milliseconds. Must be less than EMBER_MAX_EVENT_CONTROL_DELAY_MS

Warnings

Applications should use emberEventControlSetDelayMS() instead.

Definition at line 325 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emEventControlGetRemainingMS

uint32_t emEventControlGetRemainingMS (EmberEventControl *event)

Check when the event is scheduled to run.

Parameters

[in] event Pointer to the control of the event in question.

Returns

Return the amount of milliseconds remaining before the event is scheduled to run. If the event is inactive,

MAX_INT32U_VALUE is returned.

Warnings

Applications should use emberEventControlGetRemainingMS() instead.

Event Scheduling

136/326

Definition at line 378 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberRunEvents

void emberRunEvents (EmberEventData *events)

Start an event handler if anything is scheduled when this function is called.

Parameters

[in] events Pointer to the array of events.

An application typically creates an array of events along with their handlers. This function should be called in the main loop

to run those events. Warnings

This is normally handled by emberRunTask() in the main plugin.

Definition at line 392 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberRunTask

void emberRunTask (EmberTaskId taskid)

Start an event handler if there is anything scheduled at the moment this function is called.

Parameters

N/A taskid

If an application has initialized a task via emberTaskInit(), to run the events associated with that task, it should call

emberRunTask() instead of emberRunEvents().

Warnings

This is normally handled by the main plugin.

Definition at line 405 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberMsToNextEvent

uint32_t emberMsToNextEvent (EmberEventData *events, uint32_t maxMs)

Check when the next event is scheduled to run.

Parameters

[in] events An array of events to check.

[in] maxMs If no event is scheduled before maxMs, maxMs will be returned

Returns

Returns the number of milliseconds before the next event is scheduled to expire, or maxMs if no event is scheduled to

expire within that time.

Note

If any events are modified within an interrupt, to guarantee the accuracy of this API, it must be called with interrupts

disabled.

See Also

Event Scheduling

137/326

emberMsToNextEventExtended()

Definition at line 420 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberMsToNextEventExtended

uint32_t emberMsToNextEventExtended (EmberEventData *events, uint32_t maxMs, uint8_t *returnIndex)

Check when the next event is scheduled to run.

Parameters

[in] events An array of events to check.

[in] maxMs If no event is scheduled before maxMs, maxMs will be returned

[out] returnIndex If not NULL pointer was passed, the index of the next event will be returned here, or 0xFF if no

event is scheduled before maxMs.

Returns

Returns the number of milliseconds before the next event is scheduled to expire, or maxMs if no event is scheduled to

expire within that time.

Note

If any events are modified within an interrupt, to guarantee the accuracy of this API, it must be called with interrupts

disabled.

See Also

emberMsToNextEvent()

Definition at line 438 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberMsToNextStackEvent

uint32_t emberMsToNextStackEvent (void)

Check when the next stack event is scheduled to run.

Parameters

N/A

Returns

Returns the number of milliseconds before the next stack event is scheduled to run.

Definition at line 446 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberTaskInit

EmberTaskId emberTaskInit (EmberEventData *events)

Initialize a task for managing events and processor idling state.

Parameters

Event Scheduling

138/326

[in] events Pointer to the array of events to manage

Returns

Returns the EmberTaskId which represents the newly created task.

Note

After the task is created emberRunTask() should be called periodically.

Definition at line 456 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberMarkTaskIdle

bool emberMarkTaskIdle (EmberTaskId taskid)

Try to idle the CPU, unless any events in any tasks are pending.

Parameters

[in] taskid the task which should handle the idling.

Returns

Returns true if the processor was idled false if idling wasn't permitted because a task has something to do.

Note

This API should always be called with interrupts disabled. It will forcibly re-enable interrupts before returning.

Definition at line 468 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emTaskEnableIdling

void emTaskEnableIdling (bool allow)

Enable or disable idling.

Parameters

[in] allow Setting it to true will enable, while setting it to false will disable idling.

Warnings

Applications should use emberTaskEnableIdling() instead.

Definition at line 484 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emMarkTaskActive

void emMarkTaskActive (EmberTaskId taskid)

Calling it indicates that a task has something to do, so it should prevent the CPU from idling until emberMarkTaskIdle is next

called on this task.

Parameters

[in] taskid The task to mark active.

Event Scheduling

139/326

Warnings

Applications should use emberMarkTaskActive() instead.

Definition at line 499 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

elapsedTimeInt8u

#define elapsedTimeInt8u

Value:

(o ldTime , newTime)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 190 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

elapsedTimeInt16u

#define elapsedTimeInt16u

Value:

(o ldTime , newTime)

Returns the elapsed time between two 16 bit values. Result may not be valid if the time samples differ by more than 32767.

Definition at line 197 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

elapsedTimeInt32u

#define elapsedTimeInt32u

Value:

(o ldTime , newTime)

Returns the elapsed time between two 32 bit values. Result may not be valid if the time samples differ by more than

2147483647.

Definition at line 204 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MAX_INT8U_VALUE

#define MAX_INT8U_VALUE

Value:

(0xFF)

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Event Scheduling

140/326

Definition at line 211 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

HALF_MAX_INT8U_VALUE

#define HALF_MAX_INT8U_VALUE

Value:

(0x80)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 212 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

timeGTorEqualInt8u

#define timeGTorEqualInt8u

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 213 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MAX_INT16U_VALUE

#define MAX_INT16U_VALUE

Value:

(0xFFFF)

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Definition at line 220 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

HALF_MAX_INT16U_VALUE

#define HALF_MAX_INT16U_VALUE

Value:

(0x8000)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 221 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

timeGTorEqualInt16u

#define timeGTorEqualInt16u

Event Scheduling

141/326

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 222 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MAX_INT32U_VALUE

#define MAX_INT32U_VALUE

Value:

(0xFFFFFFFFUL)

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Definition at line 229 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

HALF_MAX_INT32U_VALUE

#define HALF_MAX_INT32U_VALUE

Value:

(0x80000000UL)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 230 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

timeGTorEqualInt32u

#define timeGTorEqualInt32u

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 231 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_SECOND

#define MILLISECOND_TICKS_PER_SECOND

Value:

1000UL

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Event Scheduling

142/326

Definition at line 234 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_DECISECOND

#define MILLISECOND_TICKS_PER_DECISECOND

Value:

(MILLISECOND_TICKS_PER_SECOND / 10)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 237 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_QUARTERSECOND

#define MILLISECOND_TICKS_PER_QUARTERSECOND

Value:

(MILLISECOND_TICKS_PER_SECOND >> 2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 241 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_MINUTE

#define MILLISECOND_TICKS_PER_MINUTE

Value:

(60UL * MILLISECOND_TICKS_PER_SECOND)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 245 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_HOUR

#define MILLISECOND_TICKS_PER_HOUR

Value:

(60UL * MILLISECOND_TICKS_PER_MINUTE)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 249 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

MILLISECOND_TICKS_PER_DAY

Event Scheduling

143/326

#define MILLISECOND_TICKS_PER_DAY

Value:

(24UL * MILLISECOND_TICKS_PER_HOUR)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 253 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

EMBER_TASK_COUNT

#define EMBER_TASK_COUNT

Value:

(3)

The number of event tasks that can be used to schedule and run events. Connect stack requires one, while another is used

for Application Framework events.

Definition at line 261 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlSetInactive

#define emberEventControlSetInactive

Value:

(contro l)

Set EmberEventControl as inactive (no pending event).

Definition at line 268 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlGetActive

#define emberEventControlGetActive

Value:

(contro l)

Check whether EmberEventControl is currently active. An event is considered active if it is set to run some time in the

future (activated by emberEventControlSetActive(), emberEventControlSetDelayMS() or any other

emberEventControlSetDelay* functions)

Returns

Returns true if the event is active false otherwise

Definition at line 282 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

Event Scheduling

144/326

emberEventControlSetActive

#define emberEventControlSetActive

Value:

(contro l)

Set EmberEventControl to run at the next available opportunity.

Definition at line 291 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

EMBER_MAX_EVENT_CONTROL_DELAY_MS

#define EMBER_MAX_EVENT_CONTROL_DELAY_MS

Value:

(HALF_MAX_INT32U_VALUE - 1)

The maximum delay that may be passed to emberEventControlSetDelayMS().

Definition at line 305 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlSetDelayMS

#define emberEventControlSetDelayMS

Value:

(contro l, delay)

Set EmberEventControl to run some milliseconds in the future.

Definition at line 314 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

EMBER_MAX_EVENT_CONTROL_DELAY_QS

#define EMBER_MAX_EVENT_CONTROL_DELAY_QS

Value:

(EMBER_MAX_EVENT_CONTROL_DELAY_MS >> 8)

The maximum delay that may be passed to emberEventControlSetDelayQS().

Definition at line 330 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlSetDelayQS

#define emberEventControlSetDelayQS

Value:

Event Scheduling

145/326

(contro l, delay)

Set EmberEventControl to run some quarter seconds in the future.

Warnings

Applications should use emberEventControlSetDelayQS() instead.

Definition at line 341 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

EMBER_MAX_EVENT_CONTROL_DELAY_MINUTES

#define EMBER_MAX_EVENT_CONTROL_DELAY_MINUTES

Value:

(EMBER_MAX_EVENT_CONTROL_DELAY_MS >> 16)

The maximum delay that may be passed to emberEventControlSetDelayMinutes().

Definition at line 347 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlSetDelayMinutes

#define emberEventControlSetDelayMinutes

Value:

(contro l, delay)

Set EmberEventControl to run some minutes in the future.

Definition at line 356 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberEventControlGetRemainingMS

#define emberEventControlGetRemainingMS

Value:

(contro l)

Check when the event is scheduled to run.

Returns

Returns the amount of milliseconds remaining before the event is scheduled to run. If the event is inactive,

MAX_INT32U_VALUE is returned.

Definition at line 366 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberTaskEnableIdling

#define emberTaskEnableIdling

Event Scheduling

146/326

Value:

(allow)

Enable or disable idling.

Definition at line 477 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

emberMarkTaskActive

#define emberMarkTaskActive

Value:

(taskid)

Calling it indicates that a task has something to do, so it should prevent the CPU from idling until emberMarkTaskIdle is next

called on this task.

Definition at line 492 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

Macro Definition Documentation

__EVENT_H__

#define __EVENT_H__

Definition at line 179 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/event.h

Memory Buffer

147/326

Memory Buffer

Memory Buffer
Ember Connect API dynamically allocates and frees memory.

Generally, dynamic memory allocation in embedded code is not recommended. However, in some cases, the drawbacks of

avoiding them is even bigger. Using C standard library dynamic memory is still not recommended due because it could cause

fragmented memory.

For these reasons, Connect allocates some (configurable in the stack common plugin) memory as HEAP at compile-time.

Memory allocation from this heap is possible through the API below.

See memory-buffer.h for source code.

APIs

This handler is invoked by the memory buffers system garbage collector and allows the application to properly mark the

application-defined EmberBuffer variables with emberMarkBuffer().Implement associated callback

emberAfMarkApplicationBuffersCallback() to use. See Handlers for additional information.

EmberBuffer emberAllocateBuffer(uint16_t dataSizeInBytes)
Dynamically allocates memory.

void emberMarkBuffer(EmberBuffer *buffer)
Prevent the garbage co llector from reclaiming the memory associated with the passed EmberBuffer. The application

should call this API within the ::emberMarkApplicationBuffersHandler() stack handler for each EmberBuffer object.

uint8_t * emberGetBufferPointer(EmberBuffer buffer)
Return a po inter to the memory segment corresponding to the passed EmberBuffer buffer. Notice that the garbage

co llector can move memory segments to defragment the available memory. As result, the application should always use

this API to obtain an updated po inter prior to accessing the memory.

uint16_t emberGetBufferLength(EmberBuffer buffer)
Return the length in bytes of the passed EmberBuffer buffer.

uint16_t emberGetAvailableBufferMemory(void)
Return the available memory at the buffer manager in bytes.

Macros

#define EMBER_NULL_BUFFER 0x0000u
A special EmberBuffer ID indicating that no memory is currently allocated.

APIs Documentation

emberAllocateBuffer

EmberBuffer emberAllocateBuffer (uint16_t dataSizeInBytes)

Dynamically allocates memory.

Memory Buffer

148/326

Parameters

[in] dataSizeInBytes The size in bytes of the memory to be allocated.

Returns

An EmberBuffer value of EMBER_NULL_BUFFER if the memory management system could not allocate the requested

memory, or any other EmberBuffer value indicating that the requested memory was successfully allocated. The allocated

memory can easily be freed by assigning an EmberBuffer variable to EMBER_NULL_BUFFER. The memory will be freed by

the garbage collector during the next emberTick() call.

Definition at line 92 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

emberMarkBuffer

void emberMarkBuffer (EmberBuffer *buffer)

Prevent the garbage collector from reclaiming the memory associated with the passed EmberBuffer. The application should

call this API within the ::emberMarkApplicationBuffersHandler() stack handler for each EmberBuffer object.

Parameters

[in] buffer A pointer to the EmberBuffer buffer to be marked.

Definition at line 101 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

emberGetBufferPointer

uint8_t * emberGetBufferPointer (EmberBuffer buffer)

Return a pointer to the memory segment corresponding to the passed EmberBuffer buffer. Notice that the garbage

collector can move memory segments to defragment the available memory. As result, the application should always use this

API to obtain an updated pointer prior to accessing the memory.

Parameters

[in] buffer A pointer to the EmberBuffer buffer for which the corresponding memory pointer should be returned.

Returns

A NULL pointer if the passed EmberBuffer value is EMBER_NULL_BUFFER. Otherwise, a pointer to the corresponding

memory segment.

Definition at line 116 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

emberGetBufferLength

uint16_t emberGetBufferLength (EmberBuffer buffer)

Return the length in bytes of the passed EmberBuffer buffer.

Parameters

[in] buffer A pointer to the EmberBuffer buffer for which the corresponding length in bytes should be returned.

Returns

The length in bytes of a memory segment corresponding to the passed EmberBuffer buffer.

Memory Buffer

149/326

Definition at line 127 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

emberGetAvailableBufferMemory

uint16_t emberGetAvailableBufferMemory (void)

Return the available memory at the buffer manager in bytes.

Parameters

N/A

Returns

The number of available bytes.

Definition at line 134 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

Macro Definition Documentation

EMBER_NULL_BUFFER

#define EMBER_NULL_BUFFER

Value:

0x0000u

A special EmberBuffer ID indicating that no memory is currently allocated.

Definition at line 50 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/memory-buffer.h

Messaging

150/326

Messaging

Messaging
Connect APIs and handlers for sending and receiving messages.

t_stack

Note that MAC mode and Extended star/direct mode use different APIs for messaging.

See message.h for source code.

Handlers

The Application Framework implements all handlers, directly calling their associated callbacks. By default, Connect projects

declare such callbacks as stubs in flex-callbacks-stubs.c. Hence, to use an enabled Connect feature, applications should

replace the stub with their own implementation of the associated callback (typically in flex-callbacks.c). See UG235.04 for

more info.

void emberMessageSentHandler(EmberStatus status, EmberOutgoingMessage *message)
This handler is invoked when the stack has completed sending a message .

void emberMacMessageSentHandler(EmberStatus status, EmberOutgoingMacMessage *message)
This handler is invoked when a node of EMBER_MAC_MODE_DEVICE type or EMBER_MAC_MODE_SLEEPY_DEVICE type

has completed sending a MAC frame .

void emberIncomingMessageHandler(EmberIncomingMessage *message)
This handler is invoked when a packet has been received from a node type other than EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

void emberIncomingMacMessageHandler(EmberIncomingMacMessage *message)
This handler is invoked when a node of EMBER_MAC_MODE_DEVICE type or EMBER_MAC_MODE_SLEEPY_DEVICE has

received a MAC frame .

EmberStatus emberMessageSend(EmberNodeId destination, uint8_t endpoint, uint8_t messageTag, EmberMessageLength
messageLength, uint8_t *message, EmberMessageOptions options)
Send a message to the passed destination short ID.

EmberStatus emberMacMessageSend(EmberMacFrame *macFrame, uint8_t messageTag, EmberMessageLength
messageLength, uint8_t *message, EmberMessageOptions options)
Create a MAC level frame and sends it to the passed destination. This API can only be used for nodes of

EMBER_MAC_MODE_DEVICE node type or EMBER_MAC_MODE_SLEEPY_DEVICE node type .

EmberStatus emberPollForData(void)
Send a data request command to the parent node . Note that if the node short ID is a value of

EMBER_USE_LONG_ADDRESS, the node shall use its long ID as source address.

EmberStatus emberSetPollDestinationAddress(EmberMacAddress *destination)
Set data po lls destination address for nodes of EMBER_MAC_MODE_DEVICE node type or

EMBER_MAC_MODE_SLEEPY_DEVICE node type .

uint16_t emberGetMaximumPayloadLength(EmberMacAddressMode srcAddressMode, EmberMacAddressMode
dstAddressMode, bool interpan, bool secured)
Return the maximum payload according to the passed source and destination addressing modes, the passed secured

flag, and the current configuration of the node .

Messaging

151/326

bool emberUsingLongMessages(void)
Indicates if the stack is currently using long messages or not.

EmberStatus emberNcpSetLongMessagesUse(bool useLongMessages)
Set the current message length that the stack uses.

EmberStatus emberPurgeIndirectMessages(void)
Purge all indirect transmissions from the indirect message queue .

EmberStatus emberSetIndirectQueueTimeout(uint32_t timeoutMs)
Set indirect queue timeout value . The indirect queue timeout is set by default to

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS.

Macros

#define EMBER_MAX_UNSECURED_APPLICATION_PAYLOAD_LENGTH 111

#define EMBER_MAX_SECURED_APPLICATION_PAYLOAD_LENGTH 102

#define EMBER_MAX_ENDPOINT 0xF
The maximum allowed endpo int value .

Handlers Documentation

emberMessageSentHandler

void emberMessageSentHandler (EmberStatus status, EmberOutgoingMessage *message)

This handler is invoked when the stack has completed sending a message.

Parameters

[in] status An EmberStatus value of:

EMBER_SUCCESS if an ACK was received from the destination or no ACK was requested.

EMBER_MAC_NO_ACK_RECEIVED if an ACK was requested and no ACK was received.

EMBER_MAC_INDIRECT_TIMEOUT if the destination is a sleepy node and the packet timed-out

before the sleepy node sent a data request.

EMBER_MAC_INDIRECT_MESSAGE_PURGED if the destination is a sleepy node and it was removed

from the child table while the packet was stored in the indirect queue.

EMBER_PHY_TX_CCA_FAIL if the node failed all the clear channel assessment attempts.

EMBER_PHY_TX_INCOMPLETE if the transmission was not completed correctly.

[in] message An EmberOutgoingMessage describing the outgoing packet.

Warnings

Implement associated callback emberAfMessageSentCallback() to use. See Handlers for additional information.

Definition at line 95 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberMacMessageSentHandler

void emberMacMessageSentHandler (EmberStatus status, EmberOutgoingMacMessage *message)

This handler is invoked when a node of EMBER_MAC_MODE_DEVICE type or EMBER_MAC_MODE_SLEEPY_DEVICE type has

completed sending a MAC frame.

Parameters

Messaging

152/326

[in] status An EmberStatus value of:

EMBER_SUCCESS if an ACK was received from the destination or no ACK was requested.

EMBER_MAC_NO_ACK_RECEIVED if an ACK was requested and no ACK was received.

EMBER_MAC_INDIRECT_TIMEOUT if the MAC frame was sent out via the indirect queue and the it

timed-out before a data request was received.

EMBER_MAC_INDIRECT_MESSAGE_PURGED if the MAC frame was sent out via the indirect queue

and it was removed prior to a data request being received. See emberPurgeIndirectMessages().

EMBER_MAC_SECURITY_FAILED if the stack failed to encrypt the message. This typically occurs

when a node is sending a message using short source addressing with an address other than the

node's short address and the no mapping to a corresponding address was found in the short-to-long

address mapping table. The application should use the emberMacAddShortToLongAddressMapping

to populate such table.

EMBER_PHY_TX_CCA_FAIL if the node failed all the clear channel assessment attempts.

EMBER_PHY_TX_INCOMPLETE if the transmission was not completed correctly.

[in] message An EmberOutgoingMacMessage describing the outgoing MAC frame.

Warnings

Implement associated callback emberAfMacMessageSentCallback() to use. See Handlers for additional information.

Definition at line 127 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberIncomingMessageHandler

void emberIncomingMessageHandler (EmberIncomingMessage *message)

This handler is invoked when a packet has been received from a node type other than EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

Parameters

[in] message An EmberIncomingMessage describing the incoming packet.

Warnings

Implement associated callback emberAfIncomingMessageCallback() to use. See Handlers for additional information.

Definition at line 139 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberIncomingMacMessageHandler

void emberIncomingMacMessageHandler (EmberIncomingMacMessage *message)

This handler is invoked when a node of EMBER_MAC_MODE_DEVICE type or EMBER_MAC_MODE_SLEEPY_DEVICE has

received a MAC frame.

Parameters

[in] message An EmberIncomingMacMessage describing the incoming packet.

Warnings

Implement associated callback emberAfIncomingMacMessageCallback() to use. See Handlers for additional information.

Definition at line 152 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

Messaging

153/326

emberMessageSend

EmberStatus emberMessageSend (EmberNodeId destination, uint8_t endpoint, uint8_t messageTag, EmberMessageLength
messageLength, uint8_t *message, EmberMessageOptions options)

Send a message to the passed destination short ID.

Parameters

[in] destination The destination node short ID.

[in] endpoint The destination endpoint of the outgoing message. This value can't exceed

EMBER_MAX_ENDPOINT.

[in] messageTag A value chosen by the application. This value will be passed in the corresponding

emberMessageSentHandler() call.

[in] messageLength The size of the message payload in bytes. Use the emberGetMaximumPayloadLength() API to

determine the maximum message length allowed.

[in] message A pointer to an array of bytes containing the message payload.

[in] options Specifies the EmberMessageOptions for the outgoing message.

Returns

an EmberStatus value of:

EMBER_SUCCESS if the message was accepted by the stack. If a success status is returned, the

emberMessageSentHandler() callback is invoked by the stack to indicate whether the message was successfully delivered

or the reason for failure.

EMBER_INVALID_CALL if the node is not joined to a network or the node is of EMBER_MAC_MODE_DEVICE device type or

EMBER_MAC_MODE_SLEEPY_DEVICE (use emberMacMessageSend instead).

EMBER_BAD_ARGUMENT if the packet length is 0, the passed TX options indicates some feature that is not supported,

the passed endpoint exceeds EMBER_MAX_ENDPOINT

EMBER_MESSAGE_TOO_LONG if the message does not fit in a single frame.

EMBER_PHY_TX_BUSY if the message cannot be sent since the node does not support MAC queuing and the radio is

currently busy.

EMBER_MAC_TRANSMIT_QUEUE_FULL if the outgoing MAC queue is currently full.

EMBER_NO_BUFFERS if the stack could not allocate enough RAM to store the submitted message.

EMBER_MAC_UNKNOWN_DESTINATION if the node is part of a star network and the destination node does not appear in

the node's routing table.

EMBER_MAC_SECURITY_NOT_SUPPORTED if the message was requested to be sent out secured and either the local

node does not support security or the destination node is known to not support security.

EMBER_MAC_BUSY if the message was not accepted because the MAC is currently performing some critical operation.

Definition at line 203 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberMacMessageSend

EmberStatus emberMacMessageSend (EmberMacFrame *macFrame, uint8_t messageTag, EmberMessageLength
messageLength, uint8_t *message, EmberMessageOptions options)

Create a MAC level frame and sends it to the passed destination. This API can only be used for nodes of

EMBER_MAC_MODE_DEVICE node type or EMBER_MAC_MODE_SLEEPY_DEVICE node type.

Parameters

[in] macFrame A pointer to an EmberMacFrame struct that specifies the source and destination addresses and the

source and destination PAN IDs for the message to be sent. Note that if the source/destination PAN ID

is not specified, it defaults to the node's PAN ID. Also, the destination address mode must be either

EMBER_MAC_ADDRESS_MODE_SHORT or EMBER_MAC_ADDRESS_MODE_LONG.

Messaging

154/326

[in] messageTag A value chosen by the application. This value will be passed in the corresponding

emberMacMessageSentHandler() call.

[in] messageLength The size in bytes of the message payload. The application can use the

emberGetMaximumPayloadLength() API to determine the maximum allowable payload, given a

permutation of source and destination addressing and other TX options.

[in] message A pointer to an array of bytes containing the message payload.

[in] options Specifies the EmberMessageOptions for the outgoing message.

Returns

an EmberStatus value of:

EMBER_SUCCESS if the message was accepted by the stack. If a success status is returned, the

emberMacMessageSentHandler() callback will be invoked by the stack to indicate whether the message was successfully

delivered or the reason for failure.

EMBER_INVALID_CALL if the node is of a node type other than EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

EMBER_BAD_ARGUMENT if the packet length is 0, the passed TX options indicates some feature that is not supported or

the destination address mode is set to EMBER_MAC_ADDRESS_MODE_NONE.

EMBER_MESSAGE_TOO_LONG if the message does not fit in a single frame.

EMBER_PHY_TX_BUSY if the message cannot be sent since the node does not support MAC queuing and the radio is

currently busy.

EMBER_MAC_TRANSMIT_QUEUE_FULL if the outgoing MAC queue is currently full.

EMBER_NO_BUFFERS if the stack could not allocate enough RAM to store the submitted message.

EMBER_MAC_SECURITY_NOT_SUPPORTED if the message was requested to be sent out with a security but no security

plugin was enabled.

EMBER_MAC_BUSY if the message was not accepted because the MAC is currently performing a critical operation.

Definition at line 257 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberPollForData

EmberStatus emberPollForData (void)

Send a data request command to the parent node. Note that if the node short ID is a value of

EMBER_USE_LONG_ADDRESS, the node shall use its long ID as source address.

Parameters

N/A

Returns

and EmberStatus value of:

EMBER_SUCCESS if the data poll was accepted by the MAC layer.

EMBER_INVALID_CALL if the node is not joined to a network, the node is not an end device, an

EMBER_MAC_MODE_DEVICE or an EMBER_MAC_MODE_SLEEPY_DEVICE, or the node is of EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE node type, is not joined to a coordinator and the poll destination was not correctly

set via the emberSetPollDestinationAddress() API.

EMBER_MAC_BUSY if the MAC is currently performing a critical operation.

Definition at line 278 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberSetPollDestinationAddress

EmberStatus emberSetPollDestinationAddress (EmberMacAddress *destination)

Messaging

155/326

Set data polls destination address for nodes of EMBER_MAC_MODE_DEVICE node type or

EMBER_MAC_MODE_SLEEPY_DEVICE node type.

Parameters

N/A destination

Returns

and EmberStatus value of EMBER_SUCCESS if the data poll destination was correctly set, or another EmberStatus value

indicating the reason of failure.

Definition at line 288 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberGetMaximumPayloadLength

uint16_t emberGetMaximumPayloadLength (EmberMacAddressMode srcAddressMode, EmberMacAddressMode
dstAddressMode, bool interpan, bool secured)

Return the maximum payload according to the passed source and destination addressing modes, the passed secured flag,

and the current configuration of the node.

Parameters

[in] srcAddressMode An EmberMacAddressMode value indicating the mode of the source address. Note, this

parameter is only meaningful if the node was started as EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

[in] dstAddressMode An EmberMacAddressMode value indicating the mode of the destination address. Note, this

parameter is only meaningful if the node was started as EMBER_MAC_MODE_DEVICE or

EMBER_MAC_MODE_SLEEPY_DEVICE.

[in] interpan Indicates whether the frame is an interpan frame or not. Note, this parameter is only meaningful if

the node was started as EMBER_MAC_MODE_DEVICE or EMBER_MAC_MODE_SLEEPY_DEVICE.

[in] secured Indicates whether the frame should be secured or not.

Returns

The maximum payload length in bytes achievable according to the passed parameters or 0xFF if the node is currently active

on a network or any of the passed parameters are invalid.

Definition at line 339 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberUsingLongMessages

bool emberUsingLongMessages (void)

Indicates if the stack is currently using long messages or not.

Parameters

N/A

Returns

True if the stack currently uses long messages (length stored in a uint16_t) or false if it is not the case (length stored in a

uint8_t).

Definition at line 351 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

Messaging

156/326

emberNcpSetLongMessagesUse

EmberStatus emberNcpSetLongMessagesUse (bool useLongMessages)

Set the current message length that the stack uses.

Parameters

[in] useLongMessages True to use long messages (length stored in a uint16_t), false to use short messages (length

stored in a uint8_t).

Note

This API is here to assure retro compatibility with old NCP Host lib versions. In NCP Host lib versions that do not support

OFDM features (v1.1 and older), only short messaging is supported. For the NCP, short messages are used by default. The

Host lib needs to call this API with useLongMessages set to true if it supports OFDM.

Warnings

This API changes the behavior of the Connect Serialization Protocol. It only has effect when using a RTOS or the NCP.

Changing it may result in packets being incorrectly transfered through CSP when using a SUN-OFDM or SUN-FSK PHY.

Definition at line 370 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberPurgeIndirectMessages

EmberStatus emberPurgeIndirectMessages (void)

Purge all indirect transmissions from the indirect message queue.

Parameters

N/A

Returns

an EmberStatus value of EMBER_SUCCESS if all indirect messages were purged, or another EmberStatus value indicating

the reason of failure.

Definition at line 299 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

emberSetIndirectQueueTimeout

EmberStatus emberSetIndirectQueueTimeout (uint32_t timeoutMs)

Set indirect queue timeout value. The indirect queue timeout is set by default to

EMBER_INDIRECT_TRANSMISSION_TIMEOUT_MS.

Parameters

N/A timeoutMs The timeout in milliseconds to be set.

Returns

an EmberStatus value of EMBER_SUCCESS if the passed timeout was successfully set, or a value of

EMBER_BAD_ARGUMENT if the passed value is invalid.

Definition at line 313 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

Messaging

157/326

Macro Definition Documentation

EMBER_MAX_UNSECURED_APPLICATION_PAYLOAD_LENGTH

#define EMBER_MAX_UNSECURED_APPLICATION_PAYLOAD_LENGTH

Value:

111

DeprecatedThe maximum length in bytes of the application payload for an unsecured message. This define has been

deprecated, you should use the emberGetMaximumPayloadLength API instead.

Definition at line 48 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

EMBER_MAX_SECURED_APPLICATION_PAYLOAD_LENGTH

#define EMBER_MAX_SECURED_APPLICATION_PAYLOAD_LENGTH

Value:

102

DeprecatedThe maximum length in bytes of the application payload for a secured message. This define has been

deprecated, you should use the emberGetMaximumPayloadLength API instead.

Definition at line 54 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

EMBER_MAX_ENDPOINT

#define EMBER_MAX_ENDPOINT

Value:

0xF

The maximum allowed endpoint value.

Definition at line 58 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/stack/include/message.h

Connect Application Framework API Reference

158/326

Connect Application Framework API Reference

Connect Application Framework API Reference
Application Framework includes plugins that are built on top of the Connect stack.

Modules

Application Framework Common

Command Interpreter Plugin

Debug Print Plugin

Mailbox Client Plugin

Mailbox Server Plugin

Mailbox Common

Ota Unicast Bootloader Client Plugin

Ota Unicast Bootloader Server Plugin

Ota Unicast Bootloader Common

Ota Broadcast Bootloader Client Plugin

Ota Broadcast Bootloader Server Plugin

Ota Broadcast Bootloader Common

Poll Plugin

WSTK Sensors Plugin

Application Framework Common

159/326

Application Framework Common

Application Framework Common
Application framework common.

Declare all required application framework globals, initialize the Connect stack, and dispatch stack callbacks calls as needed

to the application components.

Callbacks

void emberAfInitCallback(void)
Application Framework Initialization Callback.

void emberAfTickCallback(void)
Application Framework Tick Callback.

void emberAfStackStatusCallback(EmberStatus status)
Application framework equivalent of emberStackStatusHandler.

void emberAfIncomingMessageCallback(EmberIncomingMessage *message)
Application framework equivalent of emberIncomingMessageHandler.

void emberAfIncomingMacMessageCallback(EmberIncomingMacMessage *message)
Application framework equivalent of emberIncomingMacMessageHandler.

void emberAfMessageSentCallback(EmberStatus status, EmberOutgoingMessage *message)
Application framework equivalent of emberMessageSentHandler.

void emberAfMacMessageSentCallback(EmberStatus status, EmberOutgoingMacMessage *message)
Application framework equivalent of emberMacMessageSentHandler.

void emberAfChildJoinCallback(EmberNodeType nodeType, EmberNodeId nodeId)
Application framework equivalent of emberChildJo inHandler.

void emberAfActiveScanCompleteCallback(void)
Application framework equivalent of emberActiveScanCompleteHandler.

void emberAfEnergyScanCompleteCallback(int8_t mean, int8_t min, int8_t max, uint16_t variance)
Application framework equivalent of emberEnergyScanCompleteHandler.

void emberAfMarkApplicationBuffersCallback(void)
Application framework equivalent of ::emberMarkApplicationBuffersHandler.

void emberAfIncomingBeaconCallback(EmberPanId panId, EmberMacAddress *source, int8_t rssi, bool
permitJoining, uint8_t beaconFieldsLength, uint8_t *beaconFields, uint8_t beaconPayloadLength, uint8_t
*beaconPayload)
Application framework equivalent of emberIncomingBeaconHandler.

void emberAfFrequencyHoppingStartClientCompleteCallback(EmberStatus status)
Application framework equivalent of emberFrequencyHoppingStartClientCompleteHandler.

void emberAfRadioNeedsCalibratingCallback(void)
Application framework equivalent of emberRadioNeedsCalibratingHandler.

Application Framework Common

160/326

bool emberAfStackIdleCallback(uint32_t *idleTimeMs)
Application framework equivalent of emberStackIdleHandler.

bool emberAfCommonOkToEnterLowPowerCallback(bool enter_em2, uint32_t duration_ms)
Application framework Low Power notification Callback.

Functions

uint32_t emberAfGetResetCause(void)
Get the last reset cause mask.

EmberStatus emberAfAllocateEvent(EmberEventControl **control, void(*handler)(void))
Allocate a new event to the app event table .

Callbacks Documentation

emberAfInitCallback

void emberAfInitCallback (void)

Application Framework Initialization Callback.

Parameters

N/A

A callback invoked once during the initialization. It is called after the stack and plugins initialization.

Definition at line 53 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfTickCallback

void emberAfTickCallback (void)

Application Framework Tick Callback.

Parameters

N/A

A callback invoked in each iteration of the application super loop and can be used to perform periodic functions. The

frequency with which this function is called depends on how quickly the main loop runs. If the application blocks at any time

during the main loop, this function will not be called until execution resumes.

Definition at line 64 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfStackStatusCallback

void emberAfStackStatusCallback (EmberStatus status)

Application framework equivalent of emberStackStatusHandler.

Parameters

N/A status

Definition at line 68 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

Application Framework Common

161/326

emberAfIncomingMessageCallback

void emberAfIncomingMessageCallback (EmberIncomingMessage *message)

Application framework equivalent of emberIncomingMessageHandler.

Parameters

N/A message

Definition at line 72 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfIncomingMacMessageCallback

void emberAfIncomingMacMessageCallback (EmberIncomingMacMessage *message)

Application framework equivalent of emberIncomingMacMessageHandler.

Parameters

N/A message

Definition at line 76 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfMessageSentCallback

void emberAfMessageSentCallback (EmberStatus status, EmberOutgoingMessage *message)

Application framework equivalent of emberMessageSentHandler.

Parameters

N/A status

N/A message

Definition at line 80 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfMacMessageSentCallback

void emberAfMacMessageSentCallback (EmberStatus status, EmberOutgoingMacMessage *message)

Application framework equivalent of emberMacMessageSentHandler.

Parameters

N/A status

N/A message

Definition at line 85 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfChildJoinCallback

void emberAfChildJoinCallback (EmberNodeType nodeType, EmberNodeId nodeId)

Application Framework Common

162/326

Application framework equivalent of emberChildJoinHandler.

Parameters

N/A nodeType

N/A nodeId

Warnings

Requires the parent support plugin installed.

Definition at line 91 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfActiveScanCompleteCallback

void emberAfActiveScanCompleteCallback (void)

Application framework equivalent of emberActiveScanCompleteHandler.

Parameters

N/A

Definition at line 96 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfEnergyScanCompleteCallback

void emberAfEnergyScanCompleteCallback (int8_t mean, int8_t min, int8_t max, uint16_t variance)

Application framework equivalent of emberEnergyScanCompleteHandler.

Parameters

N/A mean

N/A min

N/A max

N/A variance

Definition at line 100 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfMarkApplicationBuffersCallback

void emberAfMarkApplicationBuffersCallback (void)

Application framework equivalent of ::emberMarkApplicationBuffersHandler.

Parameters

N/A

Definition at line 107 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfIncomingBeaconCallback

void emberAfIncomingBeaconCallback (EmberPanId panId, EmberMacAddress *source, int8_t rssi, bool permitJoining,
uint8_t beaconFieldsLength, uint8_t *beaconFields, uint8_t beaconPayloadLength, uint8_t *beaconPayload)

Application Framework Common

163/326

Application framework equivalent of emberIncomingBeaconHandler.

Parameters

N/A panId

N/A source

N/A rssi

N/A permitJoining

N/A beaconFieldsLength

N/A beaconFields

N/A beaconPayloadLength

N/A beaconPayload

Definition at line 111 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfFrequencyHoppingStartClientCompleteCallback

void emberAfFrequencyHoppingStartClientCompleteCallback (EmberStatus status)

Application framework equivalent of emberFrequencyHoppingStartClientCompleteHandler.

Parameters

N/A status

Definition at line 122 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfRadioNeedsCalibratingCallback

void emberAfRadioNeedsCalibratingCallback (void)

Application framework equivalent of emberRadioNeedsCalibratingHandler.

Parameters

N/A

Definition at line 126 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfStackIdleCallback

bool emberAfStackIdleCallback (uint32_t *idleTimeMs)

Application framework equivalent of emberStackIdleHandler.

Parameters

N/A idleTimeMs

Definition at line 130 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

emberAfCommonOkToEnterLowPowerCallback

bool emberAfCommonOkToEnterLowPowerCallback (bool enter_em2, uint32_t duration_ms)

Application Framework Common

164/326

Application framework Low Power notification Callback.

Parameters

[in] enter_em2 true if the system is about to sleep or false to idle.

[in] duration_ms Duration of the low power period. Time to the next event.

A callback invoked when the system is about to go sleeping.

Returns

true if the application allows the system to go to sleep.

Definition at line 142 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_callback.h

Function Documentation

emberAfGetResetCause

uint32_t emberAfGetResetCause (void)

Get the last reset cause mask.

Parameters

N/A

Returns

A reset cause mask.

Note

This API replaces halGetResetInfo() or halGetExtendedResetInfo. emberAfGetResetCause() is a RMU_ResetCauseGet()

overhaul. See the reference manual of the EMLIB RMU for a description of the returned reset cause mask.

Definition at line 62 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_common.h

emberAfAllocateEvent

EmberStatus emberAfAllocateEvent (EmberEventControl **control, void(*handler)(void))

Allocate a new event to the app event table.

Parameters

[out] control The EmberEventControl to allocate

[in] handler Pointer to the handler function associated to the event

Returns

An EmberStatus value of:

EMBER_SUCCESS if the event was successfully allocated.

EMBER_TABLE_FULL if no more event could be allocated.

See Also

emberAfAllocateEvent()

Application Framework Common

165/326

Definition at line 77 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/app-framework-common/app_framework_common.h

Command Interpreter Plugin

166/326

Command Interpreter Plugin

Command Interpreter Plugin

Debug Print Plugin

167/326

Debug Print Plugin

Debug Print Plugin

Mailbox Client Plugin

168/326

Mailbox Client Plugin

Mailbox Client Plugin
APIs for mailbox client.

Mailbox protocol is designed for devices that can't be online on the network all the time. The most common example for

this is a sleepy end device.

Mailbox clients and the server can submit messages into the mailbox, which is stored in RAM on the mailbox server. Clients

can then query the mailbox server for available messages.

The mailbox server will notify clients who submit messages when a message was delivered or when it couldn't be delivered

due to an error.

Mailbox uses a plugin-configurable protocol endpoint, which is 15 by default.

The server can also configure the size of the mailbox (in number of packets, 25 by default) and the packet timeout, after

which the server drops the message and notifies the source of the error.

The mailbox protocol uses standard data messages, so in case of sleepy end devices, it will use the indirect queue. This

means that if a sleepy end device sends a request to a mailbox server, the end device should poll for the response.

Note

Mailbox is not available in MAC mode due to the lack of endpoints.

See mailbox-client.h and mailbox-client.c for source code.

Callbacks

void emberAfPluginMailboxClientMessageSubmitCallback(EmberAfMailboxStatus status, EmberNodeId
mailboxServer, EmberNodeId messageDestination, uint8_t tag)
Mailbox Client Message Submit Callback.

void emberAfPluginMailboxClientMessageDeliveredCallback(EmberAfMailboxStatus status, EmberNodeId
mailboxServer, EmberNodeId messageDestination, uint8_t tag)
Mailbox Client Message Delivered Callback.

void emberAfPluginMailboxClientCheckInboxCallback(EmberAfMailboxStatus status, EmberNodeId mailboxServer,
EmberNodeId messageSource, uint8_t *message, EmberMessageLength messageLength, uint8_t tag, bool
moreMessages)
Mailbox Client Check Inbox Callback.

Functions

EmberAfMailboxS
tatus

emberAfPluginMailboxClientMessageSubmit(EmberNodeId mailboxServer, EmberNodeId messageDestination,
uint8_t *message, EmberMessageLength messageLength, uint8_t tag, bool useSecurity)
Submit a data message to a mailbox server. If this API returns an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS, the corresponding asynchronous callback

emberAfPluginMailboxClientMessageSubmitCallback() will be invoked to indicate whether the message was successfully

submitted to the mailbox server or to inform the application of the reason of failure .

EmberAfMailboxS
tatus

emberAfPluginMailboxClientCheckInbox(EmberNodeId mailboxServer, bool useSecurity)
Query a mailbox server for pending messages. If this API returns an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS, the corresponding asynchronous callback

Mailbox Client Plugin

169/326

emberAfPluginMailboxClientCheckInboxCallback()

will be invoked either to provide the retrieved

message or to indicate the reason for failure .

Callbacks Documentation

emberAfPluginMailboxClientMessageSubmitCallback

void emberAfPluginMailboxClientMessageSubmitCallback (EmberAfMailboxStatus status, EmberNodeId mailboxServer,
EmberNodeId messageDestination, uint8_t tag)

Mailbox Client Message Submit Callback.

Parameters

[in] status An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS if the data message was accepted by the mailbox

server.

EMBER_MAILBOX_STATUS_STACK_ERROR if the message couldn't be delivered to the

mailbox server.

EMBER_MAILBOX_STATUS_MESSAGE_NO_RESPONSE if the client timed-out waiting for

a response from the server.

EMBER_MAILBOX_STATUS_MESSAGE_TABLE_FULL if the mailbox server table is

currently full.

EMBER_MAILBOX_STATUS_MESSAGE_NO_BUFFERS if the server can't allocate enough

memory to store the message.

[in] mailboxServer The node ID of the mailbox server.

[in] messageDestination The node ID of the destination.

N/A tag The tag value passed in the emberAfPluginMailboxClientMessageSubmit() API.

A callback invoked when a message arrived to the mailbox server after a call of

emberAfPluginMailboxClientMessageSubmit().

Note

Receiving this callback requires the reception of a mailbox command message, which is only possible by polling if the

message was submitted on a EMBER_STAR_SLEEPY_END_DEVICE.

Definition at line 168 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-client/mailbox-client.h

emberAfPluginMailboxClientMessageDeliveredCallback

void emberAfPluginMailboxClientMessageDeliveredCallback (EmberAfMailboxStatus status, EmberNodeId mailboxServer,
EmberNodeId messageDestination, uint8_t tag)

Mailbox Client Message Delivered Callback.

Parameters

[in] status An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS indicates that the message was successfully delivered

to the final destination.

EMBER_MAILBOX_STATUS_MESSAGE_TIMED_OUT indicates that the message timed-out and

was removed from the server queue.

[in] mailboxServer The node ID of the mailbox server where the message was submitted to.

Mailbox Client Plugin

170/326

[in] messageDestination The node ID of the destination.

[in] tag The tag value passed in the emberAfPluginMailboxClientMessageSubmit() API.

A callback that may be invoked on the submitter of the message either if the message that was submitted to a mailbox

server reached its final destination or it timed-out. Note that the callback is not always called. If the status message from

the server is lost, the callback won't be called.

Note

Receiving this callback requires the reception of a mailbox command message, which is only possible by polling if the

message was submitted on a EMBER_STAR_SLEEPY_END_DEVICE.

Definition at line 199 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-client/mailbox-client.h

emberAfPluginMailboxClientCheckInboxCallback

void emberAfPluginMailboxClientCheckInboxCallback (EmberAfMailboxStatus status, EmberNodeId mailboxServer,
EmberNodeId messageSource, uint8_t *message, EmberMessageLength messageLength, uint8_t tag, bool
moreMessages)

Mailbox Client Check Inbox Callback.

Parameters

[in] status An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS if a message was retrieved from the mailbox server.

EMBER_MAILBOX_STATUS_MESSAGE_NO_DATA if the server has currently no message for

this mailbox client.

EMBER_MAILBOX_STATUS_MESSAGE_NO_RESPONSE if the client timed-out waiting for a

query response from the mailbox server.

EMBER_MAILBOX_STATUS_STACK_ERROR if the stack failed to deliver the query message to

the mailbox server.

[in] mailboxServer The node id of the mailbox server responding.

[in] messageSource The source node ID of the retrieved message. Note that this parameter is meaningful only if the

status parameter has an EmberAfMailboxStatus value of EMBER_MAILBOX_STATUS_SUCCESS.

[in] message A pointer to the retrieved message payload. Note that this parameter is meaningful only if the

status parameter has an EmberAfMailboxStatus value of EMBER_MAILBOX_STATUS_SUCCESS.

[in] messageLength The length in bytes of the retrieved message payload. Note that this parameter is meaningful only

if the status parameter has an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS.

[in] tag The tag value passed in the emberAfPluginMailboxClientMessageSubmit() API. Note that this

parameter is meaningful only if the status parameter has an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS.

[in] moreMessages This flag is true if the mailbox server has more pending messages for this mailbox client. Note that

this parameter is meaningful only if the status parameter has an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS.

This callback is invoked after a successful call to the emberAfPluginMailboxClientCheckInbox() API. If a message was

retrieved from the mailbox server, this callback passes it to the application. Otherwise, it indicates the reason for failure to

the application.

Note

Receiving this callback requires the reception of a mailbox command message, which is only possible by polling if the

message was submitted on a EMBER_STAR_SLEEPY_END_DEVICE.

Mailbox Client Plugin

171/326

Definition at line 250 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-client/mailbox-client.h

Function Documentation

emberAfPluginMailboxClientMessageSubmit

EmberAfMailboxStatus emberAfPluginMailboxClientMessageSubmit (EmberNodeId mailboxServer, EmberNodeId
messageDestination, uint8_t *message, EmberMessageLength messageLength, uint8_t tag, bool useSecurity)

Submit a data message to a mailbox server. If this API returns an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS, the corresponding asynchronous callback

emberAfPluginMailboxClientMessageSubmitCallback() will be invoked to indicate whether the message was successfully

submitted to the mailbox server or to inform the application of the reason of failure.

Parameters

[in] mailboxServer The node ID of the mailbox server.

[in] messageDestination The node ID of the destination for this data message.

[in] message A pointer to the message to be sent.

[in] messageLength The length in bytes of the message to be sent.

[in] tag A tag value which will be returned in all of the corresponding callbacks:

emberAfPluginMailboxClientMessageSubmitCallback(),

emberAfPluginMailboxClientMessageDeliveredCallback() and

emberAfPluginMailboxClientCheckInboxCallback(). The application can use it to match the

callbacks with the call.

[in] useSecurity Set it true if the data message should be sent to the server using security.

Returns

An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS if the message was successfully passed to the network layer to be transmitted to

the mailbox server.

EMBER_MAILBOX_STATUS_INVALID_CALL if the passed data message is invalid.

EMBER_MAILBOX_STATUS_INVALID_ADDRESS if the server ID or the destination ID is an invalid address.

EMBER_MAILBOX_STATUS_MESSAGE_TOO_LONG if the passed message does not fit in a single mailbox data message.

EMBER_MAILBOX_STATUS_BUSY if the client is still performing a submit message or a query for message action.

EMBER_MAILBOX_STATUS_STACK_ERROR if the network layer refused the message (the outgoing queue is currently full).

Note

Receiving the emberAfPluginMailboxClientMessageSubmitCallback() requires the reception of a mailbox command message,

which is only possible by polling if the message was submitted on a EMBER_STAR_SLEEPY_END_DEVICE.

See Also

emberAfPluginMailboxServerAddMessage()

Definition at line 92 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-client/mailbox-client.h

emberAfPluginMailboxClientCheckInbox

EmberAfMailboxStatus emberAfPluginMailboxClientCheckInbox (EmberNodeId mailboxServer, bool useSecurity)

Query a mailbox server for pending messages. If this API returns an EmberAfMailboxStatus value of

EMBER_MAILBOX_STATUS_SUCCESS, the corresponding asynchronous callback

emberAfPluginMailboxClientCheckInboxCallback() will be invoked either to provide the retrieved message or to indicate the

reason for failure.

Mailbox Client Plugin

172/326

Parameters

[in] mailboxServer The node ID of the mailbox server.

[in] useSecurity Set it true if the request command and the responses to it should be sent secured. If a pending

message was sent to a server securely, it will be always retrieved securely. This option only affects

the request command and the pending messages that were sent without security to the server.

Returns

An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS if the query command was successfully passed to the network layer to be

transmitted to the mailbox server.

EMBER_MAILBOX_STATUS_INVALID_ADDRESS if the passed mailbox server short ID is an invalid address.

EMBER_MAILBOX_STATUS_BUSY if the client is still performing a submit message or a query for message action.

EMBER_MAILBOX_STATUS_STACK_ERROR if the network layer refused the command (the outgoing queue is currently full).

Note

Receiving the emberAfPluginMailboxClientCheckInboxCallback() requires the reception of a mailbox command message,

which is only possible by polling if the message was submitted on a EMBER_STAR_SLEEPY_END_DEVICE.

Definition at line 128 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-client/mailbox-client.h

Mailbox Server Plugin

173/326

Mailbox Server Plugin

Mailbox Server Plugin
APIs for mailbox server.

Mailbox protocol is designed for devices that can't be online on the network all the time. The most common example for

this is a sleepy end device.

Mailbox clients and the server can submit messages into the mailbox, which is stored in RAM on the mailbox server. Clients

can then query the mailbox server for available messages.

The mailbox server will notify clients who submit messages when a message was delivered or when it couldn't be delivered

due to an error.

Mailbox uses a plugin-configurable protocol endpoint, which is 15 by default.

The server can also configure the size of the mailbox (in number of packets, 25 by default) and the packet timeout, after

which the server drops the message and notifies the source of the error.

The mailbox protocol uses standard data messages, so in case of sleepy end devices, it will use the indirect queue. This

means that if a sleepy end device sends a request to a mailbox server, the end device should poll for the response.

Note

Mailbox is not available in MAC mode due to the lack of endpoints.

See mailbox-server.h and mailbox-server.c for source code.

Callbacks

void emberAfPluginMailboxServerMessageDeliveredCallback(EmberAfMailboxStatus status, EmberNodeId
messageDestination, uint8_t tag)
Mailbox Server Message Delivered Callback.

Functions

EmberAfMailboxS
tatus

emberAfPluginMailboxServerAddMessage(EmberNodeId destination, uint8_t *message,
EmberMessageLength messageLength, uint8_t tag, bool useSecurity)
Add a message to the mailbox server queue . The message is stored in the internal queue until the destination node

queries the mailbox server node for messages or upon timeout.

Callbacks Documentation

emberAfPluginMailboxServerMessageDeliveredCallback

void emberAfPluginMailboxServerMessageDeliveredCallback (EmberAfMailboxStatus status, EmberNodeId
messageDestination, uint8_t tag)

Mailbox Server Message Delivered Callback.

Parameters

Mailbox Server Plugin

174/326

[in] status An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS indicates that the message was successfully

delivered to the final destination.

EMBER_MAILBOX_STATUS_MESSAGE_TIMED_OUT indicates that the message timed-out

and was removed from the server queue.

[in] messageDestination The node ID of the destination.

[in] tag The tag value passed in the emberAfPluginMailboxServerAddMessage() API.

This callback is invoked at the server when a message submitted locally by the server was successfully delivered or when it

timed-out.

See Also

emberAfPluginMailboxClientMessageDeliveredCallback()

Definition at line 110 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-server/mailbox-server.h

Function Documentation

emberAfPluginMailboxServerAddMessage

EmberAfMailboxStatus emberAfPluginMailboxServerAddMessage (EmberNodeId destination, uint8_t *message,
EmberMessageLength messageLength, uint8_t tag, bool useSecurity)

Add a message to the mailbox server queue. The message is stored in the internal queue until the destination node queries

the mailbox server node for messages or upon timeout.

Parameters

[in] destination The node ID of the destination for this data message.

[in] message A pointer to the message to be enqueued.

[in] messageLength The length in bytes of the message to be enqueued.

[in] tag A tag value which will be returned in the corresponding

emberAfPluginMailboxServerMessageDeliveredCallback() callback. The application can use to

match the callbacks with the call.

[in] useSecurity Set it true if the data message should be sent to the server using security.

Returns

An EmberAfMailboxStatus value of:

EMBER_MAILBOX_STATUS_SUCCESS if the message was successfully added to the packet queue.

EMBER_MAILBOX_STATUS_INVALID_CALL if the passed message is invalid.

EMBER_MAILBOX_STATUS_INVALID_ADDRESS if the passed destination address is invalid.

EMBER_MAILBOX_STATUS_MESSAGE_TOO_LONG if the payload size of the passed message exceeds the maximum

allowable payload for the passed transmission options.

EMBER_MAILBOX_STATUS_MESSAGE_TABLE_FULL if the packet table is already full.

EMBER_MAILBOX_STATUS_MESSAGE_NO_BUFFERS if not enough memory buffers are available for storing the message

content.

See Also

emberAfPluginMailboxClientMessageSubmit()

Definition at line 79 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-server/mailbox-server.h

Mailbox Common

175/326

Mailbox Common

Mailbox Common
Types defined for mailbox.

Mailbox protocol is designed for devices that can't be online on the network all the time. The most common example for

this is a sleepy end device.

Mailbox clients and the server can submit messages into the mailbox, which is stored in RAM on the mailbox server. Clients

can then query the mailbox server for available messages.

The mailbox server will notify clients who submit messages when a message was delivered or when it couldn't be delivered

due to an error.

Mailbox uses a plugin-configurable protocol endpoint, which is 15 by default.

The server can also configure the size of the mailbox (in number of packets, 25 by default) and the packet timeout, after

which the server drops the message and notifies the source of the error.

The mailbox protocol uses standard data messages, so in case of sleepy end devices, it will use the indirect queue. This

means that if a sleepy end device sends a request to a mailbox server, the end device should poll for the response.

Note

Mailbox is not available in MAC mode due to the lack of endpoints.

Enumerations

enum EmberAfMailboxStatus {

EMBER_MAILBOX_STATUS_SUCCESS = 0x00
EMBER_MAILBOX_STATUS_INVALID_CALL = 0x01
EMBER_MAILBOX_STATUS_BUSY = 0x02
EMBER_MAILBOX_STATUS_STACK_ERROR = 0x03
EMBER_MAILBOX_STATUS_INVALID_ADDRESS = 0x04
EMBER_MAILBOX_STATUS_MESSAGE_TOO_LONG = 0x05
EMBER_MAILBOX_STATUS_MESSAGE_TABLE_FULL = 0x06
EMBER_MAILBOX_STATUS_MESSAGE_NO_BUFFERS = 0x07
EMBER_MAILBOX_STATUS_MESSAGE_NO_RESPONSE = 0x08
EMBER_MAILBOX_STATUS_MESSAGE_TIMED_OUT = 0x09
EMBER_MAILBOX_STATUS_MESSAGE_NO_DATA = 0x0A

}
Mailbox return status codes.

Enumeration Documentation

EmberAfMailboxStatus

EmberAfMailboxStatus

Mailbox return status codes.

Enumerator

EMBER_MAILBOX_STATUS_SUCCESS

Mailbox Common

176/326

EMBER_MAILBOX_STATUS_INVALID_CALL

EMBER_MAILBOX_STATUS_BUSY

EMBER_MAILBOX_STATUS_STACK_ERROR

EMBER_MAILBOX_STATUS_INVALID_ADDRESS

EMBER_MAILBOX_STATUS_MESSAGE_TOO_LONG

EMBER_MAILBOX_STATUS_MESSAGE_TABLE_FULL

EMBER_MAILBOX_STATUS_MESSAGE_NO_BUFFERS

EMBER_MAILBOX_STATUS_MESSAGE_NO_RESPONSE

EMBER_MAILBOX_STATUS_MESSAGE_TIMED_OUT

EMBER_MAILBOX_STATUS_MESSAGE_NO_DATA

Definition at line 68 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/mailbox/mailbox-types.h

Ota Unicast Bootloader Client Plugin

177/326

Ota Unicast Bootloader Client Plugin

Ota Unicast Bootloader Client Plugin
APIs/callbacks for ota-unicast-bootloader clients.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Unicast OTA plugins implement the OTA download operation in a unicast, addressed way, so only a single client can be

addressed from a server in an OTA session, and downloading images to multiple devices will require the server to send the

image multiple times. Communication relies on standard unicast data messages, which also means that the routing provided

by the Connect stack is availble.

Although bootloading sleepy end devices is theoretically possible with polling, it is not very effective, and it's probably

simpler to reconnect as a normal end device while the OTA is active.

Unicast OTA uses a plugin configurable endpoint, which is 13 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Unicast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

See ota-unicast-bootloader-client.h and ota-unicast-bootloader-client.c for source code.

Callbacks

bool emberAfPluginOtaUnicastBootloaderClientNewIncomingImageCallback(EmberNodeId serverId, uint8_t
imageTag, uint32_t imageSize, uint32_t *startIndex)
A callback invoked when the client starts receiving a new image . The application can choose to start receiving the

image or ignore it. If the application chooses to receive the image , other images sent out by other servers shall be

ignored until the client completes the download.

void emberAfPluginOtaUnicastBootloaderClientIncomingImageSegmentCallback(EmberNodeId serverId, uint32_t
startIndex, uint32_t endIndex, uint8_t imageTag, uint8_t *imageSegment)
A callback invoked when an image segment that is part of an image the application chose to download was received.

void emberAfPluginOtaUnicastBootloaderClientImageDownloadCompleteCallback(EmberAfOtaUnicastBootloaderStatus
status, uint8_t imageTag, uint32_t imageSize)
A callback invoked to indicate that an image download has completed.

bool emberAfPluginOtaUnicastBootloaderClientIncomingRequestBootloadCallback(EmberNodeId serverId, uint8_t
imageTag, uint32_t bootloadDelayMs)
A callback invoked to indicate that a server has requested to perform a bootload operation at a certain po int in time in

the future .

Ota Unicast Bootloader Client Plugin

178/326

Functions

EmberAfOtaUnica
stBootloaderStat

us

emberAfPluginOtaUnicastBootloaderClientAbortImageDownload(uint8_t imageTag)
An API for aborting an ongo ing image download process.

Callbacks Documentation

emberAfPluginOtaUnicastBootloaderClientNewIncomingImageCallback

bool emberAfPluginOtaUnicastBootloaderClientNewIncomingImageCallback (EmberNodeId serverId, uint8_t imageTag,
uint32_t imageSize, uint32_t *startIndex)

A callback invoked when the client starts receiving a new image. The application can choose to start receiving the image or

ignore it. If the application chooses to receive the image, other images sent out by other servers shall be ignored until the

client completes the download.

Parameters

[in] serverId The node ID of the server that initiated the new image distribution process.

[in] imageTag A 1-byte tag that identifies the incoming image.

[in] imageSize The size in bytes of the new image.

[out] startIndex The index of the first byte at which the image download shall be started/resumed. The client can use

this argument to resume a partially downloaded image. If this value is not set, it defaults to 0 (that is,

the download starts at the beginning of the image). Note, this is ignored in case the server does not

support download resume.

Returns

Return true to accept the image or false to ignore it.

Definition at line 88 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
client/ota-unicast-bootloader-client.h

emberAfPluginOtaUnicastBootloaderClientIncomingImageSegmentCallback

void emberAfPluginOtaUnicastBootloaderClientIncomingImageSegmentCallback (EmberNodeId serverId, uint32_t
startIndex, uint32_t endIndex, uint8_t imageTag, uint8_t *imageSegment)

A callback invoked when an image segment that is part of an image the application chose to download was received.

Parameters

[in] serverId The node ID of the server that initiated the image distribution process.

[in] startIndex The index of the first byte of the passed segment.

[in] endIndex The index of the last byte of the passed segment.

[in] imageTag A 1-byte tag of the image the passed segment belongs to.

[in] imageSegment An array containing the image segment.

Definition at line 110 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
client/ota-unicast-bootloader-client.h

emberAfPluginOtaUnicastBootloaderClientImageDownloadCompleteCallback

Ota Unicast Bootloader Client Plugin

179/326

void emberAfPluginOtaUnicastBootloaderClientImageDownloadCompleteCallback (EmberAfOtaUnicastBootloaderStatus
status, uint8_t imageTag, uint32_t imageSize)

A callback invoked to indicate that an image download has completed.

Parameters

[in] status An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS indicating that the full image

corresponding to the passed tag has been received. If this is the case, the client previously

handed all the image segments to the application using the

emberAfPluginOtaUnicastBootloaderClientIncomingImageSegmentCallback() callback.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_FAILED indicating that the client failed to fully

download the image and the download process was terminated.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_TIMEOUT indicating that the client timed out

waiting for a message from the server.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_ABORTED indicating that the application aborted

the ongoing image download process as result of calling the API

emberAfPluginOtaUnicastBootloaderClientAbortImageDownload().

[in] imageTag A 1-byte tag of the image this callback refers to.

[in] imageSize The total size of the downloaded image in bytes. This parameter is meaningful only in case the status

parameter is set to EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS.

Definition at line 140 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
client/ota-unicast-bootloader-client.h

emberAfPluginOtaUnicastBootloaderClientIncomingRequestBootloadCallback

bool emberAfPluginOtaUnicastBootloaderClientIncomingRequestBootloadCallback (EmberNodeId serverId, uint8_t
imageTag, uint32_t bootloadDelayMs)

A callback invoked to indicate that a server has requested to perform a bootload operation at a certain point in time in the

future.

Parameters

[in] serverId The ID of the server the request came from.

[in] imageTag A 1-byte tag of the image this callback refers to.

[in] bootloadDelayMs The delay in milliseconds after which the client has been requested to perform a bootload

operation.

Returns

Return true if the application accepted the request of bootloading the specified image at the requested time, false

otherwise.

Definition at line 159 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
client/ota-unicast-bootloader-client.h

Function Documentation

emberAfPluginOtaUnicastBootloaderClientAbortImageDownload

EmberAfOtaUnicastBootloaderStatus emberAfPluginOtaUnicastBootloaderClientAbortImageDownload (uint8_t imageTag)

Ota Unicast Bootloader Client Plugin

180/326

An API for aborting an ongoing image download process.

Parameters

[in] imageTag A 1-byte tag that identifies the image the client should no longer download.

Returns

An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS If the ongoing image download process was successfully

aborted.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL If the client was not currently involved in an image

download process or it was currently downloading an image with a different tag.

Definition at line 59 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
client/ota-unicast-bootloader-client.h

Ota Unicast Bootloader Server Plugin

181/326

Ota Unicast Bootloader Server Plugin

Ota Unicast Bootloader Server Plugin
Macros and APIs for ota-unicast-bootloader server.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Unicast OTA plugins implement the OTA download operation in a unicast, addressed way, so only a single client can be

addressed from a server in an OTA session, and downloading images to multiple devices will require the server to send the

image multiple times. Communication relies on standard unicast data messages, which also means that the routing provided

by the Connect stack is availble.

Although bootloading sleepy end devices is theoretically possible with polling, it is not very effective, and it's probably

simpler to reconnect as a normal end device while the OTA is active.

Unicast OTA uses a plugin configurable endpoint, which is 13 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Unicast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

See ota-unicast-bootloader-server.h and ota-unicast-bootloader-server.c for source code.

Callbacks

bool emberAfPluginOtaUnicastBootloaderServerGetImageSegmentCallback(uint32_t startIndex, uint32_t endIndex,
uint8_t imageTag, uint8_t *imageSegment)
A callback invoked during an image distribution process to retrieve a contiguous segment of the image being

distributed.

void emberAfPluginOtaUnicastBootloaderServerImageDistributionCompleteCallback(EmberAfOtaUnicastBootloaderStatus
status)
A callback invoked when the image distribution process is terminated.

void emberAfPluginOtaUnicastBootloaderServerRequestTargetBootloadCompleteCallback(EmberAfOtaUnicastBootloaderStatus
status)
A callback invoked when a bootload request process has completed.

Functions

EmberAfOtaUnica
stBootloaderStat

us

emberAfPluginOtaUnicastBootloaderServerInitiateImageDistribution(EmberNodeId targetId, uint32_t
imageSize, uint8_t imageTag)
Initiate the image distribution process.

EmberAfOtaUnica
stBootloaderStat‑

Ota Unicast Bootloader Server Plugin

182/326

us
emberAfPluginUnicastBootloaderServerInitiateRequestTargetBootload(uint32_t bootloadDelayMs, uint8_t
imageTag, EmberNodeId targetId)
Request a target device to initiate the bootload of a received image at some po int in the future .

EmberAfOtaUnica
stBootloaderStat

us

emberAfPluginOtaUnicastBootloaderServerAbortCurrentProcess(void)
Abort the ongo ing process, such as image distribution or bootload request.

Macros

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS 8
The number of consecutive stack message submission errors or stack related errors such as CSMA failures after which

the plugin gives up.

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS 4
The number of consecutive unicast attempts after which a target is declared unreachable . Legal values for this are in

the [0,7] range .

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS 250
The time in milliseconds after which the server gives up waiting for a response from a client.

Callbacks Documentation

emberAfPluginOtaUnicastBootloaderServerGetImageSegmentCallback

bool emberAfPluginOtaUnicastBootloaderServerGetImageSegmentCallback (uint32_t startIndex, uint32_t endIndex, uint8_t
imageTag, uint8_t *imageSegment)

A callback invoked during an image distribution process to retrieve a contiguous segment of the image being distributed.

Parameters

[in] startIndex The index of the first byte the application should copy into the passed array.

[in] endIndex The index of the last byte the application should copy into the passed array.

[in] imageTag A 1-byte tag of the image for which a segment is requested.

[out] imageSegment An array of (endIndex - startIndex + 1) length to which the application should copy the requested

image segment.

Returns

A boolean indicating whether the application successfully copied the requested bytes into the passed array. If the

application returns false, the server will abort the ongoing distribution process.

Definition at line 159 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

emberAfPluginOtaUnicastBootloaderServerImageDistributionCompleteCallback

void emberAfPluginOtaUnicastBootloaderServerImageDistributionCompleteCallback (EmberAfOtaUnicastBootloaderStatus
status)

A callback invoked when the image distribution process is terminated.

Parameters

Ota Unicast Bootloader Server Plugin

183/326

[in] status An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS if the target confirms that the full image is

received.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_DATA_UNDERFLOW if the application failed to supply

the requested image segments.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_STACK_ERROR if the server encountered multiple

consecutive transmission errors. The Server gives up the image distribution process if

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS consecutive

transmission errors are encountered.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_FAILED if the distribution process terminated

prematurely because the target can't be reached.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_UNREACHABLE if the server can not establish

communication with the target client.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_ABORTED if the application aborted the current image

distribution process.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_REFUSED if the client refused the image.

Definition at line 188 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

emberAfPluginOtaUnicastBootloaderServerRequestTargetBootloadCompleteCallback

void emberAfPluginOtaUnicastBootloaderServerRequestTargetBootloadCompleteCallback
(EmberAfOtaUnicastBootloaderStatus status)

A callback invoked when a bootload request process has completed.

Parameters

[in] status An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS if the target has been requested to perform

a bootload.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_STACK_ERROR if the server encountered multiple

consecutive transmission errors. The Server gives up the bootload request process if

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS consecutive

transmission errors are encountered.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_ABORTED if the application aborted the current

bootload request process.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_UNREACHABLE if the server can not establish

communication with the target client.

Definition at line 207 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

Function Documentation

emberAfPluginOtaUnicastBootloaderServerInitiateImageDistribution

EmberAfOtaUnicastBootloaderStatus emberAfPluginOtaUnicastBootloaderServerInitiateImageDistribution (EmberNodeId
targetId, uint32_t imageSize, uint8_t imageTag)

Initiate the image distribution process.

Parameters

Ota Unicast Bootloader Server Plugin

184/326

[in] targetId The node ID of the target.

[in] imageSize The image size in bytes to be distributed.

[in] imageTag A 1-byte tag that will be embedded in the server-to-client over-the-air messages. The application can

use the image tag for versioning purposes and/or for distinguishing between different image types.

Returns

An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_BUSY if an image distribution is already in progress

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL if the given target or the image size is invalid

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS if the image distribution was successfully initiated.

Definition at line 87 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

emberAfPluginUnicastBootloaderServerInitiateRequestTargetBootload

EmberAfOtaUnicastBootloaderStatus emberAfPluginUnicastBootloaderServerInitiateRequestTargetBootload (uint32_t
bootloadDelayMs, uint8_t imageTag, EmberNodeId targetId)

Request a target device to initiate the bootload of a received image at some point in the future.

Parameters

[in] bootloadDelayMs The delay in milliseconds after which the target should perform an image bootload.

[in] imageTag A 1-byte tag that identifies the image to be bootloaded at the target device.

[in] targetId The node ID of the target.

Returns

An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS if the plugin successfully started the process to request a

target and initiate a bootload. If this is the case, the corresponding callback

emberAfPluginOtaUnicastBootloaderServerRequestTargetBootloadCompleteCallback() is invoked when the request

process is completed.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL if some of the passed parameters are invalid.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_BUSY if the server is currently involved in another over-the-air process.

Definition at line 116 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

emberAfPluginOtaUnicastBootloaderServerAbortCurrentProcess

EmberAfOtaUnicastBootloaderStatus emberAfPluginOtaUnicastBootloaderServerAbortCurrentProcess (void)

Abort the ongoing process, such as image distribution or bootload request.

Parameters

N/A

Returns

An EmberAfOtaUnicastBootloaderStatus value of:

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS if the current ongoing process was successfully aborted.

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL if the server is not currently involved in any process.

Ota Unicast Bootloader Server Plugin

185/326

Definition at line 131 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

Macro Definition Documentation

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

Value:

8

The number of consecutive stack message submission errors or stack related errors such as CSMA failures after which the

plugin gives up.

Definition at line 51 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

Value:

4

The number of consecutive unicast attempts after which a target is declared unreachable. Legal values for this are in the

[0,7] range.

Definition at line 57 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

#define EMBER_AF_PLUGIN_OTA_UNICAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

Value:

250

The time in milliseconds after which the server gives up waiting for a response from a client.

Definition at line 63 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
server/ota-unicast-bootloader-server.h

Ota Unicast Bootloader Common

186/326

Ota Unicast Bootloader Common

Ota Unicast Bootloader Common
Macros and types defined for ota-unicast-bootloaders.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Unicast OTA plugins implement the OTA download operation in a unicast, addressed way, so only a single client can be

addressed from a server in an OTA session, and downloading images to multiple devices will require the server to send the

image multiple times. Communication relies on standard unicast data messages, which also means that the routing provided

by the Connect stack is availble.

Although bootloading sleepy end devices is theoretically possible with polling, it is not very effective, and it's probably

simpler to reconnect as a normal end device while the OTA is active.

Unicast OTA uses a plugin configurable endpoint, which is 13 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Unicast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

Enumerations

enum EmberAfOtaUnicastBootloaderStatus {

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS = 0x00
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL = 0x01
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_BUSY = 0x02
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_DATA_UNDERFLOW = 0x03
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_STACK_ERROR = 0x04
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_TIMEOUT = 0x05
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_FAILED = 0x06
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_ABORTED = 0x07
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_REFUSED = 0x08
EMBER_OTA_UNICAST_BOOTLOADER_STATUS_UNREACHABLE = 0x09

}
OTA Unicast Bootloader return status codes.

Enumeration Documentation

EmberAfOtaUnicastBootloaderStatus

EmberAfOtaUnicastBootloaderStatus

Ota Unicast Bootloader Common

187/326

OTA Unicast Bootloader return status codes.

Enumerator

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_SUCCESS

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_INVALID_CALL

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_BUSY

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_DATA_UNDERFLOW

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_STACK_ERROR

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_TIMEOUT

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_FAILED

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_ABORTED

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_REFUSED

EMBER_OTA_UNICAST_BOOTLOADER_STATUS_UNREACHABLE

Definition at line 75 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-unicast-bootloader/ota-unicast-bootloader-
types.h

Ota Broadcast Bootloader Client Plugin

188/326

Ota Broadcast Bootloader Client Plugin

Ota Broadcast Bootloader Client Plugin
Set of APIs for ota-broadcast-bootloader-client.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader-related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Broadcast OTA plugins implement the OTA download operation in broadcast, so the same image can be sent to many

devices at the same time. The server however requires to know the clients downloading the image, because it implements

error handling by querying all clients for missing segments, and then the server will re-broadcast those segments.

Communication relies on standard broadcast data messages, which means routing is not available, and only clients that are

in the range of the server can download. However, the same device can be both client and server, i.e. after downloading

the image, a client can configure itself to be a server, and provide the image to another part of the network.

S leepy end devices cannot be addressed in broadcast, but a sleepy end device can reconnect as a normal end device

while the OTA is active.

Broadcast OTA uses a plugin configurable endpoint, which is 14 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Broadcast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

See ota-broadcast-bootloader-client.h and ota-broadcast-bootloader-client.c for source code.

Callbacks

bool emberAfPluginOtaBootloaderClientNewIncomingImageCallback(EmberNodeId serverId, EmberNodeId
*alternateServerId, uint8_t imageTag)
A callback invoked when the OTA Bootloader Client starts receiving a new image . The application can choose to start

receiving the image or it can ignore it. If the application chooses to receive the image , other images sent out by other

servers are ignored until the client completes this download.

void emberAfPluginOtaBootloaderClientIncomingImageSegmentCallback(EmberNodeId serverId, uint32_t
startIndex, uint32_t endIndex, uint8_t imageTag, uint8_t *imageSegment)
A callback invoked when an image segment, that is part of an image that the application elected to download, was

received on the OTA Bootloader Client.

void emberAfPluginOtaBootloaderClientImageDownloadCompleteCallback(EmberAfOtaBootloaderStatus status,
uint8_t imageTag, uint32_t imageSize)
A callback invoked on an OTA Bootloader Client to indicate that an image downlaod is completed.

Ota Broadcast Bootloader Client Plugin

189/326

void emberAfPluginOtaBootloaderClientIncomingRequestStatusCallback(EmberNodeId serverId, uint8_t
applicationServerStatus, uint8_t *applicationStatus)
A callback invoked on the OTA Bootloader Client to indicate that an OTA Bootloader Server has requested the status

of the client device .

bool emberAfPluginOtaBootloaderClientIncomingRequestBootloadCallback(EmberNodeId serverId, uint8_t
imageTag, uint32_t bootloadDelayMs, uint8_t *applicationStatus)
A callback invoked by the OTA Bootloader Client plugin to indicate that an OTA Bootloader Server has requested to

perform a bootload operation at a certain po int in time in the future .

Functions

EmberAfOtaBootl
oaderStatus

emberAfPluginOtaBootloaderClientAbortImageDownload(uint8_t imageTag, uint8_t applicationErrorStatus)
Abort an ongo ing image download process.

Callbacks Documentation

emberAfPluginOtaBootloaderClientNewIncomingImageCallback

bool emberAfPluginOtaBootloaderClientNewIncomingImageCallback (EmberNodeId serverId, EmberNodeId
*alternateServerId, uint8_t imageTag)

A callback invoked when the OTA Bootloader Client starts receiving a new image. The application can choose to start

receiving the image or it can ignore it. If the application chooses to receive the image, other images sent out by other

servers are ignored until the client completes this download.

Parameters

[in] serverId The node ID of the server that initiated the new image distribution process.

[out] alternateServerId This node ID can be set by the application to include a well-known alternate server. If this is

set to a valid address, the client allows segments also from this alternate server. If this is set to

EMBER_BROADCAST_ADDRESS, the client accepts segments with the same image tag from

any server.

[in] imageTag A 1-byte tag that identifies the incoming image.

Returns

Return true to accept the image or false to ignore it.

Definition at line 94 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
client/ota-broadcast-bootloader-client.h

emberAfPluginOtaBootloaderClientIncomingImageSegmentCallback

void emberAfPluginOtaBootloaderClientIncomingImageSegmentCallback (EmberNodeId serverId, uint32_t startIndex,
uint32_t endIndex, uint8_t imageTag, uint8_t *imageSegment)

A callback invoked when an image segment, that is part of an image that the application elected to download, was received

on the OTA Bootloader Client.

Parameters

[in] serverId The node ID of the server that initiated the image distribution process.

[in] startIndex The index of the first byte of the passed segment.

[in] endIndex The index of the last byte of the passed segment.

[in] imageTag A 1-byte tag of the image the passed segment belongs to.

Ota Broadcast Bootloader Client Plugin

190/326

[in] imageSegment An array containing the image segment.

Definition at line 114 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-client/ota-broadcast-bootloader-client.h

emberAfPluginOtaBootloaderClientImageDownloadCompleteCallback

void emberAfPluginOtaBootloaderClientImageDownloadCompleteCallback (EmberAfOtaBootloaderStatus status, uint8_t
imageTag, uint32_t imageSize)

A callback invoked on an OTA Bootloader Client to indicate that an image downlaod is completed.

Parameters

[in] status An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS indicating that the full image

corresponding to the passed tag has been received. If this is the case, the client previously

handed all the image segments to the application using the

emberAfPluginOtaBootloaderClientIncomingImageSegmentCallback() callback.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_FAILED indicating that the client failed to fully

download the image and the download process was terminated.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_TIMEOUT indicating that the client timed out

waiting for a message from the server.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED indicating that the application

aborted the ongoing image download process as result of calling the API

emberAfPluginOtaBootloaderClientAbortImageDownload().

[in] imageTag A 1-byte tag of the image this callback refers to.

[in] imageSize The total size of the downloaded image in bytes. This parameter is meaningful only in case the status

parameter is set to EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS.

Definition at line 143 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-client/ota-broadcast-bootloader-client.h

emberAfPluginOtaBootloaderClientIncomingRequestStatusCallback

void emberAfPluginOtaBootloaderClientIncomingRequestStatusCallback (EmberNodeId serverId, uint8_t
applicationServerStatus, uint8_t *applicationStatus)

A callback invoked on the OTA Bootloader Client to indicate that an OTA Bootloader Server has requested the status of

the client device.

Parameters

[in] serverId The ID of the server the request came from.

[in] applicationServerStatus The server application status, which was set by

emberAfPluginBootloaderServerInitiateRequestTargetsStatus()

[out] applicationStatus A 1-byte status set by the client application that is reported to the server.

Definition at line 158 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-client/ota-broadcast-bootloader-client.h

emberAfPluginOtaBootloaderClientIncomingRequestBootloadCallback

Ota Broadcast Bootloader Client Plugin

191/326

bool emberAfPluginOtaBootloaderClientIncomingRequestBootloadCallback (EmberNodeId serverId, uint8_t imageTag,
uint32_t bootloadDelayMs, uint8_t *applicationStatus)

A callback invoked by the OTA Bootloader Client plugin to indicate that an OTA Bootloader Server has requested to

perform a bootload operation at a certain point in time in the future.

Parameters

[in] serverId The ID of the server the request came from.

[in] imageTag A 1-byte tag of the image this callback refers to.

[in] bootloadDelayMs The delay in milliseconds after which the client has been requested to perform a bootload

operation.

[out] applicationStatus A 1-byte status set by the client application that is reported to the server.

Returns

Return true if the application accepted the request of bootloading the specified image at the requested time, false

otherwise.

Definition at line 179 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-client/ota-broadcast-bootloader-client.h

Function Documentation

emberAfPluginOtaBootloaderClientAbortImageDownload

EmberAfOtaBootloaderStatus emberAfPluginOtaBootloaderClientAbortImageDownload (uint8_t imageTag, uint8_t
applicationErrorStatus)

Abort an ongoing image download process.

Parameters

[in] imageTag A 1-byte tag that identifies the image the client should no longer download.

[in] applicationErrorStatus A 1-byte error code reported to the server.

Returns

An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS If the ongoing image download process was successfully

aborted.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL If the client was not currently involved in an image

download process or it was currently downloading an image with a different tag.

Definition at line 62 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
client/ota-broadcast-bootloader-client.h

Ota Broadcast Bootloader Server Plugin

192/326

Ota Broadcast Bootloader Server Plugin

Ota Broadcast Bootloader Server Plugin
Set of APIs for ota-broadcast-bootloader-server.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader-related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Broadcast OTA plugins implement the OTA download operation in broadcast, so the same image can be sent to many

devices at the same time. The server however requires to know the clients downloading the image, because it implements

error handling by querying all clients for missing segments, and then the server will re-broadcast those segments.

Communication relies on standard broadcast data messages, which means routing is not available, and only clients that are

in the range of the server can download. However, the same device can be both client and server, i.e. after downloading

the image, a client can configure itself to be a server, and provide the image to another part of the network.

S leepy end devices cannot be addressed in broadcast, but a sleepy end device can reconnect as a normal end device

while the OTA is active.

Broadcast OTA uses a plugin configurable endpoint, which is 14 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Broadcast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

See ota-broadcast-bootloader-server.h and ota-broadcast-bootloader-server.c for source code.

Callbacks

bool emberAfPluginOtaBootloaderServerGetImageSegmentCallback(uint32_t startIndex, uint32_t endIndex, uint8_t
imageTag, uint8_t *imageSegment)
A callback invoked on the OTA Bootloader Server during an image distribution process to retrieve a contiguous

segment of the image being distributed.

void emberAfPluginOtaBootloaderServerImageDistributionCompleteCallback(EmberAfOtaBootloaderStatus status)
A callback invoked on the OTA Bootloader Server when the image distribution process is terminated. The application

can use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status reported by each target

device .

void emberAfPluginBootloaderServerRequestTargetsStatusCompleteCallback(EmberAfOtaBootloaderStatus
status)
A callback invoked on the OTA Bootloader Server when bootload request process has completed. Within this callback,

the application should use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status and

application status reported by each target.

Ota Broadcast Bootloader Server Plugin

193/326

void emberAfPluginBootloaderServerRequestTargetsBootloadCompleteCallback(EmberAfOtaBootloaderStatus
status)
A callback invoked on the OTA Bootloader Server when a bootload request process has completed. Within this

callback, the application should use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status

and the application status reported by each target.

Functions

EmberAfOtaBootl
oaderStatus

emberAfPluginOtaBootloaderServerInitiateImageDistribution(uint32_t imageSize, uint8_t imageTag,
EmberNodeId *targetList, uint16_t targetListLength)
Initiate the image distribution process. The application can use the emberAfPluginBootloaderServerGetTargetStatus()

API at any time during the image distribution process to check the status of each target.

EmberAfOtaBootl
oaderStatus

emberAfPluginBootloaderServerInitiateRequestTargetsStatus(EmberNodeId *targetList, uint16_t
targetListLength, uint8_t applicationServerStatus)
Initiate the process to request the status of a set of target devices. The application can use the

emberAfPluginBootloaderServerGetTargetStatus() API at any time during the target status request process to check

the status of each target.

EmberAfOtaBootl
oaderStatus

emberAfPluginBootloaderServerInitiateRequestTargetsBootload(uint32_t bootloadDelayMs, uint8_t imageTag,
EmberNodeId *targetList, uint16_t targetListLength)
Start the process where a server requests a set of target devices to initiate the bootload of a received image at some

po int in the future . The application can use the emberAfPluginBootloaderServerGetTargetStatus() API at any time

during the bootload request process to check the status of each target.

EmberAfOtaBootl
oaderTargetStatu

s

emberAfPluginBootloaderServerGetTargetStatus(EmberNodeId targetId, uint8_t *applicationTargetStatus)
Retrieve the locally stored status of an individual target in the distribution list. The locally stored status can be updated

by calling emberAfPluginBootloaderServerInitiateRequestTargetsStatus().

EmberAfOtaBootl
oaderStatus

emberAfPluginOtaBootloaderServerAbortCurrentProcess(void)
Abort the ongo ing process (image distribution, status request or bootload request). Note that aborting a bootload

request process likely results in some targets performing the bootload while some others do not.

Macros

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS 8
The number of consecutive stack message submission errors or stack-related errors, such as CSMA failures, after which

the plugin gives up.

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS 4
The number of consecutive unicast attempts after which a target is declared unreachable . Legal values for this are in

the [0,7] range .

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS 250
The time in milliseconds after which the server gives up waiting for a response from a client.

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_BROADCAST_ROUNDS 5
The maximum number of image broadcast rounds the server performs before declaring an image distribution process

failed.

Callbacks Documentation

emberAfPluginOtaBootloaderServerGetImageSegmentCallback

bool emberAfPluginOtaBootloaderServerGetImageSegmentCallback (uint32_t startIndex, uint32_t endIndex, uint8_t
imageTag, uint8_t *imageSegment)

Ota Broadcast Bootloader Server Plugin

194/326

A callback invoked on the OTA Bootloader Server during an image distribution process to retrieve a contiguous segment of

the image being distributed.

Parameters

[in] startIndex The index of the first byte the application should copy into the passed array.

[in] endIndex The index of the last byte the application should copy into the passed array.

[in] imageTag A 1-byte tag of the image for which a segment is being requested.

[out] imageSegment An array of (endIndex - startIndex + 1) length to which the application should copy the requested

image segment.

Returns

A boolean indicating whether the application successfully copied the requested bytes into the passed array. If the

application returns false, the OTA Server plugin aborts the ongoing distribution process.

Definition at line 267 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginOtaBootloaderServerImageDistributionCompleteCallback

void emberAfPluginOtaBootloaderServerImageDistributionCompleteCallback (EmberAfOtaBootloaderStatus status)

A callback invoked on the OTA Bootloader Server when the image distribution process is terminated. The application can

use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status reported by each target device.

Parameters

[in] status An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if all targets have confirmed that the full

image was received except for those that have been declared "unreachable".

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_DATA_UNDERFLOW if the application failed to

supply the requested image segments.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_STACK_ERROR if the server encountered multiple

consecutive transmission errors. The Server gives up the image distribution process if

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS consecutive

transmission errors are encountered.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_FAILED if the distribution process terminated

prematurely because all targets have been declared unreachable.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_TIMEOUT if the server performed all the allowable

broadcast rounds and there are still missing segments at one or more targets. The maximum allowable

rounds are defined by

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_BROADCAST_ROUNDS.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED if the application aborted the current

image distribution process.

Definition at line 298 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginBootloaderServerRequestTargetsStatusCompleteCallback

void emberAfPluginBootloaderServerRequestTargetsStatusCompleteCallback (EmberAfOtaBootloaderStatus status)

A callback invoked on the OTA Bootloader Server when bootload request process has completed. Within this callback, the

application should use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status and application

Ota Broadcast Bootloader Server Plugin

195/326

status reported by each target.

Parameters

[in] status An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if all the targets have been queried for

their status. Notice that some targets might have been declared unreachable.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_STACK_ERROR if the server encountered multiple

consecutive transmission errors. The Server gives up the targets status request process if

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS consecutive

transmission errors are encountered.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED if the application aborted the current

targets status request process.

Definition at line 317 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginBootloaderServerRequestTargetsBootloadCompleteCallback

void emberAfPluginBootloaderServerRequestTargetsBootloadCompleteCallback (EmberAfOtaBootloaderStatus status)

A callback invoked on the OTA Bootloader Server when a bootload request process has completed. Within this callback, the

application should use the emberAfPluginBootloaderServerGetTargetStatus() API to retrieve the status and the application

status reported by each target.

Parameters

[in] status An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if all targets have been requested to

perform a bootload. Notice that some targets might have been declared unreachable.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_STACK_ERROR if the server encountered multiple

consecutive transmission errors. The Server gives up the bootload request process if

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS consecutive

transmission errors are encountered.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED if the application aborted the current

bootload request process.

Definition at line 336 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

Function Documentation

emberAfPluginOtaBootloaderServerInitiateImageDistribution

EmberAfOtaBootloaderStatus emberAfPluginOtaBootloaderServerInitiateImageDistribution (uint32_t imageSize, uint8_t
imageTag, EmberNodeId *targetList, uint16_t targetListLength)

Initiate the image distribution process. The application can use the emberAfPluginBootloaderServerGetTargetStatus() API at

any time during the image distribution process to check the status of each target.

Parameters

[in] imageSize The image size in bytes to be distributed.

[in] imageTag A 1-byte tag that will be embedded in the server-to-client over-the-air messages. The application can

use the image tag for versioning purposes and/or for distinguishing between different image types.

Ota Broadcast Bootloader Server Plugin

196/326

[out] targetList An array of EmberNodeId indicating the node IDs of the target devices.

[in] targetListLength The length of the passed targetList

Returns

An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if the image distribution is successfully initiated. If this is the

case, the emberAfPluginOtaBootloaderServerImageDistributionCompleteCallback() callback is invoked when the

distribution process terminates.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL if some of the passed parameters are invalid.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_BUSY if the server is already performing another image distribution or

some other over-the-air process.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_NO_BUFFERS if the server can't allocate memory from the heap to

store the passed target list. (See Memory Buffer for details).

Definition at line 104 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginBootloaderServerInitiateRequestTargetsStatus

EmberAfOtaBootloaderStatus emberAfPluginBootloaderServerInitiateRequestTargetsStatus (EmberNodeId *targetList,
uint16_t targetListLength, uint8_t applicationServerStatus)

Initiate the process to request the status of a set of target devices. The application can use the

emberAfPluginBootloaderServerGetTargetStatus() API at any time during the target status request process to check the

status of each target.

Parameters

[in] targetList An array of EmberNodeId indicating the node IDs of the target devices that are queried for

their status.

[in] targetListLength The length of the passed targetlist .

[in] applicationServerStatus The application can set a status here which will be sent to the clients in

emberAfPluginOtaBootloaderClientIncomingRequestStatusCallback()

Returns

An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if the plugin successfully initiated the process of requesting

the status of a set of targets. If this is the case, the corresponding callback

emberAfPluginBootloaderServerRequestTargetsStatusCompleteCallback() is invoked when the request process to all

targets completes.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL if some of the passed parameters are invalid.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_BUSY if the server is currently involved in another over-the-air process.

Definition at line 135 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginBootloaderServerInitiateRequestTargetsBootload

EmberAfOtaBootloaderStatus emberAfPluginBootloaderServerInitiateRequestTargetsBootload (uint32_t bootloadDelayMs,
uint8_t imageTag, EmberNodeId *targetList, uint16_t targetListLength)

Start the process where a server requests a set of target devices to initiate the bootload of a received image at some

point in the future. The application can use the emberAfPluginBootloaderServerGetTargetStatus() API at any time during the

bootload request process to check the status of each target.

Ota Broadcast Bootloader Server Plugin

197/326

Parameters

[in] bootloadDelayMs The delay in milliseconds after which all the targets should perform an image bootload.

[in] imageTag A 1-byte tag that identifies the image to be bootloaded at the target devices.

[in] targetList An array of EmberNodeId indicating the node IDs of the target devices that is requested to

bootload an image.

[in] targetListLength The length of the passed targetlist .

Returns

An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if the plugin successfully initiated the process of requesting

a set of targets to initiate a bootload. If this is the case, the corresponding callback

emberAfPluginBootloaderServerRequestTargetsBootloadCompleteCallback() shall be invoked when the request process to

all targets has completed.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL if some of the passed parameters are invalid.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_BUSY if the server is currently involved in another over-the-air process.

Definition at line 167 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginBootloaderServerGetTargetStatus

EmberAfOtaBootloaderTargetStatus emberAfPluginBootloaderServerGetTargetStatus (EmberNodeId targetId, uint8_t
*applicationTargetStatus)

Retrieve the locally stored status of an individual target in the distribution list. The locally stored status can be updated by

calling emberAfPluginBootloaderServerInitiateRequestTargetsStatus().

Parameters

[in] targetId The node ID of the target device whose status is being requested.

[out] applicationTargetStatus The application status reported by the client side application. This parameter is valid only

for certain return status codes (see return status documentation).

Returns

An EmberAfOtaBootloaderTargetStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_INVALID if the passed node ID does not appear in the current

server target list of the current ongoing process or if there is no current ongoing process.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_UNREACHABLE if the target has not responded to any of the

server's unicast messages.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_COMPLETED if the server is currently

performing an image distribution process and the target confirmed that it received the full image.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ONGOING if the server is currently performing

an image distribution process and the target has partially received the image and distribution is continuing.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_REFUSED if the target has refused the current

image.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_FAILED if the server is currently performing an

image distribution process and the target reported that an error was encountered.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ABORTED if the server is currently performing

an image distribution process and the target decided to abort the image download process. In this case, the client also

reports an application status. Therefore, the applicationTargetStatus parameter is valid.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_COMPLETED if the server is currently

performing a target status request process and the target has responded to the server's inquiry. In this case, the client

also reports an application status. Therefore, the applicationTargetStatus parameter is valid.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_ONGOING if the server is currently

performing a target status request process and the target is not yet queried by the server.

Ota Broadcast Bootloader Server Plugin

198/326

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ACCEPTED if the server is currently

performing a bootload request process and the target has accepted to perform the requested image bootload.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_REFUSED if the server is currently

performing a bootload request process and the target has refused to perform the requested image bootload.

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ONGOING if the server is currently

performing a bootload request process and the target is not yet reached by the server.

Definition at line 223 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

emberAfPluginOtaBootloaderServerAbortCurrentProcess

EmberAfOtaBootloaderStatus emberAfPluginOtaBootloaderServerAbortCurrentProcess (void)

Abort the ongoing process (image distribution, status request or bootload request). Note that aborting a bootload request

process likely results in some targets performing the bootload while some others do not.

Parameters

N/A

Returns

An EmberAfOtaBootloaderStatus value of:

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS if the current ongoing process was successfully aborted.

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL if the server is not currently involved in any process.

Definition at line 237 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-server/ota-broadcast-bootloader-server.h

Macro Definition Documentation

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_STACK_ERRORS

Value:

8

The number of consecutive stack message submission errors or stack-related errors, such as CSMA failures, after which the

plugin gives up.

Definition at line 51 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
server/ota-broadcast-bootloader-server.h

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_UNICAST_ERRORS

Value:

4

The number of consecutive unicast attempts after which a target is declared unreachable. Legal values for this are in the

[0,7] range.

Ota Broadcast Bootloader Server Plugin

199/326

Definition at line 57 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
server/ota-broadcast-bootloader-server.h

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_RESPONSE_TIMEOUT_MS

Value:

250

The time in milliseconds after which the server gives up waiting for a response from a client.

Definition at line 63 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
server/ota-broadcast-bootloader-server.h

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_BROADCAST_ROUNDS

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_SERVER_MAX_BROADCAST_ROUNDS

Value:

5

The maximum number of image broadcast rounds the server performs before declaring an image distribution process failed.

Definition at line 69 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
server/ota-broadcast-bootloader-server.h

Ota Broadcast Bootloader Common

200/326

Ota Broadcast Bootloader Common

Ota Broadcast Bootloader Common
Set of types defined for ota-broadcast-bootloader.

OTA bootloading plugins are usable to send firmware images Over The Air when the application is running. When the

firmware is downloaded to a device, a bootloader can be started to replace the application in the flash to the one just

downloaded.

All Connect bootloader-related code relies on the Gecko Bootloader for bootloading and it must be installed on the device

for these plugins to work. For details on the Gecko Bootloader, see UG266.

The Broadcast OTA plugins implement the OTA download operation in broadcast, so the same image can be sent to many

devices at the same time. The server however requires to know the clients downloading the image, because it implements

error handling by querying all clients for missing segments, and then the server will re-broadcast those segments.

Communication relies on standard broadcast data messages, which means routing is not available, and only clients that are

in the range of the server can download. However, the same device can be both client and server, i.e. after downloading

the image, a client can configure itself to be a server, and provide the image to another part of the network.

S leepy end devices cannot be addressed in broadcast, but a sleepy end device can reconnect as a normal end device

while the OTA is active.

Broadcast OTA uses a plugin configurable endpoint, which is 14 by default.

Security can be also enabled as plugin configuration on the server, as well as the interval of the messages. The client has a

timeout plugin configuration after which it stops the OTA session with an error.

See UG235.06 for further details.

Note

OTA Broadcast Bootloading plugins are not available in MAC mode due to the lack of endpoints.

Enumerations

enum EmberAfOtaBootloaderStatus {

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS = 0x00
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL = 0x01
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_BUSY = 0x02
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_NO_BUFFERS = 0x03
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_DATA_UNDERFLOW = 0x04
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_STACK_ERROR = 0x05
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_TIMEOUT = 0x06
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_FAILED = 0x07
EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED = 0x08

}
OTA Broadcast Bootloader return status codes.

Ota Broadcast Bootloader Common

201/326

enum EmberAfOtaBootloaderTargetStatus {

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_INVALID = 0x00
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_UNREACHABLE = 0x01
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_COMPLETED = 0x02
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ONGOING = 0x03
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_FAILED = 0x04
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_REFUSED = 0x05
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ABORTED = 0x06
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_COMPLETED = 0x07
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_ONGOING = 0x08
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ACCEPTED = 0x09
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ONGOING = 0x0A
EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_REFUSED = 0x0B

}
OTA Broadcast Bootloader target status codes, returned by emberAfPluginBootloaderServerGetTargetStatus().

Macros

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_INVALID_APPLICATION_TARGET_STATUS 0xFF
A value indicating that client application did not set the application level target status in any of the client callbacks.

Enumeration Documentation

EmberAfOtaBootloaderStatus

EmberAfOtaBootloaderStatus

OTA Broadcast Bootloader return status codes.

Enumerator

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_SUCCESS

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_INVALID_CALL

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_BUSY

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_NO_BUFFERS

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_DATA_UNDERFLOW

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_STACK_ERROR

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_TIMEOUT

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_FAILED

EMBER_OTA_BROADCAST_BOOTLOADER_STATUS_ABORTED

Definition at line 79 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-bootloader-
types.h

EmberAfOtaBootloaderTargetStatus

EmberAfOtaBootloaderTargetStatus

OTA Broadcast Bootloader target status codes, returned by emberAfPluginBootloaderServerGetTargetStatus().

Enumerator

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_INVALID

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_UNREACHABLE

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_COMPLETED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ONGOING

Ota Broadcast Bootloader Common

202/326

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_FAILED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_REFUSED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_DISTRIBUTION_ABORTED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_COMPLETED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_STATUS_REQUEST_ONGOING

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ACCEPTED

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_ONGOING

EMBER_OTA_BROADCAST_BOOTLOADER_TARGET_STATUS_BOOTLOAD_REQUEST_REFUSED

Definition at line 117 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-types.h

Macro Definition Documentation

EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_INVALID_APPLICATION_TARGET_STATUS

#define EMBER_AF_PLUGIN_OTA_BROADCAST_BOOTLOADER_INVALID_APPLICATION_TARGET_STATUS

Value:

0xFF

A value indicating that client application did not set the application level target status in any of the client callbacks.

Definition at line 189 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/ota-broadcast-bootloader/ota-broadcast-
bootloader-types.h

Poll Plugin

203/326

Poll Plugin

Poll Plugin
APIs for the poll plugin.

The Connect stack supports polling which enables (sleepy) end devices to retrieve pending messages from the parent node

(coordinator or range extender).

To use this feature, the Poll plugin must be enabled on the end devices. If polling is enabled, the end device sends a data

request to the parent node, which notifies the device whether a message is pending or not using the acknowledge with the

pending bit cleared or set. If a message is not pending, the communication ends with the acknowledge. If a message is

pending, the parent node sends a data packet containing the pending message which will be acknowledged by the end

device.

For convenience, Connect supports two polling intervals, long and short, which behave the same only the polling period

differs. For long polling, the period is specified in seconds while for short polling, the period is in quarter seconds. The API

provides a function to easily switch between the two. The purpose of long polling is maintaining the connection between

the end device and the parent.

The application will receive the polled message via the emberAfIncomingMessageCallback() function.

The poll plugin uses emberPollForData() to retrieve the pending message. If the poll plugin is enabled, using

emberPollForData() is strongly not recommended.

See poll.h for source code.

Functions

void emberAfPluginPollSetShortPollInterval(uint8_t intervalQS)
Set the short po ll interval.

void emberAfPluginPollSetLongPollInterval(uint16_t intervalS)
Set the long po ll interval.

void emberAfPluginPollEnableShortPolling(bool enable)
Enable/disable short po lling.

Function Documentation

emberAfPluginPollSetShortPollInterval

void emberAfPluginPollSetShortPollInterval (uint8_t intervalQS)

Set the short poll interval.

Parameters

[in] intervalQS The short poll interval in quarter seconds.

Definition at line 68 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/poll/poll.h

emberAfPluginPollSetLongPollInterval

Poll Plugin

204/326

void emberAfPluginPollSetLongPollInterval (uint16_t intervalS)

Set the long poll interval.

Parameters

[in] intervalS The long poll interval in seconds.

Definition at line 74 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/poll/poll.h

emberAfPluginPollEnableShortPolling

void emberAfPluginPollEnableShortPolling (bool enable)

Enable/disable short polling.

Parameters

[in] enable If this parameter is true, short polling is enabled. Otherwise, the node switches back to long polling.

Definition at line 81 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/protocol/flex/poll/poll.h

WSTK Sensors Plugin

205/326

WSTK Sensors Plugin

WSTK Sensors Plugin

Hardware Abstraction Layer (HAL) API Reference

206/326

Hardware Abstraction Layer (HAL) API Reference

Hardware Abstraction Layer (HAL) API Reference
HAL function names have the following prefix conventions:

halCommon: API that is used by the EmberZNet stack and can also be called from an application. This API must be

implemented. Custom applications can change the implementation of the API but its functionality must remain the same.

hal: API that is used by sample applications. Custom applications can remove this API or change its implementation as they

see fit.

halStack: API used only by the EmberZNet stack. This API must be implemented and should not be directly called from any

application. Custom applications can change the implementation of the API, but its functionality must remain the same.

halInternal: API that is internal to the HAL. The EmberZNet stack and applications must never call this API directly. Custom

applications can change this API as they see fit. However, be careful not to impact the functionalty of any halStack or

halCommon APIs.

See also hal.h.

Modules

Hardware Abstraction Layer (HAL)

Common Microcontroller Functions

Token Access

Sample APIs for Peripheral Access

System Timer Control

Symbol Timer Control

HAL Configuration

HAL Utilities

Hardware Abstraction Layer (HAL)

207/326

Hardware Abstraction Layer (HAL)

Hardware Abstraction Layer (HAL)
The Hardware Abstraction Layer (HAL) is program code between a system's hardware and its software that provides a

consistent interface for applications that can run on several different hardware platforms. To take advantage of this

capability, applications should access hardware through the API provided by the HAL, rather than directly. Then, when you

move to new hardware, you only need to update the HAL. In some cases, due to extreme differences in hardware, the HAL

API may also change slightly to accommodate the new hardware. In these cases, the limited scope of the update makes

moving the application easier with the HAL than without.

HAL function names have the following prefix conventions:

halCommon: API that is used by the EmberZNet stack and can also be called from an application. This API must be

implemented. Custom applications can change the implementation of the API but its functionality must remain the same.

hal: API that is used by sample applications. Custom applications can remove this API or change its implementation as they

see fit.

halStack: API used only by the EmberZNet stack. This API must be implemented and should not be directly called from any

application. Custom applications can change the implementation of the API, but its functionality must remain the same.

halInternal: API that is internal to the HAL. The EmberZNet stack and applications must never call this API directly. Custom

applications can change this API as they see fit. However, be careful not to impact the functionalty of any halStack or

halCommon APIs.

See also hal.h.

Common Microcontroller Functions

208/326

Common Microcontroller Functions

Common Microcontroller Functions
Many of the supplied example applications use these microcontroller functions. See hal/micro/micro.h for source code.

Note

The term SFD refers to the Start Frame Delimiter.

Many of the supplied example applications use these microcontroller functions. See hal/micro/micro-common.h for source

code.

Modules

RTCCRamData

Enumerations

enum SleepModes {

SLEEPMODE_RUNNING = 0U
SLEEPMODE_IDLE = 1U
SLEEPMODE_WAKETIMER = 2U
SLEEPMODE_MAINTAINTIMER = 3U
SLEEPMODE_NOTIMER = 4U
SLEEPMODE_HIBERNATE = 5U
SLEEPMODE_RESERVED = 6U
SLEEPMODE_POWERDOWN = 7U
SLEEPMODE_POWERSAVE = 8U

}
Enumerations for the possible microcontro ller sleep modes.

Typedefs

typedef uint32_t WakeEvents

typedef uint32_t WakeMask

Variables

volatile int8_t halCommonVreg1v8EnableCount
Helper variable to track the state of 1.8V regulator.

Functions

void halStackProcessBootCount(void)
Called from emberInit and provides a means for the HAL to increment a boot counter, most commonly in non-vo latile

memory.

uint8_t halGetResetInfo(void)
Gets information about what caused the microcontro ller to reset.

Common Microcontroller Functions

209/326

PGM_P halGetResetString(void)
Calls halGetResetInfo() and supplies a string describing it.

void halInit(void)
Initializes microcontro ller-specific peripherals.

void halReboot(void)
Restarts the microcontro ller and therefore everything else .

void halPowerUp(void)
Powers up microcontro ller peripherals and board peripherals.

void halPowerDown(void)
Powers down microcontro ller peripherals and board peripherals.

void halResume(void)
Resumes microcontro ller peripherals and board peripherals.

void halSuspend(void)
Suspends microcontro ller peripherals and board peripherals.

void halInternalEnableWatchDog(void)
Enables the watchdog timer.

void halInternalDisableWatchDog(uint8_t magicKey)
Disables the watchdog timer.

bool halInternalWatchDogEnabled(void)
Determines whether the watchdog has been enabled or disabled.

void halSleep(SleepModes sleepMode)
Puts the microcontro ller to sleep in a specified mode .

void halSleepPreserveInts(SleepModes sleepMode)
Same as halSleep() except it preserves the current interrupt state rather than always enabling interrupts prior to

returning.

void halCommonDelayMicroseconds(uint16_t us)
Blocks the current thread of execution for the specified amount of time , in microseconds.

void halCommonDisableVreg1v8(void)
Disable the 1.8V regulator. This function is to be used when the 1.8V supply is provided externally. Disabling the

regulator saves current consumption. Disabling the regulator will cause ADC readings of external signals to be wrong.

These exteranl signals include analog sources ADC0 thru ADC5 and VDD_PADS/4.

void halCommonEnableVreg1v8(void)
Enable the 1.8V regulator. Normally the 1.8V regulator is enabled out of reset. This function is only needed if the 1.8V

regulator has been disabled and ADC conversions on external signals are needed. These exteranl signals include

analog sources ADC0 thru ADC5 and VDD_PADS/4. The state of 1v8 survives deep sleep.

void halBeforeEM4(uint32_t duration, RTCCRamData input)

RTCCRamData halAfterEM4(void)

Macros

#define halGetEm2xxResetInfo ()
Calls ::halGetExtendedResetInfo() and translates the EM35x reset code to the corresponding value used by the EM2XX

HAL. Any reset codes not present in the EM2XX are returned after being OR'ed with 0x80.

Common Microcontroller Functions

210/326

#define MICRO_DISABLE_WATCH_DOG_KEY 0xA5U
The value that must be passed as the single parameter to halInternalDisableWatchDog() in order to successfully disable

the watchdog timer.

#define GPIO_MASK_SIZE 24

#define GPIO_MASK 0xFFFFFF

#define WAKE_GPIO_MASK GPIO_MASK

#define WAKE_GPIO_SIZE GPIO_MASK_SIZE

#define WAKE_MASK_INVALID (-1)

#define WAKE_EVENT_SIZE WakeMask

#define DEBUG_TOGGLE (n)

Enumeration Documentation

SleepModes

SleepModes

Enumerations for the possible microcontroller sleep modes.

SLEEPMODE_RUNNING Everything is active and running. In practice this mode is not used, but it is defined for completeness

of information.

SLEEPMODE_IDLE Only the CPU is idled. The rest of the chip continues running normally. The chip will wake from any

interrupt.

SLEEPMODE_WAKETIMER The sleep timer clock sources remain running. The RC is always running and the 32kHz XTAL

depends on the board header. Wakeup is possible from both GPIO and the sleep timer. System time is maintained. The sleep

timer is assumed to be configured properly for wake events.

SLEEPMODE_MAINTAINTIMER The sleep timer clock sources remain running. The RC is always running and the 32kHz XTAL

depends on the board header. Wakeup is possible from only GPIO. System time is maintained. NOTE: This mode is not

available on EM2XX chips.

SLEEPMODE_NOTIMER The sleep timer clock sources (both RC and XTAL) are turned off. Wakeup is possible from only GPIO.

System time is lost.

SLEEPMODE_HIBERNATE This maps to EM4 Hibernate on the EFM32/EFR32 devices. RAM is not retained in

SLEEPMODE_HIBERNATE so waking up from this sleepmode will behave like a reset. NOTE: This mode is only available on

EFM32/EFR32

Enumerator

SLEEPMODE_RUNNING

SLEEPMODE_IDLE

SLEEPMODE_WAKETIMER

SLEEPMODE_MAINTAINTIMER

SLEEPMODE_NOTIMER

SLEEPMODE_HIBERNATE

SLEEPMODE_RESERVED

SLEEPMODE_POWERDOWN

SLEEPMODE_POWERSAVE

Definition at line 106 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Typedef Documentation

Common Microcontroller Functions

211/326

WakeEvents

typedef uint32_t WakeEvents

Definition at line 141 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

WakeMask

typedef uint32_t WakeMask

Definition at line 142 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Variable Documentation

halCommonVreg1v8EnableCount

volatile int8_t halCommonVreg1v8EnableCount

Helper variable to track the state of 1.8V regulator.

Note

: Only used when DISABLE_INTERNAL_1V8_REGULATOR is defined.

Definition at line 195 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Function Documentation

halStackProcessBootCount

void halStackProcessBootCount (void)

Called from emberInit and provides a means for the HAL to increment a boot counter, most commonly in non-volatile

memory.

Parameters

N/A

This is useful while debugging to determine the number of resets that might be seen over a period of time. Exposing this

functionality allows the application to disable or alter processing of the boot counter if, for example, the application is

expecting a lot of resets that could wear out non-volatile storage or some

EmberStack Usage:\n Called from emberInit only
as helpful debugging information.
This should be left enabled by default, but this function can also be reduced to a simple return statement if boot counting is

not desired.

Definition at line 68 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro.h

halGetResetInfo

Common Microcontroller Functions

212/326

uint8_t halGetResetInfo (void)

Gets information about what caused the microcontroller to reset.

Parameters

N/A

Returns

A code identifying the cause of the reset.

Definition at line 74 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro.h

halGetResetString

PGM_P halGetResetString (void)

Calls halGetResetInfo() and supplies a string describing it.

Parameters

N/A

Application Usage:\n Useful for diagnostic printing
of text just after program
initialization.

Returns

A pointer to a program space string.

Definition at line 83 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro.h

halInit

void halInit (void)

Initializes microcontroller-specific peripherals.

Parameters

N/A

Definition at line 30 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halReboot

void halReboot (void)

Restarts the microcontroller and therefore everything else.

Parameters

N/A

Common Microcontroller Functions

213/326

Definition at line 34 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halPowerUp

void halPowerUp (void)

Powers up microcontroller peripherals and board peripherals.

Parameters

N/A

Definition at line 38 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halPowerDown

void halPowerDown (void)

Powers down microcontroller peripherals and board peripherals.

Parameters

N/A

Definition at line 42 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halResume

void halResume (void)

Resumes microcontroller peripherals and board peripherals.

Parameters

N/A

Definition at line 46 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halSuspend

void halSuspend (void)

Suspends microcontroller peripherals and board peripherals.

Parameters

N/A

Definition at line 50 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halInternalEnableWatchDog

void halInternalEnableWatchDog (void)

Enables the watchdog timer.

Common Microcontroller Functions

214/326

Parameters

N/A

Definition at line 60 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halInternalDisableWatchDog

void halInternalDisableWatchDog (uint8_t magicKey)

Disables the watchdog timer.

Parameters

N/A magicKey A value (MICRO_DISABLE_WATCH_DOG_KEY) that enables the function.

Note

To prevent the watchdog from being disabled accidentally, a magic key must be provided.

Definition at line 69 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halInternalWatchDogEnabled

bool halInternalWatchDogEnabled (void)

Determines whether the watchdog has been enabled or disabled.

Parameters

N/A

Returns

A bool value indicating if the watchdog is current enabled.

Definition at line 75 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halSleep

void halSleep (SleepModes sleepMode)

Puts the microcontroller to sleep in a specified mode.

Parameters

N/A sleepMode A microcontroller sleep mode

Note

This routine always enables interrupts.

See Also

S leepModes

Definition at line 160 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Common Microcontroller Functions

215/326

halSleepPreserveInts

void halSleepPreserveInts (SleepModes sleepMode)

Same as halS leep() except it preserves the current interrupt state rather than always enabling interrupts prior to returning.

Parameters

N/A sleepMode A microcontroller sleep mode

See Also

S leepModes

Definition at line 169 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halCommonDelayMicroseconds

void halCommonDelayMicroseconds (uint16_t us)

Blocks the current thread of execution for the specified amount of time, in microseconds.

Parameters

N/A us The specified time, in microseconds. Values should be between 1 and 65535 microseconds.

The function is implemented with cycle-counted busy loops and is intended to create the short delays required when

interfacing with hardware peripherals.

The accuracy of the timing provided by this function is not specified, but a general rule is that when running off of a crystal

oscillator it will be within 10us. If the micro is running off of another type of oscillator (e.g. RC) the timing accuracy will

potentially be much worse.

Definition at line 186 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halCommonDisableVreg1v8

void halCommonDisableVreg1v8 (void)

Disable the 1.8V regulator. This function is to be used when the 1.8V supply is provided externally. Disabling the regulator

saves current consumption. Disabling the regulator will cause ADC readings of external signals to be wrong. These exteranl

signals include analog sources ADC0 thru ADC5 and VDD_PADS/4.

Parameters

N/A

Note

: Only used when DISABLE_INTERNAL_1V8_REGULATOR is defined.

Definition at line 206 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halCommonEnableVreg1v8

void halCommonEnableVreg1v8 (void)

Common Microcontroller Functions

216/326

Enable the 1.8V regulator. Normally the 1.8V regulator is enabled out of reset. This function is only needed if the 1.8V

regulator has been disabled and ADC conversions on external signals are needed. These exteranl signals include analog

sources ADC0 thru ADC5 and VDD_PADS/4. The state of 1v8 survives deep sleep.

Parameters

N/A

Note

: Only used when DISABLE_INTERNAL_1V8_REGULATOR is defined.

Definition at line 217 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halBeforeEM4

void halBeforeEM4 (uint32_t duration, RTCCRamData input)

Parameters

N/A duration

N/A input

Definition at line 228 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

halAfterEM4

RTCCRamData halAfterEM4 (void)

Parameters

N/A

Definition at line 229 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Macro Definition Documentation

halGetEm2xxResetInfo

#define halGetEm2xxResetInfo

Value:

()

Calls ::halGetExtendedResetInfo() and translates the EM35x reset code to the corresponding value used by the EM2XX

HAL. Any reset codes not present in the EM2XX are returned after being OR'ed with 0x80.

Application Usage:\n Used by the EZSP host as a
platform-independent NCP reset code.
Returns

The EM2XX-compatible reset code. If not supported by the EM2XX, return the platform-specific code with B7 set.

Common Microcontroller Functions

217/326

Definition at line 98 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro.h

MICRO_DISABLE_WATCH_DOG_KEY

#define MICRO_DISABLE_WATCH_DOG_KEY

Value:

0xA5U

The value that must be passed as the single parameter to halInternalDisableWatchDog() in order to successfully disable the

watchdog timer.

Definition at line 56 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

GPIO_MASK_SIZE

#define GPIO_MASK_SIZE

Value:

24

Definition at line 137 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

GPIO_MASK

#define GPIO_MASK

Value:

0xFFFFFF

Definition at line 138 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

WAKE_GPIO_MASK

#define WAKE_GPIO_MASK

Value:

GPIO_MASK

Definition at line 139 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

WAKE_GPIO_SIZE

#define WAKE_GPIO_SIZE

Value:

GPIO_MASK_SIZE

Definition at line 140 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Common Microcontroller Functions

218/326

#define WAKE_MASK_INVALID

Value:

(-1)

Definition at line 145 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

WAKE_EVENT_SIZE

#define WAKE_EVENT_SIZE

Value:

WakeMask

Note

The preprocessor symbol WAKE_EVENT_SIZE has been deprecated. Please use WakeMask instead.

Definition at line 150 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

DEBUG_TOGGLE

#define DEBUG_TOGGLE

Definition at line 188 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

RTCCRamData

219/326

RTCCRamData

Public Attributes

uint32_t outgoingNwkFrameCounter

uint32_t incomingParentNwkFrameCounter

uint32_t outgoingLinkKeyFrameCounter

uint32_t incomingLinkKeyFrameCounter

Public Attribute Documentation

outgoingNwkFrameCounter

uint32_t RTCCRamData::outgoingNwkFrameCounter

Definition at line 223 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

incomingParentNwkFrameCounter

uint32_t RTCCRamData::incomingParentNwkFrameCounter

Definition at line 224 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

outgoingLinkKeyFrameCounter

uint32_t RTCCRamData::outgoingLinkKeyFrameCounter

Definition at line 225 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

incomingLinkKeyFrameCounter

uint32_t RTCCRamData::incomingLinkKeyFrameCounter

Definition at line 226 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/micro-common.h

Token Access

220/326

Token Access

Token Access
The token system stores such non-volatile information as the manufacturing ID, channel number, transmit power, and

various pieces of information that the application needs to be persistent between device power cycles. The token system

is design to abstract implementation details and simplify interacting with differing non-volatile systems. The majority of

tokens are stored in S imulated EEPROM or NVM3 (in Flash) where they can be rewritten. Manufacturing tokens are stored

in dedicated regions of flash and are not designed to be rewritten.

Refer to the Tokens module for a detailed description of the token system.
Refer to the S imulated EEPROM module for a

detailed description of the necessary support functions for S imulated EEPROM.
Refer to the simeeprom2 module for a

detailed description of the necessary support functions for S imulated EEPROM, version 2.
Refer to the nvm3 module for a

detailed description of the necessary support functions for NVM3.
Refer to token-stack.h for stack token definitions.
Refer

to token-manufacturing.h for manufaturing token definitions.Note

S imulated EEPROM, version 2 is only supported on EM335x chips.

NVM3 is currently only supported on EFx32 chips.

Modules

Tokens

S imulated EEPROM

Tokens

221/326

Tokens

Tokens
There are three main types of tokens:

Manufacturing tokens: Tokens that are set at the factory and must not be changed through software operations.

Stack-level tokens: Tokens that can be changed via the appropriate stack API calls.

Application level tokens: Tokens that can be set via the token system API calls in this file.

The token system API controls writing tokens to non-volatile data and reading tokens from non-volatile data. If an

application wishes to use application specific normal tokens, it must do so by creating its own token header file similar to

token-stack.h. The macro APPLICATION_TOKEN_HEADER should be defined to equal the name of the header file in which

application tokens are defined. If an application wishes to use application specific manufacturing tokens, it must do so by

creating its own manufacturing token header file similar to token-manufacturing.h. The macro

APPLICATION_MFG_TOKEN_HEADER should be defined to equal the name of the header file in which manufacturing tokens are

defined.

Because the token system is based on memory locations within non-volatile storage, the token information could become

out of sync without some kind of version tracking. The two defines, CURRENT_MFG_TOKEN_VERSION and

CURRENT_STACK_TOKEN_VERSION , are used to make sure the stack stays in sync with the proper token set. If the application

defines its own tokens, it is recommended that the application also define an application token to be a application version

to ensure the application stays in sync with the proper token set.

The most general format of a token definition is:

#define CREATOR_name 16bit_value

#define NVM3KEY_name 20bit_value

#ifdef DEFINETYPES

 typedef data_type type

#endif

#ifdef DEFINETOKENS

 DEFINE_*_TOKEN(name, type, ... ,defaults)

#endif

The defined CREATOR is used as a distinct identifier tag for the token when using S imulated EEPROM or with manufacturing

tokens. The CREATOR is necessary because the token name is defined differently depending on underlying implementation,

so the CREATOR makes sure token definitions and data stay tagged and known. The only requirement on these creator

definitions is that they all must be unique. A favorite method for picking creator codes is to use two ASCII characters

inorder to make the codes more memorable. The 'name' part of the #define CREATOR_name must match the 'name' provided

in the DEFINE_*_TOKEN because the token system uses this name to automatically link the two.

The defined NVM3KEY is used to map the token to an NVM3 key and is needed using NVM3 as the underlying storage

mechanism. This key can also be used as an identifier for a token's NVM3 object when using the native NVM3 API. The

NVM3 keys must be unique for one instance of the NVM3 backing storage. All tokens share the same NVM3 instance and

hence all NVM3KEYS for tokens must be unique. The 'name' part of the #define NVM3KEY_name must match the 'name'

provided in the DEFINE_*_TOKEN because the token system uses this name to automatically link the two. For indexed

tokens, the 127 NVM3KEY values following the defined NVM3KEY for a token should also be reserved. This is done as one

NVM3KEY is used for each index in an indexed token and hence these NVM3KEYS should not collide with the eys of other

tokens.

As NVM3 is shared among several stacks and application code, the NVM3KEY values chosen must be defined in the

correct region to avoid collisions.

Tokens

222/326

The following NVM3KEY regions are defined: 0x0xxxx : User objects 0x1xxxx : zigbee stack objects 0x2xxxx : Thread stack

objects 0x3xxxx : Connect stack objects 0x4xxxx : Bluetooth stack objects

The typedef provides a convenient and efficient abstraction of the token data. S ince some tokens are structs with multiple

pieces of data inside of them, type defining the token type allows more efficient and readable local copies of the tokens

throughout the code.

The typedef is wrapped with an #ifdef DEFINETYPES because the typdefs and token defs live in the same file, and

DEFINETYPES is used to select only the typedefs when the file is included. S imilarly, the DEFINE_*_TOKEN is wrapped with

an #ifdef DEFINETOKENS as a method for selecting only the token definitions when the file is included.

The abstract definition, DEFINE_*_TOKEN(name , type , ... ,defaults) , has seven possible complete

definitions: DEFINE_BASIC_TOKEN(name , type , ...) DEFINE_INDEXED_TOKEN(name , type , arraysize , ...) DEFINE_COUNTER_TOKEN(name ,

type , ...) DEFINE_MFG_TOKEN(name , type , address, ...) The three fields common to all DEFINE_*_TOKEN are:
name - The name of

the token, which all information is tied to.
type - Type of the token which is the same as the typedef mentioned before.
... -

The default value to which the token is set upon initialization.

Note

The old DEFINE_FIXED* token definitions are no longer used. They remain defined for backwards compatibility. In current

systems, the S imulated EEPROM or NVM3 is used for storing non-manufacturing tokens and the S imulated EEPROM or NVM3

intelligently manages where tokens are stored to provide wear leveling across the flash memory and increase the number of

write cycles. Manufacturing tokens live at a fixed address, but they must use DEFINE_MFG_TOKEN so the token system

knows they are manufacturing tokens.

DEFINE_BASIC_TOKEN is the simplest definition and will be used for the majority of tokens (tokens that are not indexed,

not counters, and not manufacturing). Basic tokens are designed for data storage that is always accessed as a single

element.

DEFINE_INDEXED_TOKEN should be used on tokens that look like arrays. For example, data storage that looks like:

 uint32_t myData[5]

<br<blockquote> This example data storage can be a token with typedef of uint32_t and defined as INDEXED with

arraysize of 5. The extra field in this token definition is: arraysize - The number of elements in the indexed token. Indexed

tokens are designed for data storage that is logically grouped together, but elements are accessed individually. Note that

when assigning an NVM3KEY for an indexed token, the 126 higher numbered NVM3KEYs following the NVM3KEY that you

define are reserved for that token and no other tokens should be defined with NVM3KEYs in this region.

DEFINE_COUNTER_TOKEN should be used on tokens that are simple numbers where the majority of operations on the

token is to increment the count. The reason for using DEFINE_COUNTER_TOKEN instead of DEFINE_BASIC_TOKEN is the

special support that the token system provides for incrementing counters. The function call

halCommonIncrementCounterToken() only operates on counter tokens and is more efficient in terms of speed, data

compression, and write cyles for incrementing simple numbers in the token system.

DEFINE_MFG_TOKEN is a DEFINE_BASIC_TOKEN token at a specific address and the token is manufacturing data that is

written only once. The major difference is this token is designated manufacturing, which means the token system treats it

differently from stack or app tokens. Primarily, a manufacturing token is written only once and lives at a fixed address

outside of the S imulated EEPROM or NVM3 system. Being a write once token, the token system will also aid in debugging

by asserting if there is an attempt to write a manufacturing token.

Here is an example of two application tokens. The definition is compatible with both S imulated EEPROM and NVM3 as both

CREATOR and NVM3KEY defines are included.

Tokens

223/326

#define CREATOR_SENSOR_NAME 0x5354

#define CREATOR_SENSOR_PARAMETERS 0x5350

#define NVM3KEY_SENSOR_NAME 0x0AB54

#define NVM3KEY_SENSOR_PARAMETERS 0x00150

#ifdef DEFINETYPES

 typedef uint8_t tokTypeSensorName[10];

 typedef struct {

 uint8_t initValues[5];

 uint8_t reportInterval;

 uint16_t calibrationValue;

} tokTypeSensorParameters;

#endif

#ifdef DEFINETOKENS

DEFINE_BASIC_TOKEN(SENSOR_NAME,

 tokTypeSensorName,

{'U','N','A','M','E','D',' ',' ',' ',' '})

DEFINE_BASIC_TOKEN(SENSOR_PARAMETERS,

 tokTypeSensorParameters,

{{0x01,0x02,0x03,0x04,0x05},5,0x0000})

#endif

Here is an example of how to use the two application tokens:

{

 tokTypeSensorName sensor;

 tokTypeSensorParameters params;

halCommonGetToken(&sensor, TOKEN_SENSOR_NAME);

halCommonGetToken(¶ms, TOKEN_SENSOR_PARAMETERS);

if(params.calibrationValue == 0xBEEF) {

 params.reportInterval = 5;

}

halCommonSetToken(TOKEN_SENSOR_PARAMETERS, ¶ms);

}

See token-stack.h to see the default set of tokens and their values.

The nodetest utility app can be used for generic manipulation such as loading default token values, viewing tokens, and

writing tokens. The nodetest utility cannot work with customer defined application tokens or manufacturing tokens. Using

the nodetest utility will erase customer defined application tokens in the Simulated EEPROM and NVM3.

The S imulated EEPROM or NVM3 will initialize tokens to their default values if the token does not yet exist, the token's

creator code is changed, or the token's size changes.

Changing the number indexes in an INDEXED token will not alter existing entries. If the number of indexes is reduced, the

entires that still fit in the token will retain their data and the entries that no longer fit will be erased. If the number of

indexes is increased, the existing entries retain their data and the new entries are initialized to the token's defaults.

Further details on exact implementation can be found in code comments in token-stack.h file, the platform specific token-

manufacturing.h file, the platform specific token.h file, and the platform specific token.c file.

Some functions in this file return an EmberStatus value. See error-def.h for definitions of all EmberStatus return values.

See hal/micro/token.h for source code.

Functions

EmberStatus halStackInitTokens(void)
Initializes and enables the token system. Checks if the manufacturing and stack non-vo latile data versions are correct.

Tokens

224/326

Macros

#define halCommonGetToken (data, token)
Macro that copies the token value from non-vo latile storage into a RAM location. This macro can only be used with

tokens that are defined using DEFINE_BASIC_TOKEN.

#define halCommonGetMfgToken (data, token)
Macro that copies the token value from non-vo latile storage into a RAM location. This macro can only be used with

tokens that are defined using DEFINE_MFG_TOKEN.

#define halCommonGetIndexedToken (data, token, index)
Macro that copies the token value from non-vo latile storage into a RAM location. This macro can only be used with

tokens that are defined using DEFINE_INDEXED_TOKEN.

#define halCommonSetToken (token, data)
Macro that sets the value of a token in non-vo latile storage . This macro can only be used with tokens that are defined

using DEFINE_BASIC_TOKEN.

#define halCommonSetIndexedToken (token, index, data)
Macro that sets the value of a token in non-vo latile storage . This macro can only be used with tokens that are defined

using DEFINE_INDEXED_TOKEN.

#define halCommonIncrementCounterToken (token)
Macro that increments the value of a token that is a counter. This macro can only be used with tokens that are defined

using either DEFINE_COUNTER_TOKEN.

Function Documentation

halStackInitTokens

EmberStatus halStackInitTokens (void)

Initializes and enables the token system. Checks if the manufacturing and stack non-volatile data versions are correct.

Parameters

N/A

Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 294 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

Macro Definition Documentation

halCommonGetToken

#define halCommonGetToken

Macro that copies the token value from non-volatile storage into a RAM location. This macro can only be used with tokens

that are defined using DEFINE_BASIC_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above.

Definition at line 318 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

Tokens

225/326

halCommonGetMfgToken

#define halCommonGetMfgToken

Macro that copies the token value from non-volatile storage into a RAM location. This macro can only be used with tokens

that are defined using DEFINE_MFG_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above.

Definition at line 333 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

halCommonGetIndexedToken

#define halCommonGetIndexedToken

Macro that copies the token value from non-volatile storage into a RAM location. This macro can only be used with tokens

that are defined using DEFINE_INDEXED_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above.

Definition at line 349 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

halCommonSetToken

#define halCommonSetToken

Macro that sets the value of a token in non-volatile storage. This macro can only be used with tokens that are defined

using DEFINE_BASIC_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above. For EFR32 devices this

function must not be called in IRQ context as it can cause data corruption.

Definition at line 365 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

halCommonSetIndexedToken

#define halCommonSetIndexedToken

Macro that sets the value of a token in non-volatile storage. This macro can only be used with tokens that are defined

using DEFINE_INDEXED_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above.

Definition at line 382 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

Tokens

226/326

halCommonIncrementCounterToken

#define halCommonIncrementCounterToken

Macro that increments the value of a token that is a counter. This macro can only be used with tokens that are defined

using either DEFINE_COUNTER_TOKEN.

Note

To better understand the parameters of this macro, refer to the example of token usage above.

Definition at line 395 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/token.h

Simulated EEPROM

227/326

Simulated EEPROM

Simulated EEPROM
The S imulated EEPROM system (typically referred to as S imEE) is designed to operate under the Token Access API and

provide a non-volatile storage system. S ince the flash write cycles are finite, the S imulated EEPROM's primary purpose is to

perform wear leveling across several hardware flash pages, ultimately increasing the number of times tokens may be written

before a hardware failure.

The S imulated EEPROM needs to periodically perform a page erase operation to recover storage area for future token

writes. The page erase operation requires an ATOMIC block of 21ms. S ince this is such a long time to not be able to service

any interrupts, the page erase operation is under application control providing the application the opportunity to decide

when to perform the operation and complete any special handling needed that might be needed.

Note

The best, safest, and recommended practice is for the application to regularly and always call the function

halS imEepromErasePage() when the application can expect and deal with the page erase delay. halS imEepromErasePage()

will immediately return if there is nothing to erase. If there is something that needs to be erased, doing so as regularly and as

soon as possible will keep the S imEE in the healthiest state possible.

::ERASE_CRITICAL_THRESHOLD is the metric the freePtr is compared against. This metric is set to about 3/4 full. The

freePtr is a marker used internally by the S imulated EEPROM to track where data ends and where available write space

begins. If the freePtr crosses this threhold, halS imEepromCallback() will be called with an EmberStatus of

EMBER_SIM_EEPROM_ERASE_PAGE_RED, indicating a critical need for the application to call halS imEepromErasePage()

which will erase a hardware page and provide fresh storage for the S imulated EEPROM to write token data. If freePtr is less

than the threshold, the callback will have an EmberStatus of EMBER_SIM_EEPROM_ERASE_PAGE_GREEN indicating the

application should call halS imEepromErasePage() at its earliest convenience, but doing so is not critically important at this

time.

Some functions in this file return an EmberStatus value. See error-def.h for definitions of all EmberStatus return values.

See hal/plugin/sim-eeprom/sim-eeprom.h for source code.

Functions

void halSimEepromCallback(EmberStatus status)
The Simulated EEPROM callback function, implemented by the application.

uint8_t halSimEepromErasePage(void)
Erases a hardware flash page , if needed.

uint8_t halSimEepromPagesRemainingToBeErased(void)
Get count of pages to be erased.

void halSimEepromStatus(uint16_t *freeWordsUntilFull, uint16_t *totalPageUseCount)
Provides two basic statistics.

Function Documentation

halSimEepromCallback

Simulated EEPROM

228/326

void halSimEepromCallback (EmberStatus status)

The S imulated EEPROM callback function, implemented by the application.

Parameters

N/A status An EmberStatus error code indicating one of the conditions described below.

This callback will report an EmberStatus of EMBER_SIM_EEPROM_ERASE_PAGE_GREEN whenever a token is set and a page

needs to be erased. If the main application loop does not periodically call halS imEepromErasePage(), it is best to then erase

a page in response to EMBER_SIM_EEPROM_ERASE_PAGE_GREEN.

This callback will report an EmberStatus of EMBER_SIM_EEPROM_ERASE_PAGE_RED when the pages must be erased to

prevent data loss. halS imEepromErasePage() needs to be called until it returns 0 to indicate there are no more pages that

need to be erased. Ignoring this indication and not erasing the pages will cause dropping the new data trying to be written.

This callback will report an EmberStatus of EMBER_SIM_EEPROM_FULL when the new data cannot be written due to

unerased pages. Not erasing pages regularly, not erasing in response to EMBER_SIM_EEPROM_ERASE_PAGE_GREEN, or

not erasing in response to EMBER_SIM_EEPROM_ERASE_PAGE_RED will cause EMBER_SIM_EEPROM_FULL and the new

data will be lost!. Any future write attempts will be lost as well.

This callback will report an EmberStatus of EMBER_SIM_EEPROM_REPAIRING when the S imulated EEPROM needs to repair

itself. While there's nothing for an app to do when the S imEE is going to repair itself (S imEE has to be fully functional for the

rest of the system to work), alert the application to the fact that repairing is occuring. There are debugging scenarios where

an app might want to know that repairing is happening; such as monitoring frequency. Note

Common situations will trigger an expected repair, such as using a new chip or changing token definitions.

If the callback ever reports the status EMBER_ERR_FLASH_WRITE_INHIBITED or EMBER_ERR_FLASH_VERIFY_FAILED, this

indicates a catastrophic failure in flash writing, meaning either the address being written is not empty or the write itself has

failed. If EMBER_ERR_FLASH_WRITE_INHIBITED is encountered, the function ::halInternalS imEeRepair(false) should be

called and the chip should then be reset to allow proper initialization to recover. If EMBER_ERR_FLASH_VERIFY_FAILED is

encountered the S imulated EEPROM (and tokens) on the specific chip with this error should not be trusted anymore.

Definition at line 130 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/plugin/sim-eeprom/sim-eeprom.h

halSimEepromErasePage

uint8_t halSimEepromErasePage (void)

Erases a hardware flash page, if needed.

Parameters

N/A

This function can be called at anytime from anywhere in the application (except ISRs) and will only take effect if needed

(otherwise it will return immediately). S ince this function takes 21ms to erase a hardware page during which interrupts

cannot be serviced, it is preferable to call this function while in a state that can withstand being unresponsive for so long.

The S imulated EEPROM will periodically request through the halS imEepromCallback() that a page be erased. The S imulated

EEPROM will never erase a page (which could result in data loss) and relies entirely on the application to call this function to

approve a page erase (only one erase per call to this function).

The S imulated EEPROM depends on the ability to move between two Virtual Pages, which are comprised of multiple

hardware pages. Before moving to the unused Virtual Page, all hardware pages comprising the unused Virtual Page must be

erased first. The erase time of a hardware flash page is 21ms. During this time the chip will be unresponsive and unable to

service an interrupt or execute any code (due to the flash being unavailable during the erase procedure). This function is

used to trigger a page erase.

Returns

Simulated EEPROM

229/326

A count of how many hardware pages are left to be erased. This return value allows for calling code to easily loop over this

function until the function returns 0.

Definition at line 158 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/plugin/sim-eeprom/sim-eeprom.h

halSimEepromPagesRemainingToBeErased

uint8_t halSimEepromPagesRemainingToBeErased (void)

Get count of pages to be erased.

Parameters

N/A

This function returns the same value halS imEepromErasePage() would return, but without modifying/erasing any flash.

Returns

A count of how many hardware pages are left to be erased. This code assist with loops wanting to know how much is left to

erase.

Definition at line 168 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/plugin/sim-eeprom/sim-eeprom.h

halSimEepromStatus

void halSimEepromStatus (uint16_t *freeWordsUntilFull, uint16_t *totalPageUseCount)

Provides two basic statistics.

Parameters

N/A freeWordsUntilFull Number of unused words available to S imEE until the S imEE is full and would trigger an

EMBER_SIM_EEPROM_ERASE_PAGE_RED then EMBER_SIM_EEPROM_FULL callback.

N/A totalPageUseCount The value of the highest page counter indicating how many times the S imulated EEPROM has

rotated physical flash pages (and approximate write cycles).

The number of unused words until S imEE is full

The total page use count

There is a lot of management and state processing involved with the S imulated EEPROM, and most of it has no practical

purpose in the application. These two parameters provide a simple metric for knowing how soon the S imulated EEPROM will

be full (::freeWordsUntilFull) and how many times (approximatly) S imEE has rotated pysical flash pages

(::totalPageUseCount).

Definition at line 190 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/plugin/sim-eeprom/sim-eeprom.h

Sample APIs for Peripheral Access

230/326

Sample APIs for Peripheral Access

Sample APIs for Peripheral Access
These are sample API for accessing peripherals and can be modified as needed for your applications.

Modules

Serial UART Communication

Button Control

Buzzer Control

LED Control

Flash Memory Control

Serial UART Communication

231/326

Serial UART Communication

Serial UART Communication
This API contains the HAL interfaces that applications must implement for the high-level serial code.

This header describes the interface between the high-level serial APIs in serial/serial.h and the low level UART

implementation.

Some functions in this file return an EmberStatus value. See error-def.h for definitions of all EmberStatus return values.

See hal/micro/serial.h for source code.

Serial HAL APIs

These functions must be implemented by the HAL in order for the serial code to operate. Only the higher-level serial code

uses these functions, so they should not be called directly. The HAL should also implement the appropriate interrupt

handlers to drain the TX queues and fill the RX FIFO queue.

EmberStatus halInternalUartInit(uint8_t port, SerialBaudRate rate, SerialParity parity, uint8_t stopBits)
Initializes the UART to the given settings (same parameters as ::emberSerialInit()).

void halInternalPowerDownUart(void)
This function is typically called by halPowerDown() and it is responsible for performing all the work internal to the UART

needed to stop the UART before a sleep cycle .

void halInternalPowerUpUart(void)
This function is typically called by halPowerUp() and it is responsible for performing all the work internal to the UART

needed to restart the UART after a sleep cycle .

void halInternalStartUartTx(uint8_t port)
Called by serial code whenever anything is queued for transmission to start any interrupt-driven transmission. May be

called when transmission is already in progess.

void halInternalStopUartTx(uint8_t port)
Called by serial code to stop any interrupt-driven serial transmission currently in progress.

EmberStatus halInternalForceWriteUartData(uint8_t port, uint8_t *data, uint8_t length)
Directly writes a byte to the UART for transmission, regardless of anything currently queued for transmission. Should

wait for anything currently in the UART hardware registers to finish transmission first, and block until data is finished

being sent.

EmberStatus halInternalForceReadUartByte(uint8_t port, uint8_t *dataByte)
Directly reads a byte from the UART for reception, regardless of anything currently queued for reception. Does not

block if a data byte has not been received.

void halInternalWaitUartTxComplete(uint8_t port)
Blocks until the UART has finished transmitting any data in its hardware registers.

void halInternalRestartUart(void)
This function is typically called by ::halInternalPowerUpBoard() and it is responsible for performing all the work internal

to the UART needed to restart the UART after a sleep cycle . (For example , resyncing the DMA hardware and the serial

FIFO.)

Serial UART Communication

232/326

bool halInternalUartFlowControlRxIsEnabled(uint8_t port)
Checks to see if the host is allowed to send serial data to the ncp - i.e ., it is not being held off by nCTS or an XOFF.

Returns true is the host is able to send.

bool halInternalUartXonRefreshDone(uint8_t port)
When Xon/Xoff flow contro l is used, returns true if the host is not being held off and XON refreshing is complete .

bool halInternalUartTxIsIdle(uint8_t port)
Returns true if the uart transmitter is idle , including the transmit shift register.

bool serialDropPacket(void)
Testing function implemented by the upper layer. Determines whether the next packet should be dropped. Returns

true if the next packet should be dropped, false otherwise .

#define halInternalUartFlowControl (port)
This function is used in FIFO mode when flow contro l is enabled. It is called from emberSerialReadByte(), and based on

the number of bytes used in the uart receive queue , decides when to tell the host it may resume transmission.

#define halInternalUartRxPump (port)
This function exists only in software UART (SOFTUART) mode on the EM3xx. This function is called by

::emberSerialReadByte(). It is responsible for maintaining synchronization between the emSerialRxQueue and the UART

DMA.

#define halInternalUart1FlowControlRxIsEnabled ()
This function is used in FIFO mode when flow contro l is enabled. It is called from emberSerialReadByte(), and based on

the number of bytes used in the uart receive queue , decides when to tell the host it may resume transmission.

#define halInternalUart1XonRefreshDone ()
This function is used in FIFO mode when flow contro l is enabled. It is called from emberSerialReadByte(), and based on

the number of bytes used in the uart receive queue , decides when to tell the host it may resume transmission.

#define halInternalUart1TxIsIdle ()
This function is used in FIFO mode when flow contro l is enabled. It is called from emberSerialReadByte(), and based on

the number of bytes used in the uart receive queue , decides when to tell the host it may resume transmission.

Virtual UART API

API used by the stack in debug builds to receive data arriving over the virtual UART.

void halStackReceiveVuartMessage(uint8_t *data, uint8_t length)
When using a debug build with virtual UART support, this API is called by the stack when virtual UART data has been

received over the debug channel.

Serial Mode Definitions

These are numerical definitions for the possible serial modes so that code can test for the one being used. There may be

additional modes defined in the micro-specific micro.h.

#define EMBER_SERIAL_UNUSED 0
A numerical definition for a possible serial mode the code can test for.

#define EMBER_SERIAL_FIFO 1
A numerical definition for a possible serial mode the code can test for.

#define EMBER_SERIAL_LOWLEVEL 2
A numerical definition for a possible serial mode the code can test for.

FIFO Utility Macros

Serial UART Communication

233/326

These macros manipulate the FIFO queue data structures to add and remove data.

#define FIFO_ENQUEUE (queue, data, size)
Macro that enqueues a byte of data in a FIFO queue .

#define FIFO_DEQUEUE (queue, size)
Macro that de-queues a byte of data from a FIFO queue .

Enumerations

enum SerialBaudRate {

DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0
DEFINE_BAUD =(300) = 0

}
Assign numerical values for variables that ho ld Baud Rate parameters.

enum SerialParity {

DEFINE_PARITY =(NONE) = 0U
DEFINE_PARITY =(NONE) = 0U
DEFINE_PARITY =(NONE) = 0U

}
CORTEXM3_EFM32_MICRO.

Functions

void halHostFlushBuffers(void)

uint16_t halHostEnqueueTx(const uint8_t *data, uint16_t length)

void halHostFlushTx(void)

uint16_t serialCopyFromRx(const uint8_t *data, uint16_t length)

void emLoadSerialTx(void)

Serial HAL APIs Documentation

halInternalUartInit

EmberStatus halInternalUartInit (uint8_t port, SerialBaudRate rate, SerialParity parity, uint8_t stopBits)

Serial UART Communication

234/326

Initializes the UART to the given settings (same parameters as ::emberSerialInit()).

Parameters

N/A port Serial port number (0 or 1).

N/A rate Baud rate (see SerialBaudRate).

N/A parity Parity value (see SerialParity).

N/A stopBits Number of stop bits.

Returns

An error code if initialization failed (such as invalid baud rate), otherise EMBER_SUCCESS.

Definition at line 410 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalPowerDownUart

void halInternalPowerDownUart (void)

This function is typically called by halPowerDown() and it is responsible for performing all the work internal to the UART

needed to stop the UART before a sleep cycle.

Parameters

N/A

Definition at line 419 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalPowerUpUart

void halInternalPowerUpUart (void)

This function is typically called by halPowerUp() and it is responsible for performing all the work internal to the UART

needed to restart the UART after a sleep cycle.

Parameters

N/A

Definition at line 425 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalStartUartTx

void halInternalStartUartTx (uint8_t port)

Called by serial code whenever anything is queued for transmission to start any interrupt-driven transmission. May be called

when transmission is already in progess.

Parameters

N/A port Serial port number (0 or 1).

Definition at line 433 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalStopUartTx

Serial UART Communication

235/326

void halInternalStopUartTx (uint8_t port)

Called by serial code to stop any interrupt-driven serial transmission currently in progress.

Parameters

N/A port Serial port number (0 or 1).

Definition at line 440 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalForceWriteUartData

EmberStatus halInternalForceWriteUartData (uint8_t port, uint8_t *data, uint8_t length)

Directly writes a byte to the UART for transmission, regardless of anything currently queued for transmission. Should wait

for anything currently in the UART hardware registers to finish transmission first, and block until data is finished being sent.

Parameters

N/A port Serial port number (0 or 1).

N/A data Pointer to the data to be transmitted.

N/A length The length of data to be transmitted

Definition at line 453 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalForceReadUartByte

EmberStatus halInternalForceReadUartByte (uint8_t port, uint8_t *dataByte)

Directly reads a byte from the UART for reception, regardless of anything currently queued for reception. Does not block if

a data byte has not been received.

Parameters

N/A port Serial port number (0 or 1).

N/A dataByte The byte to receive data into.

Definition at line 463 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalWaitUartTxComplete

void halInternalWaitUartTxComplete (uint8_t port)

Blocks until the UART has finished transmitting any data in its hardware registers.

Parameters

N/A port Serial port number (0 or 1).

Definition at line 470 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalRestartUart

Serial UART Communication

236/326

void halInternalRestartUart (void)

This function is typically called by ::halInternalPowerUpBoard() and it is responsible for performing all the work internal to the

UART needed to restart the UART after a sleep cycle. (For example, resyncing the DMA hardware and the serial FIFO.)

Parameters

N/A

Definition at line 506 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUartFlowControlRxIsEnabled

bool halInternalUartFlowControlRxIsEnabled (uint8_t port)

Checks to see if the host is allowed to send serial data to the ncp - i.e., it is not being held off by nCTS or an XOFF.

Returns true is the host is able to send.

Parameters

N/A port

Definition at line 513 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUartXonRefreshDone

bool halInternalUartXonRefreshDone (uint8_t port)

When Xon/Xoff flow control is used, returns true if the host is not being held off and XON refreshing is complete.

Parameters

N/A port

Definition at line 525 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUartTxIsIdle

bool halInternalUartTxIsIdle (uint8_t port)

Returns true if the uart transmitter is idle, including the transmit shift register.

Parameters

N/A port

Definition at line 537 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

serialDropPacket

bool serialDropPacket (void)

Testing function implemented by the upper layer. Determines whether the next packet should be dropped. Returns true if

the next packet should be dropped, false otherwise.

Serial UART Communication

237/326

Parameters

N/A

Definition at line 547 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUartFlowControl

#define halInternalUartFlowControl

Value:

(port)

This function is used in FIFO mode when flow control is enabled. It is called from emberSerialReadByte(), and based on the

number of bytes used in the uart receive queue, decides when to tell the host it may resume transmission.

Definition at line 484 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUartRxPump

#define halInternalUartRxPump

Value:

(port)

This function exists only in software UART (SOFTUART) mode on the EM3xx. This function is called by

::emberSerialReadByte(). It is responsible for maintaining synchronization between the emSerialRxQueue and the UART

DMA.

Definition at line 498 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUart1FlowControlRxIsEnabled

#define halInternalUart1FlowControlRxIsEnabled

Value:

()

This function is used in FIFO mode when flow control is enabled. It is called from emberSerialReadByte(), and based on the

number of bytes used in the uart receive queue, decides when to tell the host it may resume transmission.

Definition at line 516 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUart1XonRefreshDone

#define halInternalUart1XonRefreshDone

Value:

()

Serial UART Communication

238/326

This function is used in FIFO mode when flow control is enabled. It is called from emberSerialReadByte(), and based on the

number of bytes used in the uart receive queue, decides when to tell the host it may resume transmission.

Definition at line 528 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halInternalUart1TxIsIdle

#define halInternalUart1TxIsIdle

Value:

()

This function is used in FIFO mode when flow control is enabled. It is called from emberSerialReadByte(), and based on the

number of bytes used in the uart receive queue, decides when to tell the host it may resume transmission.

Definition at line 541 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Virtual UART API Documentation

halStackReceiveVuartMessage

void halStackReceiveVuartMessage (uint8_t *data, uint8_t length)

When using a debug build with virtual UART support, this API is called by the stack when virtual UART data has been

received over the debug channel.

Parameters

N/A data Pointer to the the data received

N/A length Length of the data received

Definition at line 574 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Serial Mode Definitions Documentation

EMBER_SERIAL_UNUSED

#define EMBER_SERIAL_UNUSED

Value:

0

A numerical definition for a possible serial mode the code can test for.

Definition at line 91 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

EMBER_SERIAL_FIFO

#define EMBER_SERIAL_FIFO

Value:

Serial UART Communication

239/326

1

A numerical definition for a possible serial mode the code can test for.

Definition at line 92 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

EMBER_SERIAL_LOWLEVEL

#define EMBER_SERIAL_LOWLEVEL

Value:

2

A numerical definition for a possible serial mode the code can test for.

Definition at line 93 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

FIFO Utility Macros Documentation

FIFO_ENQUEUE

#define FIFO_ENQUEUE

Value:

0 do { \
0 (queue)->fifo[(queue)->head] = (data); \
0 (queue)->head = (((queue)->head + 1) % (s ize)); \
0 (queue)->used++; \
0 } while (0)

Macro that enqueues a byte of data in a FIFO queue.

Definition at line 272 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

FIFO_DEQUEUE

#define FIFO_DEQUEUE

Value:

0 (queue)->fifo[(queue)->tail]; \
0 (queue)->tail = (((queue)->tail + 1) % (s ize)); \
0 (queue)->used--

Macro that de-queues a byte of data from a FIFO queue.

Definition at line 287 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Enumeration Documentation

SerialBaudRate

SerialBaudRate

Serial UART Communication

240/326

Assign numerical values for variables that hold Baud Rate parameters.

Enumerator

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

DEFINE_BAUD

Definition at line 300 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

SerialParity

SerialParity

CORTEXM3_EFM32_MICRO.

Assign numerical values for the types of parity. Use for variables that hold Parity parameters.

Enumerator

DEFINE_PARITY

DEFINE_PARITY

DEFINE_PARITY

Definition at line 370 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Function Documentation

halHostFlushBuffers

void halHostFlushBuffers (void)

Parameters

N/A

Definition at line 585 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Serial UART Communication

241/326

halHostEnqueueTx

uint16_t halHostEnqueueTx (const uint8_t *data, uint16_t length)

Parameters

N/A data

N/A length

Definition at line 586 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

halHostFlushTx

void halHostFlushTx (void)

Parameters

N/A

Definition at line 587 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

serialCopyFromRx

uint16_t serialCopyFromRx (const uint8_t *data, uint16_t length)

Parameters

N/A data

N/A length

Definition at line 590 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

emLoadSerialTx

void emLoadSerialTx (void)

Parameters

N/A

Definition at line 593 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/serial.h

Button Control

242/326

Button Control

Button Control
Sample API functions for using push-buttons.

See button.h for source code.

Button State Definitions

A set of numerical definitions for use with the button APIs indicating the state of a button.

#define BUTTON_PRESSED 1
Button state is pressed.

#define BUTTON_RELEASED 0
Button state is released.

Functions

void halInternalInitButton(void)
Initializes the buttons. This function is automatically called by halInit().

uint8_t halButtonState(uint8_t button)
Returns the current state (pressed or released) of a button.

uint8_t halButtonPinState(uint8_t button)
Returns the current state (pressed or released) of the pin associated with a button.

void halButtonIsr(uint8_t button, uint8_t state)
A callback called in interrupt context whenever a button changes its state .

Button State Definitions Documentation

BUTTON_PRESSED

#define BUTTON_PRESSED

Value:

1

Button state is pressed.

Definition at line 32 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

BUTTON_RELEASED

#define BUTTON_RELEASED

Value:

Button Control

243/326

0

Button state is released.

Definition at line 36 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

Function Documentation

halInternalInitButton

void halInternalInitButton (void)

Initializes the buttons. This function is automatically called by halInit().

Parameters

N/A

Definition at line 43 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

halButtonState

uint8_t halButtonState (uint8_t button)

Returns the current state (pressed or released) of a button.

Parameters

N/A button The button being queried, either BUTTON0 or BUTTON1 as defined in the appropriate BOARD_HEADER.

Note

This function is correlated with halButtonIsr() and so returns the shadow state rather than reading the actual state of the pin.

Returns

BUTTON_PRESSED if the button is pressed or BUTTON_RELEASED if the button is not pressed.

Definition at line 56 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

halButtonPinState

uint8_t halButtonPinState (uint8_t button)

Returns the current state (pressed or released) of the pin associated with a button.

Parameters

N/A button The button being queried, either BUTTON0 or BUTTON1 as defined in the appropriate BOARD_HEADER.

This reads the actual state of the pin and can be used on startup to determine the initial position of the buttons.

Returns

BUTTON_PRESSED if the button is pressed or BUTTON_RELEASED if the button is not pressed.

Definition at line 70 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

Button Control

244/326

halButtonIsr

void halButtonIsr (uint8_t button, uint8_t state)

A callback called in interrupt context whenever a button changes its state.

Parameters

N/A button The button which has changed state, either BUTTON0 or BUTTON1 as defined in the appropriate

BOARD_HEADER.

N/A state The new state of the button referenced by the button parameter, either BUTTON_PRESSED if the button

has been pressed or BUTTON_RELEASED if the button has been released.

Application Usage:\n Must be implemented by the
application. This function should
contain the functionality to be executed in response to changes of state in each of the buttons, or callbacks to the

appropriate functionality.

Definition at line 86 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/button.h

Buzzer Control

245/326

Buzzer Control

Buzzer Control

LED Control

246/326

LED Control

LED Control
Sample API funtions for controlling LEDs.

When specifying an LED to use, always use the BOARDLEDx definitions that are defined within the BOARD_HEADER.

See led.h for source code.

Typedefs

typedef enum
HalBoardLedPins

HalBoardLed
Ensures that the definitions from the BOARD_HEADER are always used as parameters to the LED functions.

Functions

void halInternalInitLed(void)
Configures GPIOs pertaining to the contro l of LEDs.

void halToggleLed(HalBoardLed led)
Atomically wraps an XOR or similar operation for a single GPIO pin attached to an LED.

void halSetLed(HalBoardLed led)
Turns on (sets) a GPIO pin connected to an LED so that the LED turns on.

void halClearLed(HalBoardLed led)
Turns off (clears) a GPIO pin connected to an LED, which turns off the LED.

void halStackIndicateActivity(bool turnOn)
Called by the stack to indicate activity over the radio (for both transmission and reception). It is called once with

turnOn true and shortly thereafter with turnOn false .

Typedef Documentation

HalBoardLed

typedef enum HalBoardLedPins HalBoardLed

Ensures that the definitions from the BOARD_HEADER are always used as parameters to the LED functions.

Definition at line 78 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

Function Documentation

halInternalInitLed

void halInternalInitLed (void)

LED Control

247/326

Configures GPIOs pertaining to the control of LEDs.

Parameters

N/A

Definition at line 70 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

halToggleLed

void halToggleLed (HalBoardLed led)

Atomically wraps an XOR or similar operation for a single GPIO pin attached to an LED.

Parameters

N/A led Identifier (from BOARD_HEADER) for the LED to be toggled.

Definition at line 90 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

halSetLed

void halSetLed (HalBoardLed led)

Turns on (sets) a GPIO pin connected to an LED so that the LED turns on.

Parameters

N/A led Identifier (from BOARD_HEADER) for the LED to turn on.

Definition at line 97 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

halClearLed

void halClearLed (HalBoardLed led)

Turns off (clears) a GPIO pin connected to an LED, which turns off the LED.

Parameters

N/A led Identifier (from BOARD_HEADER) for the LED to turn off.

Definition at line 104 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

halStackIndicateActivity

void halStackIndicateActivity (bool turnOn)

Called by the stack to indicate activity over the radio (for both transmission and reception). It is called once with turnOn

true and shortly thereafter with turnOn false.

Parameters

N/A turnOn See Usage.

LED Control

248/326

Typically does something interesting, such as change the state of an LED.

Definition at line 115 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/led.h

Flash Memory Control

249/326

Flash Memory Control

Flash Memory Control
Definition and description of public flash manipulation routines.

Note

During an erase or a write the flash is not available, which means code will not be executable from flash. These routines still

execute from flash, though, since the bus architecture can support doing so. Additonally, this also means all interrupts will

be disabled.

Hardware documentation indicates 40us for a write and 21ms for an erase.

See flash.h for source code.

Functions

bool halFlashEraseIsActive(void)
Tells the calling code if a Flash Erase operation is active .

Function Documentation

halFlashEraseIsActive

bool halFlashEraseIsActive (void)

Tells the calling code if a Flash Erase operation is active.

Parameters

N/A

This state is import to know because Flash Erasing is ATOMIC for 21ms and could disrupt interrupt latency. But if an ISR can

know that it wasn't serviced immediately due to Flash Erasing, then the ISR has the opportunity to correct in whatever

manner it needs to.

Returns

A bool flag: true if Flash Erase is active, false otherwise.

Definition at line 46 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/flash.h

System T imer Control

250/326

System Timer Control

System Timer Control
Functions that provide access to the system clock.

A single system tick (as returned by halCommonGetInt16uMillisecondTick() and halCommonGetInt32uMillisecondTick()) is

approximately 1 millisecond.

When used with a 32.768kHz crystal, the system tick is 0.976 milliseconds.

When used with a 3.6864MHz crystal, the system tick is 1.111 milliseconds.

A single quarter-second tick (as returned by halCommonGetInt16uQuarterSecondTick()) is approximately 0.25 seconds.

The values used by the time support functions will wrap after an interval. The length of the interval depends on the length

of the tick and the number of bits in the value. However, there is no issue when comparing time deltas of less than half this

interval with a subtraction, if all data types are the same.

See system-timer.h for source code.

Functions

uint16_t halInternalStartSystemTimer(void)
Initializes the system tick.

uint16_t halCommonGetInt16uMillisecondTick(void)
Returns the current system time in system ticks, as a 16-bit value .

uint32_t halCommonGetInt32uMillisecondTick(void)
Returns the current system time in system ticks, as a 32-bit value .

uint64_t halCommonGetInt64uMillisecondTick(void)
Returns the current system time in system ticks, as a 64-bit value .

uint16_t halCommonGetInt16uQuarterSecondTick(void)
Returns the current system time in quarter second ticks, as a 16-bit value .

EmberStatus halSleepForQuarterSeconds(uint32_t *duration)
Uses the system timer to enter SLEEPMODE_WAKETIMER for approximately the specified amount of time (provided in

quarter seconds).

EmberStatus halSleepForMilliseconds(uint32_t *duration)
Uses the system timer to enter SLEEPMODE_WAKETIMER for approximately the specified amount of time (provided in

milliseconds). Note that since the system timer ticks at a rate of 1024Hz, a second is comprised of 1024 milliseconds in

this function.

EmberStatus halCommonIdleForMilliseconds(uint32_t *duration)
Uses the system timer to enter SLEEPMODE_IDLE for approximately the specified amount of time (provided in

milliseconds).

Macros

#define halIdleForMilliseconds (duration)

System T imer Control

251/326

Function Documentation

halInternalStartSystemTimer

uint16_t halInternalStartSystemTimer (void)

Initializes the system tick.

Parameters

N/A

Returns

Time to update the async registers after RTC is started (units of 100 microseconds).

Definition at line 57 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halCommonGetInt16uMillisecondTick

uint16_t halCommonGetInt16uMillisecondTick (void)

Returns the current system time in system ticks, as a 16-bit value.

Parameters

N/A

Returns

The least significant 16 bits of the current system time, in system ticks.

Definition at line 66 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halCommonGetInt32uMillisecondTick

uint32_t halCommonGetInt32uMillisecondTick (void)

Returns the current system time in system ticks, as a 32-bit value.

Parameters

N/A

EmberStack Usage:\n Unused, implementation
optional.
Returns

The least significant 32 bits of the current system time, in system ticks.

Definition at line 77 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halCommonGetInt64uMillisecondTick

uint64_t halCommonGetInt64uMillisecondTick (void)

System T imer Control

252/326

Returns the current system time in system ticks, as a 64-bit value.

Parameters

N/A

EmberStack Usage:\n Unused, implementation
optional.
Returns

64 bits containing the current system time, in system ticks.

Definition at line 87 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halCommonGetInt16uQuarterSecondTick

uint16_t halCommonGetInt16uQuarterSecondTick (void)

Returns the current system time in quarter second ticks, as a 16-bit value.

Parameters

N/A

EmberStack Usage:\n Unused, implementation
optional.
Returns

The least significant 16 bits of the current system time, in system ticks multiplied by 256.

Definition at line 98 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halSleepForQuarterSeconds

EmberStatus halSleepForQuarterSeconds (uint32_t *duration)

Uses the system timer to enter SLEEPMODE_WAKETIMER for approximately the specified amount of time (provided in

quarter seconds).

Parameters

N/A duration The amount of time, expressed in quarter seconds, that the micro should be placed into

SLEEPMODE_WAKETIMER. When the function returns, this parameter provides the amount of time

remaining out of the original sleep time request (normally the return value will be 0).

This function returns EMBER_SUCCESS and the duration parameter is decremented to 0 after sleeping for the specified

amount of time. If an interrupt occurs that brings the chip out of sleep, the function returns EMBER_SLEEP_INTERRUPTED

and the duration parameter reports the amount of time remaining out of the original request.

Note

This routine always enables interrupts.

The maximum sleep time of the hardware is limited on AVR-based platforms to 8 seconds, on EM2XX-based platforms to 64

seconds, and on EM35x platforms to 48.5 days. Any sleep duration greater than this limit will wake up briefly (e.g. 16

microseconds) to reenable another sleep cycle.

System T imer Control

253/326

The EM2xx has a 16 bit sleep timer, which normally runs at 1024Hz. In order to support long sleep durations, the chip will

periodically wake up to manage a larger timer in software. This periodic wakeup is normally triggered once every 32

seconds. However, this period can be extended to once every 2.275 hours by building with ENABLE_LONG_SLEEP_CYCLES

defined. This definition enables the use of a prescaler when sleeping for more than 63 seconds at a time. However, this

define also imposes the following limitations:

1. The chip may only wake up from the sleep timer. (External GPIO wake events may not be used)

2. Each time a sleep cycle is performed, a loss of accuracy up to +/-750ms will be observed in the system timer.

EmberStack Usage:\n Unused, implementation
optional.
Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 141 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

halSleepForMilliseconds

EmberStatus halSleepForMilliseconds (uint32_t *duration)

Uses the system timer to enter SLEEPMODE_WAKETIMER for approximately the specified amount of time (provided in

milliseconds). Note that since the system timer ticks at a rate of 1024Hz, a second is comprised of 1024 milliseconds in this

function.

Parameters

N/A duration The amount of time, expressed in milliseconds (1024 milliseconds = 1 second), that the micro should be

placed into SLEEPMODE_WAKETIMER. When the function returns, this parameter provides the amount of

time remaining out of the original sleep time request (normally the return value will be 0).

This function returns EMBER_SUCCESS and the duration parameter is decremented to 0 after sleeping for the specified

amount of time. If an interrupt occurs that brings the chip out of sleep, the function returns EMBER_SLEEP_INTERRUPTED

and the duration parameter reports the amount of time remaining out of the original request.

Note

This routine always enables interrupts.

This function is not implemented on AVR-based platforms.

S leep durations less than 3 milliseconds are not allowed on on EM2XX-based platforms. Any attempt to sleep for less than 3

milliseconds on EM2XX-based platforms will cause the function to immediately exit without sleeping and return

EMBER_SLEEP_INTERRUPTED.

The maximum sleep time of the hardware is limited on EM2XX-based platforms to 32 seconds. Any sleep duration greater

than this limit will wake up briefly (e.g. 16 microseconds) to reenable another sleep cycle. Due to this limitation, this function

should not be used with durations within 3 milliseconds of a multiple 32 seconds. The short sleep cycle that results from

such durations is not handled reliably by the system timer on EM2XX-based platforms. If a sleep duration within 3

milliseconds of a multiple of 32 seconds is desired, halS leepForQuarterSeconds should be used.

EmberStack Usage:\n Unused, implementation
optional.
Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 184 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

System T imer Control

254/326

halCommonIdleForMilliseconds

EmberStatus halCommonIdleForMilliseconds (uint32_t *duration)

Uses the system timer to enter SLEEPMODE_IDLE for approximately the specified amount of time (provided in milliseconds).

Parameters

N/A duration The amount of time, expressed in milliseconds, that the micro should be placed into SLEEPMODE_IDLE.

When the function returns, this parameter provides the amount of time remaining out of the original idle

time request (normally the return value will be 0).

This function returns EMBER_SUCCESS and the duration parameter is decremented to 0 after idling for the specified

amount of time. If an interrupt occurs that brings the chip out of idle, the function returns EMBER_SLEEP_INTERRUPTED

and the duration parameter reports the amount of time remaining out of the original request.

Note

This routine always enables interrupts.

EmberStack Usage:\n Unused, implementation
optional.
Returns

An EmberStatus value indicating the success or failure of the command.

Definition at line 208 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

Macro Definition Documentation

halIdleForMilliseconds

#define halIdleForMilliseconds

Value:

(duration)

Definition at line 211 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/system-timer.h

Symbol T imer Control

255/326

Symbol Timer Control

Symbol Timer Control

HAL Configuration

256/326

HAL Configuration

HAL Configuration

Modules

Sample Breakout Board Configuration

IAR PLATFORM_HEADER Configuration

Common PLATFORM_HEADER Configuration

NVIC Configuration

Reset Cause Type Definitions

Sample Breakout Board Configuration

257/326

Sample Breakout Board Configuration

Sample Breakout Board Configuration

IAR PLATFORM_HEADER Configuration

258/326

IAR PLATFORM_HEADER Configuration

IAR PLATFORM_HEADER Configuration
Compiler and Platform specific definitions and typedefs for the IAR ARM C compiler.

Note

iar.h should be included first in all source files by setting the preprocessor macro PLATFORM_HEADER to point to it. iar.h

automatically includes platform-common.h.

See iar.h and platform-common.h for source code.

Master Variable Types

LEGACY_PHY_BUILDThese are a set of typedefs to make the size of all variable declarations explicitly known.

typedef bool boolean
A typedef to make the size of the variable explicitly known.

typedef unsigned
char

int8u
Denotes that this platform supports 64-bit data-types.

typedef signed
char

int8s
Denotes that this platform supports 64-bit data-types.

typedef unsigned
short

int16u
Denotes that this platform supports 64-bit data-types.

typedef signed
short

int16s
Denotes that this platform supports 64-bit data-types.

typedef unsigned
int

int32u
Denotes that this platform supports 64-bit data-types.

typedef signed int int32s
Denotes that this platform supports 64-bit data-types.

typedef unsigned
long long

int64u
Denotes that this platform supports 64-bit data-types.

typedef signed
long long

int64s
Denotes that this platform supports 64-bit data-types.

typedef unsigned
int

PointerType
Denotes that this platform supports 64-bit data-types.

#define HAL_HAS_INT64 undefined
Denotes that this platform supports 64-bit data-types.

#define _HAL_USE_COMMON_PGM_ undefined
Use the Master Program Memory Declarations from platform-common.h.

Miscellaneous Macros

IAR PLATFORM_HEADER Configuration

259/326

void halInternalAssertFailed(const char *filename, int linenumber)
A prototype definition for use by the assert macro. (see hal/micro/micro.h)

void halInternalResetWatchDog(void)
Macro to reset the watchdog timer. Note : be very very careful when using this as you can easily get into an infinite

loop if you are not careful.

#define BIGENDIAN_CPU false
A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little

endian.

#define NTOHS (val)
Define intrinsics for NTOHL and NTOHS to save code space by making endian.c compile to nothing.

#define NTOHL (val)
A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little

endian.

#define NO_STRIPPING __root
A friendlier name for the compiler's intrinsic for not stripping.

#define EEPROM errorerror
A friendlier name for the compiler's intrinsic for eeprom reference .

#define __SOURCEFILE__ __FILE__
The SOURCEFILE macro is used by asserts to list the filename if it isn't otherwise defined, set it to the compiler intrinsic

which specifies the who le filename and path of the sourcefile .

#define assert (condition)
A custom implementation of the C language assert macro. This macro implements the conditional evaluation and calls

the function halInternalAssertFailed(). (see hal/micro/micro.h)

#define halResetWatchdog ()
A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little

endian.

#define UNUSED undefined
Declare a variable as unused to avo id a warning. Has no effect in IAR builds.

#define SIGNED_ENUM undefined
Some platforms need to cast enum values that have the high bit set.

#define STACK_FILL_VALUE 0xCDCDCDCDU
Define the magic value that is interpreted by IAR C-SPY's Stack View.

#define RAMFUNC __ramfunc
Define a generic RAM function identifier to a compiler specific one .

#define NO_OPERATION ()
Define a generic no operation identifier to a compiler specific one .

#define SET_REG_FIELD (reg, field, value)
A convenience macro that makes it easy to change the field of a register to any unsigned value .

#define SET_CMSIS_REG (reg, mask, value)
A convenience macro that makes it easy to change a register using the provided mask(s) and value(s). Example :

SET_CMSIS_REG(GPIO->P[1].CFGH, (_GPIO_P_CFGH_Px5_MASK | _GPIO_P_CFGH_Px6_MASK), (GPIO_P_CFGH_Px5_OUT |

GPIO_P_CFGH_Px6_OUT));.

#define SET_CMSIS_REG_FIELD (reg, field, value)
A convenience macro that makes it easy to change the field of a register, as defined in CMSIS Device headers, to any

unsigned value . Example using EM35xx: SET_CMSIS_REG_FIELD(GPIO->P[0].CFGL, GPIO_P_CFGL_Px0,

_GPIO_P_CFGL_Px0_OUT);.

IAR PLATFORM_HEADER Configuration

260/326

#define simulatedTimePasses ()
Stub for code not running in simulation.

#define simulatedTimePassesMs (x)
Stub for code not running in simulation.

#define simulatedSerialTimePasses ()
Stub for code not running in simulation.

#define _HAL_USE_COMMON_DIVMOD_ undefined
Use the Divide and Modulus Operations from platform-common.h.

#define VAR_AT_SEGMENT (__variableDeclaration, __segmentName)
Provide a portable way to specify the segment where a variable lives.

#define STRINGIZE (X)
Convinience macro for turning a token into a string.

#define ALIGNMENT (X)
Provide a portable way to align data.

#define WEAK (__symbol)
Provide a portable way to specify a symbo l as weak.

#define NO_INIT (__symbol)
Provide a portable way to specify a non initialized symbo l.

#define STATIC_ASSERT (__condition, __errorstr)
Provide a portable way to specify a compile time assert.

External Declarations

If the line below is uncommented we will use Ember memory APIs, otherwise, we will use the C Standard library

(memset,memcpy,memmove) APIs.These are routines that are defined in certain header files that we don't want to include,

e.g. stdlib.h

int abs(int I)
Returns the abso lute value of I (also called the magnitude of I). That is, if I is negative , the result is the opposite of I,

but if I is nonnegative the result is I.

#define PLATCOMMONOKTOINCLUDE undefined
Include platform-common.h last to pick up defaults and common definitions.

#define MAIN_FUNCTION_PARAMETERS void
The kind of arguments the main function takes.

#define MAIN_FUNCTION_ARGUMENTS undefined
Include platform-common.h last to pick up defaults and common definitions.

Portable segment names

#define __NO_INIT__ ".noinitlegacy"
Portable segment names.

#define __DEBUG_CHANNEL__ "DEBUG_CHANNEL"
Portable segment names.

#define __INTVEC__ ".intvec"
Portable segment names.

IAR PLATFORM_HEADER Configuration

261/326

#define __CSTACK__ "CSTACK"
Portable segment names.

#define __RESETINFO__ "RESETINFO"
Portable segment names.

#define __DATA_INIT__ ".data_init"
Portable segment names.

#define __DATA__ ".data"
Portable segment names.

#define __BSS__ ".bss"
Portable segment names.

#define __CONST__ ".rodata"
Portable segment names.

#define __TEXT__ ".text"
Portable segment names.

#define __TEXTRW_INIT__ ".textrw_init"
Portable segment names.

#define __TEXTRW__ ".textrw"
Portable segment names.

#define __AAT__ "AAT"
Portable segment names.

#define __BAT__ "BAT"
Portable segment names.

#define __BAT_INIT__ "BAT"
Portable segment names.

#define __FAT__ "FAT"
Portable segment names.

#define __RAT__ "RAT"
Portable segment names.

#define __SIMEE__ "SIMEE"
Portable segment names.

#define __PSSTORE__ "PSSTORE"
Portable segment names.

#define __LONGTOKEN__ "LONGTOKEN"
Portable segment names.

#define __EMHEAP__ "EMHEAP"
Portable segment names.

#define __GUARD_REGION__ "GUARD_REGION"
Portable segment names.

#define __DLIB_PERTHREAD_INIT__ "__DLIB_PERTHREAD_init"
Portable segment names.

#define __DLIB_PERTHREAD_INITIALIZED_DATA__ "DLIB_PERTHREAD_INITIALIZED_DATA"
Portable segment names.

#define __DLIB_PERTHREAD_ZERO_DATA__ "DLIB_PERTHREAD_ZERO_DATA"
Portable segment names.

IAR PLATFORM_HEADER Configuration

262/326

#define __INTERNAL_STORAGE__ "INTERNAL_STORAGE"
Portable segment names.

#define __LOCKBITS_IN_MAINFLASH__ "LOCKBITS_IN_MAINFLASH"
Portable segment names.

#define __UNRETAINED_RAM__ "UNRETAINED_RAM"
Portable segment names.

#define _NO_INIT_SEGMENT_BEGIN __segment_begin(__NO_INIT__)
Portable segment names.

#define _DEBUG_CHANNEL_SEGMENT_BEGIN __segment_begin(__DEBUG_CHANNEL__)
Portable segment names.

#define _INTVEC_SEGMENT_BEGIN __segment_begin(__INTVEC__)
Portable segment names.

#define _CSTACK_SEGMENT_BEGIN __segment_begin(__CSTACK__)
Portable segment names.

#define _RESETINFO_SEGMENT_BEGIN __segment_begin(__RESETINFO__)
Portable segment names.

#define _DATA_INIT_SEGMENT_BEGIN __segment_begin(__DATA_INIT__)
Portable segment names.

#define _DATA_SEGMENT_BEGIN __segment_begin(__DATA__)
Portable segment names.

#define _BSS_SEGMENT_BEGIN __segment_begin(__BSS__)
Portable segment names.

#define _CONST_SEGMENT_BEGIN __segment_begin(__CONST__)
Portable segment names.

#define _TEXT_SEGMENT_BEGIN __segment_begin(__TEXT__)
Portable segment names.

#define _TEXTRW_INIT_SEGMENT_BEGIN __segment_begin(__TEXTRW_INIT__)
Portable segment names.

#define _TEXTRW_SEGMENT_BEGIN __segment_begin(__TEXTRW__)
Portable segment names.

#define _AAT_SEGMENT_BEGIN __segment_begin(__AAT__)
Portable segment names.

#define _BAT_SEGMENT_BEGIN __segment_begin(__BAT__)
Portable segment names.

#define _BAT_INIT_SEGMENT_BEGIN __segment_begin(__BAT_INIT__)
Portable segment names.

#define _FAT_SEGMENT_BEGIN __segment_begin(__FAT__)
Portable segment names.

#define _RAT_SEGMENT_BEGIN __segment_begin(__RAT__)
Portable segment names.

#define _SIMEE_SEGMENT_BEGIN __segment_begin(__SIMEE__)
Portable segment names.

IAR PLATFORM_HEADER Configuration

263/326

#define _PSSTORE_SEGMENT_BEGIN __segment_begin(__PSSTORE__)
Portable segment names.

#define _LONGTOKEN_SEGMENT_BEGIN __segment_begin(__LONGTOKEN__)
Portable segment names.

#define _EMHEAP_SEGMENT_BEGIN __segment_begin(__EMHEAP__)
Portable segment names.

#define _GUARD_REGION_SEGMENT_BEGIN __segment_begin(__GUARD_REGION__)
Portable segment names.

#define _DLIB_PERTHREAD_INIT_SEGMENT_BEGIN __segment_begin(__DLIB_PERTHREAD_INIT__)
Portable segment names.

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_BEGIN
__segment_begin(__DLIB_PERTHREAD_INITIALIZED_DATA__)
Portable segment names.

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_BEGIN __segment_begin(__DLIB_PERTHREAD_ZERO_DATA__)
Portable segment names.

#define _INTERNAL_STORAGE_SEGMENT_BEGIN __segment_begin(__INTERNAL_STORAGE__)
Portable segment names.

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_BEGIN __segment_begin(__LOCKBITS_IN_MAINFLASH__)
Portable segment names.

#define _UNRETAINED_RAM_SEGMENT_BEGIN __segment_begin(__UNRETAINED_RAM__)
Portable segment names.

#define _NO_INIT_SEGMENT_END __segment_end(__NO_INIT__)
Portable segment names.

#define _DEBUG_CHANNEL_SEGMENT_END __segment_end(__DEBUG_CHANNEL__)
Portable segment names.

#define _INTVEC_SEGMENT_END __segment_end(__INTVEC__)
Portable segment names.

#define _CSTACK_SEGMENT_END __segment_end(__CSTACK__)
Portable segment names.

#define _RESETINFO_SEGMENT_END __segment_end(__RESETINFO__)
Portable segment names.

#define _DATA_INIT_SEGMENT_END __segment_end(__DATA_INIT__)
Portable segment names.

#define _DATA_SEGMENT_END __segment_end(__DATA__)
Portable segment names.

#define _BSS_SEGMENT_END __segment_end(__BSS__)
Portable segment names.

#define _CONST_SEGMENT_END __segment_end(__CONST__)
Portable segment names.

#define _TEXT_SEGMENT_END __segment_end(__TEXT__)
Portable segment names.

#define _TEXTRW_INIT_SEGMENT_END __segment_end(__TEXTRW_INIT__)
Portable segment names.

IAR PLATFORM_HEADER Configuration

264/326

#define _TEXTRW_SEGMENT_END __segment_end(__TEXTRW__)
Portable segment names.

#define _AAT_SEGMENT_END __segment_end(__AAT__)
Portable segment names.

#define _BAT_SEGMENT_END __segment_end(__BAT__)
Portable segment names.

#define _BAT_INIT_SEGMENT_END __segment_end(__BAT_INIT__)
Portable segment names.

#define _FAT_SEGMENT_END __segment_end(__FAT__)
Portable segment names.

#define _RAT_SEGMENT_END __segment_end(__RAT__)
Portable segment names.

#define _SIMEE_SEGMENT_END __segment_end(__SIMEE__)
Portable segment names.

#define _PSSTORE_SEGMENT_END __segment_end(__PSSTORE__)
Portable segment names.

#define _LONGTOKEN_SEGMENT_END __segment_end(__LONGTOKEN__)
Portable segment names.

#define _EMHEAP_SEGMENT_END __segment_end(__EMHEAP__)
Portable segment names.

#define _GUARD_REGION_SEGMENT_END __segment_end(__GUARD_REGION__)
Portable segment names.

#define _DLIB_PERTHREAD_INIT_SEGMENT_END __segment_end(__DLIB_PERTHREAD_INIT__)
Portable segment names.

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_END
__segment_end(__DLIB_PERTHREAD_INITIALIZED_DATA__)
Portable segment names.

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_END __segment_end(__DLIB_PERTHREAD_ZERO_DATA__)
Portable segment names.

#define _INTERNAL_STORAGE_SEGMENT_END __segment_end(__INTERNAL_STORAGE__)
Portable segment names.

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_END __segment_end(__LOCKBITS_IN_MAINFLASH__)
Portable segment names.

#define _UNRETAINED_RAM_SEGMENT_END __segment_end(__UNRETAINED_RAM__)
Portable segment names.

#define _NO_INIT_SEGMENT_SIZE __segment_size(__NO_INIT__)
Portable segment names.

#define _DEBUG_CHANNEL_SEGMENT_SIZE __segment_size(__DEBUG_CHANNEL__)
Portable segment names.

#define _INTVEC_SEGMENT_SIZE __segment_size(__INTVEC__)
Portable segment names.

#define _CSTACK_SEGMENT_SIZE __segment_size(__CSTACK__)
Portable segment names.

IAR PLATFORM_HEADER Configuration

265/326

#define _RESETINFO_SEGMENT_SIZE __segment_size(__RESETINFO__)
Portable segment names.

#define _DATA_INIT_SEGMENT_SIZE __segment_size(__DATA_INIT__)
Portable segment names.

#define _DATA_SEGMENT_SIZE __segment_size(__DATA__)
Portable segment names.

#define _BSS_SEGMENT_SIZE __segment_size(__BSS__)
Portable segment names.

#define _CONST_SEGMENT_SIZE __segment_size(__CONST__)
Portable segment names.

#define _TEXT_SEGMENT_SIZE __segment_size(__TEXT__)
Portable segment names.

#define _TEXTRW_INIT_SEGMENT_SIZE __segment_size(__TEXTRW_INIT__)
Portable segment names.

#define _TEXTRW_SEGMENT_SIZE __segment_size(__TEXTRW__)
Portable segment names.

#define _AAT_SEGMENT_SIZE __segment_size(__AAT__)
Portable segment names.

#define _BAT_SEGMENT_SIZE __segment_size(__BAT__)
Portable segment names.

#define _BAT_INIT_SEGMENT_SIZE __segment_size(__BAT_INIT__)
Portable segment names.

#define _FAT_SEGMENT_SIZE __segment_size(__FAT__)
Portable segment names.

#define _RAT_SEGMENT_SIZE __segment_size(__RAT__)
Portable segment names.

#define _SIMEE_SEGMENT_SIZE __segment_size(__SIMEE__)
Portable segment names.

#define _PSSTORE_SEGMENT_SIZE __segment_size(__PSSTORE__)
Portable segment names.

#define _LONGTOKEN_SEGMENT_SIZE __segment_size(__LONGTOKEN__)
Portable segment names.

#define _EMHEAP_SEGMENT_SIZE __segment_size(__EMHEAP__)
Portable segment names.

#define _GUARD_REGION_SEGMENT_SIZE __segment_size(__GUARD_REGION__)
Portable segment names.

#define _DLIB_PERTHREAD_INIT_SEGMENT_SIZE __segment_size(__DLIB_PERTHREAD_INIT__)
Portable segment names.

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_SIZE
__segment_size(__DLIB_PERTHREAD_INITIALIZED_DATA__)
Portable segment names.

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_SIZE __segment_size(__DLIB_PERTHREAD_ZERO_DATA__)
Portable segment names.

IAR PLATFORM_HEADER Configuration

266/326

#define _INTERNAL_STORAGE_SEGMENT_SIZE __segment_size(__INTERNAL_STORAGE__)
Portable segment names.

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_SIZE __segment_size(__LOCKBITS_IN_MAINFLASH__)
Portable segment names.

#define _UNRETAINED_RAM_SEGMENT_SIZE __segment_size(__UNRETAINED_RAM__)
Portable segment names.

Functions

void _executeBarrierInstructions(void)

Master Variable Types Documentation

boolean

typedef bool boolean

A typedef to make the size of the variable explicitly known.

Definition at line 82 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int8u

typedef unsigned char int8u

Denotes that this platform supports 64-bit data-types.

Definition at line 83 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int8s

typedef signed char int8s

Denotes that this platform supports 64-bit data-types.

Definition at line 84 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int16u

typedef unsigned short int16u

Denotes that this platform supports 64-bit data-types.

Definition at line 85 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int16s

typedef signed short int16s

IAR PLATFORM_HEADER Configuration

267/326

Denotes that this platform supports 64-bit data-types.

Definition at line 86 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int32u

typedef unsigned int int32u

Denotes that this platform supports 64-bit data-types.

Definition at line 87 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int32s

typedef signed int int32s

Denotes that this platform supports 64-bit data-types.

Definition at line 88 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int64u

typedef unsigned long long int64u

Denotes that this platform supports 64-bit data-types.

Definition at line 89 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

int64s

typedef signed long long int64s

Denotes that this platform supports 64-bit data-types.

Definition at line 90 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

PointerType

typedef unsigned int PointerType

Denotes that this platform supports 64-bit data-types.

Definition at line 91 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

HAL_HAS_INT64

#define HAL_HAS_INT64

IAR PLATFORM_HEADER Configuration

268/326

Denotes that this platform supports 64-bit data-types.

Definition at line 97 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_HAL_USE_COMMON_PGM_

#define _HAL_USE_COMMON_PGM_

Use the Master Program Memory Declarations from platform-common.h.

Definition at line 102 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

Miscellaneous Macros Documentation

halInternalAssertFailed

void halInternalAssertFailed (const char *filename, int linenumber)

A prototype definition for use by the assert macro. (see hal/micro/micro.h)

Parameters

N/A filename

N/A linenumber

Definition at line 152 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

halInternalResetWatchDog

void halInternalResetWatchDog (void)

Macro to reset the watchdog timer. Note: be very very careful when using this as you can easily get into an infinite loop if

you are not careful.

Parameters

N/A

Definition at line 184 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

BIGENDIAN_CPU

#define BIGENDIAN_CPU

Value:

false

A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little endian.

Definition at line 115 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

NTOHS

IAR PLATFORM_HEADER Configuration

269/326

#define NTOHS

Value:

(val)

Define intrinsics for NTOHL and NTOHS to save code space by making endian.c compile to nothing.

Definition at line 121 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

NTOHL

#define NTOHL

Value:

(val)

A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little endian.

Definition at line 122 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

NO_STRIPPING

#define NO_STRIPPING

Value:

__root

A friendlier name for the compiler's intrinsic for not stripping.

Definition at line 128 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

EEPROM

#define EEPROM

Value:

errorerror

A friendlier name for the compiler's intrinsic for eeprom reference.

Definition at line 134 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__SOURCEFILE__

#define __SOURCEFILE__

Value:

__FILE__

IAR PLATFORM_HEADER Configuration

270/326

The SOURCEFILE macro is used by asserts to list the filename if it isn't otherwise defined, set it to the compiler intrinsic

which specifies the whole filename and path of the sourcefile.

Definition at line 143 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

assert

#define assert

A custom implementation of the C language assert macro. This macro implements the conditional evaluation and calls the

function halInternalAssertFailed(). (see hal/micro/micro.h)

Definition at line 160 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

halResetWatchdog

#define halResetWatchdog

Value:

()

A convenient method for code to know what endiannes processor it is running on. For the Cortex-M3, we are little endian.

Definition at line 191 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

UNUSED

#define UNUSED

Declare a variable as unused to avoid a warning. Has no effect in IAR builds.

Definition at line 198 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

SIGNED_ENUM

#define SIGNED_ENUM

Some platforms need to cast enum values that have the high bit set.

Definition at line 203 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

STACK_FILL_VALUE

#define STACK_FILL_VALUE

Value:

0xCDCDCDCDU

IAR PLATFORM_HEADER Configuration

271/326

Define the magic value that is interpreted by IAR C-SPY's Stack View.

Definition at line 208 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

RAMFUNC

#define RAMFUNC

Value:

__ramfunc

Define a generic RAM function identifier to a compiler specific one.

Definition at line 218 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

NO_OPERATION

#define NO_OPERATION

Value:

()

Define a generic no operation identifier to a compiler specific one.

Definition at line 224 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

SET_REG_FIELD

#define SET_REG_FIELD

Value:

0 do { \
0 reg = ((reg & (~field##_MASK)) \
0 | ((((uint32_t) value) << field##_BIT) \
0 & (field##_MASK))); \
0 } while (0)

A convenience macro that makes it easy to change the field of a register to any unsigned value.

Definition at line 230 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

SET_CMSIS_REG

#define SET_CMSIS_REG

Value:

0 do { \
0 reg = (((reg) & (~mask)) | (value)); \
0 } while (0)

IAR PLATFORM_HEADER Configuration

272/326

A convenience macro that makes it easy to change a register using the provided mask(s) and value(s). Example:

SET_CMSIS_REG(GPIO->P[1].CFGH, (_GPIO_P_CFGH_Px5_MASK | _GPIO_P_CFGH_Px6_MASK), (GPIO_P_CFGH_Px5_OUT |

GPIO_P_CFGH_Px6_OUT));.

Definition at line 247 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

SET_CMSIS_REG_FIELD

#define SET_CMSIS_REG_FIELD

Value:

0 do { \
0 reg = ((reg & (~_##field##_MASK)) \
0 | ((value << _##field##_SHIFT) \
0 & (_##field##_MASK))); \
0 } while (0)

A convenience macro that makes it easy to change the field of a register, as defined in CMSIS Device headers, to any

unsigned value. Example using EM35xx: SET_CMSIS_REG_FIELD(GPIO->P[0].CFGL, GPIO_P_CFGL_Px0,

_GPIO_P_CFGL_Px0_OUT);.

Definition at line 258 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

simulatedTimePasses

#define simulatedTimePasses

Stub for code not running in simulation.

Definition at line 268 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

simulatedTimePassesMs

#define simulatedTimePassesMs

Stub for code not running in simulation.

Definition at line 273 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

simulatedSerialTimePasses

#define simulatedSerialTimePasses

Stub for code not running in simulation.

Definition at line 278 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_HAL_USE_COMMON_DIVMOD_

IAR PLATFORM_HEADER Configuration

273/326

#define _HAL_USE_COMMON_DIVMOD_

Use the Divide and Modulus Operations from platform-common.h.

Definition at line 283 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

VAR_AT_SEGMENT

#define VAR_AT_SEGMENT

Value:

(__variableDeclaration, __segmentName)

Provide a portable way to specify the segment where a variable lives.

Definition at line 289 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

STRINGIZE

#define STRINGIZE

Value:

(X)

Convinience macro for turning a token into a string.

Definition at line 295 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

ALIGNMENT

#define ALIGNMENT

Value:

(X)

Provide a portable way to align data.

Definition at line 300 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

WEAK

#define WEAK

Value:

(__symbo l)

Provide a portable way to specify a symbol as weak.

Definition at line 306 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

274/326

NO_INIT

#define NO_INIT

Value:

(__symbo l)

Provide a portable way to specify a non initialized symbol.

Definition at line 312 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

STATIC_ASSERT

#define STATIC_ASSERT

Value:

(__condition, __errorstr)

Provide a portable way to specify a compile time assert.

Definition at line 318 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

External Declarations Documentation

abs

int abs (int I)

Returns the absolute value of I (also called the magnitude of I). That is, if I is negative, the result is the opposite of I, but if I

is nonnegative the result is I.

Parameters

N/A I An integer.

Returns

A nonnegative integer.

Definition at line 527 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

PLATCOMMONOKTOINCLUDE

#define PLATCOMMONOKTOINCLUDE

Include platform-common.h last to pick up defaults and common definitions.

Definition at line 536 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

MAIN_FUNCTION_PARAMETERS

#define MAIN_FUNCTION_PARAMETERS

IAR PLATFORM_HEADER Configuration

275/326

Value:

vo id

The kind of arguments the main function takes.

Definition at line 543 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

MAIN_FUNCTION_ARGUMENTS

#define MAIN_FUNCTION_ARGUMENTS

Include platform-common.h last to pick up defaults and common definitions.

Definition at line 544 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

Portable segment names Documentation

__NO_INIT__

#define __NO_INIT__

Value:

".no initlegacy"

Portable segment names.

Definition at line 341 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DEBUG_CHANNEL__

#define __DEBUG_CHANNEL__

Value:

"DEBUG_CHANNEL"

Portable segment names.

Definition at line 344 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__INTVEC__

#define __INTVEC__

Value:

".intvec"

Portable segment names.

Definition at line 345 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

276/326

__CSTACK__

#define __CSTACK__

Value:

"CSTACK"

Portable segment names.

Definition at line 346 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__RESETINFO__

#define __RESETINFO__

Value:

"RESETINFO"

Portable segment names.

Definition at line 347 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DATA_INIT__

#define __DATA_INIT__

Value:

".data_init"

Portable segment names.

Definition at line 348 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DATA__

#define __DATA__

Value:

".data"

Portable segment names.

Definition at line 349 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__BSS__

#define __BSS__

Value:

IAR PLATFORM_HEADER Configuration

277/326

".bss"

Portable segment names.

Definition at line 350 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__CONST__

#define __CONST__

Value:

".rodata"

Portable segment names.

Definition at line 351 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__TEXT__

#define __TEXT__

Value:

".text"

Portable segment names.

Definition at line 352 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__TEXTRW_INIT__

#define __TEXTRW_INIT__

Value:

".textrw_init"

Portable segment names.

Definition at line 353 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__TEXTRW__

#define __TEXTRW__

Value:

".textrw"

Portable segment names.

Definition at line 354 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

278/326

__AAT__

#define __AAT__

Value:

"AAT"

Portable segment names.

Definition at line 355 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__BAT__

#define __BAT__

Value:

"BAT"

Portable segment names.

Definition at line 356 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__BAT_INIT__

#define __BAT_INIT__

Value:

"BAT"

Portable segment names.

Definition at line 357 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__FAT__

#define __FAT__

Value:

"FAT"

Portable segment names.

Definition at line 358 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__RAT__

#define __RAT__

Value:

IAR PLATFORM_HEADER Configuration

279/326

"RAT"

Portable segment names.

Definition at line 359 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__SIMEE__

#define __SIMEE__

Value:

"SIMEE"

Portable segment names.

Definition at line 360 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__PSSTORE__

#define __PSSTORE__

Value:

"PSSTORE"

Portable segment names.

Definition at line 361 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__LONGTOKEN__

#define __LONGTOKEN__

Value:

"LONGTOKEN"

Portable segment names.

Definition at line 362 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__EMHEAP__

#define __EMHEAP__

Value:

"EMHEAP"

Portable segment names.

Definition at line 363 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

280/326

__GUARD_REGION__

#define __GUARD_REGION__

Value:

"GUARD_REGION"

Portable segment names.

Definition at line 364 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DLIB_PERTHREAD_INIT__

#define __DLIB_PERTHREAD_INIT__

Value:

"__DLIB_PERTHREAD_init"

Portable segment names.

Definition at line 365 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DLIB_PERTHREAD_INITIALIZED_DATA__

#define __DLIB_PERTHREAD_INITIALIZED_DATA__

Value:

"DLIB_PERTHREAD_INITIALIZED_DATA"

Portable segment names.

Definition at line 366 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__DLIB_PERTHREAD_ZERO_DATA__

#define __DLIB_PERTHREAD_ZERO_DATA__

Value:

"DLIB_PERTHREAD_ZERO_DATA"

Portable segment names.

Definition at line 367 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__INTERNAL_STORAGE__

#define __INTERNAL_STORAGE__

Value:

IAR PLATFORM_HEADER Configuration

281/326

"INTERNAL_STORAGE"

Portable segment names.

Definition at line 368 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__LOCKBITS_IN_MAINFLASH__

#define __LOCKBITS_IN_MAINFLASH__

Value:

"LOCKBITS_IN_MAINFLASH"

Portable segment names.

Definition at line 369 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

__UNRETAINED_RAM__

#define __UNRETAINED_RAM__

Value:

"UNRETAINED_RAM"

Portable segment names.

Definition at line 370 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_NO_INIT_SEGMENT_BEGIN

#define _NO_INIT_SEGMENT_BEGIN

Value:

__segment_begin(__NO_INIT__)

Portable segment names.

Definition at line 408 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DEBUG_CHANNEL_SEGMENT_BEGIN

#define _DEBUG_CHANNEL_SEGMENT_BEGIN

Value:

__segment_begin(__DEBUG_CHANNEL__)

Portable segment names.

Definition at line 409 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

282/326

_INTVEC_SEGMENT_BEGIN

#define _INTVEC_SEGMENT_BEGIN

Value:

__segment_begin(__INTVEC__)

Portable segment names.

Definition at line 410 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CSTACK_SEGMENT_BEGIN

#define _CSTACK_SEGMENT_BEGIN

Value:

__segment_begin(__CSTACK__)

Portable segment names.

Definition at line 411 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RESETINFO_SEGMENT_BEGIN

#define _RESETINFO_SEGMENT_BEGIN

Value:

__segment_begin(__RESETINFO__)

Portable segment names.

Definition at line 412 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_INIT_SEGMENT_BEGIN

#define _DATA_INIT_SEGMENT_BEGIN

Value:

__segment_begin(__DATA_INIT__)

Portable segment names.

Definition at line 413 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_SEGMENT_BEGIN

#define _DATA_SEGMENT_BEGIN

Value:

IAR PLATFORM_HEADER Configuration

283/326

__segment_begin(__DATA__)

Portable segment names.

Definition at line 414 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BSS_SEGMENT_BEGIN

#define _BSS_SEGMENT_BEGIN

Value:

__segment_begin(__BSS__)

Portable segment names.

Definition at line 415 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CONST_SEGMENT_BEGIN

#define _CONST_SEGMENT_BEGIN

Value:

__segment_begin(__CONST__)

Portable segment names.

Definition at line 416 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXT_SEGMENT_BEGIN

#define _TEXT_SEGMENT_BEGIN

Value:

__segment_begin(__TEXT__)

Portable segment names.

Definition at line 417 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXTRW_INIT_SEGMENT_BEGIN

#define _TEXTRW_INIT_SEGMENT_BEGIN

Value:

__segment_begin(__TEXTRW_INIT__)

Portable segment names.

Definition at line 418 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

284/326

_TEXTRW_SEGMENT_BEGIN

#define _TEXTRW_SEGMENT_BEGIN

Value:

__segment_begin(__TEXTRW__)

Portable segment names.

Definition at line 419 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_AAT_SEGMENT_BEGIN

#define _AAT_SEGMENT_BEGIN

Value:

__segment_begin(__AAT__)

Portable segment names.

Definition at line 420 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_SEGMENT_BEGIN

#define _BAT_SEGMENT_BEGIN

Value:

__segment_begin(__BAT__)

Portable segment names.

Definition at line 421 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_INIT_SEGMENT_BEGIN

#define _BAT_INIT_SEGMENT_BEGIN

Value:

__segment_begin(__BAT_INIT__)

Portable segment names.

Definition at line 422 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_FAT_SEGMENT_BEGIN

#define _FAT_SEGMENT_BEGIN

Value:

IAR PLATFORM_HEADER Configuration

285/326

__segment_begin(__FAT__)

Portable segment names.

Definition at line 423 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RAT_SEGMENT_BEGIN

#define _RAT_SEGMENT_BEGIN

Value:

__segment_begin(__RAT__)

Portable segment names.

Definition at line 424 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_SIMEE_SEGMENT_BEGIN

#define _SIMEE_SEGMENT_BEGIN

Value:

__segment_begin(__SIMEE__)

Portable segment names.

Definition at line 425 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_PSSTORE_SEGMENT_BEGIN

#define _PSSTORE_SEGMENT_BEGIN

Value:

__segment_begin(__PSSTORE__)

Portable segment names.

Definition at line 426 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_LONGTOKEN_SEGMENT_BEGIN

#define _LONGTOKEN_SEGMENT_BEGIN

Value:

__segment_begin(__LONGTOKEN__)

Portable segment names.

Definition at line 427 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

286/326

_EMHEAP_SEGMENT_BEGIN

#define _EMHEAP_SEGMENT_BEGIN

Value:

__segment_begin(__EMHEAP__)

Portable segment names.

Definition at line 428 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_GUARD_REGION_SEGMENT_BEGIN

#define _GUARD_REGION_SEGMENT_BEGIN

Value:

__segment_begin(__GUARD_REGION__)

Portable segment names.

Definition at line 429 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INIT_SEGMENT_BEGIN

#define _DLIB_PERTHREAD_INIT_SEGMENT_BEGIN

Value:

__segment_begin(__DLIB_PERTHREAD_INIT__)

Portable segment names.

Definition at line 430 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_BEGIN

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_BEGIN

Value:

__segment_begin(__DLIB_PERTHREAD_INITIALIZED_DATA__)

Portable segment names.

Definition at line 431 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_BEGIN

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_BEGIN

Value:

IAR PLATFORM_HEADER Configuration

287/326

__segment_begin(__DLIB_PERTHREAD_ZERO_DATA__)

Portable segment names.

Definition at line 432 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_INTERNAL_STORAGE_SEGMENT_BEGIN

#define _INTERNAL_STORAGE_SEGMENT_BEGIN

Value:

__segment_begin(__INTERNAL_STORAGE__)

Portable segment names.

Definition at line 433 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_LOCKBITS_IN_MAINFLASH_SEGMENT_BEGIN

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_BEGIN

Value:

__segment_begin(__LOCKBITS_IN_MAINFLASH__)

Portable segment names.

Definition at line 434 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_UNRETAINED_RAM_SEGMENT_BEGIN

#define _UNRETAINED_RAM_SEGMENT_BEGIN

Value:

__segment_begin(__UNRETAINED_RAM__)

Portable segment names.

Definition at line 435 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_NO_INIT_SEGMENT_END

#define _NO_INIT_SEGMENT_END

Value:

__segment_end(__NO_INIT__)

Portable segment names.

Definition at line 437 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

288/326

_DEBUG_CHANNEL_SEGMENT_END

#define _DEBUG_CHANNEL_SEGMENT_END

Value:

__segment_end(__DEBUG_CHANNEL__)

Portable segment names.

Definition at line 438 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_INTVEC_SEGMENT_END

#define _INTVEC_SEGMENT_END

Value:

__segment_end(__INTVEC__)

Portable segment names.

Definition at line 439 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CSTACK_SEGMENT_END

#define _CSTACK_SEGMENT_END

Value:

__segment_end(__CSTACK__)

Portable segment names.

Definition at line 440 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RESETINFO_SEGMENT_END

#define _RESETINFO_SEGMENT_END

Value:

__segment_end(__RESETINFO__)

Portable segment names.

Definition at line 441 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_INIT_SEGMENT_END

#define _DATA_INIT_SEGMENT_END

Value:

IAR PLATFORM_HEADER Configuration

289/326

__segment_end(__DATA_INIT__)

Portable segment names.

Definition at line 442 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_SEGMENT_END

#define _DATA_SEGMENT_END

Value:

__segment_end(__DATA__)

Portable segment names.

Definition at line 443 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BSS_SEGMENT_END

#define _BSS_SEGMENT_END

Value:

__segment_end(__BSS__)

Portable segment names.

Definition at line 444 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CONST_SEGMENT_END

#define _CONST_SEGMENT_END

Value:

__segment_end(__CONST__)

Portable segment names.

Definition at line 445 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXT_SEGMENT_END

#define _TEXT_SEGMENT_END

Value:

__segment_end(__TEXT__)

Portable segment names.

Definition at line 446 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

290/326

_TEXTRW_INIT_SEGMENT_END

#define _TEXTRW_INIT_SEGMENT_END

Value:

__segment_end(__TEXTRW_INIT__)

Portable segment names.

Definition at line 447 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXTRW_SEGMENT_END

#define _TEXTRW_SEGMENT_END

Value:

__segment_end(__TEXTRW__)

Portable segment names.

Definition at line 448 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_AAT_SEGMENT_END

#define _AAT_SEGMENT_END

Value:

__segment_end(__AAT__)

Portable segment names.

Definition at line 449 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_SEGMENT_END

#define _BAT_SEGMENT_END

Value:

__segment_end(__BAT__)

Portable segment names.

Definition at line 450 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_INIT_SEGMENT_END

#define _BAT_INIT_SEGMENT_END

Value:

IAR PLATFORM_HEADER Configuration

291/326

__segment_end(__BAT_INIT__)

Portable segment names.

Definition at line 451 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_FAT_SEGMENT_END

#define _FAT_SEGMENT_END

Value:

__segment_end(__FAT__)

Portable segment names.

Definition at line 452 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RAT_SEGMENT_END

#define _RAT_SEGMENT_END

Value:

__segment_end(__RAT__)

Portable segment names.

Definition at line 453 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_SIMEE_SEGMENT_END

#define _SIMEE_SEGMENT_END

Value:

__segment_end(__SIMEE__)

Portable segment names.

Definition at line 454 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_PSSTORE_SEGMENT_END

#define _PSSTORE_SEGMENT_END

Value:

__segment_end(__PSSTORE__)

Portable segment names.

Definition at line 455 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

292/326

_LONGTOKEN_SEGMENT_END

#define _LONGTOKEN_SEGMENT_END

Value:

__segment_end(__LONGTOKEN__)

Portable segment names.

Definition at line 456 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_EMHEAP_SEGMENT_END

#define _EMHEAP_SEGMENT_END

Value:

__segment_end(__EMHEAP__)

Portable segment names.

Definition at line 457 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_GUARD_REGION_SEGMENT_END

#define _GUARD_REGION_SEGMENT_END

Value:

__segment_end(__GUARD_REGION__)

Portable segment names.

Definition at line 458 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INIT_SEGMENT_END

#define _DLIB_PERTHREAD_INIT_SEGMENT_END

Value:

__segment_end(__DLIB_PERTHREAD_INIT__)

Portable segment names.

Definition at line 459 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_END

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_END

Value:

IAR PLATFORM_HEADER Configuration

293/326

__segment_end(__DLIB_PERTHREAD_INITIALIZED_DATA__)

Portable segment names.

Definition at line 460 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_END

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_END

Value:

__segment_end(__DLIB_PERTHREAD_ZERO_DATA__)

Portable segment names.

Definition at line 461 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_INTERNAL_STORAGE_SEGMENT_END

#define _INTERNAL_STORAGE_SEGMENT_END

Value:

__segment_end(__INTERNAL_STORAGE__)

Portable segment names.

Definition at line 462 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_LOCKBITS_IN_MAINFLASH_SEGMENT_END

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_END

Value:

__segment_end(__LOCKBITS_IN_MAINFLASH__)

Portable segment names.

Definition at line 463 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_UNRETAINED_RAM_SEGMENT_END

#define _UNRETAINED_RAM_SEGMENT_END

Value:

__segment_end(__UNRETAINED_RAM__)

Portable segment names.

Definition at line 464 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

294/326

_NO_INIT_SEGMENT_SIZE

#define _NO_INIT_SEGMENT_SIZE

Value:

__segment_s ize(__NO_INIT__)

Portable segment names.

Definition at line 466 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DEBUG_CHANNEL_SEGMENT_SIZE

#define _DEBUG_CHANNEL_SEGMENT_SIZE

Value:

__segment_s ize(__DEBUG_CHANNEL__)

Portable segment names.

Definition at line 467 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_INTVEC_SEGMENT_SIZE

#define _INTVEC_SEGMENT_SIZE

Value:

__segment_s ize(__INTVEC__)

Portable segment names.

Definition at line 468 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CSTACK_SEGMENT_SIZE

#define _CSTACK_SEGMENT_SIZE

Value:

__segment_s ize(__CSTACK__)

Portable segment names.

Definition at line 469 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RESETINFO_SEGMENT_SIZE

#define _RESETINFO_SEGMENT_SIZE

Value:

IAR PLATFORM_HEADER Configuration

295/326

__segment_s ize(__RESETINFO__)

Portable segment names.

Definition at line 470 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_INIT_SEGMENT_SIZE

#define _DATA_INIT_SEGMENT_SIZE

Value:

__segment_s ize(__DATA_INIT__)

Portable segment names.

Definition at line 471 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DATA_SEGMENT_SIZE

#define _DATA_SEGMENT_SIZE

Value:

__segment_s ize(__DATA__)

Portable segment names.

Definition at line 472 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BSS_SEGMENT_SIZE

#define _BSS_SEGMENT_SIZE

Value:

__segment_s ize(__BSS__)

Portable segment names.

Definition at line 473 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_CONST_SEGMENT_SIZE

#define _CONST_SEGMENT_SIZE

Value:

__segment_s ize(__CONST__)

Portable segment names.

Definition at line 474 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

296/326

_TEXT_SEGMENT_SIZE

#define _TEXT_SEGMENT_SIZE

Value:

__segment_s ize(__TEXT__)

Portable segment names.

Definition at line 475 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXTRW_INIT_SEGMENT_SIZE

#define _TEXTRW_INIT_SEGMENT_SIZE

Value:

__segment_s ize(__TEXTRW_INIT__)

Portable segment names.

Definition at line 476 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_TEXTRW_SEGMENT_SIZE

#define _TEXTRW_SEGMENT_SIZE

Value:

__segment_s ize(__TEXTRW__)

Portable segment names.

Definition at line 477 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_AAT_SEGMENT_SIZE

#define _AAT_SEGMENT_SIZE

Value:

__segment_s ize(__AAT__)

Portable segment names.

Definition at line 478 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_SEGMENT_SIZE

#define _BAT_SEGMENT_SIZE

Value:

IAR PLATFORM_HEADER Configuration

297/326

__segment_s ize(__BAT__)

Portable segment names.

Definition at line 479 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_BAT_INIT_SEGMENT_SIZE

#define _BAT_INIT_SEGMENT_SIZE

Value:

__segment_s ize(__BAT_INIT__)

Portable segment names.

Definition at line 480 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_FAT_SEGMENT_SIZE

#define _FAT_SEGMENT_SIZE

Value:

__segment_s ize(__FAT__)

Portable segment names.

Definition at line 481 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_RAT_SEGMENT_SIZE

#define _RAT_SEGMENT_SIZE

Value:

__segment_s ize(__RAT__)

Portable segment names.

Definition at line 482 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_SIMEE_SEGMENT_SIZE

#define _SIMEE_SEGMENT_SIZE

Value:

__segment_s ize(__SIMEE__)

Portable segment names.

Definition at line 483 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

298/326

_PSSTORE_SEGMENT_SIZE

#define _PSSTORE_SEGMENT_SIZE

Value:

__segment_s ize(__PSSTORE__)

Portable segment names.

Definition at line 484 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_LONGTOKEN_SEGMENT_SIZE

#define _LONGTOKEN_SEGMENT_SIZE

Value:

__segment_s ize(__LONGTOKEN__)

Portable segment names.

Definition at line 485 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_EMHEAP_SEGMENT_SIZE

#define _EMHEAP_SEGMENT_SIZE

Value:

__segment_s ize(__EMHEAP__)

Portable segment names.

Definition at line 486 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_GUARD_REGION_SEGMENT_SIZE

#define _GUARD_REGION_SEGMENT_SIZE

Value:

__segment_s ize(__GUARD_REGION__)

Portable segment names.

Definition at line 487 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INIT_SEGMENT_SIZE

#define _DLIB_PERTHREAD_INIT_SEGMENT_SIZE

Value:

IAR PLATFORM_HEADER Configuration

299/326

__segment_s ize(__DLIB_PERTHREAD_INIT__)

Portable segment names.

Definition at line 488 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_SIZE

#define _DLIB_PERTHREAD_INITIALIZED_DATA_SEGMENT_SIZE

Value:

__segment_s ize(__DLIB_PERTHREAD_INITIALIZED_DATA__)

Portable segment names.

Definition at line 489 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_DLIB_PERTHREAD_ZERO_DATA_SEGMENT_SIZE

#define _DLIB_PERTHREAD_ZERO_DATA_SEGMENT_SIZE

Value:

__segment_s ize(__DLIB_PERTHREAD_ZERO_DATA__)

Portable segment names.

Definition at line 490 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_INTERNAL_STORAGE_SEGMENT_SIZE

#define _INTERNAL_STORAGE_SEGMENT_SIZE

Value:

__segment_s ize(__INTERNAL_STORAGE__)

Portable segment names.

Definition at line 491 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

_LOCKBITS_IN_MAINFLASH_SEGMENT_SIZE

#define _LOCKBITS_IN_MAINFLASH_SEGMENT_SIZE

Value:

__segment_s ize(__LOCKBITS_IN_MAINFLASH__)

Portable segment names.

Definition at line 492 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

IAR PLATFORM_HEADER Configuration

300/326

_UNRETAINED_RAM_SEGMENT_SIZE

#define _UNRETAINED_RAM_SEGMENT_SIZE

Value:

__segment_s ize(__UNRETAINED_RAM__)

Portable segment names.

Definition at line 493 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

Function Documentation

_executeBarrierInstructions

void _executeBarrierInstructions (void)

Parameters

N/A

Definition at line 501 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/cortexm3/compiler/iar.h

Common PLATFORM_HEADER Configuration

301/326

Common PLATFORM_HEADER Configuration

Common PLATFORM_HEADER Configuration
Compiler and Platform specific definitions and typedefs common to all platforms.

platform-common.h provides PLATFORM_HEADER defaults and common definitions. This head should never be included

directly, it should only be included by the specific PLATFORM_HEADER used by your platform.

See platform-common.h for source code.

Generic Types

#define TRUE 1
An alias for one , used for clarity.

#define FALSE 0
An alias for zero, used for clarity.

#define NULL ((void *)0)
The null po inter.

Bit Manipulation Macros

#define BIT (x)
Useful to reference a single bit of a byte .

#define BIT32 (x)
Useful to reference a single bit of an uint32_t type .

#define SETBIT (reg, bit)
Sets bit in the reg register or byte .

#define SETBITS (reg, bits)
Sets the bits in the reg register or the byte as specified in the bitmask bits .

#define CLEARBIT (reg, bit)
Clears a bit in the reg register or byte .

#define CLEARBITS (reg, bits)
Clears the bits in the reg register or byte as specified in the bitmask bits .

#define READBIT (reg, bit)
Returns the value of bit within the register or byte reg .

#define READBITS (reg, bits)
Returns the value of the bitmask bits within the register or byte reg .

Byte Manipulation Macros

#define LOW_BYTE (n)
Returns the low byte of the 16-bit value n as an uint8_t .

Common PLATFORM_HEADER Configuration

302/326

#define HIGH_BYTE (n)
Returns the high byte of the 16-bit value n as an uint8_t .

#define HIGH_LOW_TO_INT (high, low)
Returns the value built from the two uint8_t values high and low .

#define INT8U_TO_INT32U (byte3, byte2, byte1, byte0)
Returns the value built from the four uint8_t as an uint32_t .

#define BYTE_0 (n)
Returns the low byte of the 32-bit value n as an uint8_t .

#define BYTE_1 (n)
Returns the second byte of the 32-bit value n as an uint8_t .

#define BYTE_2 (n)
Returns the third byte of the 32-bit value n as an uint8_t .

#define BYTE_3 (n)
Returns the high byte of the 32-bit value n as an uint8_t .

#define BYTE_4 (n)
Returns the fifth byte of the 64-bit value n as an uint8_t .

#define BYTE_5 (n)
Returns the sixth byte of the 64-bit value n as an uint8_t .

#define BYTE_6 (n)
Returns the seventh byte of the 64-bit value n as an uint8_t .

#define BYTE_7 (n)
Returns the high byte of the 64-bit value n as an uint8_t .

#define COUNTOF (a)
Returns the number of entries in an array.

Time Manipulation Macros

#define elapsedTimeInt8u (oldTime, newTime)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define elapsedTimeInt16u (oldTime, newTime)
Returns the elapsed time between two 16 bit values. Result may not be valid if the time samples differ by more than

32767.

#define elapsedTimeInt32u (oldTime, newTime)
Returns the elapsed time between two 32 bit values. Result may not be valid if the time samples differ by more than

2147483647.

#define MAX_INT8U_VALUE (0xFF)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

#define HALF_MAX_INT8U_VALUE (0x80)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define timeGTorEqualInt8u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MAX_INT16U_VALUE (0xFFFF)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Common PLATFORM_HEADER Configuration

303/326

#define HALF_MAX_INT16U_VALUE (0x8000)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define timeGTorEqualInt16u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define MAX_INT32U_VALUE (0xFFFFFFFFUL)
Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

#define HALF_MAX_INT32U_VALUE (0x80000000UL)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

#define timeGTorEqualInt32u (t1, t2)
Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Miscellaneous Macros

#define UNUSED_VAR (x)

#define DEBUG_LEVEL BASIC_DEBUG
Set debug level based on whether DEBUG or DEBUG_STRIPPED are defined.

#define STATIC_ASSERT (__condition, __errorstr)
Disable static assertions on compilers that don't support them.

Macros

#define MEMSET (d, v, l)
Friendly convenience macro po inting to the C Stdlib functions.

#define MEMCOPY (d, s, l)

#define MEMMOVE (d, s, l)

#define MEMPGMCOPY (d, s, l)

#define MEMCOMPARE (s0, s1, l)

#define MEMPGMCOMPARE (s0, s1, l)

Generic Types Documentation

TRUE

#define TRUE

Value:

1

An alias for one, used for clarity.

Definition at line 210 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

FALSE

Common PLATFORM_HEADER Configuration

304/326

#define FALSE

Value:

0

An alias for zero, used for clarity.

Definition at line 215 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

NULL

#define NULL

Value:

((vo id *)0)

The null pointer.

Definition at line 222 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Bit Manipulation Macros Documentation

BIT

#define BIT

Value:

(x)

Useful to reference a single bit of a byte.

Definition at line 235 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BIT32

#define BIT32

Value:

(x)

Useful to reference a single bit of an uint32_t type.

Definition at line 240 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

SETBIT

#define SETBIT

Value:

Common PLATFORM_HEADER Configuration

305/326

(reg, bit)

Sets bit in the reg register or byte.

Note

Assuming reg is an IO register, some platforms (such as the AVR) can implement this in a single atomic operation.

Definition at line 247 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

SETBITS

#define SETBITS

Value:

(reg, bits)

Sets the bits in the reg register or the byte as specified in the bitmask bits .

Note

This is never a single atomic operation.

Definition at line 254 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

CLEARBIT

#define CLEARBIT

Value:

(reg, bit)

Clears a bit in the reg register or byte.

Note

Assuming reg is an IO register, some platforms (such as the AVR) can implement this in a single atomic operation.

Definition at line 261 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

CLEARBITS

#define CLEARBITS

Value:

(reg, bits)

Clears the bits in the reg register or byte as specified in the bitmask bits .

Note

This is never a single atomic operation.

Definition at line 268 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Common PLATFORM_HEADER Configuration

306/326

READBIT

#define READBIT

Value:

(reg, bit)

Returns the value of bit within the register or byte reg .

Definition at line 273 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

READBITS

#define READBITS

Value:

(reg, bits)

Returns the value of the bitmask bits within the register or byte reg .

Definition at line 279 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Byte Manipulation Macros Documentation

LOW_BYTE

#define LOW_BYTE

Value:

(n)

Returns the low byte of the 16-bit value n as an uint8_t .

Definition at line 293 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

HIGH_BYTE

#define HIGH_BYTE

Value:

(n)

Returns the high byte of the 16-bit value n as an uint8_t .

Definition at line 298 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

HIGH_LOW_TO_INT

#define HIGH_LOW_TO_INT

Common PLATFORM_HEADER Configuration

307/326

Value:

0 (\
0 ((uint16_t) (((uint16_t) (high)) << 8)) \
0 + ((uint16_t) ((low) & 0xFFu)) \
0)

Returns the value built from the two uint8_t values high and low .

Definition at line 304 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

INT8U_TO_INT32U

#define INT8U_TO_INT32U

Value:

0 (\
0 (((uint32_t) (byte3)) << 24) \
0 + (((uint32_t) (byte2)) << 16) \
0 + (((uint32_t) (byte1)) << 8) \
0 + ((uint32_t) ((byte0) & 0xFFu)) \
0)

Returns the value built from the four uint8_t as an uint32_t .

Definition at line 312 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_0

#define BYTE_0

Value:

(n)

Returns the low byte of the 32-bit value n as an uint8_t .

Definition at line 322 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_1

#define BYTE_1

Value:

(n)

Returns the second byte of the 32-bit value n as an uint8_t .

Definition at line 327 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_2

#define BYTE_2

Value:

Common PLATFORM_HEADER Configuration

308/326

(n)

Returns the third byte of the 32-bit value n as an uint8_t .

Definition at line 332 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_3

#define BYTE_3

Value:

(n)

Returns the high byte of the 32-bit value n as an uint8_t .

Definition at line 337 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_4

#define BYTE_4

Value:

(n)

Returns the fifth byte of the 64-bit value n as an uint8_t .

Definition at line 342 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_5

#define BYTE_5

Value:

(n)

Returns the sixth byte of the 64-bit value n as an uint8_t .

Definition at line 347 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

BYTE_6

#define BYTE_6

Value:

(n)

Returns the seventh byte of the 64-bit value n as an uint8_t .

Definition at line 352 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Common PLATFORM_HEADER Configuration

309/326

BYTE_7

#define BYTE_7

Value:

(n)

Returns the high byte of the 64-bit value n as an uint8_t .

Definition at line 357 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

COUNTOF

#define COUNTOF

Value:

(a)

Returns the number of entries in an array.

Definition at line 362 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Time Manipulation Macros Documentation

elapsedTimeInt8u

#define elapsedTimeInt8u

Value:

(o ldTime , newTime)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 377 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

elapsedTimeInt16u

#define elapsedTimeInt16u

Value:

(o ldTime , newTime)

Returns the elapsed time between two 16 bit values. Result may not be valid if the time samples differ by more than 32767.

Definition at line 384 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

elapsedTimeInt32u

#define elapsedTimeInt32u

Common PLATFORM_HEADER Configuration

310/326

Value:

(o ldTime , newTime)

Returns the elapsed time between two 32 bit values. Result may not be valid if the time samples differ by more than

2147483647.

Definition at line 391 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MAX_INT8U_VALUE

#define MAX_INT8U_VALUE

Value:

(0xFF)

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Definition at line 398 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

HALF_MAX_INT8U_VALUE

#define HALF_MAX_INT8U_VALUE

Value:

(0x80)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 399 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

timeGTorEqualInt8u

#define timeGTorEqualInt8u

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 400 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MAX_INT16U_VALUE

#define MAX_INT16U_VALUE

Value:

(0xFFFF)

Common PLATFORM_HEADER Configuration

311/326

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Definition at line 407 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

HALF_MAX_INT16U_VALUE

#define HALF_MAX_INT16U_VALUE

Value:

(0x8000)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 408 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

timeGTorEqualInt16u

#define timeGTorEqualInt16u

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 409 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MAX_INT32U_VALUE

#define MAX_INT32U_VALUE

Value:

(0xFFFFFFFFUL)

Returns true if t1 is greater than t2. Can only account for 1 wrap around of the variable before it is wrong.

Definition at line 416 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

HALF_MAX_INT32U_VALUE

#define HALF_MAX_INT32U_VALUE

Value:

(0x80000000UL)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 417 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Common PLATFORM_HEADER Configuration

312/326

timeGTorEqualInt32u

#define timeGTorEqualInt32u

Value:

(t1, t2)

Returns the elapsed time between two 8 bit values. Result may not be valid if the time samples differ by more than 127.

Definition at line 418 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Miscellaneous Macros Documentation

UNUSED_VAR

#define UNUSED_VAR

Value:

(x)

Description:\n Useful macro for avoiding compiler
warnings related to unused
function arguments or unused variables.

Definition at line 436 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

DEBUG_LEVEL

#define DEBUG_LEVEL

Value:

BASIC_DEBUG

Set debug level based on whether DEBUG or DEBUG_STRIPPED are defined.

Definition at line 458 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

STATIC_ASSERT

#define STATIC_ASSERT

Disable static assertions on compilers that don't support them.

Definition at line 466 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

Macro Definition Documentation

MEMSET

Common PLATFORM_HEADER Configuration

313/326

#define MEMSET

Value:

(d, v, l)

Friendly convenience macro pointing to the C Stdlib functions.

Definition at line 188 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MEMCOPY

#define MEMCOPY

Value:

(d, s, l)

Definition at line 189 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MEMMOVE

#define MEMMOVE

Value:

(d, s, l)

Definition at line 190 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MEMPGMCOPY

#define MEMPGMCOPY

Value:

(d, s, l)

Definition at line 191 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MEMCOMPARE

#define MEMCOMPARE

Value:

(s0, s1, l)

Definition at line 192 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

MEMPGMCOMPARE

#define MEMPGMCOMPARE

Common PLATFORM_HEADER Configuration

314/326

Value:

(s0, s1, l)

Definition at line 193 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/generic/compiler/platform-common.h

NVIC Configuration

315/326

NVIC Configuration

NVIC Configuration

Reset Cause Type Definitions

316/326

Reset Cause Type Definitions

Reset Cause Type Definitions

HAL Utilities

317/326

HAL Utilities

HAL Utilities

Modules

Crash and Watchdog Diagnostics

Cyclic Redundancy Code (CRC)

Random Number Generation

Network to Host Byte Order Conversion

Crash and Watchdog Diagnostics

318/326

Crash and Watchdog Diagnostics

Crash and Watchdog Diagnostics

Cyclic Redundancy Code (CRC)

319/326

Cyclic Redundancy Code (CRC)

Cyclic Redundancy Code (CRC)
Functions that provide access to cyclic redundancy code (CRC) calculation. See crc.h for source code.

Functions

uint16_t halCommonCrc16(uint8_t newByte, uint16_t prevResult)
Calculates 16-bit cyclic redundancy code (CITT CRC 16).

uint32_t halCommonCrc32(uint8_t newByte, uint32_t prevResult)
Calculates 32-bit cyclic redundancy code .

Macros

#define INITIAL_CRC 0xFFFFFFFFL

#define CRC32_START INITIAL_CRC

#define CRC32_END 0xDEBB20E3L

Function Documentation

halCommonCrc16

uint16_t halCommonCrc16 (uint8_t newByte, uint16_t prevResult)

Calculates 16-bit cyclic redundancy code (CITT CRC 16).

Parameters

N/A newByte The new byte to be run through CRC.

N/A prevResult The previous CRC result.

Applies the standard CITT CRC 16 polynomial to a single byte. It should support being called first with an initial value, then

repeatedly until all data is processed.

Returns

The new CRC result.

Definition at line 38 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/crc.h

halCommonCrc32

uint32_t halCommonCrc32 (uint8_t newByte, uint32_t prevResult)

Calculates 32-bit cyclic redundancy code.

Parameters

Cyclic Redundancy Code (CRC)

320/326

N/A newByte The new byte to be run through CRC.

N/A prevResult The previous CRC result.

Note

On some radios or micros, the CRC for error detection on packet data is calculated in hardware.

Applies a CRC32 polynomial to a single byte. It should support being called first with an initial value, then repeatedly until all

data is processed.

Returns

The new CRC result.

Definition at line 55 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/crc.h

Macro Definition Documentation

INITIAL_CRC

#define INITIAL_CRC

Value:

0xFFFFFFFFL

Definition at line 58 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/crc.h

CRC32_START

#define CRC32_START

Value:

INITIAL_CRC

Definition at line 59 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/crc.h

CRC32_END

#define CRC32_END

Value:

0xDEBB20E3L

Definition at line 60 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/crc.h

Random Number Generation

321/326

Random Number Generation

Random Number Generation
Functions that provide access to random numbers.

These functions may be hardware accelerated, though often are not.

See random.h for source code.

Functions

void halStackSeedRandom(uint32_t seed)
Seeds the halCommonGetRandom() pseudorandom number generator.

uint16_t halCommonGetRandom(void)
Runs a standard LFSR to generate pseudorandom numbers.

Function Documentation

halStackSeedRandom

void halStackSeedRandom (uint32_t seed)

Seeds the halCommonGetRandom() pseudorandom number generator.

Parameters

N/A seed A seed for the pseudorandom number generator.

Called by the stack during initialization with a seed from the radio.

Definition at line 36 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/random.h

halCommonGetRandom

uint16_t halCommonGetRandom (void)

Runs a standard LFSR to generate pseudorandom numbers.

Parameters

N/A

Called by the MAC in the stack to choose random backoff slots.

Complicated implementations may improve the MAC's ability to avoid collisions in large networks, but it is critical to

implement this function to return quickly.

Definition at line 51 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/random.h

Network to Host Byte Order Conversion

322/326

Network to Host Byte Order Conversion

Network to Host Byte Order Conversion
Functions that provide conversions from network to host byte order. Network byte order is big endian, so these APIs are

only necessary on platforms which have a natural little endian byte order. On big-endian platforms, the APIs are macro'd

away to nothing. See endian.h for source code.

Functions

uint16_t NTOHS(uint16_t val)
Converts a short (16-bit) value from network to host byte order.

uint32_t NTOHL(uint32_t val)
Converts a long (32-bit) value from network to host byte order.

uint32_t SwapEndiannessInt32u(uint32_t val)

Macros

#define HTONL NTOHL

#define HTONS NTOHS

Function Documentation

NTOHS

uint16_t NTOHS (uint16_t val)

Converts a short (16-bit) value from network to host byte order.

Parameters

N/A val

Definition at line 45 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/endian.h

NTOHL

uint32_t NTOHL (uint32_t val)

Converts a long (32-bit) value from network to host byte order.

Parameters

N/A val

Definition at line 53 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/endian.h

Network to Host Byte Order Conversion

323/326

SwapEndiannessInt32u

uint32_t SwapEndiannessInt32u (uint32_t val)

Parameters

N/A val

Definition at line 79 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/endian.h

Macro Definition Documentation

HTONL

#define HTONL

Value:

NTOHL

Definition at line 71 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/endian.h

HTONS

#define HTONS

Value:

NTOHS

Definition at line 74 of file /mnt/raid/workspaces/ws.Q8qnkBLX2/overlay/gsdk/platform/base/hal/micro/endian.h

Deprecated List

324/326

Deprecated List

Deprecated List
Global EMBER_MAX_SECURED_APPLICATION_PAYLOAD_LENGTH

The maximum length in bytes of the application payload for a secured message. This define has been deprecated, you

should use the emberGetMaximumPayloadLength API instead.

Global EMBER_MAX_UNSECURED_APPLICATION_PAYLOAD_LENGTH

The maximum length in bytes of the application payload for an unsecured message. This define has been deprecated, you

should use the emberGetMaximumPayloadLength API instead.

Training

325/326

Training

Training
This series of tutorials demonstrates "the essentials" of building applications based on S ilicon Labs Connect. The collection

presents an incremental review of key techniques and features that help developers access the powerful convenience

available thru Connect. These tutorials supplement the Developer's Guide and the API reference.
Note: The API reference is

the authoritative Connect resource, and represents the most current documentation at all times. Grant it a priority in any

conflicts you may encounter in the following (or any other) Connect guidance.

Prerequisites

We strongly recommend familiarity with the resources above (especially the Developer's Guide) before beginning Connect-

based application development, as they provide insight on crucial decisions that impact the design phase of your project.

That said, each tutorial in this series walks you through important Connect concepts using accessible demonstrations and

discussions that illuminate how you can make Connect work for you. To extract the most value from this tutorial series,

programming experience in embedded C and (at least) a baseline understanding of wireless networking theory is

recommended. See Fundamentals.

The Tutorials

This group of tutorials leads you from "square one" (tutorial 1) to performing packet analysis on traffic captured from the

firmware you've developed along the way (tutorial 7). A Direct mode Connect-based application serves as the

demonstration vehicle. Though the coverage spans a broad range of topics, the tutorials are designed to be completed

sequentially. However, Tutorial 6 is largely independent, and is immediately accessible as a strong subject matter reference.

1. Getting Started with Application Development

2. Communication Basics: Send and Receive

3. Command Line Interface

4. Communication Features: Acknowledge and Message Queue

5. Communication Features: Security

6. IEEE 802.15.4 Addressing

7. Traffic Analysis: Addressing, Acknowledgement, and Security

8. Network Management

https://docs.silabs.com/connect-stack/3.7.0/connect-developers-guide-overview
https://docs.silabs.com/connect-stack/3.7.0/connect-fundamentals-overview
https://community.silabs.com/s/article/connect-tutorial-1-getting-started-with-application-development
https://community.silabs.com/s/article/connect-tutorial-2-communication-basics-send-and-receive
https://community.silabs.com/s/article/connect-tutorial-3-command-line-interface
https://community.silabs.com/s/article/connect-tutorial-4-communication-features-acknowledge-and-message-queue
https://community.silabs.com/s/article/connect-tutorial-5-communication-features-security
https://community.silabs.com/s/article/connect-tutorial-6-ieee-802-15-4-addressing
https://community.silabs.com/s/article/connect-tutorial-7-traffic-analysis-addressing-acknowledgement-and-security
https://community.silabs.com/s/article/connect-tutorial-8-network-management

Training

326/326

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Developing with Connect
	Getting Started
	Overview

	Fundamentals
	Overview

	Connect Developer's Guide
	Overview
	Developing and Debugging
	Overview
	PHY Limitations and Timing Optimization

	Bootloading
	Overview

	Multiprotocol
	Overview

	Non-Volatile Data Storage
	Overview

	Security
	Overview

	Connect API Reference Guide
	Connect
	Connect Stack API Reference
	Connect Stack Version
	Connect Data Types
	EmberNetworkParameters
	EmberIncomingMessage
	EmberOutgoingMessage
	EmberMacAddress
	EmberMacFrame
	EmberIncomingMacMessage
	EmberOutgoingMacMessage
	EmberKeyData
	EventActions
	Event_s
	EventQueue_s
	EmberEventControl
	EmberEventData_S
	EmberTaskControl

	Stack Information
	Stack Counters

	Network Management
	Frequency Hopping
	Parent Support

	Radio Stream
	Configuration
	Status Codes
	Stack Tokens
	tokTypeStackKey
	tokTypeStackNodeData
	tokTypeStackChildTableEntry

	Event Scheduling
	Memory Buffer

	Messaging
	Connect Application Framework API Reference
	Application Framework Common
	Command Interpreter Plugin
	Debug Print Plugin
	Mailbox Client Plugin
	Mailbox Server Plugin
	Mailbox Common
	Ota Unicast Bootloader Client Plugin
	Ota Unicast Bootloader Server Plugin
	Ota Unicast Bootloader Common
	Ota Broadcast Bootloader Client Plugin
	Ota Broadcast Bootloader Server Plugin
	Ota Broadcast Bootloader Common
	Poll Plugin
	WSTK Sensors Plugin

	Hardware Abstraction Layer (HAL) API Reference
	Hardware Abstraction Layer (HAL)
	Common Microcontroller Functions
	RTCCRamData

	Token Access
	Tokens
	Simulated EEPROM

	Sample APIs for Peripheral Access
	Serial UART Communication
	Button Control
	Buzzer Control
	LED Control
	Flash Memory Control

	System Timer Control
	Symbol Timer Control
	HAL Configuration
	Sample Breakout Board Configuration
	IAR PLATFORM_HEADER Configuration
	Common PLATFORM_HEADER Configuration
	NVIC Configuration
	Reset Cause Type Definitions

	HAL Utilities
	Crash and Watchdog Diagnostics
	Cyclic Redundancy Code (CRC)
	Random Number Generation
	Network to Host Byte Order Conversion

	Deprecated List

	Training

