
Silicon Labs Matter

1/362

Silicon Labs Matter

Developing with Silicon Labs Matter

New Features

Quick-Start Guides

Overview and Setup

Matter Light and Switch Example

Wi-Fi

Thread

Next Steps

Fundamentals

Matter Fundamentals

Introduction to Matter

Matter Data Model

Matter Interactions Model

Matter Security

Matter Developer's Guide

Introduction

Matter Prerequisites

Hardware Requirements

Software Requirements

Artifacts

Matter Over Thread Example

Using the Matter Hub

Setting up the RCP

Creating an End Device

Using the Chip-Tool

Matter Over Wi-Fi Example

Overview

Getting Started

Software Installation

Get Started with SoC

Get Started with NCP

Set up Chip-Tool

Running the Matter Demo

Flash Firmware

Flash Bootloader

Build an SoC Application Using Studio

Build an NCP Application Using Studio

Flash a Binary

Silicon Labs Matter

2/362

Set Up the Raspberry Pi

Run an Application

Debug an Application

Supported Features

Intermittently Connected Devices �ICD�

Direct Internet Connectivity

Interoperability with Ecosystems

Optimizing Memory Usage

Optimizing ICD Power Consumption

Jlink RTT Support with SOC

Direct Internet Connectivity

AWS Configuration Registration

OpenSSL Certificate Creation

Mosquitto Installation

MQTT Explorer Setup

Build DIC Application

Matter Ecosystems

Single Controller Configuration

Google Ecosystem Setup

Apple Ecosystem Setup

Amazon Ecosystem Setup

Samsung Ecosystem Setup

Multi-Controller Configuration

Matter Bridge

Matter Bridge Overview

Building The Matter Bridge

Running The Matter Bridge

Detailed Development Topics

Overview Guides

Matter Provisioning

Test Matter Certificates for Development

Matter Commissioning

Matter Intermittently Connected Devices �ICD�

Matter OpenThread ICD Device

Matter Serial Port Communication �Matter Shell)

Matter SLC CLI Setup and Build Instructions

Matter Solutions

Matter OTA

Matter OTA Bootloader

Matter OTA Software Update

Matter 917 SOC OTA Software Update

Matter OTA WiFi Project

Matter Production Guide

Introduction

Silicon Labs Matter

3/362

Device Development Prerequisites

Custom Part Manufacturing Services

Kudelski Security

Device Attestation

Matter API Reference

DataModel

Attributes

Clusters

Commands

Events

Cluster Implementation

Resources

Reference Guides

Matter Commit Hashes

How to Flash a Silicon Labs Device

How to Find Your Raspberry Pi

Using Development Tools in Simplicity Studio

Building a Custom Matter Device

Building a Multi-Endpoint Device

Using ZAP, the ZCL Advanced Platform

Using Wireshark with Matter

Matter EFR32 Flash Savings Guide

Matter FAQ

Thread FAQ

Wi-Fi FAQ

Developing with Silicon Labs Matter

4/362

Developing with Silicon Labs Matter

Silicon Labs Matter
The Matter protocol leverages existing IP technologies, including Wi-Fi and Thread, to build a unified wireless connectivity

ecosystem for smart homes. Internet Protocol (IP)-based networking provides manufacturers with simplified development

while improving device compatibility for consumers.

S ilicon Labs supports Matter on both 802.15.4 (Thread) and 802.11 (Wi-Fi) transport protocols. The Thread development use

case differs from Wi-Fi because the Thread protocol requires an OpenThread Border Router (OTBR).

The Unify Matter Bridge is an application that makes legacy devices, such as Z-Wave and Zigbee devices, accessible on a

Matter fabric. It does so by acting as an IoT Service in a Unify Framework.

Device: S iWx917 SoC

Developing with Silicon Labs Matter

5/362

Two Paths for Development

These pages are for users who want to develop Matter applications in S implicity Studio. The S implicity Studio development

path is the preferred path if you are looking for a GUI-based development experience in which you can create production-

ready projects from a well-tested library. The S implicity Studio development path also natively supports development on the

Windows operating system. As a result, Windows users should use S implicity Studio for their development environment.

Alternatively you can develop applications directly out of the S ilicon Labs Matter G itHub repo. Complete documentation for

the G itHub development use case is provided in the S ilicon Labs Matter G itHub Documentation. This path is best for those

who are experienced working with Matter and S ilicon Labs products, prefer working with G itHub and a workflow that's not

IDE-driven, or need access to newer features sooner at the cost of lesser test coverage.

Other Resources

To see release notes containing list of features and knowns issues, go to Matter Release Notes on S ilicon Labs Matter

Extension.

If you are new to Matter or would like more information about S ilicon Labs Matter-based products, see the Matter content

on silabs.com.

For background information on the Matter standard, see the Connectivity Standard Alliance page.

To quickly make a simple Matter network, see the quick-start guides.

To develop your own customized applications with Matter over Thread and Matter over Wi-Fi, see the Matter Developer's

Guide.

https://github.com/SiliconLabs/matter
https://siliconlabs.github.io/matter/latest/
https://github.com/SiliconLabs/matter_extension/releases/tag/v2.2.0
https://www.silabs.com/wireless/matter
https://csa-iot.org/all-solutions/matter/
https://docs.silabs.com/matter/2.2.0/matter-overview
https://docs.silabs.com/matter/2.2.0/matter-developers-guide-overview

New Features

6/362

New Features

New Features

New Features for v2.2.0�1.2

GA support for Intermittently Connected Devices

Introduction of a third LCD screen to display application information

Introduction of the Dishwasher Demo Application

Adds support of Matter 1.2 on all devices

Adds Matter support on S iWx917 SoC Common flash variants - BRD4338A

Adds LCD display support on S iWx917 SoC for all the Wi-Fi Matter Apps

Adds support for Direct Internet Connectivity on the S iWx917 SoC & NCP

Support for Visual Studio Code integration

Adds support for certificate provisioning on S iWx917 SOC

Adds support for Firmware Upgrade on S iWx917 SOC

Self-Provisioning Mode

S ilicon Labs' Matter examples now include a self-provision mode, which enables the application to be used as Generator

Firmware with the provisioning script:

e.g.: python3 provision.py -c config/silabs.json -gf ../out/light/BRD4187C/matter-silabs-lighting-example .s37

To enter the self-provisioning mode, factory reset the device pressing buttons BTN0 and BTN1 for six seconds. Using this

method, the device application only needs to be flashed once, provisioned multiple times, and be ready for commissioning

after each provisioning.

Support for Intermittently Connected Devices �ICD�

With the official introduction of Matter Short Idle Time (SIT) ICDs, both the door-lock sample app and the light-switch

sample app are configured as SIT ICDs by default (with the exception of S iWx917 SoC examples). The default

configurations can be found in their respective sl_matter_icd_config.h configuration files.

Full support for ICD Short Idle Time (SIT) Devices in support of the Matter 1.2 specification

In this release, S ilicon Labs has provided full support for Short Idle Time intermittently connected devices

These are ICDs (formerly called S leepy End Devices) which must remain responsive to user input such as Door Locks and

Window Coverings

ICD Management cluster server implementation

S ilicon Labs has provided an implementation of the ICD cluster server and the configuration of the ICD

ICD Manager and ICD Event Manager has been implemented to manage the Idle and Active mode of the ICD

NEW DNS advertisement Text Key SAI: indicates the SLEEPY_ACTIVE_INTERVAL (default to 4000 ms when ICD is not

enabled)

NEW Matter ICD configuration defines:

CHIP_CONFIG_ICD_IDLE_MODE_INTERVAL sets the value for the ICD IdleInterval attribute

CHIP_CONFIG_ICD_ACTIVE_MODE_INTERVAL sets the value for the ICD ActiveInterval attribute

CHIP_CONFIG_ICD_ACTIVE_MODE_THRESHOLD sets the value for the ICD ActiveThreshold attribute

CHIP_CONFIG_ICD_CLIENTS_SUPPORTED_PER_FABRIC sets the value for the ICD ClientsSupportedPerFabric attribute

All of these defines can be configured within sl_matter_icd_config.h inside the config directory (default values listed here):

New Features

7/362

 #define SL_IDLE_MODE_INTERVAL = 600 // 10min Idle Mode Interval

 #define SL_ACTIVE_MODE_INTERVAL = 1000 // 1s Active Mode Interval

 #define SL_ACTIVE_MODE_THRESHOLD = 500 // 500ms Active Mode Threshold

 #define SL_ICD_SUPPORTED_CLIENTS_PER_FABRIC = 2 // 2 registration slots per fabric

// The OpenThread polling rates used in either ICD mode

 #define SL_OT_IDLE_INTERVAL = 15000 // 15s Idle Intervals

 #define SL_OT_ACTIVE_INTERVAL = 200 // 200ms Active Intervals

CHANGES:

Optimized the subscription reports by synchronizing all client’s subscriptions with the ICD idle mode interval. This ensures

the minimal amount of wake ups possible due to subscription reports. This component is introduced as

matter_subscription_synchronization .

The previous matter_sed components has been replaced by matter_icd . This goes in line with previous sleepy end device

behavior being deprecated and replaced by the ICD behavior.

S ilicon Labs' Light Switch and Door Lock apps support the ICD implementation and have the ICD cluster enabled.

Overview and Setup

8/362

Overview and Setup

Quick-Start Guides for Matter over Thread and
Matter over Wi-Fi

Overview

The procedures here describe how to make a simple network of a light, a switch, and a Matter hub, and to use the switch

to control the light. First, set up your hardware and software as described below. Then you will follow a step by step

procedure to:

Create a Matter hub on a Raspberry Pi.

Compile and load a light and a switch example application onto two S ilicon Labs development boards to make light and

switch Matter Accessory Devices (MADs).

Create a Matter network with the MADs and the Matter hub.

Test the light through the Matter hub.

Bind the switch MAD to the light MAD, so that the switch can control the light.

Initial Setup

Both the Matter over Wi-Fi and Matter over Thread demos require that you have set up a simple development environment

with S implicity Studio, two EFR32MG24-based development boards, and a Raspberry Pi used as a Matter hub. The following

requirements are common to both demos. The Thread demo also requires a radio co-processor (RCP) as part of the Matter

Hub. The requirements for this are provided in the introduction to the Thread demo.

Hardware Requirements

Matter Hub

1 Raspberry Pi 4B

1x high speed, 64 GB SD card

Matter Devices

Matter Over Wi-Fi Accessory Device Requirements for NCP Mode

The S ilicon Labs Matter over Wi-Fi NCP mode demo and development requires two boards: the S ilicon Labs EFR32 Radio

board to run the Matter code and either the RS9116, S iWx917, or WF200 to run the Wi-Fi protocol stack.

The following boards are supported for the Matter over Wi-Fi demos and development:

MG24 Boards:

BRD4186C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@10dBm

XG24-RB4186C

MG24 with WSTK: xG24-PK6009A

BRD4187C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@20dBm

XG24-RB4187C

MG24 with WSTK: xG24-PK6010A

Wi-Fi NCP Dev Kits & boards

RS9116

SB-EVK1 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK1

SB-EVK2 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK2

https://docs.silabs.com/matter/2.2.0/matter-thread-getting-started
https://www.silabs.com/development-tools/wireless/xg24-rb4186c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-10-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-20-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk2-development-kit

Overview and Setup

9/362

DB-EVK1 / Dual Band Wi-Fi Development K it / 2.4GHz & 5GHz

RS9116X-DB-EVK1

SiWx917 NCP

S iWx917 NCP Mode / Wi-Fi Expansion Board / 2.4GHz

BRD8045A (B0 Expansion v2.0)

WF200

WF200 / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8022A

WF200 / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8023A

Interconnect board (included in the Wi-Fi kits)

SPI Cable (included in the RS9116 kit)

Jumper Cables (included in the RS9116 kit)

Note: For more information, refer to Hardware Requirements.

Matter Over Wi-Fi Accessory Device Requirements for SoC Mode

The S ilicon Labs Matter over Wi-Fi demo and development for SoC mode requires the S iWx917 SoC board that supports

Matter over Wi-Fi in a single-chip package. The integrated MCU is dedicated for peripheral and application-related

processing (Matter), while the ThreadArch® runs the wireless and networking protocol stacks.

Pre-built images for the S iWx917 connectivity firmware are available as per the instructions on the Matter Artifacts page.

The following boards are supported for the Matter over Wi-Fi demos and development:

Wi-Fi SoC Boards:

S iWx917 / BRD4002A / Wireless Starter K it

S iWx917 Soc Mode

S iWx917 SoC / Common Flash Radio Board / 2.4GHz

BRD4338A - B0 common flash v2.0

Software Requirements

Simplicity Studio 5: Download and install S implicity Studio 5 for your operating system from the S ilicon LabsS implicity Studio

page. While the installation process is easy to follow, instructions are provided in the S implicity Studio v5 Getting Started

section.

Ozone - The J-Link Debugger: Ozone is a full-featured graphical debugger for embedded applications. With Ozone, it is

possible to debug any embedded application on C/C++ source and assembly level.

Simplicity Commander: S implicity Commander is a utility that provides GUI and command line access to the debug features

of an EFM32 device. It allows you to flash firmware, update the kit firmware, and lock or unlock debug access.

Tera Term: Tera Term is the terminal emulator for Microsoft Windows that supports serial port, telnet, and SSH connections.

Silicon Labs Matter GSDK Extension: Once S implicity Studio 5 is installed, you will be prompted to install the Gecko SDK

Suite (GSDK). Here you should also install the Matter Enablement Package by making sure the extension is checked, as

shown.

https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-db-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wf200-wifi-expansion-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wfm200-wifi-expansion-kit
https://docs.silabs.com/matter/2.2.0/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/install-ss-5-and-software
https://www.segger.com/products/development-tools/ozone-j-link-debugger/
https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip

Overview and Setup

10/362

Installation of Wi-Fi SDK and Wiseconnect Packages The following packages will be installed during the installation of

S implicity Studio, Refer to Package Installation

Matter Hub Raspberry Pi Image: A copy of the pre-built image from the S ilicon Labs web services can be downloaded in

this zipfile. Note this is a large file and will take some time to download.

Note: The Matter hub for Matter over Thread requires an additional device, a radio co-processor. See the

introduction to the Matter over Thread demo for more information.

Matter Bootloader Image: The EFR32MG24 devices must be programmed with a bootloader. Obtain those here: S ilicon

Labs Matter Artifacts.

SSH Client: Managing the Matter hub often requires connecting to it remotely. An SSH client is needed to follow the step-

by-step example in this document (PuTTY is used). Install software such as PuTTY, Terminal, or a similar application for

access to the Raspberry Pi-based Matter hub.

SD Card-Flashing Software: Many different applications can be used to prepare an SD card for the Raspberry Pi, such as

the Raspberry Pi Imager, balenaEtcher, and Rufus. The step-by-step example in this document uses the Raspberry Pi

Imager.

Visual Studio Code Development

In addition to creating and building your Matter project within S implicity Studio, S ilicon Labs also provides Visual Studio Code

(VSCode) IDE integration. Matter projects support VSCode integration with the exception of Matter Solutions projects.

For more information on development within Visual Studio Code, please visit Visual Studio Code Enablement.

Next Steps

Now that you have your environment, you can create a Matter over Wi-Fi network or a Matter over Thread network.

https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation
https://www.silabs.com/documents/public/software/SilabsMatterPi_2.2.0-1.2-extension.zip
https://docs.silabs.com/matter/2.2.0/matter-thread-getting-started
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://www.putty.org/
https://www.raspberrypi.com/documentation/computers/getting-started.html#install-using-imager
https://www.balena.io/etcher
https://silabsiot.slack.com/archives/C018366PBH8/p1654113932884999
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-vscode-ide/
https://docs.silabs.com/matter/2.2.0/matter-light-switch-example/01-wifi-light-switch-example
https://docs.silabs.com/matter/2.2.0/matter-light-switch-example/02-thread-light-switch-example

Matter Light and Switch Example

11/362

Matter Light and Switch Example

Matter Light and Switch Example
These pages describe how to create a simple Matter network in which you can use a switch to control a light.

You should have obtained hardware and installed software as described in the Overview. Once you have done so, you can

begin the step-by-step instructions for Matter over Wi-Fi or Matter over Thread.

Wi-Fi

Thread

Next Steps

https://docs.silabs.com/matter/2.2.0/matter-overview

Wi-Fi

12/362

Wi-Fi

Light and Switch Step-by-Step Example

Setting up the Matter Hub/Chip-Tool

This procedure prepares the Raspberry Pi 4B (RPi4B) to become a Matter Hub. You should have downloaded the Matter

Hub Raspberry Pi image and Raspberry Pi Imager as described in the Overview. The Raspberry Pi image contains software

called chip-tool, which provides a command-line interface into the Matter protocol.

 Install the Raspberry Pi Imager and insert the SD card into the PC to flash the image.

 Open the Imager, select the Operating System as 'Custom OS ' and browse for the Raspberry Pi Image.

 Select the storage as an SD card.

 Click the settings icon to configure the access point (AP) credentials, Hostname and user credentials. Make sure the 5

GHz Wi-Fi credentials of the dual-band AP are entered.

 Click the 'write' option. Note this will erase all existing content on that SD card.

 Insert the SD card into Raspberry Pi 4B (RPi4B).

 Power-up the RPi4B. Once it is booted up, check the Raspberry Pi's IP address. Refer to Finding Raspberry Pi IP address in

the References chapter to get the IP address or enter the Hostname directly in PuTTY.

 Use PuTTY to connect to RPi4B.

 The first time connecting to RPi4B, PuTTY will warn about a new host key or key fingerprint. Accept the key.

 The credentials (username: password) are the same given Step 1.

 Switch to root mode and navigate to path "/home/ubuntu/connectedhomeip/out/standalone" to find the chip-tool.

Matter hub/chip-tool are ready and working. Keep the PuTTY session open for the following steps.

Creating the Matter Accessory Devices �MADs)

Hardware Requirements

S iWx917 / BRD4002A / Wireless Starter K it

S iWx917 SoC Mode

S iWx917 SoC / Common Flash Radio Board / 2.4GHz

BRD4338A - B0 common flash v2.0

Note: Refer to S iWx917 SoC for more details.

Software Requirements

In order to run the Light and Switch Example on S iWx917 SOC, software must be installed. Refer to Software Requirements.

Note: Switch application is not supported for NCP devices

 In S implicity Studio 5, create the Light MAD:

 Switch to the Launcher view (if not already in it).

 Connect one compatible dev board to the development computer.

 Once it shows up in the Debug Adapters view, select it.

 Open the Example Projects and Demos tab, select the Matter filter and enter "Wi-Fi" in Filter on keywords.
 Select the Matter - Lighting over Wi-Fi example, click Create, rename the project if you wish, and click Finish.

 Once the project is created, the perspective changes to the S implicity IDE perspective. In the Project Explorer view,

right-click the project and select Build Project.
 Once the project has compiled, in the Debug Adapters view right-click the board and select Upload application.
 Select the Application image path (Select the path for .rps or _isp.bin file for soc in the path

'<workspace>\project_name\GNU ARM v12.x.x - Default').

 Disconnect the dev board from development computer.

https://docs.silabs.com/matter/2.2.0/matter-overview
https://docs.silabs.com/matter/2.2.0/matter-references/find-raspi
https://www.silabs.com/development-tools/wireless/wi-fi/siwx917-pro-kit?tab=techdocs
https://docs.silabs.com/matter/%3Cdospace-docleaf-version%3E/matter-prerequisites/software-requirements

Wi-Fi

13/362

 Optional: Label this device (eg: my_light or my_switch) to make it easier to identify later.

 Repeat the process with the second Dev board, but select the Matter - Light Switch over Wi-Fi example instead.

Creating the Matter Network

This procedure uses the chip-tool installed on the Matter Hub. Chip-tool includes many commands. The following are some

that are used in this example:

chip-too l ble-wifi pairing

chip-too l onoff

chip-too l toggle

chip-too l accesscontro l

chip-too l binding

In a PuTTY session to the Matter hub, use the chip-tool to commission the Matter light device.The various compatible

boards will have different setups for their LED(s). Typically one LED (or a color channel, if RGB) will be used to indicate the

network status of the device:

A short flash indicates the MAD is advertising to join a network

A rapid flash indicates the commissioning is in progress

Solid ON: the MAD is now in the network

 Power up the Matter Light device.

 Once it is powered up and booted, use the PuTTY session to commission the device using

./chip-too l pairing ble-wifi node ID SSID PSK 20202021 3840

where node ID is replaced with the desired ID (for example ./chip-too l pairing ble-wifi 1122 Silabs PSK 20202021 3840).

 Make sure the SSID and PSK given here are of 2.4 GHz of the Dual Band AP.

Be sure to note which nodeIDs are used for Matter light and Matter light_switch devices. These will be needed later for

modifying the Matter light's ACL & the Matter light switch's binding table.

 Power up the Matter light switch device and commission it too, using a different node ID .

Now two Matter accessory devices (MADs) are on the network and ready to be used.

Controlling the Light MAD

 In a PuTTY session to the Matter hub, use the chip-tool to test the Matter light device.

 Control the light status of the light MAD Using ./chip-too l onoff on node ID 1 . You can also use chip-too l onoff off and

chip-too l toggle .

 For dev board with buttons available, you can use BTN1 to toggle the light status locally.

 In a PuTTY session to the Matter hub, use the chip-tool to bind the light_switch MAD to the light MAD, thus allowing the

switch to control the light.

 First, modify the Access Control List (ACL) of the Matter light device. This list determines which device in the network

the Matter light device will react to. Use: ./chip-too l accesscontro l write acl '[{ "fabricIndex" : 1 , "privilege" : 5 , "authMode" : 2 ,

"subjects" : [112233] , "targets" : null } , { "fabricIndex" : 1 , "privilege" : 3 , "authMode" : 2 , "subjects" : [nodeID-switch], "targets"

: null }]' nodeID-light 0 , where the highlighted parameters are:

112233: The node ID of the controller. This is always 112233.

nodeID-switch: The node ID of the Matter light switch device.

nodeID-light: The node ID of the Matter light device.

0: The endpoint in the Matter light device that holds the ACL. This is always 0.

To read the ACL for a Matter device use: ./chip-too l accesscontro l read acl nodeID 0 , where the highlighted parameters

are:

nodeID: The nodeID of the Matter device (Light or Light_switch) to read the ACL contents from.

0: The endpoint in the Matter device that holds the ACL. This is always 0.

For Example:- ./chip-too l accesscontro l write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": [112233], "targets": null },

{"fabricIndex": 1, "privilege": 3, "authMode": 2, "subjects": [2], "targets": null }]' 1111 0

 Second, bind the switch's write command to the light. This is done by updating the binding table of the Matter

light_switch device. This can be done using the command: ./chip-too l binding write binding '[{ "fabricIndex" : 1 , "node"

: nodeID-light , "endpo int" : 1 , "cluster" : 6 }]' nodeID-switch 1 , where the highlighted parameters are:

nodeID-light: The node ID of the Matter light device.

1: The application endpoint in the light. This is always 1.

Wi-Fi

14/362

6: The on/off cluster in the light. This is always 6.

nodeID-switch: The node ID of the switch.

1: This is the application endpoint in the switch that holds the binding table. This is always 1.

The binding table from a Matter device can be read using: ./chip-too l binding read binding nodeID-switch 1 , where the

highlighted parameters are:

nodeID-switch: The node ID of the Matter switch.

1: The application endpoint in the switch that holds the binding table. This is always 1.

For Example:- ./chip-too l binding write binding '[{"fabricIndex": 1, "node": 1, "endpo int": 1, "cluster":6}]' 2222 1

 With the binding complete, a button press (BTN1) on Matter light_switch device should now toggle the light status of Matter

light device.

Thread

15/362

Thread

Matter over Thread Light and Switch Step-by-Step
Example

Setting up the Matter hub

 Prepare a compatible dev board to become your Matter hub's ot-rcp (see details in the introduction):

 Start S implicity Studio 5 with the latest GSDK and S ilicon Labs Matter GSDK Extension installed (see details in the

Overview).

 Connect the dev board to your development computer.

 Once it shows up in the Debug Adapters view, select it.

 Go to the Example Projects and Demos tab. Select the OpenThread filter and enter "openthread rcp" in the Filter on

keywords box. Select the OpenThread - RCP example and click Run.

https://docs.silabs.com/matter/2.2.0/matter-overview#software-requirements

Thread

16/362

 Disconnect the dev board and connect it to your RPi4B.

 Prepare the Raspberry Pi 4B (RPi4B) to become a Matter hub:

 Download and extract the Matter hub Raspberry Pi image (see details under Software requirements).

 Flash the image to the desired SD card. Please note this will erase all existing content on that SD card:

 Under Operating System, click CHOOSE OS. Scroll down and choose the last option, Use custom. Browse to your

extracted SilabsMatterPi.img file and select it.

 Under Storage, click CHOOSE STORAGE. Select your target SD card. If it does not show up, make sure it is

inserted properly and not in use by other software and retry this step.

https://docs.silabs.com/matter/2.2.0/matter-overview#software-requirements

Thread

17/362

 Click WRITE and confirm the action by clicking YES. Wait for the process to finish writing to the SD card and

verifying the results.

 Insert the SD card in your Raspberry Pi 4B (RPi4B) and connect it to your network by Ethernet (Wi-Fi cannot be used

for this example).

 Power-up the RPi4B. Once it is booted up, check your local network DHCP IP address allocation rules to determine the

RPi4B's assigned IP address. You may also use networking tools such as nmap to find your RPi4B ’s IP assigned address.

 Use PuTTY to connect to your RPi4B.

 The first time you connect to your RPi4B, PuTTY will warn you about a new host key or key fingerprint. Accept the

key.

 The default credentials are ubuntu:ubuntu (username:password). Note: In PuTTY, you can set the default username

to ubuntu under Connection > Data > Auto-login username.

Thread

18/362

 You may be prompted to change the password.

 Verify that your ot-rcp board is visible in your RPi4B. It should show up as a ttyUSBn or a ttyACMn in /dev/. where n
indicates the port's number (ex: /dev/ttyACM0).

Note: If your RCP shows up with a number other than 0, the otbr-agent file will need to be updated.

You now have a working Matter hub. Keep the PuTTY session open for the following steps.

Creating the Matter Accessory Devices �MADs)

 In S implicity Studio 5, create the light MAD:

 Switch to the Launcher view (if not already in it).

 Connect one compatible dev board to your development computer. This example uses a BRD4186C.

 Once it shows up in the Debug Adapters view, select it.

 Go to the Example Projects and Demos tab, turn off Demos, check the Matter filter under Wireless Technology and
enter "thread" in the Filter on keywords box.

Thread

19/362

 Select the Matter - SoC Light over Thread example and click Create. Name your project and click Finish (no other

changes are required at this time).

 Once the project is created, right-click it in the Project Explorer view and select Build Project.

 Once the compilation is done, right-click the dev board in the Debug Adapters view and select Upload application...

Thread

20/362

 Select the Application image path for your newly compiled project and a Bootloader image. Bootloader images are
provided in the zip file referenced on the S ilicon Labs Matter Artifacts page. Unzip and reference the extracted

location. Check "Erase chip before uploading image".

Note: If you are unsure of the path for the newly created binary, you can find the project’s path in the project’s

Properties window under Resource. The binary is typically located inside the {workspace folder}|{project name folder}|
{GNU ARM v??? folder}|{project name binary}.s37. For example, you would find the binary for a Matter light over Thread

project with the default name here: {workspace folder}|MatterLightOverThread|GNU ARM v10.3.1 -
Default|MatterLightOverThread.s37

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts

Thread

21/362

Note: You should only need to upload a bootloader image and erase the chip once. Subsequent application uploads do

not need the bootloader image or chip erasure.

 If you are using a dev board with a WSTK, you should now see a QR code displayed on the WSTK 's LCD.

 Disconnect the dev board from your development computer.

 Optional: you may want to label this device as your light or switch, as appropriate, to make it easier to identify later.

 Repeat the process above with the second dev board but selecting the Matter - SoC Light Switch over Thread example

instead.

Creating the Matter Network

The mattertool is a convenient wrapper script that allows you to easily perform common steps using chip-tool. Chip-tool
provides a command-line interface into the Matter protocol. mattertool and chip-tool are installed in the Matter Hub image

file.

mattertool provides many commands at your disposal. These are some important ones used in this example:

mattertool startThread
mattertool bleThread
mattertool on
mattertool off
mattertool toggle

You can use the command mattertool help to display the available commands. With some commands (such as on, off, and

toggle), you may also want to specify which node ID to interact with. You can do this by adding the -n nodeID parameter

after a command, such as mattertool on -n 5678.

The mattertool also allows you to perform any of the commands you can normally use directly with the chip-tool.

 In a PuTTY session to the Matter hub, use the mattertool to create your network.

 Start the Thread network with: mattertool startThread. This will output the Thread dataset.

Thread

22/362

 If you need the Thread dataset in the future (such as after a power cycle), you can use mattertool getThreadDataset.

Connecting MADs to the Matter hub

 In a PuTTY session to the Matter hub, use the mattertool to commission your Matter light switch device.

 Connect to a power source your Matter light switch device.

Notes: Only power-up one device at a time to ensure proper commissioning since no discriminator is

used to keep this example simple.

If this device previously failed commissioning or was on a Thread network, you may need to perform

a factory reset before doing this process.

The Matter devices will stop advertising after ~15 minutes. Make sure to complete the commissioning

before the advertising has expired. If unsure, power cycle the MAD.

Thread

23/362

 Once the MAD is powered and booted up, use the PuTTY session to commission the device using 'mattertool

bleThread -n nodeID', where 'nodeID' is replaced with the desired ID. In the resulting log, you should see a line similar to:

[1683785224.525598][1455:1461] CHIP:CTL: Commission called for node ID 0x000000000000637E , indicating the nodeID (in this

example, 0x637E) of the newly commissioned device.

Note: If you do not specify a nodeID, one will be assigned automatically. Make sure to take note of

what nodeID assigned to your Matter light switch & Matter light devices. These will be needed later

for modifying the Matter light's ACL & the Matter light switch's binding table.

 Power up the Matter light device and commission it as well, by following the previous steps for this MAD but using a

different nodeID .

You now have two Matter devices on your network ready to be used

Controlling the Light MAD

The various compatible boards will have different setups for their LED(s). Typically, one LED (or a color channel, if RGB) is

used to indicate the network status of the device:

Short blink: indicates the MAD is advertising to join a network.

Half/half blink: indicates the BLE steps are in progress.

Long blink: indicates joining the Thread network.

Solid on: indicates the MAD is now in the network.

For example, on the dev board xG24-DK2601B EFR32xG24 (also known as BRD2601), the red channel of LED0 is used to

indicate the network status. The green channel of LED0 is used to indicate the light status.

Thread

24/362

 In a PuTTY session to your Matter hub, use the mattertool to test your Matter light device.

 Using mattertoo l on -n node ID (similarly, mattertoo l off and mattertoo l toggle can also be used) you can control the light

status of your Matter light device.

 For dev board with buttons available, you can use BTN1 to toggle the light status locally.

 In a PuTTY session to your Matter hub, use the mattertool to bind your Matter light switch device to your Matter light

device, thus allowing the switch to control the light.

Thread

25/362

First, you will need to modify the Access Control List (ACL) of your Matter light device. This list determines which

device in the network your Matter light device will react to. Modify your Matter light device's ACL using: mattertoo l

accesscontro l write acl '[{ "fabricIndex" : 1 , "privilege" : 5 , "authMode" : 2 , "subjects" : [112233] , "targets" : null } , { "fabricIndex" :

1 , "privilege" : 3 , "authMode" : 2 , "subjects" : [nodeID-switch], "targets" : null }]' nodeID-light 0 , where the highlighted

parameters are:

112233: The node ID of the controller (OTBR). This is always 112233.

nodeID-switch: The node ID of the Matter light switch device in base 10 (ex: 43690 for 0xAAAA).

nodeID-light: The node ID of the Matter light device in hex (ex: 0xBBBB).

0: The endpoint in the Matter light device that holds the ACL. This is always 0.

Note: The ACL table action is a read/modify/write step. If you accidentally remove the chip-tool entry, this will prevent

further control of the device, requiring a factory reset.

You can read the ACL for a Matter device using: mattertool accesscontrol read acl nodeID 0, where the highlighted

parameters are:

nodeID: The nodeID of the Matter device you wish to read the ACL contents from.

0: The endpoint in the Matter device that holds the ACL. This is always 0.

Thread

26/362

 Second, you need to bind the switch's write command to the light. This is done by updating the binding table of your

Matter light switch device. You do this with: mattertoo l binding write binding '[{ "fabricIndex" : 1 , "node" : nodeID-

light , "endpo int" : 1 , "cluster" : 6 }]' nodeID-switch 1 , where the highlighted parameters are:

nodeID-light: The node ID of the Matter light device.

1: The application endpoint in the light. In the S ilabs examples, this is always 1.

6: The on/off cluster in the light. This is always 6.

nodeID-switch: The node ID of the switch.

1: This is the application endpoint in the switch that holds the binding table. In the S ilabs examples, this is always 1.

Thread

27/362

Note: As with the ACL table step, the binding table action is a read/modify/write step. If you accidentally remove the

chip-tool entry, this will prevent further control of the device, requiring a factory reset.

You can read the binding table from a Matter device using: mattertoo l binding read binding nodeID-switch 1 , where the

highlighted parameters are:

nodeID-switch: The node ID of the Matter switch.

1: The application endpoint in the switch that holds the binding table. In the S ilabs examples, this is always 1.

Thread

28/362

With the binding complete, a button press on the Matter light switch device should now toggle the light status in the Matter

light device.

Next Steps

29/362

Next Steps

Next Steps
Now that you have gotten a sense of what goes into making a Matter network, you can begin to customize MADs and

other features for your own purposes. The Developers' Guide contains more detail, and also contains information on a

number of special development topics. Your Matter Extension package contains a number of other Matter examples that

you can use as a starting point, the first four of which were used in this example.

Matter SoC Light over Wi-Fi

Matter SoC Light Switch over Wi-Fi

Matter SoC Light over Thread

Matter SoC Light Switch over Thread

Matter SoC Window Cover over Wi-Fi

Matter SoC Lock over Wi-Fi

Matter SoC Window Cover over Thread

Matter SoC Lock over Thread

Matter SoC Thermostat over Thread

If you need support, you can contact S ilicon Labs through the S ilicon Labs Community. Our engineers and community will

be happy to help! You may also find answers here:

S ilicon Labs Matter articles

https://docs.silabs.com/matter/2.2.0/matter-developers-guide-overview
https://community.silabs.com/s/topic/0TO1M000000qHZgWAM/matter
https://community.silabs.com/s/topic/0TO1M000000qHZgWAM/matter?tabset-178da=2

Matter Fundamentals

30/362

Matter Fundamentals

Matter Fundamentals
This section contains information for those not yet familiar with Matter.

Introduction to Matter: Offers an overview for those new to Matter.

The Matter Data Model: Reviews the components of the Matter Data Model including nodes, endpoints, clusters, and device

types.

The Matter Interaction Model: Describes how the model defines the methods of communication between nodes, serving as

the common language for node-to-node information transmission.

Matter Security: Provides an overview of security for Matter as promoted by the Connectivity Standards Alliance (CSA).

https://docs.silabs.com/matter/2.2.0/matter-fundamentals-introduction
https://docs.silabs.com/matter/2.2.0/matter-fundamentals-data-model
https://docs.silabs.com/matter/2.2.0/matter-fundamentals-interaction-model
https://docs.silabs.com/matter/2.2.0/matter-fundamentals-security

Introduction to Matter

31/362

Introduction to Matter

Introduction to Matter

Why Matter?

The Connectivity Standards Alliance (CSA) seeks to enable smart home devices to be secure, reliable, and interoperable

with other Internet of Things (IoT) devices, regardless of manufacturer. One of the biggest pain points of smart home

devices is the various application-layer implementations that limit the compatibility of different smart home devices.

Therefore, Matter was adopted so that matter-enabled devices, under the same standard, provide a better experience for

both the manufacturers and users.

While Matter was created to make the IoT seamless and effortless for users, it is important to acknowledge the complexity

involved under the surface. Matter leverages a range of tools to enable seamless and secure connectivity within an IoT

system. Understanding these tools is crucial for a comprehensive overview of this technology.

Matter Enablement

Matter implements the Application Layer of the Open Systems Interconnection (OSI) model. It builds on the lower layers,

such as the transport and network layers, to enable reliable communication between nodes.

Matter may sit on top of two prominent connectivity technologies: Thread and Wi-Fi. Thread is a low-power wireless mesh

networking protocol that facilitates reliable communication between nodes. It enables extended coverage and reliable

connections to improve the overall performance of IoT ecosystems.

Matter is an IPv6-based protocol that utilizes transport layer protocols like TCP/UDP to facilitate network addressing and

reliable transmission of data packets, respectively. Due to this, Matter is compatible with multiple connectivity options (such

as Thread and Wi-Fi). This flexibility allows Matter-enabled devices to communicate over various network protocols,

ensuring broad compatibility and integration with different networking technologies.

The true power of Matter lies in its commitment to interoperability. Industry leaders such as Google, Apple, Amazon, and

Samsung Smart Things have implemented Matter in their IoT devices, fostering wider adoption from other manufacturers.

Matter also supports bridging from other existing technologies, such as Zigbee, Bluetooth® Mesh and Z-Wave. This allows

already existing IoT technology to be integrated into an interoperable environment. The compatibility and seamless

integration across brands create a unified ecosystem where your smart devices work harmoniously.

Introduction to Matter

32/362

Matter Network Architecture

In theory, Matter can sit on top of any IPv6-bearing network. However in practice, the Matter specifications solely focus on

three link layer technologies, enabling Matter to run on Ethernet, Wi-Fi, and Thread 802.15.4 networks. As mentioned above,

one of the great benefits of Matter is its flexibility, especially when it comes to network configuration. The Matter protocol

can operate without a globally-routable IPv6 infrastructure and allows the flexibility of having multiple Matter networks run

over the same set of constituent IP Networks.

Two common underlying network topologies are commonly used in Matter. The first is known as a S ingle Network topology,

where Matter runs solely over one Network. This means the Matter Network could run over one 802.15.4 Thread network or

over a Wi-Fi network. In this scenario all Matter devices are connected to the same single logical network.

Introduction to Matter

33/362

The other, more common, network topology is the star network, which consists of multiple peripheral networks joined

together by a central hub network. If a peripheral network is used it must be directly joined to a hub via one or more border

routers. A border router (or an edge router) is a special router that can provide routing services between two IP Subnets,

effectively acting as a bridge between the two different networks. This enables a lot of flexibility and interoperability

between various home networks that can all be interconnected.

Regardless of the Network topology being used, Matter has a concept of Fabrics. A Matter Fabric is a security domain that

contains a collection of nodes. These nodes can be identified and can communicate with each other within the context of

that security domain. Each Matter Fabric has a unique Node ID for each node within the fabric and has a unique Fabric ID.

Any Matter device can be a part of multiple Matter fabrics, and in turn will have multiple associated Node IDs / Fabric IDs

depending on the fabric it is communicating with.

Below is a table of some basic Identifiers that are commonly used in Matter to identify and communicate with nodes on the

fabric.

Identifiers Definition

Fabric 64 bit number that uniquely identifies the Matter fabric.

Vendor 16 bit number that uniquely identifies a particular product manufacturer, vendor, or group thereof.

Product 16 bit number that uniquely identifies the product from a specific vendor.

Group 16 bit number ID set of nodes across a Matter Fabric

Universal

Group

16 bit subrange of the Group ID reserved for groups across Matter Standard. Specifically a UID for all

nodes, all non-ICD nodes, and all proxies.

Operational

Node

64 bit number that uniquely identifies an individual node on the fabric

PAKE Key

Identifiers

This is a subrange of Node ID used to assign an Access Control subject to a particular PAKE key. This

creates an ACL (Access Control List) entry to provide admin access via a PASE session.

Matter Layered Architecture

Introduction to Matter

34/362

Matter is split up into a layered architecture to help separate the different responsibilities and encapsulate various pieces of

the protocol stack. The following diagram shows the various interactions between the Matter application stack layers as

defined by the Matter CSA specification. For implementation purposes the last four layers are handled as a Messaging Layer

and a Transport layer.

The Application Layer of the Matter stack is the highest layer, and corresponds to the high-level logic of the device. The

user application is built on the unified data model, which helps improve interoperability.

The Data Model layer corresponds to how the data and action elements support the functionality of the application, such as

the defines of the elements, namespaces for endpoints, clusters, and attributes in the application.

The Interaction Model handles, as the name suggests, the interactions between the nodes and is responsible for how data

is transferred between nodes. Both the Data Model and Interaction Model are inherited from the well-known dotdot standard

used by Zigbee.

The Action Framing layer is where the interactions are transformed into a message payload.

The Security Layer takes the payload and encrypts and appends the packet with a MAC (Message authentication code).

From the security layer, the packet transfers down to the Transport layer to what the CSA refers to as the Message

Framing and Routing layer. This updates the payload with the necessary routing information such as fabric and Node ID.

Finally the packet is sent to the Transport and IP Framing layer, from which the payload is sent through the IP network either

through TCP (which is not yet currently supported) or Matter's Message Reliability Protocol, a software layer on top of UDP,

for IP management of the data. Note that the IP Framing in Matter is handled by the Networking Protocol stack to handle

this.

Once the data is received on a peer device, it travels up the Matter Protocol stack in reverse and delivers the message to

the Application layer.

Matter Security

As mentioned before, one of the main benefits of using Matter is the enhanced security that it offers. Matter offers

security at many layers throughout the network. Many security features are integrated into commissioning a Matter device

onto an existing network. Matter requires all devices to have a device-specific passcode that delivers "proof of ownership"

to commissioning devices and requires all devices to have immutable credentials that can be cryptographically verified to

indicate that the joining devices are Matter-certified devices. In fact, the network credentials are only given to the Matter

device after the device has been authenticated and verified. This helps keep the Matter network secure from foreign and

unsecure devices, significantly improving the overall network security. Furthermore, Matter enables encryption and

authentication to all unicast messages, as well as providing relay protection. Below is a list of commonly-used Matter

security terms.

Introduction to Matter

35/362

Concepts Definition

DAC (Device Attestation

Certificate)

This is an immutable certificate of credentials that can be cryptographically verified to

confirm that the device is a certified Matter device.

PASE (Passcode Authentication

Session Establishment)

This process at the Commissioning stage uses a passcode provided out-of-band (like a

device's QR code) to commission a Matter device on the network.

CASE (Certificate

Authentication Session

Establishment)

This process at the Operational stage establishes and provides an authentication key

exchanged between two devices.

More detailed information on Matter security can be found in Matter Security Documentation and Matter Commissioning

Documentation.

https://docs.silabs.com/matter/2.2.0/matter-overview-guides/matter-security
https://docs.silabs.com/matter/2.2.0/matter-overview-guides/matter-commissioning

Matter Data Model

36/362

Matter Data Model

The Matter Data Model
The Data Model in Matter describes a hierarchical encapsulation of data elements in the Matter network, including, but not

limited to, nodes, endpoints, clusters, and device types, where the node is the highest level data element.

A single physical Matter device, such as a light, switch, or door lock, can be represented by one or more nodes. An

environment where multiple Matter nodes interoperate is referred to as a Matter fabric. These nodes share a common root

of trust. On each separate fabric, a physical Matter device is represented by a node. Every node has a unique network

address (Operational Node ID) that makes it uniquely identifiable in the fabric it is on. For example, in the following figure a

Matter Lighting device on an Apple HomePod fabric (blue) has an operational node ID unique to the HomePod fabric and a

Matter Switch device on a separate Samsung SmartThings Station fabric (red) in the same home has an operational node

ID unique to the SmartThings fabric. These IDs may be the same or different; they are independent of each other because

they are on two different fabrics.

A Matter device may also be part of more than one fabric and thus is represented on each different fabric by a different

node. In following figure, a Matter Door Lock device is on both the HomePod and SmartThings fabrics. Thus, the Door Lock

is represented by two different nodes; one for the HomePod fabric and another for the SmartThings fabric. The operational

node IDs for the two nodes representing the device may be the same or different; the IDs are independent of each other

because the nodes are on two different fabrics.

The following section describes the Matter data model, including Nodes and Device Types.

Nodes

Matter Data Model

37/362

In the following figure, the hierarchical structure of endpoint, cluster, attributes/commands/events is shown from left to

right.

Each node contains the complete application functionality for its device on a single stack. Because of this, nodes can

communicate directly with other nodes on the network without the need for an intermediary.

Nodes have a set of related behaviors, known as a role. There are a few main node roles:

Commissioner - Commissions/adds new devices to a Matter network

Controller - Controls one or more nodes

Controlee - Can be controlled by one or more nodes

Over the Air (OTA) Provider - Provides OTA software updates to the OTA Requestor

OTA Requestor - Requests OTA software updates from the OTA Provider

Endpoints

Endpoints enclose one component of a node ’s complete functionality; together, they encapsulate all the node ’s capabilities

needed for functional wholeness. A smart thermostat, for example, could have two endpoints where one would implement

the temperature control functionalities and another would implement the temperature monitoring functionalities.

Each of these endpoints are known as a feature set, which is made of clusters that define the attributes, events, and

commands of a single endpoint's functionality. There are two distinct types of endpoints in Matter: leaf endpoints and

composed endpoints.

Leaf endpoints, such as Endpoints 0, 10, and 11 in the following figure, do not require other endpoints to function.

Composed endpoints, such as Endpoint 1 in the following figure, require other endpoints to function. Connector lines indicate

the endpoints that a certain endpoint has access to.

Nodes have numbered endpoints starting from 0 that contain their own feature set. Endpoints with the same number but on

different nodes may enclose different feature sets. The exception is Endpoint 0, which is reserved exclusively for Utility

Matter Data Model

38/362

Clusters. These special clusters are specifically used for enclosing a node ’s servicing functionality: the discovery process,

addressing, diagnostics, and software updates.

Endpoints are individually addressable to easily modify feature sets separately.

Clusters

Clusters are collections of data that group the attributes, events, and commands of a specific functionality, representing a

single feature in an endpoint’s feature set. A cluster may be thought of as an interface, service, or object class and is the

lowest independent functional element in the device data model. Endpoints have multiple clusters to create individual

instances of the same functionality for easier unit control. For example, each light on a light strip may have its own

designated cluster for independent access.

Attributes, events, and commands make up clusters:

Attributes represent the current state, configuration, or capability of a node, for example whether a light is on or off, or if a

switch is up or down.

Fabric-scoped attributes are only accessible to devices in the same fabric.

Attributes can be of uint8, string, array, etc. data types.

Commands are actions that a cluster can perform, analogous to verbs in the English language.

Commands always have a direction, either from client to server or vice versa.

The target can reply to the command in one of two ways:

Request - such as toggling the ON/OFF attribute of a server cluster representing a light.

Response - such as sending a success status, or an error/unsupported status.

Events are a record of past transitions between states of the node.

Events include data for a timestamp and priority of each change, as well as a monotonically increasing counter to track the

number of state changes.

They are useful in capturing state transitions and modeling past data that attributes do not store.

Clusters have two main types:

Server cluster - Stateful, holds the data for the attributes, events, and commands.

Client cluster - Stateless, interacts with other server clusters by reading and writing attributes, reading remote events,

and/or invoking methods.

Any cluster can be a server or a client, giving nodes the ability to both store information and horizontally communicate with

other nodes. For a light and switch example, a client cluster in the light would send a command to a server cluster in the

light to toggle the on/off feature of the light. The following figure illustrates examples of cluster communication. On the top

is a light and switch example and on the bottom is an app controlling a door lock.

Matter Data Model

39/362

Device Types

Device types are a collection of clusters on their respective endpoints that define top-level attributes of the physical

device they represent. Device types can require other types for operational purposes; these are known as composed

device types and require composed endpoints.

A device can be made up of any combination of clusters. Therefore, to ensure the interoperability of devices from different

manufacturers on a single network, Matter defined sets of requirements for official device types in the Matter Device

Library for users to implement and extend. Every definition contains the device type ID, type revision number, and

mandatory cluster(s) with their minimum revision number. Device Types are constantly updating, with each iteration tracked

using the revision number starting from 1. However, changes to a device type's definition do not change its functionality,

but only serve to improve operation. It is also important to note that newer versions of a device will continue to

interoperate with older revision levels.

The device types that Matter supports are an unyielding requirement for Matter nodes. Nodes that implement certain

device types are required to include feature sets of clusters on one or more endpoints for the said device type. A node

cannot implement a device type if it does not have all the required feature sets. Official documentation lists the application

device types that Matter supports in the Device Library Specification, while the respective supported application clusters

are defined in the Application Cluster Library. These two documents, along with Chapter 7: Data Model Specification of the

Matter specification document, can be found on the website for CSA members: Specifications Download Request - CSA-

IOT.

Relating Matter to Zigbee

Ultimately, Matter serves to extend existing protocol stacks to maintain and bolster their architecture for future use. Thus,

the Data Model originates from and resembles the Dotdot Architecture Model found here: https://groups.csa-

iot.org/wg/matter-tsg/document/18649 and Chapter 2 of the Zigbee Cluster Library Specification found here:

https://groups.csa-iot.org/wg/members-all/document/23019. The Matter Data Model better defines the architecture in the

Zigbee Cluster Library while keeping the certifiable cluster specifications.

https://csa-iot.org/developer-resource/specifications-download-request/
https://groups.csa-iot.org/wg/matter-tsg/document/18649
https://groups.csa-iot.org/wg/members-all/document/23019

Matter Interactions Model

40/362

Matter Interactions Model

The Matter Interaction Model
The Matter Device Interaction Model (IM) defines the methods of communication between nodes, and serves as the

common language for node-to-node information transmission.

Nodes communicate with each other through interactions. Interactions are a sequence of transaction(s), which in turn are a

sequence of actions.

For example, in a Read Interaction, a client cluster can initiate a Read Transaction, where the client can request to read an

attribute and a server cluster can respond by reporting the attribute. Both the client request and the server response are

separate actions, but they are part of the same Read Transaction, which the Read Interaction encompasses.

The Interaction Model supports four types of interactions:

Read

Write

Invoke

Subscribe

All interaction types except Subscribe consist of one transaction. The Interaction Model supports five types of

transactions:

Read - Get attributes and/or events from a server.

Write - Modify attribute values.

Invoke - Invoke cluster commands.

Subscribe - Create subscription for clients to receive periodic updates from servers automatically.

Report - Maintain the subscription for the Subscribe Interaction.

The following concepts are important for understanding transactions.

Initiators and Targets - Interactions happen between an initiator node and target node(s). The initiator starts the transaction,

and the target responds to the initiator's action. More specifically, the transaction is usually between a client cluster on the

initiator node and a server cluster on the target node.

Transaction ID - The transaction ID field must be present in all actions that are part of a transaction to indicate the logical

grouping of the actions as part of one transaction. All actions that are part of the same transaction must have the same

transaction ID.

Matter Interactions Model

41/362

Groups - Groups of devices allow an initiator to send an action to multiple targets. This group-level communication is known

as a groupcast, which leverages Ipv6 multicast messages.

Paths - Paths are the location of the attribute, event, or command an interaction seeks to access. Examples of path

assembly:

<path> = <node> <endpo int> <cluster> <attribute / event / command>

<path> = <group ID> <attribute / event / command>

When groupcasting, a path may include the group or a wildcard operator to address several nodes simultaneously, decreasing

the number of actions required and thus decreasing the response time of an interaction. Without groupcasting, humans may

perceive latency between multiple devices reacting to an interaction. For example, when turning off a strip of lights, a path

would include the group containing all the lights instead of turning off each light individually.

The following sections review each of the four interaction types and their constituent transactions and actions.

The Read Interaction

An initiator starts a Read Interaction when it wants to determine the value of one or more of a target node's attributes or

events. The following steps occur:

 Read Request Action - Requests a list of the target’s attributes and/or events, along with paths to each

 Report Data Action - Generated in response to the Read Request Action. Target sends back the requested list of attributes

and/or events, a suppress response, and a subscription ID.

 Suppress response: Flag that indicates whether the status response should be sent or withheld.

 Subscription ID: Integer that identifies the subscription transaction, only included if the report is part of a Subscription

Transaction.

 Status Response Action (OPTIONAL) - Generates a Status Response by default; however, not sent if the suppress response

flag is set. Ends transaction once the initiator sends the Status Response or receives a Report Data with the suppress flag

set.

Read Transactions are restricted to unicast only. This means that the Read Request and Report Data actions cannot target

groups of nodes, whereas the Status Response Action cannot be generated as a response to a groupcast.

The Write Interaction

Matter Interactions Model

42/362

An initiator modifies a target’s attributes through a Write Interaction, which consists of either a Timed or Untimed Write

Transaction.

An untimed transaction remains open to the receiver for an indefinite period, whereas a timed transaction establishes a

maximum period (usually a few seconds) to receive a return action.

Timed Transactions and Security

Timed transactions are mainly used for devices such as doors or locks because they protect assets and thus are a greater

target for intercept attacks. To understand why timed transactions are effective it is important to understand the nature of

intercept attacks:

 The initiator node sends an initial message directed to the target node.

 An attacker intercepts the message and holds it, preventing the message from reaching the target.

 S ince the initiator did not receive a message back from the target, the initiator sends another message.

 The attacker intercepts this second message and sends the first message to the target, keeping the second message for

later use.

 The target receives the first message as if it were arriving from the initiator node, sending a confirmation response to the

initiator node and, unknowingly, the attacker.

The problem lies in the second message; since the target never received the second message, the attacker now has a

valid message to use at its convenience. The message may elicit a response from the target node such as “unlock” or

“open door,” which means that the network now has a breach in security. By establishing a maximum period to receive a

message back, a timed transaction effectively guards against intercept attacks. The attacker can no longer hold a message

to use at its convenience, as the message will expire after a set time.

Although timed transactions are important in guarding against attacks, they increase the complexity of a network since they

need more actions. Therefore, they are only recommended for use on transactions that give access to valuable information.

Timed Write Transactions

A Timed Write Transaction consists of the following sequence of actions:

 Timed Request Action - Sets the time interval to send a Write Request Action.

 Status Response Action - Confirms the transaction and time interval.

 Write Request Action - Requests three items:

 List of tuples (each tuple is called a write request) containing the path and data to be modified.

 Timed request flag indicating if the transaction is timed.

 Suppress response flag.

If the transaction is timed and a timed request flag is set, the initiator must also send a timeout: the number of milliseconds

the transaction remains open, during which the next action to be received is still valid.

 Write Response Action (OPTIONAL) - A list of paths or error codes for every write request. Like a Read Transaction Status

Response, a Write Response is not sent if the suppress response flag is set.

Untimed Write Transactions

Matter Interactions Model

43/362

An Untimed Write Transaction requires only the Write Request Action and the Write Response Action Timed Write

Transaction since there is no time interval that needs to be set or confirmed.

Write Transaction Restrictions

Untimed and timed Write Transactions differ in their restrictions. All actions in timed transactions are unicast-only, whereas

Untimed Write Request Actions may be multicast but require the Suppress Response flag to be set to prevent the network

from flooding with status responses.

Invoke Interaction

An initiator invokes command(s) on a target’s cluster(s) through Invoke Interactions. An Invoke Interaction consists of either

a Timed or Untimed Invoke Transaction, just like a Write Interaction consists of a Timed or Untimed Write Transaction.

Just like a Timed Write Transaction, a Timed Invoke Transaction consists of the following steps:

 Timed Request Action - Sets the time interval to send a Write Request Action.

 Status Response Action - Confirms the transaction and time interval.

 Invoke Request Action - Requests four items:

 List of paths to cluster commands (each item in the list is an invoke command which may optionally contain argument(s)

for the command).

 Timed request flag.

 Suppress response flag.

 Interaction ID: Integer to match the Invoke Request to its corresponding Invoke Response.

An Invoke Request initiating a timed Invoke Transaction must also send a timeout just like a timed Write Transaction.

 Invoke Response (OPTIONAL) - Target responds by sending back the interaction ID and a list of invoke responses: command

responses and statuses for each invoke request. Like a Write Response, an Invoke Response is not sent if the suppress

response flag is set

Untimed and timed Invoke Transactions differ in the same way that untimed and timed Write Transactions differ, both in their

actions and restrictions on unicast or multicast.

Subscription Interaction

Matter Interactions Model

44/362

An initiator uses a Subscription Interaction to automatically receive periodic Report Data Transactions from the target. This

creates a relationship between the initiator and target, which are referred to respectively as the subscriber and publisher

after the subscription has been made.

Subscription Interactions include two transactions types: A Subscribe Transaction and Report Transaction.

Subscribe Transaction

The Subscribe Transaction is as follows:

 Subscribe Request Action - Requests three items:

 Min interval floor (minimum interval between Data Reports).

 Max interval ceiling (maximum interval between Data Reports).

 Request for attributes and/or events to be reported.

 Subscribe Request Action - A Report Data Action containing the first batch of data, known as the Primed Published Data.

 Status Response Action - Acknowledges the Report Data Action.

 Subscribe Response Action - Finalizes the subscription ID (an integer that acts as an identifier for the subscription) and the

min interval floor and max interval ceiling. Indicates a successful subscription between the subscriber and publisher.

Report Transaction

After a successful subscription, Report Transactions are sent to the subscriber. There are two types of Report

Transactions: non-empty and empty.

 Non-empty

 Report Data Action - Reports data and/or events with the SuppressResponse flag set to FALSE

 Status Response - Indicates a successful report or an error, the latter of which ends the interaction

 Empty

 Report Data Action - A report that has no data or events with the SuppressResponse flag set to TRUE, meaning no

Status Response.

Subscription Interaction Restrictions

Subscription Interactions have a few restrictions.

First, the Subscribe Request and Subscribe Response actions are unicast-only, meaning an initiator cannot subscribe to

more than one target simultaneously.

Second, Report Data Actions in the same Subscription Interaction must have the same subscription ID.

Third, a subscription may be ended if the subscriber responds to a Report Data Action with an “INACTIVE_SUBSCRIPTION”

status or if the subscriber does not receive a Report Data Action within the max interval ceiling. The latter connotes that the

publisher may end a subscription by not sending Report Data Actions.

Matter Interactions Model

45/362

Relating Matter to Zigbee

The Matter Interaction Model originates from Chapter 2 in the Zigbee Cluster Library found here: https://groups.csa-

iot.org/wg/members-all/document/23019; the Interaction model extends this by abstracting interactions from other layers

(security, transport, message format, encoding). The Interaction Model fills in gaps in the Zigbee Cluster Library identified by

the Matter Data Model Tiger Team, adding Multi-Element Message support, Synchronized Reporting, reduce message types

in commands and actions, complex data type support in all messages, Events, and interception attack.

Matter Specifications

More information on the Matter Interaction Model can be found in Chapter 8 of Matter Core Specifications Specifications

Download Request - CSA-IOT.

https://groups.csa-iot.org/wg/members-all/document/23019
https://csa-iot.org/developer-resource/specifications-download-request/

Matter Security

46/362

Matter Security

Matter Security
Matter raises the bar on security to a new level beyond simply guaranteeing the communication pipe is secure. Now, the

end device must be proven to be authentic. The Matter Node Security will likely raise over time. As threats evolve, the

SHOULDs will become SHALLs. Creating Secure Identities and injecting them securely in your manufacturing process is not

trivial and can be costly. S ilicon Labs has the hardware, software, and services to get your secure Matter products to

market quickly and cost effectively.

Register at S ilicon Labs Tech Talks to watch a detailed on-demand discussion of Matter Security, along with other tech

talks as part of the Interactive Matter Training Series.

Note: All graphics were extracted from the Tech Talk, Future-Proofing Matter Security with Secure Vault,
created by the Connectivity Standards Alliance (CSA) and used with permission.

Principles

The following are the guiding principles for the Matter security design:

 No anonymous joining: Always requires “proof of ownership” (that is, a device-specific passcode).

 Device Attestation: Every device has unique identity that is authenticated by the manufacturer and verified through the CSA

as a certified device.

 Operational Credentials: When commissioned onto a Matter network, every device is given unique operational credentials

after verifying their manufacturer credentials.

 Network Credentials: The Wi-Fi network key or Thread Master key are not given until the device ’s certificate is verified and

authenticated properly.

 Open standard: The open-source software is open to third parties vetting the claims by examining the standard and auditing

the source code.

Security Tenants Promoted by the Connectivity Standards Alliance �CSA�

 Easy, secure, and flexible device commissioning

 Validation that each device is authentic and certified

 Up-to-date information via Distributed Compliance Ledger

 Strong device identity so only your devices can join

 Secured communications protecting confidentiality, etc.

 Even group communications secured

 Multiple administrators and controllers, maximizing choice

 Verified access controls to prevent unauthorized actions

 Secured, standard software updates

 Remote monitoring of software integrity

Matter Security Relevant Nomenclature

https://www.silabs.com/about-us/events/tech-talks-wireless-technology-training/matter

Matter Security

47/362

Node: An independently addressable entity on a Matter network, which must be running an approved protocol (eg, Wi-Fi and

Thread).

Device: Anything that you take out of a box, such as a thermostat. Devices can have multiple nodes.

Router: A standard router found in homes.

Controller: Controls multiple nodes on a network.

Commissioner: Can commission multiple nodes on a network in three ways:

BLE (most common)

Wi-Fi AP protocol

Ethernet

Once commissioned, devices can start communicating on the Matter network via an approved protocol, usually Wi-Fi.

A Bridge bridges to other protocols, such as Zigbee or ZWave to allow other devices communicate in the network.

A Border Router is intended to perform the communication protocol translation between approved protocols. It does not

bridge between other protocols.

Device Identity starts with an identity within the device called a device attestation certificate (DAC). Any device that

needs to be commissioned needs a DAC. If the device is inherently trusted within the ecosystem that it's trying to join, it

does not need a DAC. If not, it does need a DAC.

End devices are what need to be trusted.

Matter Security Provisioning

Certificates and Process Overview

Each Matter device gets two certificates. The first, the device certificate, is programmed by the manufacturer before the

device is shipped. This will be used later for device attestation when trying to join the network. The other, the operational

certificate, is assigned by the commissioner in the commissioning stage. Certificates natively use a CHIP TLV format but

can convert to/from X.509 format. All devices are given an operational certificate to prove their authorization on the Matter

network (fabric) and securely identify them.

Communication between Matter devices is protected with different keys in different stages. At the commissioning stage,

the key is a result of the Password Authenticated Session Establishment (PASE) process over the commissioning channel

Matter Security

48/362

using the passcode from the device's QR code as the input. During this initial setup, verification of possession of the

passcode by both commissioner and joining device is confirmed. At the operational stage, the key is a result of the

Certificate Authenticated Session Establishment (CASE) process over the operational channel using the operational

certificate as the input. These sessions are used during normal operation between controller and device to validate that

both are part of the Matter network.

Message Protection

Various cryptographic algorithms are used to ensure communication security and integrity. These include:

Hashing Algorithm: SHA-256

Message Authentication: HMAC-SHA-256

Public Key: ECC Curve NIST P-256

Message Encryption: AES-CCM (128 bit keys)

Confidentiality: Message payload is encrypted by the encryption key (AES)

Matter Security

49/362

Privacy: Addresses are encrypted by the privacy key

Onboarding Payload

The Onboarding Payload is the information used by the Commissioner to ensure interoperability between commissioners

and devices. It can be encoded in different formats:

Human-readable (numeric string)

Machine-readable (QR code and NFC tag)

Onboarding Payload

Element
Description

Version Provides versioning of the payload.

Vendor ID Assigned by CSA. Allows a way to identify the maker of the device.

Product ID Vendor specified. Unique for each certified product within a Vendor ID.

Custom Flow Indicates to the Commissioner the steps needed before commissioning can take place.

Standard commissioning flow: A device, when uncommissioned, always enters

commissioning mode upon power-up.

User-intent commissioning flow: Device requires user action (pressing a button, for

example) to enter commissioning mode.

Custom commissioning flow: Interaction with a service provided by the manufacturer

is required for initial device setup.

Discovery Capabilities

Bitmask

Indicate device ’s available technologies for device discovery:

Soft-AP

BLE

On IP Network (device is already on the IP network)

Matter Security

50/362

Onboarding Payload

Element
Description

Discriminator Helps to further identify potential devices during the setup process.

Passcode Establishes proof of possession and is also used as the shared secret for the initial secure

channel before further onboarding steps.

TLV Data (Optional) TLV (Tag-length-value) data.

Indicates manufacturer-specific information elements and/or elements common to Matter.

For instance, kTag_NumberOfDevices: Number of devices that are expected to be

onboarded using this payload when using the Enhanced Commissioning Method.

Commissioning Steps

There are four steps involved in commissioning devices to start communicating on a Matter network:

 Device Discovery

 Secure Channel (PASE)

 Device Attestation

 Configuration

1. Device Discovery

The focus of this phase is getting the onboarding payload. The steps are:

 The Device announces its availability for commissioning over initial network.

 The Commissioner finds the Device.

 The Commissioner connects to the Device, using:

Discriminator

Vendor ID (optional)

Product ID (optional)

2. Secure Channel �PASE�

The focus of this phase is establishing a secure link. The steps are:

 The Commissioner establishes a secure unicast channel to the Device.

 Protocol PASE = Password Authenticated Session Establishment

 Based on SPAKE2+ protocol

 Uses:

Passcode

Verifier

Several key constructs are important to understand prior to understanding Device Attestation.

Public Key Infrastructure �PKI�

A PKI is a set of roles, policies, and procedures used to create, manage, distribute, and revoke digital certificates and

manage public-key encryption. The Matter Certificate Policy defines the rules and methods by which the Matter PKI Policy

Authority (PKI-PA) is governed.

The Matter PKI for Device Attestation is comprised of:

Certificate authorities:

PAA (Product Attestation Authority)

PAI (Product Attestation Intermediate)

Authorized entities:

DAC (Device Attestation Certificate)

Matter Security

51/362

Certification Declaration

Another data construct that is necessary for Device Attestation is the Certification Declaration (CD), which is

cryptographically signed by CSA and contains the Vender and Device information as well as the PAA of the device. The CD

must be put into the Device during manufacturing to be used during the Device Attestation process. The Commissioner will

ask for the stored CD during the commissioning of the Node.

Distributed Compliance Ledger

The Distributed Compliance Ledger (DCL) is the immutable single source of truth. It is a private blockchain-based distributed

ledger of data records. Reading from the DCL is open to public, but writing to the DCL is restricted to various parties/roles.

These roles typically include CSA certification, test house, and vendor roles.

Matter Security

52/362

It contains records about all certified devices, such as:

Certification status

Vendor ID (VID)

Product ID (PID)

Product name

Part number and version

Software and firmware versions

Special commissioning instructions

URLs to product pages and user manual

It also contains the Root PAA certificate for that Device, which is needed to complete the Device certificate chain

verification. The DCL also contains the Certification Declaration ID number that will be compared with the CD pulled from

the Device.

Matter Security

53/362

3. Device Attestation

Every device has a unique certificate that is signed by the manufacturer. There is no single root CA across all devices.

During commissioning, the device is challenged to prove possession of the associated private key. The certificate can be

validated against the Distributed Compliance Ledger (DCL) to verify device certification status.

The hierarchy allows for a 3-level tier:

The first level is the Product Attestation Authority (PAA).

The PAA will be used to sign the Product Attestation Intermediate (PAI).

The PAI will be used to sign the Device Attestation Certificate (DAC). The DAC will be transferred to the commissioner and

verified against the DCL.

Matter Security

54/362

The focus of this phase is to verify the authenticity of the Device. The high-level steps are:

 The Commissioner verifies the Device ’s:

VID

PID

Certification status

 To do so, it uses:

Device Attestation Credentials

Distributed Compliance Ledger (DCL) or

Certification Declaration (CD)

DAC is retrieved and verified before the device joins the Thread or Wi-Fi network. The Commissioner issues a challenge to

the device to prove it possesses the associated Private Key.

First, the Commissioner asks the Node for the CD, the PAI Certificate, and the DAC. It then pulls the Certificate ID, the PAA

Certificate, and the Device VID/PID from the immutable root of trust DCL. At that point, it has all the information needed to

perform the device attestation. The Commissioner then runs a certification chain check from the DAC to the PAI, and all

certificates should chain together correctly. If that check is passed, the Commissioner takes the certification ID from the

DCL and checks it against the CD ID that it pulled from the device itself to make sure the device is a genuine CSA certified

device. The final step is to verify that the public key in the DAC pulled from the Matter device mathematically matches the

private key inserted in the device during manufacture. This is done by sending a message to the device during this final step

of Device Attestation, and having the message signed by the device and then the signature verified using the public key

from the DAC.

Node Operational Credentials

The Node Operational Credentials enable a Node to identify itself within a Fabric. A Node receives its initial set of Node

Operational Credentials when it is commissioned to a Fabric by a Commissioner.

Matter Security

55/362

The Node Operational Credentials include the following items:

Node Operational Key Pair

Node Operational Certificate (NOC)

Intermediate Certificate Authority (ICA) Certificate (optional)

Trusted Root Certificate Authority (CA) Certificate(s)

Note: The Node Operational Credentials are distinct from the Device Attestation credentials.

Commissioning Process

The Commissioning process uses the DAC to establish that the Commissioner is talking to a certified Matter Device and

then loads operational identities for each ecosystem that it joins.

Matter Security

56/362

4. Configuration

The Commissioner configures the Device by:

Loading Node Operational Credentials per ecosystem:

Fabric ID

Node ID

Trusted Root Certificate

ICA Cert

Operational Cert

Node Operational Key Pair

Access Control List (ACL)

Operational Network

Time (optional)

Establishing communication with other Nodes using CASE

This completes all the commissioning steps and now on the Matter Network.

Matter Security Requirements

Matter Security as Specified by CSA

Manufacturing: Matter Devices must be injected with a unique DAC certificate/private key, Onboarding Payload (QR code

delivered), Certification Declaration (CD), and other static/dynamic data during manufacturing. (SHALL)

Commissioning: DAC with VID/PID must be checked against the DCL and CD verified to ensure only authentic and certified

Matter Devices are commissioned. (SHALL)

Device Communication: Communication between Matter Devices must be secured and encrypted using cryptographic keys

and PBKDF. (SHALL)

Software Updates: Devices must support OTA firmware updates to allow vulnerabilities to be patched. (SHALL)

Other Security Specifications

Authentication and encryption keys must be generated by a “Deterministic Random Bit Generator” seeded by NIST 800-90B

TRNG. (SHALL)

Debug interfaces and access to secure boot trust anchors should be disabled to only allow authorized access (fusing).

(SHOULD)

Matter Security

57/362

DACs and operational private key confidentiality should be protected from remote attacks. (SHOULD)

Vendors should have a public policy and mechanism to identify and rectify security vulnerabilities in a timely manner.

(SHOULD)

The software should be encrypted at rest to prevent unauthorized access to core IP. (MAY)

Some devices should be protected against physical attacks to prevent tampering, side-channel, or debug glitching attacks.

(MAY)

Matter Compliant Security Solution

Secure Vault Mid or High supports all Matter security functionalities now (Shall) and future (Should, May)

Uncrackable keys are generated by the True Random Number Generator (TRNG) For DAC, secure boot, secure debug, OTA,

software image and communication encryption

The Crypto Engine assists with special algorithms like SPAKE2+ and CASE with side channel protection

Secure key storage at PSA/SESIP Level 2 (Mid) and Level 3 (High); Private keys are stored with a TEE/TZ (SV Mid) or PUF

Wrapped (SV High)

Secure Matter Identities (DACs) securely programmed at our factory

Secure Boot with RTSL ensures code running on the device is trusted.

Secure OTA firmware updates in conjunction with Secure

Boot prevents the installation of malicious software and allows for vulnerability patching

Glitch Mitigated Secure Debug Lock/Unlock only allow authorized access with security tokens that can be revoked

Anti-Tamper protects from physical attacks (SV High)

Matter Secure Manufacturing

The following diagram describes the high-level process of what needs to happen before secure programming.

Matter Security

58/362

The following diagram describes the high-levels steps as part of secure programming.

Introduction

59/362

Introduction

Matter Developer's Guide
The Matter Developer's Guide provides detailed background and instructions for Matter developers working in either the

Thread or Wi-Fi models. The Developer's Guide contains a deeper dive into development using examples that are similar to

those in the Quick-Start Guides as well as other topics of interest.

Prerequisites provides a more extensive list of hardware options as well as additional detail on software prerequisites.

The Matter over Thread Example and Matter over Wi-Fi Example provide much more detail than the quick-start guides.

The Matter Ecosystems displays information on various IoT ecoystems and how S ilicon Labs' Matter enabled applications

integrate within them.

The Unify Matter Bridge is an application that makes legacy devices, such as Z-Wave and Zigbee devices, accessible on a

Matter fabric. It does so by acting as an IoT Service in a Unify Framework. This application is developed outside of S implicity

Studio.

Detailed Development Topics cover a number of other topics of interest to developers, including commissioning, security,

and over-the-air update.

https://docs.silabs.com/matter/2.2.0/matter-overview
https://docs.silabs.com/matter/2.2.0/matter-prerequisites
https://docs.silabs.com/matter/2.2.0/matter-thread
https://docs.silabs.com/matter/2.2.0/matter-wifi
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems
https://docs.silabs.com/matter/2.2.0/matter-bridge
https://docs.silabs.com/matter/2.2.0/matter-overview-guides

Matter Prerequisites

60/362

Matter Prerequisites

Prerequisites
If you have already obtained the hardware and software for the Matter over Thread and Matter over Wi-Fi Quick-Start

guides, you will already have most of what you need. These pages offer more hardware alternatives and provide additional

Detail.

These pages explain the hardware and software prerequisites for working with the S ilicon Labs Matter products.

The artifacts page provides links to pre-built software image "artifacts" that can be used to set up the Matter Demo for

the Thread and Wi-Fi use cases.

https://docs.silabs.com/matter/2.2.0/matter-overview

Hardware Requirements

61/362

Hardware Requirements

Matter Hardware Requirements
To run Matter over Thread or over Wi-Fi requires some S ilicon Labs hardware in order to run demos and do development.

Following are the hardware requirements for both Thread and Wi-Fi use cases broken down by platform and transport

protocol.

The following sections describe the hardware that may be used for Matter+OpenThread (Matter Hub and Accessory

Device) and for Matter+Wi-Fi (Accessory Device). The EFRMG24 is the preferred starting point for Matter MCUs (including

the Matter Hub RCP and both Accessory Devices). It provides Secure Vault and can use the internal flash of the device to

store an upgrade image. The EFR32MG24 is recommended for running the Matter over Thread and Matter over Wi-Fi Quick-

Start guides.

Matter Over Thread "Matter Hub" Requirements

If you are running Matter over Thread and do not have a platform on which to run the Open Thread Border Router and chip-

tool, S ilicon Labs recommends that you run them on a Raspberry Pi. To do so you will need:

Raspberry Pi

Raspberry Pi 4 with an SD card with storage >= 64 GB

The Raspberry Pi 4 is used to run the Open Thread Border Router and the chip-tool. In this documentation the combination

of this software on the Raspberry Pi is also called the 'Matter Hub' A software image for the Raspberry Pi is provided on the

Matter Artifacts page.

Radio Co-Processor (RCP)

The Matter Hub needs a 15.4 Radio Co-Processor (RCP) in order to create and interact with the Thread network. The RCP

can be any S ilicon Labs development board that is capable of running the OpenThread RCP firmware. The RCP radio board

is connected to the Raspberry Pi via USB.

Over 60 S ilicon Labs boards support running the RCP firmware. To build an image for a board which is not listed here,

download and build your image in S implicity Studio. Pre-built OpenThread RCP firmware images are provided for the following

boards on the Matter Artifacts page:

Note: The EFR32MG24 is the preferred starting point for Matter MCUs. It provides Secure Vault and can use the internal

flash of the device to store an upgrade image.

MG24 boards:

BRD4186C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@10dBm

XG24-RB4186C

BRD4187C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@20dBm

XG24-RB4187C

MG12 boards:

BRD4161A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4161A

BRD4162A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@10dBm

SLWRB4162A

BRD4163A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4163A

BRD4164A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4164A

https://docs.silabs.com/matter/2.2.0/matter-overview
https://www.silabs.com/development-tools/wireless/xg24-rb4186c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4161a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4162a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4163a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4164a-efr32mg12-radio-board

Hardware Requirements

62/362

Matter Over Thread Accessory Device Requirements

The Matter Accessory Device (MAD) is the actual device that the Matter application firmware (such as the Matter Light or

Matter Switch) runs on. Several different platforms for the Matter Accessory Device are supported. Pre-built binary images

for the Matter accessory devices are provided on the Matter Artifacts page. S ilicon Labs supports development of Matter

Accessory Devices for Matter over Thread on the following platforms:

Note: The EFR32MG24 is the preferred starting point for Matter MCUs. It provides Secure Vault and can use the internal

flash of the device to store an upgrade image.

MG24 boards:

BRD4186C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@10dBm

XG24-RB4186C

BRD4187C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@20dBm

XG24-RB4187C

BRD2703A / MG24 Explorer K it

Note: This board has yet to be released to the public, but it is supported in the S ilicon Labs build flow.

BRD2601B / MG24 Explorer K it

XG24-DK2601B

BRD4319A / SLWSTK6006A / Wireless Starter K it/ 2.4GHz@20dBm

Note: This board has yet to be released to the public, but it is supported in the S ilicon Labs build flow.

BRD4316A / SLWSTK6006A / Wireless Start K it / 2.4GHz@10dBm

XGM240-RB4316A

BRD4317A / SLWSTK6006A / Wireless Starter K it/ 2.4GHz@20dBm

XGM240-RB4317A

MG12 boards:

EFR32MG12 Development K it

BRD4161A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4161A

BRD4162A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@10dBm

SLWRB4162A

BRD4163A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4163A

BRD4164A / SLWSTK6000B / Wireless Starter K it / 2.4GHz@19dBm

SLWRB4164A

BRD4166A / SLTB004A / Thunderboard Sense 2 / 2.4GHz@10dBm

Thunderboard Sense 2

BRD4170A / SLWSTK6000B / Multiband Wireless Starter K it / 2.4GHz@19dBm, 915MHz@19dBm

SLWRB4170A

Matter Over Wi-Fi Accessory Device Requirements

Matter Over Wi-Fi Accessory Device Requirements for NCP Mode

The S ilicon Labs Matter over Wi-Fi NCP mode demo and development requires two boards: the S ilicon Labs EFR32 Radio

board to run the Matter code and either the RS9116, S iWx917 or WF200 to run the Wi-Fi protocol stack. Pre-built images

for the EFR32 are provided on the Matter Artifacts page. Pre-built images for S iWx917 or RS9116 connectivity firmware are

also provided on the Matter Artifacts page.

Note:

 The EFR32MG24 is the preferred starting point for Matter MCUs. It provides Secure Vault and can use the internal flash of

the device to store an upgrade image.

 The WF200 connectivity firmware image is included in the EFR32MG24 images on the Matter Artifacts page for running with

the WF200 in NCP mode. The Matter application downloads the connectivity firmware onto the WF200 on first-time startup.

The following boards are supported for the Matter over Wi-Fi demos and development:

MG24 boards:

BRD4186C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@10dBm

XG24-RB4186C

https://www.silabs.com/development-tools/wireless/xg24-rb4186c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-dev-kit?tab=overview
https://www.silabs.com/development-tools/wireless/xgm240-rb4316a-xgm240p-module-radio-board?tab=overview
https://www.silabs.com/development-tools/wireless/xgm240-rb4317a-xgm240p-module-radio-board?tab=overview
https://www.silabs.com/development-tools/wireless/zigbee/efr32mg12-dual-band-starter-kit
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4161a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4162a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4163a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4164a-efr32mg12-radio-board
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/wireless/zigbee/slwrb4170a-efr32mg12-radio-board
https://www.silabs.com/development-tools/wireless/xg24-rb4186c-efr32xg24-wireless-gecko-radio-board

Hardware Requirements

63/362

MG24 with WSTK : xG24-PK6009A

BRD4187C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@20dBm

XG24-RB4187C

MG24 with WSTK : xG24-PK6010A

Wi-Fi NCP Dev Kits & boards

RS9116

SB-EVK1 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK1

SB-EVK2 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK2

DB-EVK1 / Dual Band Wi-Fi Development K it / 2.4GHz & 5GHz

RS9116X-DB-EVK1

SiWx917 NCP

S iWx917 NCP Mode / Wi-Fi Expansion Board / 2.4GHz

BRD8045A (B0 Expansion v2.0)

WF200

WF200 / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8022A

WF200 / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8023A

Interconnect board (included in the Wi-Fi kits)

Interconnect board (included in the Wi-Fi kits)

SPI Cable (included in the RS9116 kit)

Jumper Cables (included in the RS9116 kit)

Matter over Wi-Fi Accessory Device Requirements for SoC Mode

The S ilicon Labs Matter over Wi-Fi demo and development for SoC mode requires the S iWx917 SoC board that supports

Matter over Wi-Fi in a single-chip package - the integrated MCU is dedicated for peripheral and application-related

processing (Matter), while the ThreadArch® runs the wireless and networking protocol stacks.

Pre-built images for the S iWx917 connectivity firmware are available as per the instructions on the Matter Artifacts page.

The following boards are supported for the Matter over Wi-Fi demos and development:

Wi-Fi SoC boards:

S iWx917 / BRD4002A / Wireless Starter K it

S iWx917 SoC Mode

S iWx917 SoC / Common Flash Radio Board / 2.4GHz

BRD4338A - B0 common flash v2.0

Note: Refer to S iWx917 SoC for more details.

Additional Matter Over Wi-Fi Hardware Requirements

In addition to your Matter over Wi-Fi Accessory Device, you will need the following for both running the demo and for

development:

Windows/Linux/MacOS computer with a USB port

USB cable for connecting WSTK Board to Computer

Raspberry Pi with a >32 GB SD Card

Access point with Internet access

microSD card (>=32GB) (if using Raspberry Pi)

[Optional] Android Mobile phone (If using the chip-tool on Android)

Interconnect board (included in the RS9116 kit)

SPI Cable (included in the RS9116 kit)

Jumper Cables (included in the RS9116 kit)

https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-10-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-20-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk2-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-db-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wf200-wifi-expansion-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wfm200-wifi-expansion-kit
https://www.silabs.com/development-tools/wireless/wi-fi/siwx917-pro-kit?tab=techdocs

Software Requirements

64/362

Software Requirements

Matter Software Requirements
This page provides information on the required softwares tools, packages and firmware for developing S ilicon Labs Matter

over Thread and Wi-Fi devices.

Software Tools Required

Below are the software tools both optional and required for developing Matter over Thread and Matter over Wi-Fi

applications in both NCP and SoC mode:

 S ilicon Labs S implicity Studio

S implicity Studio is the main IDE and development platform provided by S ilicon Labs.

 (Optional) Ozone - The J-Link Debugger for Windows

Ozone is a full-featured graphical debugger for embedded applications. With Ozone it is possible to debug any embedded

application on C/C++ source and assembly level.

 (Optional) S implicity Commander

S implicity Commander is a utility that provides GUI and command line access to the debug features of an EFM32 device. It

allows you to flash firmware, update the kit firmware, and lock, or unlock debug access.

 (Optional) Tera Term

Tera Term is the terminal emulator for Microsoft Windows that supports serial port, telnet and SSH connections.

 (Optional) SSH Client (PuTTY, Terminal, or similar):

SSH client is used to communicate with the Raspberry Pi over a secure shell.

 Raspberry Pi Disk Imager

Raspberry Pi Disk Imager is used to flash the SD Card that contains the operating system for the Raspberry Pi.

Software Packages Required for Wi-Fi EFR32 NCP Devices

 GeckoSDK package, which can be installed as part of the S implicity Studio tool installation.

 WiseConnect SDK v2.x for RS9116 NCP, which can be installed as part of the S implicity Studio tool installation.

 Wiseconnect SDK v3.x for S iWx917 NCP, which can be installed as part of the S implicity Studio tool installation.

 Firmware for RS9116 NCP

 Firmware for S iWx917 NCP

Software Packages Required for Wi-Fi SiWx917 SoC Devices

 GeckoSDK package, which can be installed as part of the S implicity Studio tool installation.

 WiSeConnect SDK v3.x, which can be installed as part of the S implicity Studio tool installation.

 Firmware for SoC

https://www.silabs.com/developers/simplicity-studio
https://www.segger.com/products/development-tools/ozone-j-link-debugger/
https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip
https://osdn.net/projects/ttssh2/releases/
https://www.putty.org/
https://www.raspberrypi.com/software/
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-gecko-sdk-extension
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-wiseconnect-sdk-v2x-or-v3x-extension
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-wiseconnect-sdk-v2x-or-v3x-extension
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-gecko-sdk-extension
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-wiseconnect-sdk-v2x-or-v3x-extension

Artifacts

65/362

Artifacts

Matter Software Artifacts
This page provides links to pre-built software image "artifacts" that can be used to set up the Matter Demo for the Thread

and Wi-Fi use cases.

Images for the items listed below are available under the "Assets" section at the bottom of this page:

https://github.com/S iliconLabs/matter_extension/releases/tag/v2.2.0

Matter Hub Raspberry Pi Image

The Matter Hub image is intended to be flashed onto an SD card for a Raspberry Pi. The Matter Hub Image provides both

an Open Thread Border Router and the Matter chip-tool. Note the image is ~10GB in size so depending on your internet

connection this download may take some time. Start the Matter Hub Raspberry Pi image download here:

https://www.silabs.com/documents/public/software/S ilabsMatterPi_2.2.0-1.2-extension.zip

Radio Co-Processor �RCP� Images

The Radio Co-Processor firmware is used to turn an EFR into an RCP that can be used with a Raspberry Pi to allow the

Raspberry Pi's Open Thread Border Router to access the Thread network. Radio Co-Processor (RCP) images are available in

the Assets section of this page:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/ot-rcp-binaries-2.2.0-1.2.zip

Matter Accessory Device Images

The Matter Accessory Device Images are used to turn an EFR into a Matter device. These are pre-built binary images for

the Matter Demo. Matter Accessory Device Images are located in the Assets section of this page:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/matter-accessory-device-images_2.2.0-1.2.zip

Matter Bootloader Binaries

If you are using the OTA functionality and especially if you are using an EFR32MG2x device, you will need to flash a

bootloader binary on your device along with the application image. Bootloader binaries for all of the Matter supported

devices are available here:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/bootloader_binaries_matter_extension_v2.2.0-

1.2.zip

RS9116 Firmware

The RS9116 firmware (rs9116_firmware_files_with_rev.zip) is used to update the RS9116 which can be found in the Assets

section of this page:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/rs9116_firmware_files_with_rev_2.2.0-1.2.zip

Note: RS9116 chip/module needs to be flashed with proper firmware as mentioned below:

RS916.x.x.x.x.x.rps - This firmware image is valid for RS9116 1.5 revision chip/module

https://github.com/SiliconLabs/matter_extension/releases/tag/v2.2.0
https://www.silabs.com/documents/public/software/SilabsMatterPi_2.2.0-1.2-extension.zip
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/ot-rcp-binaries-2.2.0-1.2.zip
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/matter-accessory-device-images_2.2.0-1.2.zip
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/bootloader_binaries_matter_extension_v2.2.0-1.2.zip
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/rs9116_firmware_files_with_rev_2.2.0-1.2.zip

Artifacts

66/362

RS9116.x.x.x.x.x.rps - This firmware image is valid for RS9116 1.4/1.3 revision chip/module

SiWx917 Firmware for SiWx917 NCP

The S iWx917 firmware(S iWx917NCP_firmware_files.zip) is used to update the S iWx917 NCP which can be found in the

Assets section of this page:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/S iWx917NCP_firmware_files_2.2.0-1.2.zip

Note: S iWx917 NCP board need to be flashed with proper firmware as mentioned below:

SiWG917-B.2.x.X.X.X.rps - This firmware image is valid for BRD8045A (B0 Expansion v2.0) board

SiWx917 Firmware for SiWx917 SoC

The S iWx917 firmware (S iWx917SOC_firmware_files.zip) along with WiSeConnect 3 SDK is used to update the S iWx917 SoC

which can be found in the Assets section of this page:

https://github.com/S iliconLabs/matter_extension/releases/download/v2.2.0/S iWx917SOC_firmware_files_2.2.0-1.2.zip

Note: S iWx917 SoC boards need to be flashed with proper firmware as mentioned below:

SiWG917-B.2.x.X.X.X.rps - This firmware image is valid for BRD4338A(B0 common flash v2.0) board

SiWx917 SoC Configuration Files For JLink RTT Logging

In order to check device logs for the Matter Application on the S iWx917 SoC, the JLink RTT must be configured for the

S iWx917 SoC device by following the instructions on the JLink RTT SOC Support for S iWx917 SoC.

The JLinkDevices.xml and .elf files referenced in the instructions may be found in the Assets section of this page.

Note:- For EFR32MG2x devices, JLink RTT Logging support is already enabled.

https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/SiWx917NCP_firmware_files_2.2.0-1.2.zip
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/SiWx917SOC_firmware_files_2.2.0-1.2.zip
https://docs.silabs.com/matter/2.2.0/matter-wifi-enabling-features/jlink-soc-setup
https://github.com/SiliconLabs/matter_extension/releases/download/v2.2.0/JLinkDevices.xml

Matter Over Thread Example

67/362

Matter Over Thread Example

Silicon Labs Matter Over Thread Example
These pages describe in detail the steps for running an example lighting application for Matter over Thread. If you are new

to Matter and Thread you may benefit from reviewing the Matter Over Thread Quick Start Guide, which provides a step by

step tutorial on running the Matter over Thread lighting demo in S implicity Studio.

At a high level, these pages walk through starting a Thread network, commissioning a new device to the Thread network

using Bluetooth LE, and finally sending a basic OnOff command to the end device.

Step 0� Prerequisites

Before beginning your S ilicon Labs Matter over Thread project be sure you have satisfied all of the Matter Hardware and

Matter Software Requirements.

Step 1� Setting up the Matter Hub �Raspberry Pi)

The Matter Hub consists of the Open Thread Border Router (OTBR) and the chip-tool running on a Raspberry Pi. S ilicon

Labs has developed a Raspberry Pi image combining the OTBR and chip-tool that can be downloaded and flashed onto an

SD Card, which is then inserted into the Raspberry Pi.

The Matter Controller sends IPv6 packets to the OTBR, which converts the IPv6 packets into Thread packets. The Thread

packets are then routed to the S ilicon Labs end device.

See How to use Matter Hub (Raspberry Pi) Image for setup instructions.

Step 2� Flash the RCP

The Radio Co-Processor (RCP) is a Thread device that connects to the Raspberry Pi via USB. To flash the RCP, connect it

to your laptop via USB. Thereafter, it should be connected to the Raspberry Pi via USB as well. Prebuilt RCP images are

available for the demo

Information on flashing and optionally building the RCP is located here: How To Build and Flash the RCP

Step 3� Build and Flash the MAD

The Matter Accessory Device (MAD) is the actual Matter device that will be commissioned onto the Matter network and

controlled using the chip-tool. Prebuilt MAD images are available for the demo.

Information on flashing and optionally building the Matter Accessory device is located here: How To Build and Flash the

Matter Accessory Device

Step 4� Commission and Control the MAD

Once the Matter Accessory device has been flashed onto your hardware you can commission it from the Matter Hub using

the commands provided in the Raspberry Pi image:

Command Usage

mattertool startThread Starts the thread network on the OTBR

mattertool bleThread Starts commissioning of a MAD using chip-tool

https://docs.silabs.com/matter/2.2.0/matter-thread-getting-started
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements

Matter Over Thread Example

68/362

Command Usage

mattertool on Sends an on command to the MAD using chip-tool

mattertool off Sends an off command to the MAD using chip-tool

Using the Matter Hub

69/362

Using the Matter Hub

Setting up the Matter Hub �Raspberry Pi)
The Matter Hub consists of the Open Thread Border Router (OTBR) and the chip-tool running on a Raspberry Pi. S ilicon

Labs has developed a Raspberry Pi image that can be downloaded and flashed onto an SD Card for the Raspberry Pi.

In short, the Matter Controller sends IPv6 packets to the OTBR, which converts the IPv6 packets into Thread packets. The

Thread packets are then routed to the S ilicon Labs end device.

How to use the Silicon Labs Matter Raspberry Pi Image �Matter Hub)

Note that if you have already downloaded the Raspberry Pi image and installed it, you may only need to update the image

that you already have on your Raspberry Pi in order to use it with the current release. In this case you can follow the

instructions on the Matter Tool Page to update your existing installation.

Step 1. Raspberry Pi Image Download

The provided Raspberry Pi image is used as a Matter Controller with the OTBR.

The image can be downloaded from the Matter Artifacts page

Please note that this image, even when zipped up, is quite large ~5GB so this download will take a while if you are on a

slow connection. This image includes both the Ubuntu operating system as well as the OTBR and chip-tool, hence the size.

Step 2. Flashing your Raspberry Pi

Raspberry Pi Disk Imager can be used to flash the SD Card that contains the operating system for the Raspberry Pi. Under

Operating System select 'Use Custom' and then select the .img file.

Alternatively, a tool like balenaEtcher can be used to flash the image to a micro SD card.

After flashing the SD card, insert it into the Raspberry Pi and reset the Raspberry Pi by unplugging it from the power source

and plugging it back in. Then, wait at least 10 seconds for it to come up and start the SSH server.

Step 3. Finding your Raspberry Pi on the Network

The Raspberry Pi should be connected to a network - this could be Ethernet or a Wi-Fi network.

NOTE: If you cannot connect your Raspberry Pi to a network over Wi-Fi or Ethernet you do have the option to connect a

monitor and keyboard the the Raspberry Pi and interact with it that way. In this case you do not need to connect your

Raspberry Pi to a network as you can interface with it directly as you would with any computer running Ubuntu Linux.

The preference here is to use Ethernet, however, if you are using Wi-Fi for your connection to the Raspberry Pi, see

Connecting Raspberry Pi to Wi-Fi for instructions on how to connect your Raspberry Pi to a Wi-Fi network.

Once you have connected your Raspberry Pi to the network, you need to connect to your Raspberry Pi over SSH. This

requires the IP address of your Raspberry Pi. See Finding Your Raspberry Pi for more information on finding the IP address

and connecting to the Raspberry Pi by SSH.

Raspberry Pi Login Credentials

user: ubuntu

password: raspberrypi OR ubuntu (0.3.0 and above)

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://www.raspberrypi.com/software/
https://www.balena.io/etcher/
https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-networking
https://docs.silabs.com/matter/2.2.0/matter-references/find-raspi

Using the Matter Hub

70/362

Note: On later images of the Matter Hub the password has changed to the default "ubuntu". you will be asked to change

your password the first time you log in. You may change it to whatever value you like.

Note: When you log into the Raspberry Pi for the first time over SSH you may receive a warning regarding a 'key fingerprint'

- this is normal and expected. You can get past this by typing 'yes' at the prompt.

Step 4� Using the Matter Hub

The chip-tool, also referred to as the mattertoo l , is provided as a pre-built application inside the Raspberry Pi image.

Refer to the chip-tool page for information on using the Matter Hub with mattertoo l commands.

Setting up the RCP

71/362

Setting up the RCP

How to Build and Flash the Radio Co-Processor
�RCP�
The Radio Co-Processor is a 15.4 stack image flashed onto a S ilicon Labs development kit or Thunderboard Sense 2. The

15.4 stack on the development kit communicates with the higher layers of the Thread stack running on the Raspberry Pi

over a USB connection.

A complete list of supported hardware for the RCP is provided on the Matter Hardware Requirements page.

First, in order to flash the RCP, connect it to your laptop directly by USB.

Step 1� Get or Build the Image File to Flash the RCP

We have provided two ways to get the required image to flash the RCP. You can use one of the following options:

 Use the pre-built 'ot-rcp' image file

 Build the image file from the 'ot-efr32' repository, which is listed on the Matter Repositories and Commit Hashes page

Using a Pre-built Image File

RCP image files for all demo boards are accessible through the Matter Artifacts Page. If you are using a pre-built image file,

you can skip to Step #2: Flash the RCP.

Building the Image File from the Repository

1. Clone the ot-efr32 repository

The 'ot-efr32' repo is located in G ithub here: https://github.com/S iliconLabs/ot-efr32.

You must have G it installed on your local machine. To clone the repo use the following command:

$ git clone https://github.com/SiliconLabs/ot-efr32.git

Once you have cloned the repo, enter the repo and sync all the submodules with the following command:

$ cd ot-efr32

$ git submodule update --init

After updating the submodules you can check out the correct branch or commit hash for the system. Check the current

branch and commit hash used here: Matter Branches and Commit Hashes

$ git checkout <commit hash>

2. Build the RCP

Once you have checked out the correct hash, follow the instructions here: https://github.com/S iliconLabs/ot-

efr32/blob/main/src/README.md to build the RCP image for your EFR platform.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-references/commit-hashes
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://github.com/SiliconLabs/ot-efr32
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/
https://github.com/SiliconLabs/ot-efr32/blob/main/src/README.md

Setting up the RCP

72/362

This process will build several images for your board. The filename of the image to be flashed onto the board to create an

RCP is 'ot-rcp.s37'.

The output of the build process puts all the image files in the following location: '(git)/ot-efr32/build/(efr32xgxx)'

Step 2� Flash the RCP

Once you get the RCP image, either by downloading a prebuilt image or building the image file from the repo, you can flash

it onto your device. This is done directly from your laptop and not through the Raspberry Pi, so make sure that the device is

connected directly over USB to your laptop. You can flash your RCP using S implicity Studio or using standalone S implicity

Commander.

Once you have flashed the image, the device becomes the RCP. Disconnect it from you laptop and connect it via USB to

the Raspberry Pi.

The Raspberry Pi's Open Thread Border Router can then use the RCP to communicate with the Thread network.

Creating an End Device

73/362

Creating an End Device

How to Build and Flash the Matter Accessory
Device �MAD�
The Matter Accessory Device, such as the lighting-app, is the actual Matter device that you will commission onto the

Matter network and control using the chip-tool.

Step 1� Get the Image File to Flash the MAD

We have provided two ways to get the required image to flash the MAD. You can use one of the following options:

 Use the pre-built image file from either S implicity Studio or S ilicon Labs Matter G itHub

 Build the image file from S implicity Studio or out of the S ilicon Labs Matter G itHub matter repository

Using the Pre-Built Image File

Prebuilt image files are available both on G itHub and inside S implicity Studio.

Simplicity Studio

To find the demos within S implicity Studio, even if you do not have a device connected:

 Go to the Launcher within S implicity Studio, you can see the Launcher tab in the upper right hand corner

 Under "Get Started" choose "All Products"

 Choose a board to start with such as "BRD4186C Rev A01" and click "Start", this will bring up the launcher window for

that part

 In the top navigation choose "Example Projects & Demos"

 In the left hand navigation choose "Matter" to show all the Matter demos.

 The demos are marked as "demo" and allow you to "Run" them, Projects can be "Created"

 Choose the demo you wish to use and click "Run" to flash it onto your board

Silicon Labs G itHub

If you are interested in using prebuilt image files from G itHub, all of the Matter Accessory Device image files are accessible

through the Matter Artifacts Page. If you are using a pre-built image file, you can skip forward to Step #2: Flashing the MAD.

If you are coming from S implicity Studio, you may have already installed the demo image in S implicity Studio in which case

you can skip forward to the next step.

Building the Matter Image File

There are two ways to build a Matter Accessory Device image file. You can build it using the S ilicon Labs Matter G itHub

Repo or you can build it using S implicity Studio. The entire build process for S implicity Studio is covered in the Matter Over

Thread Quick Start Guide

Build Using the Matter G itHub Repo

Build Using S implicity Studio

Step 2� Flash the Matter Accessory Device

For more information on how to flash your S ilabs development platform see the following instructions: How to Flash a

S ilicon Labs Device

Once your Matter Accessory Device has been flashed it should show a QR code on the LCD. If no QR Code is present it

may be that you need to add a bootloader to your device. Bootloader images are provided on the Matter Artifacts page.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://docs.silabs.com/matter/2.2.0/matter-thread-getting-started/
https://github.com/SiliconLabs/matter/blob/latest/examples/lighting-app/silabs/efr32/README.md
https://docs.silabs.com/matter/2.2.0/matter-thread-getting-started/03-light-switch-step-by-step-example#creating-the-matter-accessory-devices-ma-ds
https://docs.silabs.com/matter/2.2.0/matter-references
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts

Using the Chip-Tool

74/362

Using the Chip-Tool

Using the Mattertool (chip-tool)
The following commands show how to start a new Thread network from the local OTBR, commission an EFR32 Matter End

Device (Matter Accessory Device), and then send the on/off commands with the mattertoo l automated script. The

mattertoo l script provides an interface into various chip-tool and otbr commands used to create and interact with a Matter

network

Basic Mattertool Commands

Command Usage

mattertoo l startThread Starts the thread network on the OTBR

mattertoo l bleThread Starts commissioning of a Matter Accessory Device using the chip-tool

mattertoo l on Sends the on command to the Matter Accessory Device using the chip-tool

mattertoo l off Sends the off command to the Matter Accessory Device using the chip-tool

You can also use the full chip-tool command set (still using mattertool)

$ mattertool levelcontrol read current-level 106 1

Advanced Information on the Matter Hub

Image tree

home

ubuntu (you are here)

connectedhomeip (git repo: https://github.com/project-chip/connectedhomeip.git)

ot-br-posix (git repo: https://github.com/openthread/ot-br-posix.git)

scripts (in-house scripts)

configurations.sh

matterTool.sh

setupOTBR.sh

Open Thread Border Router �OTBR�

For information on what commits to use for the OTBR and RCP, consult the Matter Repositories and Commit Hashes page

The pre-installed OTBR is configured for the infrastructure interface eth0.

Bash script to modify, reinstall or update the OTBR:

$ otbrsetup

This bash script centralizes and simplifies the local OTBR installation.

Available commands:

https://github.com/project-chip/connectedhomeip.git
https://github.com/openthread/ot-br-posix.git
https://docs.silabs.com/matter/2.2.0/matter-prerequisites

Using the Chip-Tool

75/362

Command Description

-h, --help Prints help options

-if, --interface

<eth0|wlan0>

Select infrastructure interface. Default eth0

-i, --install Bootstrap, set up and install the OTBR. Usually for a new installation

-s, --setup Runs the OTBR setup only, use this to change the configured infrastructure interface (use in

combination with -if wlan0 for Wi-Fi)

-u, --update Update the OTBR installation after the repo is updated

Usage:

Change infrastructure to wlan0: $ otbrsetup -if wlan0 -s

Rerun full install for eth0 interface: $ otbrsetup -i

Upgrading the OpenThread Border Router �OTBR�

Change OTBR commit reference/version

$ cd /home/ubuntu/ot-br-posix

$ git fetch

$ git checkout <SHA>

$ otbrsetup -u

Upgrading the Matter - Chip-tool

For more information on the commit hashes used for this demo please consult the following page: Matter Repositories and

Commit Hashes

To change the chip-tool commit reference/version, follow these steps:

$ cd /home/ubuntu/connectedhomeip

$ git fetch

$ git checkout <SHA>

$ mattertool buildCT

The mattertool script centralizes and simplifies the use of chip-tool and starting a clean thread network.

Available commands:

Command Description

help Prints help options

startThread Start a new thread network and store the operational thread dataset for the commissioning purpose

(bleThread)

bleThread For Matter Bluetooth LE thread commissioning with an EFR32 device

bleWifi For Matter Bluetooth LE Wi-FI commissioning with an EFR32 device

https://docs.silabs.com/matter/2.2.0/matter-references/commit-hashes

Using the Chip-Tool

76/362

Command Description

buildCT Clean build of the chip-tool

cleanVars Erase every Set variable used in the script. They will be set back to default or randomized value

off Turn off the Light on the already-commissioned EFR32 device

on Turn on the Light on the already-commissioned EFR32 device

toggle Toggle the Light on the already-commissioned EFR32 device

parsePayload Parse the given Payload (QrCode string)

rebuildCT Rebuild the chip-tool

vars Print the Variables in use by the script

Some options/arguments can be added to the command to update the values of the variables used by the script.

Available commands:

Command Description

-h, --help Prints help options

-n, --nodeId DIGIT Specify the Nodeid you are trying to reach

-e, --endpoint DIGIT Specify an endpoint for the desired cluster

-d, --dataset HEX_STRING Thread Operation Dataset to be provisioned

-s, --ssid STRING Wi-Fi AP SSID that the end devices need to connect to

-p, --password STRING Wi-Fi AP password

These configurations are held until overwritten, cleared with cleanVars or when Raspberry Pi reboots.

Active variables used by mattertool:

Variable Value

MATTER_ROOT /home/ubuntu/connectedhomeip

CHIPTOOL_PATH /home/ubuntu/connectedhomeip/out/standalone/chip-tool

NODE_ID 31354

THREAD_DATA_SET <the_value_you_get>

PINCODE 20202021

DISCRIMINATOR 3840

SSID <your_SSID>

lastNodeId 0

You can preset them with export X=Y before running the script or use some available options to change some of them.

In most cases, MATTER_ROOT, CHIPTOOL_PATH, PINCODE, and DISCRIMINATOR should remain at the default set value.

For commissioning commands (bleThread, bleWifi) NODE_ID will be randomized if it is the same as the last pairing

When the startThread command is used, THREAD_DATA_SET will be assigned with the right operation dataset for the

created Thread Network.

Scripts Alias

The commands presented above are linked to scripts. You can edit .bashrc and rename the following alias to your liking.

$ alias mattertool=‘source $HOME/scripts/matterTool.sh’

$ alias otbrsetup=‘source $HOME/scripts/setupOTBR.sh'

Overview

77/362

Overview

Silicon Labs Matter Over Wi-Fi Example
This section walks through the steps to build the Matter 1.2 applications, such as lighting, light-switch, window covering,

thermostat, door lock, and on/off plug on silicon labs Wi-Fi devices. A complete list of hardware supported for Wi-Fi is

included on the Hardware Requirements page.

Step 1� Matter Wi-Fi Prerequisites

Before running the Matter Wi-Fi demo or developing for Wi-Fi, make sure that you have all the required hardware and

software for each use case.

 Matter Hardware Requirements

 Matter Software Requirements

Step 2� Building the chip-tool for Wi-Fi

To run the Matter Wi-Fi demo, you will need to run the chip-tool on one of two platforms, either Linux/Mac or Raspberry Pi.

Refer to Building the Chip-Tool.

Step 3� Building the Matter Accessory Device �MAD� for Wi-Fi

Refer to Getting Started with Matter Development for instructions.

Step 4� Running the Example Network

This contains instructions to run the Matter Wi-Fi applications using chip-tool Running the Matter Demo on Matter

Accessory Device on a Linux Machine (either Laptop or Raspberry Pi). Follow this after successfully executing the above

steps.

Additional Information

Enabling Features

Matter Shell

Matter OTA

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/build-chip-tool
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo
https://docs.silabs.com/matter/2.2.0/matter-wifi-enabling-features
https://docs.silabs.com/matter/2.2.0/matter-overview-guides/serial-port-communications
https://docs.silabs.com/matter/2.2.0/matter-ota

Getting Started

78/362

Getting Started

Getting Started with Matter over Wi-Fi
To get started with Matter over Wi-Fi, download the latest version of S implicity Studio as described in Software Installation

and select one of the getting started guides in this section:

System-on-chip (SoC) mode: Both the application and connectivity stack runs on the S iWx91x™ chipset. Refer to Getting

Started with SoC Mode.

Network Co-Processor (NCP) mode: The application runs on an external micro-controller unit (MCU) host and the

connectivity stack runs on the S ilicon Labs Wi-Fi Processor. Refer to Getting Started with EFR32 in NCP Mode.

Setting up the Matter over Wi-Fi Development Environment

Refer to the Release Notes to know more about the latest releases from S ilicon Labs.

To control the Matter Accessory Device, a controller is required which is termed as chip-tool. The chip-tool can be set up

in two ways:

On the Raspberry PI: See Setting up chip-tool on Raspberry Pi.

On Linux: See Setting up chip-tool on Linux.

Running the Matter over Wi-Fi Demo

To run the Matter Demo over Wi-Fi , refer to Running the Matter Demo over Wi-Fi.

https://github.com/SiliconLabs/matter_extension/releases/tag/v2.2.0
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo

Software Installation

79/362

Software Installation

Matter Over Wi-Fi Development Software
Requirements
This document provides information and procedures to install the required software, tools, and packages for S ilicon Labs

Matter over Wi-Fi Matter Accessory Device (MAD) development.

Required Software Tools

These are the generic software tools required for both NCP and SoC devices.

 Silicon Labs Simplicity Studio: S implicity Studio is the main IDE and development platform provided by S ilicon Labs.

 Ozone - The J-Link Debugger for Windows: Ozone is a full-featured graphical debugger for embedded applications. With

Ozone, it is possible to debug any embedded application on C/C++ source and assembly level.

 Simplicity Commander: S implicity Commander is a utility that provides GUI and command line access to the debug features

of an EFM32 device. It allows you to flash firmware, update the kit firmware, and lock or unlock debug access.

 Tera Term: Tera Term is the terminal emulator for Microsoft Windows, which supports serial port, telnet, and SSH

connections.

 PuTTY (SSH Client, Terminal, or similar): SSH client is used to communicate with the Raspberry Pi over a secure shell.

 Raspberry Pi Disk Imager: Raspberry Pi Disk Imager is used to flash the SD Card that contains the operating system for the

Raspberry Pi.

Install Software Packages

The following packages will be installed during the installation of S implicity Studio:

Gecko SDK Extension

If you already selected the Gecko SDK extension while installing Studio, you may skip this section. You may install Gecko

SDK by following these steps:

Installation Manager (recommended)

Manage SDKs Window

Note: Version numbers mentioned in the screenshot might be outdated. Install the latest packages available with the studio.

Install Gecko SDK Through the Installation Manager

 Log in to S implicity Studio.

 In the S implicity Studio home page, select Install > Manage installed packages.

https://www.silabs.com/developers/simplicity-studio
https://www.segger.com/products/development-tools/ozone-j-link-debugger/
https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip
https://osdn.net/projects/ttssh2/releases/
https://www.putty.org/
https://www.raspberrypi.com/software/

Software Installation

80/362

 Select the SDKs tab.

 Next to the Gecko SDK version, click the three dots button.

 Select Change Version and select New Version from dropdown to install, and click Finish.

Software Installation

81/362

Install the Gecko SDK Through the "Manage SDK" Window

 Download the Gecko SDK v4.x source code from the following URL after substituting 4.x.x with the desired release version:

https://github.com/S iliconLabs/gecko_sdk.git

If you don't know the release version, go to the G itHub releases page and select the version to download.

 Unzip the downloaded Gecko SDK-4.x.x.zip file.

 Launch S implicity Studio and log in.

 In the Debug Adapters panel, select the radio board.

 In the General Information section, click Manage SDKs.

 The Preferences window will be opened in the SDKs section.

 Select Add SDK.

https://github.com/SiliconLabs/gecko_sdk.git

Software Installation

82/362

 In the Add SDK Extensions window, click Browse.

 Locate and select the Gecko SDK sub-folder extracted in step 2 above, which contains the source code.

 Studio will detect the Gecko SDK extension.

 Select the detected extension and click OK.

Software Installation

83/362

 If a Verify SDK Extension popup is displayed, click Trust.

 The selected GSDK extension will be displayed.

Software Installation

84/362

 Click Apply and Close.

Install WiSeConnect SDK v2.x or v3.x Extension

If you already selected the WiSeConnect extension while installing SImplicity Studio, you may skip this section.

Before installing the WiSeConnect SDK v2.x or v3.x extension, if necessary, upgrade to a compatible GSDK version by

following the steps above.

Install WiSeConnect SDK v2.x or v3.x through one of the following alternative paths:

Installation Manager (recommended)

Manage SDKs Window

Install WiSeConnect SDK Through the Installation Manager

 Log in to S implicity Studio if not already done.

 In the S implicity Studio home page, select Install > Manage installed packages.

Software Installation

85/362

 Select the SDKs tab.

 Next to the WiSeConnect SDK v2.x or v3.x extension, click Install.

Install WiSeConnect SDK Through the Manage SDKs Window

 Download the WiSeConnect v3.x source code from the following URL after substituting 3.x.x with the desired release

version:

https://github.com/S iliconLabs/wiseconnect/archive/refs/tags/v3.x.x.zip

https://github.com/SiliconLabs/wiseconnect/archive/refs/tags/v3.x.x.zip

Software Installation

86/362

If you don't know the release version, go to the G itHub releases page and select the version to download.

 Unzip the downloaded wiseconnect-3.x.x.zip file.

 Launch S implicity Studio and log in.

 In the Debug Adapters pane, select your radio board.

 In the General Information section, click Manage SDKs.

 The Preferences window will be opened in the SDKs section.

 Select Gecko SDK Suite vx.x.x and click Add Extension.

Software Installation

87/362

 In the Add SDK Extensions window, click Browse.

 Locate and select the WiSeConnect SDK v2.x or v3.x sub-folder extracted in step 2 above, which contains the source code.

 Studio will detect the WiSeConnect 3 SDK extension.

 Select the detected extension and click OK.

Software Installation

88/362

 If a Verify SDK Extension popup is displayed, click Trust.

 The selected WiSeConnect SDK v2.x or v3.x extension will be displayed.

Software Installation

89/362

 Click Apply and Close.

Get Started with SoC

90/362

Get Started with SoC

Getting Started with SoC Mode
This guide describes how to get started developing an application for the S iWx91x in System-on-chip (SoC) mode, where

both the application and the networking stack run on the S iWx917 chipset.

Check Prerequisites

In order to run Matter over Wi-Fi, check for the following prerequisites:

Hardware Requirements

The following hardware devices are required for executing Matter over Wi-Fi:

S ilicon Labs Wireless starter/development kit (WSTK)

S iWx917 SoC development kit

Wi-Fi Dev K it

S iWx917

SoC mode:

BRD4388A (B0 2.0 common flash) S iWx917

Windows/Linux/MacOS computer with a USB port

USB cable for connecting WSTK Board to Computer

Raspberry Pi with a >32 GB SD Card

Access Point with Internet Access

Software Requirements

Below are the software tools, packages, and images required for executing Matter over Wi-Fi:

Software Tools Requirements

S implicity Commander for flashing firmware/binary

Tera Term

S implicity Studio

Putty for controlling EFR32 hardware using chip-tool controller

JLink RTT for logging only

Software Packages

Gecko SDK v4.x

WiseConnect SDK v3.x

Firmware Images

Download the Firmware images from Matter Artifacts Page.

For Flashing the firmware images, Refer to Flashing Firmware Images.

Installation of the Wi-Fi Software Tools and Packages

Refer to the Wi-Fi Software Installation Page.

Connect SiWx917 SOC to Computer

 Mount the S iWx917 radio board on the S iWx917 WSTK board.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts#siwx917-firmware-for-siwx917-soc
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/loading-firmware-for-ncp-and-soc-boards

Get Started with SoC

91/362

 Connect your S iWx917 Wireless Starter K it (WSTK) board to your computer using a USB cable.

 S implicity Studio will detect and display your radio board.

Troubleshooting a Board Detection Failure

If S implicity Studio does not detect the S iWx917 SoC board, try the following:

In the Debug Adapters panel, click Refresh (the icon of two looping arrows).

Press the RESET button on the S iWx917 SoC radio board.

Power-cycle the S iWx917 SoC radio board by disconnecting and reconnecting the USB cable.

Building the 917 SoC Matter Accessory Devices Using Simplicity Studio

In S implicity Studio 5, create the Light Matter Accessory Devices (MAD):

 Download and Install S implicity Studio 5.

 To install the software packages for S implicity Studio, refer to the Software Package Installation Section

 Switch to the Launcher view (if not already in it).

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-software-packages

Get Started with SoC

92/362

 Go to All Products in the launcher tab and select one compatible board from the following supported list of S iWx917 SOC

dev boards.

BRD4338A (Common Flash)

Get Started with SoC

93/362

 Once the board shows up in the Debug Adapters view, select it.

 Open the Example Projects and Demos tab, select the Matter filter and enter "Wi-Fi" in Filter on keywords. Click CREATE.

Get Started with SoC

94/362

 Once the project is created, right-click on the project and select Build Project in the Project Explorer tab.

Get Started with SoC

95/362

 To flash the application, connect the compatible dev board to the PC if not yet done.

 Once the project is compiled successfully, go to the Project Explorer view and select the binary to be flashed.

Get Started with SoC

96/362

 The Flash programmer window opens. Click Program to start flashing.

Note: Output of the S iWX917 SoC application will be displayed on the J-Link RTT Viewer.

Get Started with SoC

97/362

In order to debug your Matter Application, Right-click on the selected Matter Project and click on Debug As.

Get Started with NCP

98/362

Get Started with NCP

Getting Started with EFR32 Host in NCP Mode
This page describes how to get started with developing an application on EFR32 host in Network Co-Processor (NCP)

mode, where the application runs on the EFR32 host and the connectivity stack runs on the Wi-Fi chipset.

Check Prerequisites

In order to run Matter over Wi-Fi, check for the following prerequisites:

Hardware Requirements

The following hardware devices are required for executing Matter over Wi-Fi:

S ilicon Labs Wireless starter/development kit (WSTK)

S ilicon Labs Wi-Fi development K its & boards

For Network Co-Processor (NCP) variants,

S ilicon Labs EFR32 - is used as a host processor and, with the WF200, provides Bluetooth LE capabilities

S ilicon Labs Wi-Fi Processor

RS9116 development kit

WF200 expansion board

S iWx917 NCP expansion board

MG24 boards:

BRD4186C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@10dBm

XG24-RB4186C

MG24 with WSTK : xG24-PK6009A

BRD4187C / SLWSTK6006A / Wireless Starter K it / 2.4GHz@20dBm

XG24-RB4187C

MG24 with WSTK : xG24-PK6010A

Wi-Fi Dev Kits & boards

RS9116

SB-EVK1 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK1

SB-EVK2 / S ingle Band Wi-Fi Development K it / 2.4GHz

RS9116X-SB-EVK2

DB-EVK1 / Dual Band Wi-Fi Development K it / 2.4GHz & 5GHz

RS9116X-DB-EVK1 Note: Matter only supported over 2.4GHz on this Dev kit.

SiWx917

S iWx917 NCP Mode / Wi-Fi Expansion Board / 2.4GHz

BRD8045A (B0 Expansion v2.0)

WF200

WF200 / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8022A

WFM200S / S ingle Band Wi-Fi Expansion Board / 2.4GHz

SLEXP8023A

Windows/Linux/MacOS computer with a USB port

USB cable for connecting WSTK Board to Computer

Raspberry Pi with a >32 GB SD Card

Access Point with Internet Access

Interconnect board (included in the Wi-Fi kits)

SPI Cable (included in the RS9116 kit)

https://www.silabs.com/development-tools/wireless/xg24-rb4186c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-10-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-20-dbm?tab=overview
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-sb-evk2-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/rs9116x-db-evk-development-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wf200-wifi-expansion-kit
https://www.silabs.com/development-tools/wireless/wi-fi/wfm200-wifi-expansion-kit

Get Started with NCP

99/362

Jumper Cables (included in the RS9116 kit)

Software Requirements

Below are the software tools, packages and images required for executing Matter over Wi-Fi:

Software Tools Requirements

S implicity Commander for flashing bootloader on EFR32 Boards and S iwx917 NCP.

Tera Term for flashing firmware on EFR32 NCP Boards.

S implicity Studio

Putty for controling EFR32 hardware using chip-tool controller

Ozone Debugger for logging and debugging (Optional)

JLink RTT for logging only (Optional)

Software Packages

Gecko SDK v4.x

WiseConnect SDK

For RS9116 use WiseConnect SDK v2.x

For S iWx917 use WiseConnect SDK v3.x

Firmware Images

Download the Firmware images from Matter Artifacts Page

For Flashing the firmware images, Refer to Flashing Firmware Images.

Installation of the Wi-Fi Software Tools and Packages

Refer to the Wi-Fi Software Installation Page

Connect the Boards to a Computer

 Mount the EFR32 radio board on the EFR32 WSTK board.

 Connect the NCP expansion board to the EXP header on the EFR32 WSTK board.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/loading-firmware-for-ncp-and-soc-boards

Get Started with NCP

100/362

 Toggle the upper switch on the NCP expansion board to EXP-UART.

 Connect the EFR32 WSTK board to computer using a USB cable.

Troubleshoot Board Detection Failure

If S implicity Studio does not detect the EFR32 radio board, try the following:

In the Debug Adapters panel, click the Refresh button (the icon with two looping arrows).

Press the RESET button on the EFR32 radio board.

Power-cycle the EFR32 radio board by disconnecting and reconnecting the USB cable.

Building and Flashing an Application

This section describes how to create a project for the EFR32 boards.

 In S implicity Studio, click Example Projects and Demos, select a project, and click Create.

Get Started with NCP

101/362

 In the New Project Wizard window, click Finish.

Get Started with NCP

102/362

 Once the project is created, right-click the project and select Build Project in the Project Explorer tab.

Get Started with NCP

103/362

 Once the project is compiled successfully, go to the Project Explorer view and expand the binaries folder to flash the binary.

 Right-click the selected .s37 binary and click flash to device.

Get Started with NCP

104/362

 Flash programmer window will be opened. Click Erase and then Program to start flashing.

Note: Output of the EFR32 NCP Host application will be displayed on the J-Link RTT Viewer.

Set up Chip-Tool

105/362

Set up Chip-Tool

Building the Chip-Tool
This page covers:

Building the chip-tool for Linux

Building the chip-tool for Raspberry Pi

Build Environment for Linux

This section goes through the steps required to build the chip-tool for Linux.

Do not execute any commands on this page as ROOT (no su required), unless specified.

Prepare Linux Packages

Update the latest packages by typing following commands in the terminal:

$ sudo apt update

$ sudo apt install

Prerequisites for Matter �CHIP� Project on Linux

Install Packages on Ubuntu Laptop/PC

Open the Linux terminal from Start menu.

Install required packages on Ubuntu Laptop/PC using the following commands:

$ sudo apt install git gcc g++ pkg-config libssl-dev libdbus-1-dev

libglib2.0-dev libavahi-client-dev ninja-build python3-venv python3-dev python3-pip unzip libgirepository1.0-dev libcairo2-dev libreadline-

dev

Build the chip-tool Environment

To build chip-tool environment, first set up the software and then compile the chip-tool.

Software Setup

If you have not downloaded or cloned the repository, you can run the following commands on a Linux terminal running on

either Linux machine, WSL or Virtual Machine to clone the repository and run bootstrap to prepare to build the sample

application images.

 To download the S iliconLabs Matter codebase, run the following commands.

 $ git clone https://github.com/SiliconLabs/matter.git

 Bootstrapping:

https://github.com/SiliconLabs/matter.git

Set up Chip-Tool

106/362

$ cd matter

$./scripts/checkout_submodules.py --shallow --recursive --platform efr32

$. scripts/bootstrap.sh

Create a directory where binaries will be updated/compiled called `out`

$ mkdir out

Compiling the chip-tool

To control the Wi-Fi Matter Accessory Device, you must compile and run the chip-tool on either a Linux, Mac, or Raspberry

Pi. The chip-tool builds faster on the Mac and Linux machines so that is recommended, but if you have access to a

Raspberry Pi, that will work as well.

 Build the chip-tool.

$./scripts/examples/gn_build_example.sh examples/chip-tool out/standalone

This will build chip-tool in out/standalone .

Build Environment using Raspberry Pi 4

Flash the Ubuntu OS onto the SD Card

 Insert the flashed SD card (directly or using a card reader) into the laptop/PC that will run the Raspberry Pi Imager tool.

 Launch Raspberry Pi 4 Imager.

 Flash the Pi image using any one of the following procedure:

Click 'Choose OS ' --> 'Other General-purpose OS ' --> 'Ubuntu' --> 'Ubuntu xx.xx 64-bit server OS '

Note: Flash the latest version of Ubnutu Server (64-bit server OS for arm64 architecture)

Download the Matter Hub Raspberry Pi Image provided on the Matter Artifacts page, then click 'Choose OS ' --> 'Use

custom' --> select the Matter Hub Raspberry Pi Image which you downloaded.

 Click Storage and select the SD card detect.

 This Raspberry Pi 4's console can be accessed in multiple ways. In this guide, Raspberry Pi 4 is being accessed using Putty.

 Enter the details like User name, Password, SSID, and its password to connect to network. Click Save.

 Click Write and then Yes when you are asked for permission to erase data on the SD card. It will then start flashing the OS

onto the SD card.

 When it is done, click Continue.

 Remove the SD card from the reader and insert it into the Raspberry Pi as shown below:

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://www.raspberrypi.com/documentation/computers/remote-access.html

Set up Chip-Tool

107/362

On powering up the board, the red and green lights should start blinking.

Start Using the Raspberry Pi

 Power-up the RPi4B. Once it is booted up, check the Raspberry Pi's IP address. Refer to Finding Raspberry Pi IP address in

the References chapter to get the IP address or enter the Hostname directly in PuTTY.

 Once you find the IP address, launch Putty, select Session, enter the IP address of the Raspberry Pi, and click Open.

 Enter the username and password given at the time of flashing and click Enter.

Note: If the username and password are not provided while flashing then by default:

Username: ubuntu

Password: ubuntu

 Switch to root mode and navigate to path "/home/ubuntu/connectedhomeip/out/standalone" to find the chip-tool. Matter

hub/chip-tool are ready and working. Keep the PuTTY session open for later steps.

 Update the latest packages by running following commands in the terminal:

$ sudo apt update

$ sudo apt install

 Install required packages using the following commands:

$ sudo apt-get install git gcc g++ pkg-config libssl-dev libdbus-1-dev libglib2.0-dev libavahi-client-dev ninja-build python3-venv python3�

dev python3-pip unzip libgirepository1.0-dev libcairo2-dev libreadline-dev

If you see any popups between installs, you can select OK or Continue.

Build Environment

 Follow the instructions inthe Project CHIP G itHub S ite, in the section "Installing prerequisites on Raspberry Pi 4".

 To build the environment, follow the Software setup and Compiling chip-too l steps given in Software setup.

Bluetooth Setup

Because Bluetooth LE (BLE) is used for commissioning on Matter, make sure BLE is up and running on Raspberry Pi.

Raspberry Pi internally has some issues with BLE that may cause it to crash.

$ sudo systemctl status bluetooth.service

To stop BLE if it is already running:

$ sudo systemctl stop bluetooth.service

To restart the Bluetooth service, first enable it:

$ sudo systemctl enable bluetooth.service

When you check the status of the Bluetooth service, it will be inactive because it has been enabled but not restarted:

$ sudo systemctl status bluetooth.service

Restart the service:

$ sudo systemctl restart bluetooth.service

Now the status of the service should be active and running:

$ sudo systemctl status bluetooth.service

https://docs.silabs.com/matter/2.2.0/matter-references/find-raspi
https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/BUILDING.md
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started/04-light-switch-step-by-step-example

Running the Matter Demo

108/362

Running the Matter Demo

Running the Matter Demo over Wi-Fi
Follow the procedure below to run Matter demo over Wi-Fi.

Flashing the Connectivity Firmware

To flash the connectivity firmware on an NCP device, refer to the following guide: Upgrading Connectivity Firmware for NCP

Devices.

To flash the connectivity firmware on a S iWx917 SoC, refer to the following guide Upgrading Connectivity Firmware for SoC

Devices.

Flashing the Bootloader Binary

The bootloader binary is supported on EFR32 boards only and it can be flashed using the S implicity Commander software or

S implicity Studio.

To Flash the Bootloader Binary for EFR32 Board, refer to the following guide: Flashing Bootloader Binaries on EFR32

Devices.

Building and Flashing the Matter Application using Simplicity Studio

To build and flash an application for the EFR32, refer to EFR32 Building and Flashing Application.

To build and flash an application for S iWx917 SoC, refer to S iWx917 SOC Building and Flashing Application.

Flashing the Matter Pre-Built Binaries Using Simplicity Commander

To flash the application for EFR32 Board using S implicity Commander, refer to Flash EFR32 Binaries using S implicity

Commander.

Note: For EFR32, you must use the .s37 format file only.

To flash the application for the S iWx917 SoC Board using S implicity Commander, refer to Flash S iWx917 SoC Matter Pre-Built

Binaries.

Note: For S iWx917 SoC, use the .rps format file only.

Setting up the Raspberry Pi

To set up the Raspberry Pi, refer to Setting up the chip-tool on Raspberry PI.

Next Steps

Running the Demo

Debugging the Application

Flash Firmware

109/362

Flash Firmware

Upgrading the Wi-Fi Connectivity Firmware
It is recommended that an upgrade of the NCP combos connectivity firmware be done under the following circumstances:

When the EFR32 evaluation kit (EVK) is first received.

When the radio board is first received.

When upgrading to a new version of the WiSeConnect SDK v2.x or v3.x extension.

Upgrading the Connectivity Firmware on NCP devices

The S iWx917 NCP or RS9116 EVK connectivity firmware can be upgraded using Teraterm or kermit.

Connectivity Firmware Upgrade Using Teraterm

Firmware Upgrade On RS9116

 Connect the EVK to PC using the USB interface labeled UART as identified below.

 If this is the first time connecting the EVK to your PC, verfy that it is properly detected by the PC. The EVK will appear to

the PC as a COM port labeled USB Serial Port (COMx)

 Configure your terminal application with the following settings:

Configure the serial port settings to 115200 baud / 8-bit data / No parity / 1 stop bit

Flash Firmware

110/362

Enable local echo

Set receive and transmit new-line characters to CR+LF

 Refer to Setup Tera Term and Updating the Firmware.

Instructions are the same for both SiWx917 NCP and RS9116 EVK.

 Once firmware flashing is done The console displays Loading... followed by Loading Done.

Firmware Upgrade On SIWx917 NCP

 Connect USB-UART Cable to Machine and WPK board as well with SOC Mounted on it.

 Connect USB-UART Cable 2(Yellow) to F9 and 3(Green) to F8 on WPK Board shown below.

 Configure your terminal application with the following settings:

Configure the serial port settings to 115200 baud / 8-bit data / No parity / 1 stop bit

Enable local echo

Set receive and transmit new-line characters to CR+LF

 Refer to Setup Tera Term and Updating the Firmware.

Instructions are the same for both SiWx917 NCP and RS9116 EVK.

https://docs.silabs.com/rs9116/wiseconnect/2.0/tera-term-setup
https://docs.silabs.com/rs9116/wiseconnect/2.0/tera-term-setup

Flash Firmware

111/362

 Once firmware flashing is done The console displays Loading... followed by Loading Done.

Troubleshooting an NCP Firmware Update Failure

If the firmware update fails, try the following:

Toggle the power switch towards AEM (Advanced Energy Monitoring) on the WPK board.

Perform the following steps and try the firmware update again

Press the RESET button on the WSTK board.

Retry the firmware upgrade.

Upgrading the Connectivity Firmware on SoC Devices

S iWx917 SOC connectivity firmware can be upgraded using S implicity Commander.

Connectivity Firmware Upgrade Using Simplicity Commander

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select S implicity Commander and click OK.

 In the S implicity Commander window, click Select K it and choose your radio board.

Flash Firmware

112/362

 In the navigation pane, go to the Flash section.

 Click Browse next to the Binary File field.

Flash Firmware

113/362

 Refer to Firmware for S iWx917 SoC to identify the correct firmware to be flashed into the specific hardware. Locate and

select the firmware file to flash.

 Click Flash

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts#siwx917-firmware-for-siwx917-soc

Flash Firmware

114/362

 The firmware will be flashed and the Log Window will display a "Resetting" message.

Flash Firmware

115/362

Troubleshoot SiWx917 SOC Firmware Update Failure

If the firmware update fails, try the following:

Toggle the power switch towards AEM (Advanced Energy Monitoring) on the WSTK board.

Perform the following steps and try the firmware update again

Press the RESET button on the WSTK board.

Retry the firmware upgrade.

Flash Bootloader

116/362

Flash Bootloader

Flashing the Matter Binaries Using Simplicity
Commander
To flash the application for EFR32 and S iWx917 SOC Board S implicity Commander software will be used.

Before flashing the application for EFR32 Boards, flash bootloader images as per board variants:

BRD4186C Board

For MG24 + RS9116 :- Internal Bootloader (bootloader-storage-internal-single-512k-BRD4186C-gsdk4.1)

For MG24 + WF200 :- External Bootloader (bootloader-storage-spiflash-single-1024k-BRD4186C-gsdk4.1)

BRD4187C Board

For MG24 + RS9116 :- Internal Bootloader (bootloader-storage-internal-single-512k-BRD4187C-gsdk4.1)

For MG24 + WF200 :- External Bootloader (bootloader-storage-spiflash-single-1024k-BRD4187C-gsdk4.1)

Bootloader binaries are available in the respective path of codebase

third_party/silabs/matter_support/matter/efr32/bootloader_binaries folder. S ilicon Labs recommends always flashing the

latest bootloader binaries from the codebase.

Note: Bootloader binaries are flashed using S implicity Commander only. It supports EFR32 Boards only.

Flashing the Bootloader Binaries for EFR32 Board using Simplicity Commander

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select S implicity Commander and click OK.

 In the S implicity Commander window, click Select Kit and choose your radio board.

Flash Bootloader

117/362

 In the navigation pane, go to the Flash section.

 Above beside "Reload tab" board will be displayed, click Browse next to the Binary File field and locate bootloader binary.

Flash Bootloader

118/362

 Click Flash, the bootloader will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash Bootloader

119/362

Flashing the EFR32 Matter Binary using Simplicity Commander

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select Simplicity Commander and click OK.

Flash Bootloader

120/362

 In the S implicity Commander window, click Select Kit and choose your radio board.

 In the navigation pane, go to the Flash section.

 Your board will be displayed. Click Browse next to the Binary File field and locate the binary.

Flash Bootloader

121/362

 Click Flash. The binary will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash Bootloader

122/362

Flashing the SiWx917 SOC Matter Binary using Simplicity Commander

S iWx917 SoC device support is available in the latest S implicity Commander. The S iWx917 SOC board will support .rps only

file to flash. Follow these steps to create and flash .rps file using .s37.

 Locate S implicity Commander in your PC/Laptop where it is installed through command prompt(cmd).

 Copy and paste the built .s37 binary file to the S implicity commander path.

 Convert .s37 binary to .rps using the command below using commander terminal.

 commander rps convert <file_name.rps> --app <file_name.s37>

 Flash to the device using command or follow the next steps to flash through Commander Software.

 commander rps load <file-name>.rps

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select S implicity Commander and click OK.

https://community.silabs.com/s/article/simplicity-commander?language=en_US

Flash Bootloader

123/362

 In the S implicity Commander window, click Select Kit and choose your radio board.

 In the navigation pane, go to the Flash section.

 Above beside "Reload tab" board will be displayed, click Browse next to the Binary File field and locate binary.

Flash Bootloader

124/362

 Click Flash. The binary will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash Bootloader

125/362

Build an SoC Application Using Studio

126/362

Build an SoC Application Using Studio

Building the 917 SoC Matter Accessory Devices
�MADs) using Simplicity Studio
In S implicity Studio 5, create the Light MAD:

 Download and Install S implicity Studio 5.

 To install the software packages for S implicity Studio, refer to the Software Package Installation section.

 Switch to the Launcher view (if not already in it).

 Go to All Products in the Launcher tab and select a compatible board from the supported S iWx917 SOC dev boards.

 BRD4338A �Common Flash)

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-software-packages

Build an SoC Application Using Studio

127/362

 Once it shows up in the Debug Adapters view, select it.

 Open the Example Projects and Demos tab, select the Matter filter and enter Wi-Fi in Filter on keywords and click CREATE.

Build an SoC Application Using Studio

128/362

 Rename the Project Name if you wish, and click Finish.

Build an SoC Application Using Studio

129/362

 Once the project is created, right-click on the project and select Build Project in the Project Explorer tab.

Build an SoC Application Using Studio

130/362

 To flash the application, connect the compatible dev board to the machine or PC if not yet done.

 Once the project is compiled successfully, go to the Project Explorer view and select the binary to be flashed.

Build an SoC Application Using Studio

131/362

Note: S iWX917 SoC device will support both _isp.bin and .rps file format to flash.

 The Flash programmer window will open. Click the Program button to start the flashing.

Build an SoC Application Using Studio

132/362

Note: Output of the S iWX917 SoC application will be displayed on the J-Link RTT Viewer.

 In order to debug Matter Application, right-click the selected _ isp.bin binary and click on Debug As.

Build an NCP Application Using Studio

133/362

Build an NCP Application Using Studio

Create a Project for an EFR32 Application
This page provides a detailed description on how to create an Wi-Fi NCP project for EFR32 boards.

 Download and Install S implicity Studio.

 To install the software packages for S implicity Studio, refer to Software Package Installation.

 Log in to S implicity Studio and connect the EFR32 WSTK board to the computer.

 Go to the All Products section.

 Search and select the radio board from the displayed list and select Start.

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements#installation-of-software-packages

Build an NCP Application Using Studio

134/362

 The Launcher page will display the selected radio board's details.

 Verify the following in the General Information section:

The Debug Mode is Onboard Device (MCU).

The Preferred SDK is the version you selected earlier.

Build an NCP Application Using Studio

135/362

 Open the Example Projects and Demos tab, select a project, and click Create Project.

Build an NCP Application Using Studio

136/362

 In the New Project Wizard window, click Finish.

Build an NCP Application Using Studio

137/362

 Once the project is created, right-click the project and select Build Project in the Project Explorer tab.

Build an NCP Application Using Studio

138/362

 Once the project is compiled successfully, go to the Project Explorer view and expand the binaries folder to flash the binary.

 Right-click the selected '.s37' binary and click flash to device.

Build an NCP Application Using Studio

139/362

 The Flash programmer window opens. Click Erase and then Program to start flashing.

Note: Output of the EFR32 NCP Host application will be displayed on the J-Link RTT Viewer.

Flash a Binary

140/362

Flash a Binary

Flashing the Matter Binaries Using Simplicity
Commander
To flash the application for EFR32 and S iWx917 SOC Board S implicity Commander software will be used.

Before flashing the application for EFR32 Boards, flash bootloader images as per board variants:

BRD4186C Board

For MG24 + RS9116 :- Internal Bootloader (bootloader-storage-internal-single-512k-BRD4186C-gsdk4.1)

For MG24 + WF200 :- External Bootloader (bootloader-storage-spiflash-single-1024k-BRD4186C-gsdk4.1)

BRD4187C Board

For MG24 + RS9116 :- Internal Bootloader (bootloader-storage-internal-single-512k-BRD4187C-gsdk4.1)

For MG24 + WF200 :- External Bootloader (bootloader-storage-spiflash-single-1024k-BRD4187C-gsdk4.1)

Bootloader binaries are available in the respective path of codebase

third_party/silabs/matter_support/matter/efr32/bootloader_binaries folder. S ilicon Labs recommends always flashing the

latest bootloader binaries from the codebase.

Note: Bootloader binaries are flashed using S implicity Commander only. It supports EFR32 Boards only.

Flashing the Bootloader Binaries for EFR32 Board using Simplicity Commander

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select S implicity Commander and click OK.

 In the S implicity Commander window, click Select Kit and choose your radio board.

Flash a Binary

141/362

 In the navigation pane, go to the Flash section.

 Above beside "Reload tab" board will be displayed, click Browse next to the Binary File field and locate bootloader binary.

Flash a Binary

142/362

 Click Flash, the bootloader will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash a Binary

143/362

Flashing the EFR32 Matter Binary using Simplicity Commander

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select Simplicity Commander and click OK.

Flash a Binary

144/362

 In the S implicity Commander window, click Select Kit and choose your radio board.

 In the navigation pane, go to the Flash section.

 Your board will be displayed. Click Browse next to the Binary File field and locate the binary.

Flash a Binary

145/362

 Click Flash. The binary will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash a Binary

146/362

Flashing the SiWx917 SOC Matter Binary using Simplicity Commander

S iWx917 SoC device support is available in the latest S implicity Commander. The S iWx917 SOC board will support .rps only

file to flash. Follow these steps to create and flash .rps file using .s37.

 Locate S implicity Commander in your PC/Laptop where it is installed through command prompt(cmd).

 Copy and paste the built .s37 binary file to the S implicity commander path.

 Convert .s37 binary to .rps using the command below using commander terminal.

 commander rps convert <file_name.rps> --app <file_name.s37>

 Flash to the device using command or follow the next steps to flash through Commander Software.

 commander rps load <file-name>.rps

 In the S implicity Studio home page, click Tools.

 In the Tools dialog, select S implicity Commander and click OK.

https://community.silabs.com/s/article/simplicity-commander?language=en_US

Flash a Binary

147/362

 In the S implicity Commander window, click Select Kit and choose your radio board.

 In the navigation pane, go to the Flash section.

 Above beside "Reload tab" board will be displayed, click Browse next to the Binary File field and locate binary.

Flash a Binary

148/362

 Click Flash. The binary will be flashed and the Log Window will display a "Flashing completed Successfully" message.

Flash a Binary

149/362

Set Up the Raspberry Pi

150/362

Set Up the Raspberry Pi

Using the Pre-Built Raspberry Pi "Matter Hub"
Image
When using a Raspberry Pi as a controller in your Matter network, you have two options.

Building the Raspberry Pi Environment "from scratch" using a Raspberry Pi 4.

Using the S ilicon Labs Pre-Built Raspberry Pi image available on the Matter Artifacts page page.

Building Environment using Raspberry Pi 4

Flash the Ubuntu OS Onto the SD Card

 Insert the flashed SD card (directly or using a card reader) into the laptop/PC that will run the Raspberry Pi Imager tool.

 Launch the Raspberry Pi 4 Imager.

 Flash the Pi image using any one of the following procedure:

Click Choose OS > Other General-purpose OS > Ubuntu >Ubuntu xx.xx 64-bit server OS.

Note: Flash the latest version of Ubnutu Server (64-bit server OS for arm64 architecture).

Download the Matter Hub Raspberry Pi Image provided on the Matter Artifacts page, then click Choose OS > Use

custom, and then select the Matter Hub Raspberry Pi Image that you downloaded.

 Click Storage and select the SD card detect.

 This Raspberry Pi 4's console can be accessed in multiple ways. In this guide Raspberry Pi 4 is being accessed using Putty.

 Enter the details like User name, Password, SSID, and its password to connect to the network. Click Save.

 Click Write and then Yes when you are asked for permission to erase data on the SD card. It will then start flashing the OS

onto the SD card.

 When it is done, click Continue.

 Remove the SD card from the reader and insert it into the Raspberry Pi as shown below:

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://www.raspberrypi.com/documentation/computers/remote-access.html

Set Up the Raspberry Pi

151/362

On powering up the board, the red and green lights should start blinking.

Start Using the Raspberry Pi

 Power-up the RPi4B. Once it is booted up, check the Raspberry Pi's IP address. Refer to Finding Raspberry Pi IP address in

the References section to get the IP address, or enter the Hostname directly in PuTTY.

 Once you find the IP address, launch PuTTY, select Session, enter the IP address of the Raspberry Pi, and click Open.

 Enter the username and password given at the time of flashing and click Enter.

Note: If you do not provide the username and password while flashing, then by default: Username: ubuntu Password: ubuntu

 Switch to root mode and navigate to path "/home/ubuntu/connectedhomeip/out/standalone" to find the chip-tool. On the

pre-built Matter Hub image, the chip-tool will be ready and working. Keep the PuTTY session open for the further steps.

 If you are building the chip-tool from scratch, update the latest packages by running following commands in the terminal:

$ sudo apt update

$ sudo apt install

 Install the required packages using the following commands:

$ sudo apt-get install git gcc g++ pkg-config libssl-dev libdbus-1-dev libglib2.0-dev libavahi-client-dev ninja-build python3-venv python3�

dev python3-pip unzip libgirepository1.0-dev libcairo2-dev libreadline-dev

If you see any popups between installs, you can select OK or Continue.

Build Environment

 Installing prerequisites on Raspberry Pi 4. Follow the instructions in the Project CHIP G itHub S ite, in the section "Installing

prerequisites on Raspberry Pi 4".

 To build the environment, follow the Software setup and Compiling chip-tool steps in Software setup.

Bluetooth Setup

Because Bluetooth LE (BLE) is used for commissioning on Matter, make sure BLE is up and running on Raspberry Pi.

Raspberry Pi internally has some issues with BLE that may cause it to crash.

$ sudo systemctl status bluetooth.service

To stop BLE if it is already running:

$ sudo systemctl stop bluetooth.service

To restart the Bluetooth service, first enable it:

$ sudo systemctl enable bluetooth.service

When you check the status of the Bluetooth service, it will be inactive because it has been enabled but not restarted:

$ sudo systemctl status bluetooth.service

Restart the service:

$ sudo systemctl restart bluetooth.service

Now the status of the service should be active and running:

$ sudo systemctl status bluetooth.service

https://docs.silabs.com/matter/2.2.0/matter-references/find-raspi
https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/BUILDING.md
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started/04-light-switch-step-by-step-example

Run an Application

152/362

Run an Application

Running a Matter over Wi-Fi Application
In order to run a Matter over Wi-Fi application you must first create a Matter network using the chip-tool and then control

the Matter device from the chip-tool.

Creating the Matter Network

This procedure uses the chip-tool installed on the Matter Hub. The commissioning procedure does the following:

Chip-tool scans BLE and locates the S ilicon Labs device that uses the specified discriminator.

Establishes operational certificates.

Sends the Wi-Fi SSID and Passkey.

The S ilicon Labs device will join the Wi-Fi network and get an IP address. It then starts providing mDNS records on IPv4 and

IPv6.

Future communications (tests) will then happen over Wi-Fi.

Commissioning can be done using chip-tool running either on Linux or Raspberry Pi

 Get the SSID and PSK of the Wi-Fi network (WPA2 - Security) you are connected to.

 Go to $MATTER_WORKDIR/matter directory and run the following:

$ out/standalone/chip-tool pairing ble-wifi <node_id> <ssid> <password> <pin_code> <discriminator>

In this command:

node_ id is the user-defined ID of the node being commissioned.

ssid and password are credentials.

pin_code and discriminator are device-specific keys.

Note: You can find these values in the logging terminal of the device (for instance UART) when the device boots up. For

example:

The node ID used here is 1122. This will be used in future commands. '$SSID' is a placeholder for your Wi-Fi SSID and

'$PSK ' is a placeholder for the password of your Wi-Fi network. '20202021' is the Setup Pin Code used to authenticate the

device. '3840' is the Setup Discriminator used to discern between multiple commissionable device advertisements.

If there are any failures, run the following command and then re-run the chip-tool command:

$ rm -rf /tmp/chip_*

Run an Application

153/362

If you are having difficulty getting the chip-tool to commission the device successfully, it may be because you have more

than one network interface available to the chip-tool. The device on which you are running the chip-tool must be on the

same Wi-Fi network.For instance, if you have an Ethernet connection as well as a Wi-Fi connection, you need to unplug the

Ethernet connection and try running the chip-tool.

Controlling the Matter Accessory Device

 In a PuTTY session to the Matter hub, use the chip-tool to test the Matter light device.

 Control the light status of the light MAD Using ./chip-too l onoff on node ID 1 . You can also use chip-too l toggle node ID 1 .

 For dev board with buttons available, you can use BTN1 to toggle the light status locally.

Factory Reset the Device

As the device remembers the Access Point credentials given for commissioning, if you want to run the demo multiple times,

do a factory reset by pressing the BTN0 on WSTK for about 6-7 seconds. The LED0 will flash 3 times.

Debug an Application

154/362

Debug an Application

Debug the Application
 In the Project Explorer pane, select the project name.

 To Enable GNU Debugger Select Preferences in Launcher Tab.

 Expand Simplicity Studio Tab and click on Debuggers. Select GNU Debugger and Click on Apply and Close.

 From the menu bar, select Run > Debug As > 1 S ilicon Labs ARM Program.

Debug an Application

155/362

 Studio will switch to debug mode and halt execution at the main() function in your application.

 Add a break point in the desired location of the code and click the Resume button (having an icon with a rectangular bar and

play button).

 Execution will halt at the break point.

 Use the following debug functions to direct the execution of the code:

Step In button (having an icon with a arrow pointing between two dots).

Step Over button (having an icon with an arrow going over a dot).

Step Out button (having an icon with an arrow pointing out from between two dots).

Debug an Application

156/362

 View the standard output or enter input data as needed.

Supported Features

157/362

Supported Features

Matter Over Wi-Fi Supported Features
Matter Over Wi-Fi supports the following features on NCP and SoC variants.

Intermittently Connected Devices (ICD), formerly Sleepy End Devices (SED)

Direct Internet Connectivity (DIC)

Interoperability with Ecosystems

Optimization of memory usage

Reducing power consumption for ICD End Devices

Developing a Custom Matter Device

JLink RTT SOC Support

https://docs.silabs.com/matter/2.2.0/matter-references/custom-matter-device

Intermittently Connected Devices �ICD�

158/362

Intermittently Connected Devices �ICD�

Matter over Wi-Fi Intermittently Connected Devices
�ICD�, formerly Sleepy End Devices
This page explains how Matter Wi-Fi ICDs work and how to configure a Matter Wi-Fi SED example.

Overview

Matter provides a Intermittently Connected Device (ICD) operating mode to extend the battery life of power-limited

devices. This operating mode leverages native Wi-Fi functionality to enhance the power management features provided

within the Matter protocol.

Wi-Fi module power saving is achieved by the Wi-Fi Station notifying the Access Point (AP) that it is entering its power

save (PS) mode. Afterwards, the Wi-Fi station will shut down its RF and Wi-Fi SoC blocks to enter power saving mode.

The Access Point (AP) buffers the frames destined to a Wi-Fi station while it is in power save mode. The Access Point (AP)

will send the buffered frames to the Wi-Fi station when requested to do so.

During association, the Wi-Fi Station uses the Delivery Traffic Information Map (DTIM) parameter to get from the Access

Point (AP) how many beacon intervals it shall spend in sleep mode before it needs to retrieve the queued frames from the

Access Point (AP).

Wi-Fi module sleep is implemented by using the PS-Poll Legacy Power Save (DTIM based) method. EFR sleep is

implemented by using the power manager component (EM2).

Note: Wi-Fi module sleep is enabled after successful commissioning and EFR sleep is enabled after system bootup.

Note: Wi-Fi is implemented with DTIM-based sleep, since the operational discovery packet is a broadcast packet that will

not be buffered by the Wi-Fi router.

Power Save Methods

Deep Sleep Power Save Mode for EFR32

The EFR32 will go into deep sleep (EM2) power save mode by using the power manager module. The power manager is

used to transition the system to a power mode when the application is the Idle Task.

In EM2 energy mode, all high frequency clock sources are shut down. Peripherals that require a high frequency clock are

unavailable or have limited functionality.

PS�Poll Legacy Power Save for Wi-Fi Module

The PS-Poll Legacy power save mode leverages the PS-Poll frame to retrieve the buffered frames from the Access Point

(AP). The PS-Poll frame is a short Control Frame containing the Association Identifier (AID) value of the Wi-Fi station. In the

Legacy power save mode, when the Wi-Fi station receives a beacon with its Association Identifier (AID) in the TIM

element, it initiates the buffered frame delivery by transmitting a PS-POLL control frame to the Access Point (AP). The AP

acknowledges the PS-Poll frame and responds with a single buffered frame.

In this mode, the Wi-Fi station stays active and retrieves a single buffered frame at a time. The AP also indicates that there

are more buffered frames for the station using the More Data subfield. The Wi-Fi station continues to retrieve buffered

frames using the PS-Poll frame until there are no more buffered frames and the More Data subfield is set to 0. The Wi-Fi

station goes back into the sleep afterwards.

A Wi-Fi station can enter sleep mode after sending a Null frame to the AP with the power management (PM) bit set. From

then on, the AP will store all packets destined to the Wi-Fi station in a per-device queue and sets the TIM field in the

Intermittently Connected Devices �ICD�

159/362

beacon frame to indicate that packets destined for the Wi-Fi station have been queued.

The Wi-Fi station wakes up to receive buffered traffic for every Delivery Traffic Indication Message (DTIM) beacon. When

it detects that the Traffic Indication Map (TIM) field for it has been set, it sends a PS-Poll control frame to the AP.

Delivery Traffic Indication Message �DTIM�

A Wi-Fi station in DTIM Power Save mode can wake at any time to transmit uplink traffic, but can only receive downlink

traffic (broadcast, multicast or unicast) immediately after receiving a DTIM beacon. In order to inform the Wi-Fi station in

Power Save mode that the access point has buffered downlink traffic, the access point uses the Traffic Indication Map

element present in the beacon frames. The Wi-Fi station in Power Save mode wakes up to receive the DTIM beacon and

checks the status of the TIM element. This element indicates whether any frames need to be retrieved from the Access

Point (AP).

Note: The DTIM parameter can be configured on the access point settings.

Building with ICD Functionality

To enable ICD functionality for Wi-Fi, the matter_icd component needs to be installed within the Software Components tab

from S implicity Studio.

For rs9116 and WF200: matter_icd component is installed by default for lock-app. For thermostat and window need to install

mentioned component to enable sleepy.

For 917NCP: matter_icd component is installed by default for lock-app. For thermostat and window need to install mentioned

component to enable sleepy.

For S iWx917 SOC:

Search matter_icd from search bar and click Install.

Click on Replace Subscription Timeout Resumption. S leepy support is enabled; build the project.

Intermittently Connected Devices �ICD�

160/362

EFR32 + RS9116 Setup for ICDs �Sleepy Devices)

The following GPIO pins should be connected for 9116 and Host handshakes. pin 7 and 9 to UULP_2 and UULP_0

respectively.

Intermittently Connected Devices �ICD�

161/362

Power Measurements for Wi-Fi Devices

This section explains how to measure the power values for EFR Wi-Fi and SOC Wi-Fi co-processor.

Using Simplicity Studio Energy Profiler for Current Measurement

After flashing the Matter application to the module, Energy profiler or a power meter can be used for power measurements.

Intermittently Connected Devices �ICD�

162/362

In S implicity Studio, click Tools on the toolbar, select Energy Profiler, and click OK.

From the Quick Access or Profiler menu, select Start Energy Capture.

Note: A quick-start guide on the Energy Profiler user interface is in the S implicity Studio User's Guide's Energy Profiler User

Interface section.

Power Consumption Measurement Using Energy Profiler for Wi-Fi Devices

Analyze the power values using Energy Profiler.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-energy-profiler/energy-profiler-user-interface

Intermittently Connected Devices �ICD�

163/362

Power Consumption Measurement Using a Power Meter

Power consumption measurement pins for RS9116 Evk Boards:

Power consumption measurement pins for EXP Boards:

Intermittently Connected Devices �ICD�

164/362

The power meter's negative probe is used for pin-1 and the positive probe is used for pin-2.

Analyze the power values using the power meter.

Direct Internet Connectivity

165/362

Direct Internet Connectivity

Matter Wi-Fi Direct Internet Connectivity
See the Matter over Wi-Fi DIC page.

https://docs.silabs.com/matter/2.2.0/matter-wifi-dic

Interoperability with Ecosystems

166/362

Interoperability with Ecosystems

Matter Ecosystems
S ingle Controller Configuration

Google Ecosystem Setup

Apple Ecosystem Setup

Amazon Ecosystem Setup

Samsung Ecosystem Setup

Multi-Controller Configuration

https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/singlecontroller-ecosystem
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/google-ecosystem-setup
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/apple-ecosystem-setup
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/amazon-ecosystem-setup
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/samsung-ecosystem-setup
https://docs.silabs.com/matter/2.2.0/matter-wifi-ecosystems/multicontroller-ecosystem

Optimizing Memory Usage

167/362

Optimizing Memory Usage

Optimizing Memory Usage
This page provides information on optimizing memory usage for S ilicon Labs devices.

How to Optimize Memory

To optimize an application's memory footprint, check the following:

 Analyze and reduce stack usage of the application wherever possible.

 Disable any included debug modules.

 Turn off unused peripherals, features, and functions.

Disabling Debug Logging

Memory can be optimized by disabling debug logs. The matter_no_debug component disables the following from the

project.

Disables S ilabs specific logging used in Matter

Disables Hard Fault logs

Keeps Log Level to None

To add matter_no_debug Component, modify the corresponding app-specific .slcp project file.

 - id: matter_no_debug

 from: matter

Optimizing ICD Power Consumption

168/362

Optimizing ICD Power Consumption

Optimizing Power Consumption for Intermittently
Connected Devices �ICD�
This page provides information on optimizing power consumption for Intermittently Connected Devices (ICD) formerly called

S leepy End Devices.

Minimal Power Consumption

S imply enabling ICD functionality does not give the application the best power consumption. By default, several features

that increase power consumption are enabled in the example applications.

To achieve the most power-efficient build, the following components need to be disabled. The matter_platform_low_power

component will do these steps for you, if installed.

Matter Shell (matter_shell)

LCD (matter_lcd) and Qr Code (matter_qr_code)

Note: matter_shell is not enabled by default in project file.

Add matter_shell component in project file to enable the matter shell feature (for Wi-Fi non-ICD apps).

Remove matter_shell while enabling ICD apps.

Flow of the Matter Wi-Fi App with LCD Configuration

A timer starts in the Start of App Task. If there is NO activity after defaultTimeoutMs, the callback is triggered and the LCD

will go to S leep.

In between, if the user presses BTN1, the LED1 will toggle as usual and the LCD screen will be enabled. After timeoutMs it

will trigger the callback and disable the LCD.

If the User presses BTN0, the system will check if the device is already commissioned. If it is not commissioned, the display

will be enabled, it will toggle the QR Code, and the call back function will be triggered after QRtimeoutMs.

Start of Commissioning

At the start of commissioning the display remains enabled. On pressing BTN0 the user can see the QR code to commission

for a period of QRtimeoutMs.

Once the commissioning process starts, the LCD screen will be disabled.

After Commissioning

The LCD display is off during inactive transmissions.

The LCD display active if there is any BTN press or data transfer.

On pressing the BTNs, it will work the same way as before.

On initiating Data Transfer, once the action is initiated, the LCD display will be enabled and disabled again after the specified

time.

On triggering Factory Reset, the LCD will be enabled for QRtimeoutMs, then it will be disabled.

The following diagram shows the end-to-end flow for optimizing power consumption:

Optimizing ICD Power Consumption

169/362

Power Save Methods

For information on power saving, refer to Power Save Methods.

Jlink RTT Support with SOC

170/362

Jlink RTT Support with SOC

JLink RTT Environment Setup for a SiWx917 SoC
Device

For 917 SOC Common Flash Boards, Ozone debugging support is not enabled. To get the logs for 917 SOC, the JLink RTT

tool will be used.

Auto detection of S iWx917 SoC device in JLink RTT is not enabled.

Follow the steps to configure the S iWx917 SoC with Latest JLink RTT Logging tool.

Steps to Configure the SiWx917 SoC on the JLink-RTT Logging

 Update the JlinkDevices.xml and .elf files found on the Matter Artifacts Page.

Download the JLinkDevices.xml file and copy it in your JLink RTT installation path shown in this JlinkDevices Folder. If

there is no JLinkDevices Folder, create a JLinkDevices folder and copy the JlinkDevices.xml file into it.

In the JLinkDevices folder, create a Devices folder and then create a sub-folder named SiliconLabs .

Download the .elf file (Flash driver) and copy it in the created SiliconLabs folder.

 Launch JLink RTT. The S iWx917 Common Flash SoC device should be visible in the Device field’s selection list.

 Select SI917COMMONFLASH and, click OK.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts
https://wiki.segger.com/J-Link_Device_Support_Kit#JLinkDevices_folder

Jlink RTT Support with SOC

171/362

Direct Internet Connectivity

172/362

Direct Internet Connectivity

Matter Wi-Fi Direct Internet Connectivity
Direct Internet Connectivity (DIC) is a S ilicon Labs-only feature to connect Matter devices to proprietary cloud solutions

(eg, AWS,GCP,Apple) directly. As such, a Matter Wi-Fi device must support connecting locally on the Matter Fabric, via IPv6,

and connecting to the Internet via IPv4.

Matter devices can be controlled by chip-tool or controller and the respective status of the attribute modified will be

published to the cloud.

Remote users can install the cloud-specific application to get the notifications on the attribute status and to control the

device.

DIC Feature Diagram

The following diagram illustrates the end-to-end flow for Direct Internet Connectivity.

Prerequisites

Hardware Requirements

For the hardware required for the DIC feature to run on the S ilicon Labs Platform, refer to Matter Hardware Requirements.

Software Requirements

To run the DIC feature, refer to Software Requirements.

End-to-End Set-Up Bring Up

Message Queuing Telemetry Transport �MQTT�

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements

Direct Internet Connectivity

173/362

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely lightweight

publish/subscribe messaging transport that is ideal for connecting remote devices with a small code footprint and minimal

network bandwidth. Refer to https://mqtt.org/ for more details.

Configuring the MQTT server

To set up and configure AWS or Mosquitto for DIC support, see the following documentation:

AWS installation

Mosquitto installation

Remote User Setup �MQTT Explorer)

A remote user is used to check the state of a Matter device. In this context, MQTT explorer is used as a remote user. See

MQTT explorer setup and configuration.

Building Matter DIC Application using Simplicity Studio

 Follow Build DIC to enable DIC feature in code.

 After Enabling DIC feature in the Matter extension code, click Preferences and go to SDKs tab in S implicity Studio.

 In the SDKs tab, click Gecko SDK and click Refresh. It will refresh matter extension code for changes made in step 1.

https://mqtt.org/

Direct Internet Connectivity

174/362

 After refreshing the Matter extension, create and build a project for the S ilicon Labs Device Platform. Refer the following:

Creating and Building Project for NCP Board

Creating and Building Project for SoC Board

Note: Matter extension code is located at the following location:

C:\Users\system_name\SimplicityStudio\SDKs\gecko_sdk\extension .

End-to-End Test of DIC Application

User Setup (MQTT Explorer):

Sharing status of device to cloud

The following diagram shows the end-to-end flow for sharing status from a Matter device to the Cloud.

https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-efx32-ncp#building-and-flashing-an-application
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-with-soc#building-the-917-soc-matter-accessory-devices-using-simplicity-studio

Direct Internet Connectivity

175/362

Note: For reference, Lighting App commands are given in the above image. Other application commands also can be passed.

For the end-to-end commands to be executed from chip-tool, refer to Running the Matter Demo Over Wi-Fi.

Below are the application-specific attribute/s information or state shared to the cloud:

For Lighting App, On/Off Attributes

For Lock App, lock/unlock Attributes

For Windows App, lift/tilt Attributes

For Thermostat App, SystemMode/CurrentTemp/LocalTemperature/OccupiedCoolingSetpoint/OccupiedHeatingSetpoint

Attributes

For On/off Plug App, On/Off Attributes

Application status would be updated on the mqtt_explorer UI, as shown in below image.

Control of the device through cloud interface

Below diagram gives end-to-end flow for Control of the matter device through cloud interface

https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo

Direct Internet Connectivity

176/362

Note: For reference, Lighting App commands given in the above image. S imilarly other application commands also can be

passed.

Make sure matter device is up and commissioned successfully, refer to Running the Matter Demo Over Wi-Fi

For controlling the device, set topic name and the commands to be executed in the mqtt_explorer for below applications.

 - Lighting App

 - Topic: command

 - Commands:

 - toggle

 - on

 - off

 - Onoff-plug App

 - Topic: command

 - Commands:

 - toggle

 - on

 - off

 - Lock App

 - Topic: command

 - Commands:

 - lock

 - unlock

 - Thermostat App

 - Topic: command

 - Commands:

 - SetMode/value(value need to provide 1,2,3,4 ex:SetMode/1�

 - Heating/value(value need to provide 2500,2600 ex:HeatingSetPoint/2500�

 - Cooling/value(value need to provide 2500,2600 ex:CoolingSetPoint/2500�

 - Window App

 - Topic: command

 - Commands:

 - Lift/value(value need to provide in range 1000 to 10000�

 - T ilt/value(value need to provide in range 1000 to 10000�

Click Publish to execute the command.

https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo

Direct Internet Connectivity

177/362

Download AWS OTA Image through cloud interface.

The diagram below provides the end to end flow of firmware upgrade feature through AWS.

Direct Internet Connectivity

178/362

Make sure Matter device is up and commissioned successfully. Refer to Running the Matter Demo Over Wi-Fi.

Make sure device is connected to MQTT Server successfully.

Create an AWS OTA Job on the AWS website. Refer to How to create AWS OTA job.

Trigger OTA Command through MQTT Explorer like below.

Click Publish to execute the AWS OTA command.

https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo

AWS Configuration Registration

179/362

AWS Configuration Registration

Amazon Web Services �AWS�
Amazon Web Services offers reliable, scalable, and inexpensive cloud computing services. Refer to AWS Documentation for

more details.

AWS CA Certitifcate Registration

 Create a CA certificate, a client certificate and a client key using the Openssl Certificate Creation documentation.

 Open AWS.

 Login using your AWS credentials.

 Register the CA Certificate in AWS:

Go to Security -> Certificate Authorities and Register CA Certificate .

Select Register CA in the Multi-account mode.

Choose the CA certificate that you previously created in the Openssl Certificate Creation (CA.crt) step in the CA

certificate registration, and set the CA status to Active and the Automatic certificate registration option to ON .

Register the CA.

 Go to Security -> Po licies and select Create Po licy . Enter the policy name (ex: DIC_POLICY) and in the policy statements

select JSON and replace the contents with the JSON provided below:

 {

 "Version": "2012�10�17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

 }

 Once done, select Create.

 Steps to generate the certificate for your Matter application to use in the dic_nvm_cert.cpp source file.

Go to All Devices -> Things and select Create Things.

Select Create Single Thing and click Next.

Specify thing properties Info -> G ive the thing a name (Note: Client ID) and click Next.

Configure the device certificate - optional Info -> Use my certificate.

Certificate details -> Choose CA is registered with AWS IOT and Select the CA that registered with AWS in Step 4.

Certificate -> Choose file (Choose Client certificate generated in Openssl Certificate Creation ex: device .crt) and set

the certificate status to Active. Click Next.

Use the policy(ex: DIC_POLICY) created in AWS Certificate Creation.

 Repeat Step 5 to create a new thing to use in MQTT Explorer using the certificate created for MQTT explorer (from Openssl

Certificate Creation ex: explorer.crt)

Note: Thing name must be unique as it will be used as CLIENT ID.

 Copy the contents of AWS_CA CERT and create a .pem file to use as a SERVER CERTIFICATE in MQTT Explorer.

How to create AWS OTA JOB

 Go to AWS Amazon link https://aws.amazon.com/.

 Login with Amazon Credentials.

https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/
https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://aws.amazon.com/

AWS Configuration Registration

180/362

 Click on Services and select IOT Core.

 On the side menu in Manage Section, click Remote Actions and click jobs.

 Click Create Job and select Job type as a Create FreeRTOS OTA update job.

 Enter a unique Job name without spaces.

 In the Devices to update dropdown, select your Certificates which is configured above. for example:- SQA_DIC_C2,

SQA_DIC_C3, DIC_2

 Select MQTT as the protocol for file transfer.

 In File Section, select New/Previously/Custom signed gbl(For EFR32) and .rps(For 917 SOC) file.

If the gbl or rps file is newly created, then select Sign a new file for me.

If the gbl or rps file is already uploaded to AWS, then select Choose a previously signed file.

If the gbl or rps file is custom modified, then select Use my custom signed file.

 In Existing code signing profile, select dic_ota_codesign. Refer to AWS Code S igning Certificate Creation.

 For uploading the gbl or rps file, follow step 9 above. To create a gbl refer to Matter OTA and for rps file, refer to Matter

OTA.

 In the File upload location in S3 select, S3 URL as ota_demo. Refer to AWS S3 bucket Creation.

 In Path name of file on device, give any file name (file.txt).

 Select ota_demo as IAM role and click Next.

 Click create job.

Note: For more details, Refer AWS OTA prerequisites

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.silabs.com/matter/2.2.0/matter-ota
https://docs.silabs.com/matter/2.2.0/matter-ota/ota-software-update-soc
https://docs.aws.amazon.com/freertos/latest/userguide/dg-ota-bucket.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html

OpenSSL Certificate Creation

181/362

OpenSSL Certificate Creation

Openssl Certificate Creation
An SSL certificate is an important way to secure user information and protect against hackers.

Openssl Installation �In ubuntu)

 To install openssl - sudo apt install openssl

Certificates Creation

The following commands are used to generate certificates:

 To generate CA key:

openssl ecparam -name prime256v1 -genkey -noout -out CA.key

 To generate CA certificate:

openssl req -new -x509 -days 1826 -key CA.key -out CA.crt

 To generate Client key:

openssl ecparam -name prime256v1 -genkey -noout -out device .key

 To generate Client certificate (ex: device .crt and device .key) using CA certficate:

openssl req -new -out device .csr -key device .key

openssl x509 -req -in device .csr -CA CA.crt -CAkey CA.key -CAcreateserial -out device .crt -days 360

 Repeat step 3 and 4 to create an additional set of certificate to use in MQTT explorer (ex: explorer.crt and explorer.key).

(Create with different name for Identification).

Mosquitto Installation

182/362

Mosquitto Installation

Mosquitto
Mosquitto is a lightweight open source (EPL/EDL licensed) message broker that implements the MQTT protocol. Refer to

the Mosquitto site for more details.

Set Up the Mosquitto Connection

Linux Environment

 Install Mosquitto, using the command --> sudo apt install Mosquitto

 Copy file from https://github.com/eclipse/Mosquitto/blob/master/Mosquitto.conf and paste in linux machine.

 Open the Mosquitto.conf file and include password_file (Mosquitto.pwd) in “General configuration”.

 The password file contains the username and password in hashed format. To create your own username and password for

Mosquitto use the following link.

 In the section “Listeners” change listener <port no.> < ip address of linux machine> .

 In the same section find #protocol mqtt and uncomment it.

 Follow Openssl Certificate Creation to create certificates.

 Provide the required certificates path in the “Certificate based SSL/TLS support” and in the same section set the flag

require_certification to true .

 In “Security” section change uncomment the flag allow_anonymous false.

 Now that your configuration file is set, save it and run the following command in terminal to run Mosquitto:-

Mosquitto -v -c Mosquitto.conf

Windows Environment

 Install Mosquitto using the mosquitto download.

 Open the Mosquitto.conf file and include password_file (Mosquitto.pwd) in “General configuration”.

 The password file contains the username and password in hashed format. To create your own username and password for

Mosquitto use the following link.

 Next in section “Listeners” change listener <port no.> < ip address of linux machine> .

 In the same section find #protocol mqtt and uncomment it.

 Follow Openssl Certificate Creation to create certificates.

 Provide the required certificates path in the “Certificate based SSL/TLS support” and in the same section set the flag

require_certification to true .

 In “Security” section change uncomment the flag allow_anonymous false.

 Now that your configuration file is set save it and run the following command in terminal(command prompt) to run Mosquitto:-

Mosquitto -v -c Mosquitto.conf

https://mosquitto.org/
https://github.com/eclipse/Mosquitto/blob/master/Mosquitto.conf
http://surl.li/gnmwr
https://mosquitto.org/download/
http://surl.li/gnmwr

MQTT Explorer Setup

183/362

MQTT Explorer Setup

Set Up MQTT Explorer
Download and install the MQTT Explorer from https://mqtt-explorer.com/ Setting up MQTT Explorer for testing.

Connecting to MQTT Server

Connecting to AWS

Host: Your Host name (examples: a2m21kovu9tcsh-ats.iot.ap-southeast-1.amazonaws.com)

Port: 8883

Make sure you enable Validate Certificate and Encryption

Click Advanced Settings

https://mqtt-explorer.com/

MQTT Explorer Setup

184/362

Add application specific topics as shown below

For Lighting app, topic to be added (light/*)

For onoff plug app, topic to be added (light/*)

For Lock app, topic to be added (lock/*)

For thermostat app, below topics to be added

LocalTemperature/*

OccupiedCoolingSetpoint/*

OccupiedHeatingSetpoint/*

thermostat/*

For Windows app, below topics to be added

lift/*

tilt/*

MQTT Client ID depends on the certificate set that you will use.

Add the Certificate, following step 7 in AWS installation.

MQTT Explorer Setup

185/362

Once the above steps are done, try connecting to AWS.

MQTT Explorer Setup

186/362

Connecting to Mosquitto Connection

Host : Your Mosquitto ip address

Port : 8883

Make sure you enable Validate Certificate and Encryption

Click Advanced Settings

MQTT Explorer Setup

187/362

Add application specific topics as shown below

For Lighting app, topic to be added (light/*)

For onoff plug app, topic to be added (light/*)

For Lock app, topic to be added (lock/*)

For thermostat app, below topics to be added

LocalTemperature/*

OccupiedCoolingSetpoint/*

OccupiedHeatingSetpoint/*

thermostat/*

For Windows app, below topics to be added

lift/*

tilt/*

MQTT Client ID depends on the certificate set that you will use.

Add the Certificate, following step 5 in openssl certificate create

MQTT Explorer Setup

188/362

Build DIC Application

189/362

Build DIC Application

Build Procedure For Wi-Fi Direct Internet
Connectivity �DIC�
The following components are common for all apps and should be modified in the corresponding app specific .slcp file.

How to Add the DIC Component

To add DIC Component, modify corresponding app specific .slcp file.

 - id: matter_dic

 from: matter

How to Add the DIC AWS OTA Component

To add DIC AWS OTA Component, modify corresponding app specific .slcp file.

 - id: aws_ota_wifi_dic

 from: matter

Note:- Building with aws_ota_wifi_dic component enables matter_dic component by default.

Building DIC Application

After Modification in .slcp Project file as above step, refresh the matter-extension in S implicity Studio.

Select Preferences in Launcher tab.

Build DIC Application

190/362

Expand S implicity Studio section and click on SDKs Tab.

Expand Gecko SDK and click the Refresh button from side menu.

Build DIC Application

191/362

Build the DIC application using S implicity Studio

Build EFx32 Application Using Studio

Build SOC Application Using Studio

Compile Using New/Different Certificates

Two devices should not use the same DIC_CLIENT_ID . To use a different Client ID for your second connection, do the

following:

If using AWS, change the following file matter_extension/examples/platform/silabs/DIC/matter_abs_interface/src/dic_nvm_cert.cpp

under #if USE_AWS .

Use DIC_SERVER_HOST name with your Server host name.

For Example: a2m21kovu9tcsh-ats.iot.ap-southeast-1.amazonaws.com

Use device_certificate and device_key with your device cert and device key.

Use DIC_CLIENT_ID macro value with your Client ID in

matter_extension/examples/platform/silabs/DIC/matter_abs_interface/inc/dic_config.h

The preferred certificate type to use in the application is ECDSA.

If using mosquitto, change the following file

matter_extension/examples/platform/silabs/DIC/matter_abs_interface/src/dic_nvm_cert.cpp enable USE_MOSQUITTO and disable

USE_AWS .

Under #if USE_MOSQUITTO

Use ca_certificate, device_certificate and device_key with your ca_certificate, device cert and device key.

Use DIC_CLIENT_ID macro value with your Client ID.

The preferred certificate type to use in the application is ECDSA.

https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-efx32-application-using-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-soc-application-using-studio

Matter Ecosystems

192/362

Matter Ecosystems

Overview of Matter Ecosystem
The S ilicon Labs Matter platform supports the most recent versions of the Matter protocol and works with several

commercial Matter ecosystems.

Matter allows multiple ecosystems to work together and control a single, shared Device.

S ilicon Labs Matter devices can be controlled by various Matter enabled Ecosystems.

Prerequisites

Ecosystems

"Off the shelf" devices which are compatible with the official implementation of Matter in at least one commercial

ecosystem:

Google Matter Hubs

Apple Matter

Samsung SmartThings Matter

Amazon Alexa Matter

Smartphone to Control the Ecosystem

Android smart phone installed with respective Ecosystem mobile apps Amazon Alexa, Google Home, Samsung Smart Things.

Apple iPhone installed with mobile app Apple Home.

Silicon Labs Development Boards

For detailed information about S ilicon Labs Development Boards, refer to the Hardware Requirements Page.

Setting up Matter with an Ecosystem and Running a Matter Application

A Matter device can be controlled by single Ecosystem controller and is also interoperable with multiple controllers.

Follow S ingle Controller Setup and Execution to operate with single controller

Follow Multiple Controller Setup and Execution to interoperate with multiple controllers

https://developers.home.google.com/matter/supported-devices#choosing_a_device_type
https://www.apple.com/home-app/accessories/
https://support.smartthings.com/hc/en-us/articles/11219700390804-SmartThings-x-Matter-Integration-
https://developer.amazon.com/en-US/docs/alexa/smarthome/matter-support.html
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements

Single Controller Configuration

193/362

Single Controller Configuration

How to Setup an Ecosystem with Matter
In order to setup Matter over Wi-Fi in a compatible Ecosystem follow the links below:

Google Ecosystem Setup - Section 3

Apple Ecosystem Setup - Section 3

Amazon Ecosystem Setup - Section 3

Samsung Ecosystem Setup - Section 3

Commissioning a Matter Application within an Ecosystem

Commissioning means controlling the Device and Application through Matter Compatible Ecosystems.

In order to perform commissioning with an Ecosystem follow links below:

Google Ecosystem Demo Execution - Section 5

Apple Ecosystem Demo Execution - Section 4

Amazon Ecosystem Demo Execution - Section 4

Samsung Ecosystem Demo Execution - Section 4

Google Ecosystem Setup

194/362

Google Ecosystem Setup

Google Ecosystem Setup and Demo Execution

Hardware Requirements

For the hardware required for the Google Nest Hub Ecosystem, refer to the Ecosystem overview Prerequisites section.

Software Requirements

Google Account

Google Home App with Beta Version

Set Up Google Home and Android Smartphone

Google Matter Early Access Program �EAP�

The Google Matter Early Access Program is a partnership between Google and silicon providers who support Matter

development. This partnership allows for faster onboarding of new devices into Matter and Thread by lowering the bar for

starting with development of a new Matter-based product.

The Google Matter Early Access Program is run through the Google Developer Center.

The Matter-focused portion of the Google Developer Center is located here.

The Google Matter Early Access Program is located here.

Note: Until the public preview, access to this page is reserved to those allowed in by the Google Partner engineering team.

Prerequisites for Google Setup

To run the Google Ecosystem demo, you will need both Google and a Matter device. You will also need Google Nest Hub

2nd Generation and an Android phone (at least a Pixel 5 is recommended) that can run at least Android 8 (8.1, API Level 27)

or newer and has Bluetooth LE capability.

Instructions for Setting Up EAP

Once you have access, you will need to set up the Nest Hub 2nd Gen and Android phone with the Google Home app using

the same Google Account that is used to access the EAP website.

If you have set up the Nest Hub 2nd Gen with the correct Google account, you will receive the OTA update to the Beta

version within 24 hours. You can verify this by going to Device information > Technical information > Update Channel and

the channel should read "matter-dev-current-beta-channel".

Set Up the Android Phone

Follow these instructions to set up the Android phone with the necessary applications:

Set up the Google Home app

Set up Google Play Services

Create a Matter Integration in the Google Developer Console

Follow these instructions to create a Matter integration in the Google Developer Console.

After completing these steps, you should be ready to build your Matter accessory device.

https://developers.home.google.com/
https://developers.home.google.com/matter
https://developers.home.google.com/matter/eap
https://developers.home.google.com/matter/eap/setup/home-app
https://developers.home.google.com/matter/eap/setup/play-services
http://developers.home.google.com/matter/eap/project/create

Google Ecosystem Setup

195/362

Matter Integration Setup in the Developer Console

Once you have created a home in your Android smartphone, add your Nest Hub to that home.

After this, on a browser on your PC go to this to create a project: https://developers.home.google.com/matter

Click Console at the top of the page.

On the next page, click Create a Project.

G ive your project a name and click Create a new project.

On the next page click Add Matter integration.

On the next page click Next: Develop.

Click Next: Setup.

Set up the fields on this page as shown:

Product name: Light

Device type: light

Vendor ID (VID): Test VID

Test VID: 0xFFF1

Product ID (PID): 0x8005

Product ID options for Matter devices are as follows:

Light-Switch: 0x8004

Light: 0x8005

Lock: 0x8006

Thermostat: 0x800E

Window Covering: 0x8010

Click Save & Continue.

On the next page click Save.

You will now see a Matter integration for device type light in your console.

You have now completed setting up the following:

Your home in the Google home app in your Android smartphone

A project in your Google developer console

A matter integration for the light device type

Having finished the above, the only step left to have your setup ready is to open a QR code webpage for the light device

type in your PC. A QR Code link will be present in Device configuration section of logs. Copy the link and paste it in google

chrome so you will be able to QR Code.

Matter Demo Execution using Google Home

Commission Matter Device through Google Home App

 Refer Getting Started Overview Guide for setting up a S ilicon Labs Matter Accessory Device.

 Connect Board to a Computer

For Wi-Fi NCP Mode Boards see Connect EFR32 Board to computer

For Wi-Fi SOC Mode Boards see Connect S iWx917 SOC to Computer

 Flash the bootloader binary for your device along with the application (for example, lighting, lock, thermostat, window

covering, or light-switch) using S implicity Commander.

https://developers.home.google.com/matter
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-efx32-ncp#connect-the-efx32-boards-to-a-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-with-soc#connect-siwx917-soc-to-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/flashing-using-commander

Google Ecosystem Setup

196/362

 Open the Google Home app on your phone.

 Click Devices Section and click Add.

 In the Set Up Device window, tap to select the New Device option.

 In the Choose Home Section select your home and click next.

Google Ecosystem Setup

197/362

 The Google Home App searches for a nearby Matter device.

Google Ecosystem Setup

198/362

 If the device is found, click the Application which you flashed on the device, such as Light or Lock.

 If the device is not found, tap Matter Enabled Device.

Google Ecosystem Setup

199/362

 Once the Google Home app has found the device, it will ask you to scan its QR code.

 Google Home app asks if you want to connect this device to your Google account. Tap I agree.

Google Ecosystem Setup

200/362

 The Google Home app now starts commission the device with Bluetooth LE.

Google Ecosystem Setup

201/362

 Once you see the 'Device connected' message, tap Done.

Google Ecosystem Setup

202/362

 The Google Home App now asks you to select a Room where you want to keep the Application. You can select any room

from the list and click Next.

Google Ecosystem Setup

203/362

 At the prompt to create a unique name for the application (For Example: Light, Lock), create any name to identify the

application and click Next.

Google Ecosystem Setup

204/362

 You will now see your device (for example, Light) shown as being connected to your Google account and added to your

selected Room at Step 15.

Google Ecosystem Setup

205/362

Control the Light via Google Home App

 In the Google Home app, you will now be able to tap your light to turn it ON and OFF.

 You can control the light by giving a voice command (for example, 'Ok Google! Turn ON Light') and through the app user

interface.

 You will see the LED1 on your WSTK board turned on or off depending on the command you enter.

Deleting Matter Application from Google Home

 Press and hold Matter Application for detailed view.

 Click Setting on the top right corner.

 Select the Remove device option.

 At the 'Unlink all Matter apps & services from device', select Unlink.

Apple Ecosystem Setup

206/362

Apple Ecosystem Setup

Apple Ecosystem Setup and Demo Execution
This page describes how to set up the Apple Ecosystem for Matter and test a Matter application using Apple Home Pod

Mini.

Hardware Requirements

For the Hardware required for an Apple EcoSystem, refer to the Ecosystem overview Prerequisites section.

Software Requirements

Apple Account

Apple Home App on Smartphone

Note: Apple only has Matter support with IOS version-16.1 or higher.

Set Up Apple HomePod and Apple Phone

Refer to Apple's Set up HomePod or HomePod mini

Matter Demo Execution using Apple HomePod

 Refer to Getting Started with Matter over Wi-Fi for instructions on setting up S ilicon Labs Matter Accessory Device.

 Connect a board to a computer.

For Wi-Fi NCP Mode Boards, see Connect EFR32 Board to Computer.

For Wi-Fi SoC Mode Boards, see Connect S iWx917 SoC to Computer.

 Flash the bootloader binary for your device along with the application (for example, lighting, lock, thermostat, window

covering, or light-switch) using S implicity Commander.

 In the Apple Home App, click the "+" button.

https://support.apple.com/en-in/HT208241
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-efx32-ncp#connect-the-boards-to-a-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-with-soc#connect-siwx917-soc-to-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/flashing-using-commander

Apple Ecosystem Setup

207/362

 Select Add Accessory.

Apple Ecosystem Setup

208/362

 It will prompt you to scan the QR Code using a smartphone camera.

Apple Ecosystem Setup

209/362

 Connect the device to a computer and scan the QR code within the Home app.

 Proceed to add the device to your home. You should see LED0 fast blinking when commissioning happens.

 Once commissioning is complete, the Apple Home app prompts you to select One Room for your Matter application. Select

any room as per your choice and enter the Application name. (For Example: Light, Lock)

Control the Light via Apple Home App

In the Apple Home app, you can now tap your light to turn it ON and OFF.

You can control the light by giving a voice command (for example, 'Hey S iri! Turn ON Light') and through the app user

interface.

You will see the LED1 on your WSTK board turned on or off depending on the command you enter.

Delete the Matter Application From Apple Home

 Click the Matter Application for the detailed view.

 Scroll down to the end.

 Select Remove Accessory.

 Confirm to remove from My Home and your Matter application is removed from Apple Home.

Note: Removing the Matter application from Apple Home App removes it from Apple Home Pod as well.

Amazon Ecosystem Setup

210/362

Amazon Ecosystem Setup

Amazon Ecosystem Setup and Demo Execution

Hardware Requirements

For the hardware required for an Amazon EcoSystem, refer to the Ecosystem Prerequisites section.

Software Requirements

Amazon account

Amazon Alexa App on a smartphone

Amazon Alexa and Android Smartphone Setup

Amazon Alexa MSS �Matter Simple Setup)

As part of partnership with Amazon, the following link contains information required for Matter device certification with

Amazon.

https://developer.amazon.com/docs/frustration-free-setup/matter-simple-setup-for-wifi-overview.html

In the context of MSS for Wi-Fi, the provisionee, or commissionee, is the device that is to be automatically set up. If you

want to make your device eligible to be an MSS commissionee, you must satisfy the following:

 Configure the device to beacon over Bluetooth LE (BLE) with specific fields needed for MSS for Wi-Fi (detailed below).

 Onboard your device via the FFS developer portal by creating a Matter new device type. On the developer portal, you will

manage your FFS onboarding lifecycle tasks, like managing your test devices and manufacturing data and submitting for

certification.

 Integrate a unique barcode on your device packaging. You can also use an existing unique barcode on your packaging, such

as a serial number, or MAC address.

 Share your device control log data with Amazon services. Control Logs are a mechanism that allows manufacturers to

provide Amazon with unique device identifiers and authentication material, such as the Matter passcode, that are critical to

ensure a frictionless customer setup. The unique package barcode is associated with your device identifier through the

control logs. See the Matter Control Logs section for more details.

 Complete Frustration-Free Setup certification and Amazon ASIN onboarding. Review the certification section below for

more information.

Amazon Alexa Setup

Refer to Set up Alexa in a Few Easy Steps.

Matter Demo Execution using Amazon Alexa

 Refer to the Getting Started Overview Guide for setting up a S ilicon Labs Matter Accessory Device.

 Connect a board to a computer.

For Wi-Fi NCP Mode Boards, see Connect EFR32 Board to Computer.

For Wi-Fi SoC Mode Boards, see Connect S iWx917 SoC to Computer.

 Flash the bootloader binary for your device along with the application (for example, lighting, lock, thermostat, window

covering, light-switch) using S implicity Commander.

 Once the Amazon Alexa setup is done, make sure echo dot is ready.

 Make sure the Matter Application is flashed into the Matter Device (for example, EFR32MG24, S iWx917 SoC, S iWx917 NCP).

 In the Alexa App, tap Devices section.

https://developer.amazon.com/docs/frustration-free-setup/matter-simple-setup-for-wifi-overview.html
https://www.amazon.com/alexa-setup-guide/b?ie=UTF8&node=17978645011
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-efx32-ncp#connect-the-boards-to-a-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-with-soc#connect-siwx917-soc-to-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/flashing-using-commander

Amazon Ecosystem Setup

211/362

 Tap "+" at the top right corner. Three options are displayed:

Add device

Add group

Combine speakers

 Tap Add device. Several options are displayed.

Amazon Ecosystem Setup

212/362

 Scroll down and select other option.

Amazon Ecosystem Setup

213/362

 Logos such as “Matter”, “Bluetooth”, “Zigbee”, “Wi-fi”, “Z-wave" are displayed. Tap the “Matter” logo.

Amazon Ecosystem Setup

214/362

 Alexa App will ask "Does your device have a matter logo?" Select "Yes".

 Alexa will prompt "Locate a QR code shown for your device." Select Scan QR Code.

Amazon Ecosystem Setup

215/362

 After scanning the QR code through a smartphone camera, verify Commissioning is started by checking the Device logs.

 Once commissioning is triggered the Alexa app will prompt for Access Point Credentials. Add them.

 After Access Point Credentials are provided the device will join to the network and commissioning is completed.

Amazon Ecosystem Setup

216/362

 Next, select a group for your device (for example, Bedroom), and click Add to Group.

Amazon Ecosystem Setup

217/362

 Now the application is ready to use. You can see the Matter application in Amazon Alexa app inside the Groups Panel at the

Bedroom tab.

Amazon Ecosystem Setup

218/362

In the Amazon Alexa app, you will now be able to tap your light to turn it ON and OFF. You can also control the light by

giving a voice command (for example, 'Hey Alexa! Turn ON Light') and through the app user interface.

The LED1 on your WSTK board will turn on or off depending on the command you enter.

Deleting Matter Application from Amazon Alexa

 Click Matter Application for detailed view.

 Click Setting button on top right corner.

 Select Dustbin Button on top right corner, it will prompt Remove "First light". Click DELETE.

Samsung Ecosystem Setup

219/362

Samsung Ecosystem Setup

Samsung Ecosystem Setup and Demo Execution

Hardware Requirements

For the hardware required for a Samsung Smart Thing EcoSystem, refer to the Ecosystem Prerequisites section.

Software Requirements

Samsung Account

Samsung Smart things App on smartphone, as described in the next section

Setup of Samsung Smart Home Hub

See the Aeotec instructions on How to Set Up a Smart Home Hub.

Matter Demo Execution using Samsung Smart Aeotec

 Refer to the Getting Started Overview Guide for setting up a S ilicon Labs Matter Accessory Device.

 Connect a board to a computer.

For Wi-Fi NCP Mode Boards, see Connect EFR32 Board to Computer.

For Wi-Fi SoC Mode Boards, see Connect S iWx917 SoC to Computer.

 Flash the bootloader binary for your device along with the application (for example, lighting, lock, thermostat, window

covering, or light-switch) using S implicity Commander.

 Open the Smart Things app, tap '+, and select Add device.

 Select Partner Devices.

https://aeotec.freshdesk.com/support/solutions/articles/6000240326-how-to-setup-smart-home-hub
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-efx32-ncp#connect-the-boards-to-a-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/getting-started-with-soc#connect-siwx917-soc-to-computer
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/flashing-using-commander

Samsung Ecosystem Setup

220/362

 Through the Smart Things app scan the Application QR code to trigger commissioning.

 After scanning the QR code, verify commissioning is triggered by checking on the DUT logs.

Samsung Ecosystem Setup

221/362

 The last step of the commissioning process is to register your device with Access Point.

Samsung Ecosystem Setup

222/362

 Once commissioning has succeeded, verify the Matter application is added in one room of the Smart Things app and is in

online mode.

Samsung Ecosystem Setup

223/362

 In the Samsung Smart Thing app, you can now tap your light to turn it ON and OFF. You will see the LED1 on your WSTK

board turned on or off depending on the command you enter. Note: Samsung Smart Things does not support voice control

commands.

Deleting the Matter Application From Samsung Smart Things App

In order to remove the Matter application from Samsung Smart Things app go to Devices Section.

Long Press and Hold Matter application and click Remove.

If you want to add the Matter application again follow the procedure above.

Multi-Controller Configuration

224/362

Multi-Controller Configuration

Sharing Multi-Control over Wi-Fi Light from Apple
Home Pod to Google Home Ecosystem
This phase is very similar to the S ingle Controller. The difference is that the Matter Over Wi-Fi device will be controlled

using the Apple Home Ecosystem. The process will be almost identical, with some minor difference related to Apple Home

App UI.

See How to Set Up an Apple Home Ecosystem. Then use the following procedure to share multi-control from Apple Home

to Google Home.

 Open Apple Home App.

 Click the Light Application to open the detailed view.

 Scroll down at the bottom of the application detailed view.

 Open the commissioning window for the Google Home Pod by clicking Turn on Pairing Mode.

 The Setup Code appears, with a message printed as shown below in the Apple Home App.

Multi-Controller Configuration

225/362

 Open Google Home App, click the Devices Section, and click Add.

 Click Set up without QR Code and insert the setup code displayed in Step 5.

Multi-Controller Configuration

226/362

 Commissioning will start and proceed in the same way as explained in Google Ecosystem Setup and Demo Execution.

 Once the commissioning is done, the new Matter Wi-Fi device should be visible in the Room view of the Google Home App.

Matter Bridge

227/362

Matter Bridge

The Unify Matter Bridge
The Unify Matter Bridge is an application that makes legacy devices, such as Z-Wave and Zigbee devices, accessible on a

Matter fabric. It does so by acting as an IoT Service in a Unify Framework.

Support for the Unify Matter Bridge is NOT provided inside Simplicity Studio. The Unify Matter Bridge must be built out of

the G itHub repo located here: S ilicon Labs Matter G itHub Repo. Documentation on using the Unify Matter Bridge is

provided here, however the latest documentation on the Unify Matter Bridge is provided directly in the Matter G itHub Repo

documentation located here: S ilicon Labs Unify Matter G itHub Documentation

This section provides:

An overview of the Unify Matter Bridge

Instructions for building the bridge

Instructions for running the bridge

https://github.com/SiliconLabs/matter/
https://github.com/SiliconLabs/matter/blob/latest/docs/silabs/README.md

Matter Bridge Overview

228/362

Matter Bridge Overview

Unify Matter Bridge Overview
The Unify Matter Bridge is an application that makes legacy devices, such as Z-Wave and Zigbee devices, accessible on a

Matter fabric. It does so by acting as an IoT Service in a Unify Framework.

In the Unify Framework, protocol controllers translate raw wireless application protocols such as Z-Wave and Zigbee into a

common API called the Unify Controller Language (UCL). This enables IoT services to operate and monitor Z-Wave and

Zigbee networks without being aware of the underlying wireless protocol.

In Unify, the transport between IoT services and Protocol Controllers is MQTT using JSON payloads for data representation.

On the Matter fabric, the Unify Matter Bridge is a Matter device that has dynamic endpoints, each representing an endpoint

on one of the nodes in the Unify network. See the "Matter Specification" section "9.12. Bridge for non-Matter devices" for

details.

The figure below illustrates the system architecture of the Unify Matter Bridge and two Unify protocol controllers.

Matter Bridge Overview

229/362

More Information about the Unify Framework can be found here

Trying Out the Unify Matter Bridge

To test the Unify Matter Bridge, a Raspberry Pi 4 is recommended. Install the latest release of the Unify SDK following the

Unify Host SDK Getting Started Guide. Once the base Unify system is up and running, the Unify Matter Bridge may be

installed on the Raspberry Pi 4.

The S ilicon Labs Matter G itHub release contains ready-to-use binaries of the Unify Matter Bridge and the chip-tool.

Note that the Unify Host SDK uses Raspberry Pi OS as the base system as opposed to the standard Ubuntu

system used for the Matter OpenThread Border Router image.

Unify Matter Bridge as an IoT Service

https://siliconlabs.github.io/UnifySDK/doc/UnifySDK.html
https://siliconlabs.github.io/UnifySDK/doc/getting_started.html
https://github.com/SiliconLabs/matter/releases

Matter Bridge Overview

230/362

The Unify Matter Bridge is a Unify IoT Service that allows for control of Unify devices from a Matter fabric. It translates

Matter cluster commands and attributes accesses into the corresponding Unify MQTT publish messages. Unify node

attributes are readable from the Matter Fabric, for example by a Google Home App, as the Unify Matter Bridge also caches

the state of those attributes.

The Unify data model is largely based on the same data model as Matter, making the job of the Unify Matter Bridge

relatively simple. There is almost a 1-1 relationship between them.

Note: Currently no control goes out to the Matter Fabric from the Unify Matter Bridge. The Unify Matter Bridge

cannot 'see' what else is on the Matter Fabric, let alone control end devices in the Matter Fabric.

See the G itHub release notes for details on feature additions, bug fixes, and known issues.

Supported Clusters/Devices

The Unify Matter Bridge currently supports mapping the following clusters/device types.

Cluster

Bridge Device Information

Level

OnOff

Identify

Group

Color Control

Occupancy Sensing

Temperature Measurement

Illuminance Measurement

Pressure Measurement

Flow Measurement

RelativeHumidity Measurement

Next Steps

Building the Matter Bridge

Running the Matter Bridge

Controlling a Z-Wave OnOff device

Toggling a group of OnOff devices

For more information about the Unify SDK see Unify Host SDK Documentation

https://github.com/SiliconLabs/matter/releases
https://siliconlabs.github.io/UnifySDK/doc/UnifySDK.html

Building The Matter Bridge

231/362

Building The Matter Bridge

Building the Unify Matter Bridge
This build guide cross-compiles for arm64 architecture to be run on Unify's reference platform - a Raspberry Pi 4 (RPi4) with

the 64-bit version of Debian Bullseye.

Note: In the following subsections the commands should either be run on your local development machine or

inside a running Docker container, as distinguished by the structure of the example.

some-command should be executed on your local machine.

dev-machine:~$ some-command

some-other-command should be executed inside the Docker container.

root@docker:/<dir>$ some-other-command

Check Out Submodules

� Assuming you have cloned the matter repo in ~/matter

Check out the necessary submodules with the following command.

dev-machine:~/matter$./scripts/checkout_submodules.py --platform linux

Clone and Stage the Unify SDK Repository

� Assuming you have cloned the matter repo in ~/matter

dev-machine:~/matter$ git clone --depth 1 https://github.com/SiliconLabs/UnifySDK.git --recursive ../uic-matter

Build the Docker Container (arm64 compilation)

dev-machine:~/matter$ docker build -t unify-matter silabs_examples/unify-matter-bridge/docker/

Run the docker container (arm64 compilation)

� Make sure the directory structure is like follows where Unify repo uic-matter/ and matter repo matter/ are at

same directory level

Building The Matter Bridge

232/362

.

├── matter

└── uic-matter

Start the docker from matter/ directory where you cloned the matter repo: Here we asuume matter/ is in ~

dev-machine:~$ cd matter/

dev-machine:~/matter$ docker run -it -v $PWD:/matter -v $PWD/../uic-matter:/uic unify-matter

Build libunify

The Unify Matter Bridge depends on the libunify library from the Unify project.

This library must first be compiled for the target system, by changing directory to the /uic directory and running the

following:

root@docker:/uic$ cmake �DCMAKE_INSTALL_PREFIX=$PWD/stage �GNinja �DCMAKE_TOOLCHAIN_FILE=../cmake/arm64_debian.cmake �B

build_unify_arm64/ �S components �DBUILD_TESTING=OFF

root@docker:/uic$ cmake --build build_unify_arm64

root@docker:/uic$ cmake --install build_unify_arm64 --prefix $PWD/stage

After cross-compiling the Unify library, set two paths in the PKG_CONFIG_PATH. The first path is for the staged Unify library

and the second is for cross compiling to arm64.

root@docker:/uic$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$PWD/stage/share/pkgconfig

root@docker:/uic$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/lib/aarch64-linux-gnu/pkgconfig

If you want to be able to use Zap to generate code from Unify XML files you need to export UCL_XML_PATH as well.

root@docker:/uic$ export UCL_XML_PATH=$PWD/stage/share/uic/ucl

Run activate in matter

Once you have all the necessary submodules, source the Matter environment with the following command. This loads a

number of build tools and makes sure the correct toolchains and compilers are used for compiling the Unify Matter Bridge.

Make sure you are in matter/ directory

root@docker:/matter$ source ./scripts/activate.sh

Compile the Unify Bridge

root@docker:/matter$ cd silabs_examples/unify-matter-bridge/linux/

root@docker:/matter/silabs_examples/unify-matter-bridge/linux$ gn gen out/arm64 --args='target_cpu="arm64"'

root@docker:/matter/silabs_examples/unify-matter-bridge/linux$ ninja �C out/arm64

� After building, the unify-matter-bridge binary is located at /matter/silabs_examples/unify-matter-

bridge/linux/out/arm64/obj/bin/unify-matter-bridge .

Building The Matter Bridge

233/362

Compile the chip-tool

The chip-too l is a CLI tool that can be used to commission the bridge and to control end devices.

root@docker:/matter$ cd examples/chip-tool

root@docker:/matter/examples/chip-tool$ gn gen out/arm64 --args='target_cpu="arm64"'

root@docker:/matter/examples/chip-tool$ ninja �C out/arm64

� After building, the chip-tool binary is located at /matter/examples/chip-too l/out/arm64/obj/bin/chip-too l .

Unit Testing

Unit testing is always a good idea for quality software. Documentation on writing unit tests for the Matter Unify Bridge is in

the README.md in the linux/src/tests folder.

Troubleshooting

 If you do not source the matter/scripts/activate .sh as described above in Set Up the Matter Build Environment, gn and other

common build tools will not be found.

 If you do not export the pkgconfig for the aarch64-linux-gnu toolchain as described above in Build libunify you will get errors

such as G_STATIC_ASSERT(sizeof (unsigned long long) == sizeof (guint64));

 If you are compiling unit tests, do not try to compile the Unify Matter Bridge at the same time. This will not work as when

compiling unit tests you are also compiling unit tests for all other sub-components.

 If you encounter errors linking to libunify , try redoing the libunify compile steps.

 Encountering problems with the submodules can be due to trying to check out the submodules inside the docker container.

 If the Unify Matter Bridge gets stuck while booting. Try to pass --args="chip_config_network_layer_ble=false" to gn gen

command while building

https://github.com/SiliconLabs/matter/blob/latest/silabs_examples/unify-matter-bridge/linux/src/tests/README.md

Running The Matter Bridge

234/362

Running The Matter Bridge

Unify Matter Bridge User's Guide
The Unify Matter Bridge is a Unify IoT Service that enables interaction with Unify devices from a Matter fabric. For a more

thorough description see the Unify Matter Bridge Overview.

As a prerequisite for the Matter Bridge to work, at least one Unify protocol controller should be set up and running. This

guide assumes that you have set up the Z-Wave Protocol Controller (uic-zpc) to run on a Raspberry Pi 4 and connected it

to an MQTT broker in your network. Read the Unify Host SDK 's Getting Started Guide for information on how to set this up.

Once a protocol controller is running, the Matter Bridge can be started.

The following documentation assumes that you have built the Unify Matter Bridge application by following the Build Guide
and have transferred the unify-matter-bridge to your Raspberry Pi 4 (RPi4) running the 64-bit version of Raspberry Pi OS

Bullseye.

Unify Matter Bridge User's Guide

Running the Matter Bridge

Important Configuration Settings

Starting the Matter Bridge

Commissioning the Bridge to a Network

Using the chip-tool to Commission

Using Google Nest Hub

Toggle an OnOff device

Toggle a Group of OnOff Devices

Running the matter bridge in strict device mapping mode

Command Line Arguments

Running chip-tool tests on Unify Matter Bridge endpoints

Troubleshooting

Running the Matter Bridge

At start-up, the Matter Bridge needs to connect to the Matter Fabric as well as the MQTT Broker. It is therefore critical that

you have access to port 1883, the default MQTT Broker's port, as well as a network setup that allows mDNS through.

A few important runtime configurations must be considered, along with some other configuration options. A full list of

command-line parameters is provided in the Command line arguments section.

Important Configuration Settings

Network Interface

Specify the network interface on which the Matter Fabric runs. In a regular RPi4 setup it would be wlan0 for WiFi and eth0

for ethernet. Specify this with the ' --interface ' argument, as such:

./unify-matter-bridge --interface eth0

Key-Value store �KVS�

The Matter Bridge uses a Key-Value store for persisting various run-time configurations. Make sure to have read/write

access to the default path ' /var/chip_unify_bridge .kvs ' or provide the path to where writing this data is allowed. If this file is

deleted before start-up, everything is reset and the bridge will not belong to any Matter Fabric until it has again been

commissioned.

https://siliconlabs.github.io/UnifySDK/doc/getting_started.html

Running The Matter Bridge

235/362

./unify-matter-bridge --kvs ./matter-bridge.kvs

MQTT Host

If you have followed the Unify Host SDK 's Getting Started Guide, your MQTT Broker should now be running on ' localhost '. If

you have decided to run the MQTT broker on a different host, you can tell the Unify Matter Bridge to connect to a different

host.

./unify-matter-bridge --mqtt.host 10.0.0.42

Vendor and Product ID

If you have access to the EAP and you want to use the Google Home App, you need to set a specific VID and PID for the

Matter Bridge.

./unify-matter-bridge --vendor fff1 --product 8001

Starting the Matter Bridge

Once the configuration parameters are set it is time to start the bridge application.

./unify-matter-bridge --interface eth0 --kvs ./matter-bridge.kvs --mqtt.host localhost --mqtt.port 1337

Commissioning the Bridge to a Network

To include the bridge in the Matter network, it must first be commissioned. The first time the bridge starts it will

automatically go into commissioning mode. After 10 minutes the bridge will exit commissioning mode. If the bridge has not

been commissioned within this window, the application must be restarted to open the commissioning window again or the

window can be opened by writing commission in the CLI when running the bridge. The commission command may also be

used for multi-fabric commissioning.

The Unify Matter Bridge uses the "On Network" commissioning method. For now, there is no Bluetooth commissioning

support.

The commissioning procedure requires use of a pairing code. This pairing code is written to the console when running the

Matter Bridge. Look for something similar to ' MT:-24J029Q00KA0648G00 ', used as the pairing code in the following example.

This code can be used when commissioning with the CLI commissioning tool chip-too l .

[1659615301.367669][1967�1967] CHIP�SVR� SetupQRCode: [MT��24J029Q00KA0648G00]

Additionally the pairing code will be published on the MQTT Broker on the topic

ucl/SmartStart/CommissionableDevice/MT:-24J029Q00KA0648G00. The Unify Developer GUI has a page which display the

QRCodes of all comissionable bridge which are connected to the broker, ready to be scaned with a Google Home App or

similar.

Another way to get the QR code is to look for an url in the console log similar to and copy the link into a browser. Note that

two codes a printed at startup one for Standard Comissioning flow and one for custom comissioning flow. Be sure to use

the standard flow with Eco system devices.

[1659615301.367723][1967�1967] CHIP�SVR� https://dhrishi.github.io/connectedhomeip/qrcode.html?data=MT%3A�24J029Q00KA0648G00

It should be noted that the commissioner must be on the same network as the Raspberry Pi. Note that by default the

bridge binds to the eth0 interface. If another interface is to be used, see the description of the command line arguments

for setting Network Interface.

Using the chip-tool to Commission

https://siliconlabs.github.io/UnifySDK/doc/getting_started.html

Running The Matter Bridge

236/362

In the following procedure make sure to use the pairing code taken from the console output, as described above. To

commission the Matter Bridge with the chip-too l and assign the bridge the Node ID 1:

chip-tool pairing code 1 MT��24J0AFN00KA0648G00

Using Google Nest Hub

It is possible to use the Google Nest Hub (2nd. Gen) for controlling the Matter devices on the Unify Matter Bridge. Go

through the following steps to configure this:

Prerequisites:

Android Phone, Android 12 or newer

Google Nest Hub, 2nd. Generation

Setup:

Create a Google Account or using existing

Go to Google Developer Console

Click "Create a new project"

Next page click "Create project"

Input a unique project name

Click "+ Add Matter integration"

Next: Develop

Next: Setup

Input following fields:

Product name of your choice

Device Type: Control Bridge

Test VID: default

Product ID (PID): 0x8001

Save & Continue

Save

On your Android Phone

Configure the phone to use the same Google Account

Install Google Home application

To add the Nest Hub

Click "+" in the Google Home app - Add new device and let the phone search for your hub over BT - make sure hub is in

reach

To add the Matter Bridge to your Google Home (and Hub)

In the console of the Matter Bridge application running on the Raspberry Pi

Hit Return , this should present Unify>

Type commission , this will show SetupQRCode, either click the link or in the Developer UI go to the "Commissionable

Devices" page (note that a new QR code will be created whenever bridge is restarted, make sure to use the latest as

identified in the output on the console)

In the Google Home app click "+"

Google Home should report "Matter-enabled device found"

If the bridge is not automatically found, a list of device types will be shown, click the "Matter-device" on the list

Google Home will now ask for scanning the QR code - scan the QR code as described above

If Google Home is stuck during commissioning, type commission again in the Matter Bridge console while Google

Home is waiting

All supported Unify devices should now be available for control in both Google Home application as well as the Google

Nest Hub

On the Nest Hub, swipe down from the top of the display or select "Home Control" to access the devices

Toggle an OnOff device

To send an OnOff cluster Toggle command to a bridged endpoint with id 2, via Matter Fabric Node ID 1:

chip-tool onoff toggle 1 2

https://console.home.google.com/projects

Running The Matter Bridge

237/362

For more information on how to use the chip-too l see the chip-tool manual on the Matter website.

Toggle a Group of OnOff Devices

The Matter Bridge has support for forwarding group messages from the Matter Fabric to Unify Nodes. The protocol

controllers will send the group messages as actual group cast messages on the destination network (Z-Wave/Zigbee).

To send a group command, first set up the group keys in the bridge. This example assumes the bridge to be Node ID 1, and

GroupKeySetID 42 is added to Group ID 1:

chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": �112233�, "targets": null },{"fabricIndex": 1, "privilege":

4, "authMode": 3, "subjects": �1�, "targets": null }]' 1 0

chip-tool groupkeymanagement key-set-write '{"groupKeySetID": 42, "groupKeySecurityPolicy": 0, "epochKey0":

"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf", "epochStartT ime0": 2220000,"epochKey1": "d1d1d2d3d4d5d6d7d8d9dadbdcdddedf",

"epochStartT ime1": 2220001,"epochKey2": "d2d1d2d3d4d5d6d7d8d9dadbdcdddedf", "epochStartT ime2": 2220002 }' 1 0

chip-tool groupkeymanagement write group-key-map '[{"groupId": 1, "groupKeySetID": 42, "fabricIndex": 1��' 1 0

Next, add bridge endpoint 2 to Group ID 0x0001

chip-tool groups add-group 0�0001 grp1 1 2

Next, program the chip-tool:

chip-tool groupsettings add-group grp1 0�0002

chip-tool groupsettings add-keysets 0�0042 0 0�000000000021dfe0 hex:d0d1d2d3d4d5d6d7d8d9dadbdcdddedf

chip-tool groupsettings bind-keyset 0�0001 0�0042

Finally, a multicast command may be sent using the chip-tool.

// Send actual multicast command

./chip-tool onoff toggle 0xffffffffffff0001 1

Running the matter bridge in strict device mapping mode

By default Unify Matter Bridge tries and map devices that does not necessarily conform to the Matter specificaiton.

To enable a mode where Unify Matter Bridge strictly only maps devices from the Unify Controller Language protocol to the

Matter protocol that complies with the Matter specification. You can run the bridge with the command line argument

./unify-matter-bridge --strict_device_mapping true .

Command Line Arguments

The Unify Matter Bridge provides the following command line arguments:

Using --help displays the following text.

Usage: ./unify_matter_bridge [Options]

Options:

--conf arg (=/etc/uic/uic.cfg) Config file in YAML format. UIC_CONF

 env variable can be set to override the

 default config file path

--help Print this help message and quit

--dump-config Dump the current configuration in a

 YAML config file format that can be

 passed to the --conf option

--version Print version information and quit

https://github.com/SiliconLabs/matter/blob/latest/docs/guides/chip_tool_guide.md

Running The Matter Bridge

238/362

The following options can also be in a config file. Options and values passed on the command line take precedence over

the options and values in the config file.

--log.level arg (=i) Log Level (d,i,w,e,c)

--log.tag_level arg Tag-based log level

 Format: <tag>:<severity>,

<tag>:<severity>, ...

--interface arg (=en0) Ethernet interface to use

--kvs arg (=/var/chip_unify_bridge.kvs)

 Matter key value store path

--vendor arg (=65521) Vendor ID

--product arg (=32769) Product ID

--mqtt.host arg (=localhost) MQTT broker hostname or IP

--mqtt.port arg (=1883) MQTT broker port

--mqtt.cafile arg Path to file containing the PEM-encoded

 CA certificate to connect to Mosquitto

 MQTT broker for TLS encryption

--mqtt.certfile arg Path to file containing the PEM-encoded

 client certificate to connect to

 Mosquitto MQTT broker for TLS

 encryption

--mqtt.keyfile arg Path to a file containing the PEM-

 encoded unencrypted private key for

 this client

--mqtt.client_id arg (=unify_matter_bridge_71460)

 Set the MQTT client ID of the

 application.

Running chip-tool tests on Unify Matter Bridge endpoints

For e.g. OnOff Cluster chip-tool test Test_TC_OO_2_3 can be ran on Unify Matter Bridge endpoint 2 for node 1 as follows.

./chip-tool tests Test_TC_OO_2_3 --nodeId 1 --endpoint 2 --delayInMs 1400

Mapping of Matter Endpoint to Unify Node IDs can be seen by giving "epmap" command to Unify matter bridge command

prompt as follows

Unify>epmap

Unify Unid |Unify Endpoint |Matter Endpoint

zw-CE7F3772�0008| | 2

Note: Endpoint 0(Root) and Endpoint 1(Aggregator) are Bridge itself. They are not shown in the epmap. But these endpoints

support some clusters as well. For e.g. Identify. Where you might want to run chip-tool tests on those endpoints

For further information on chip-tool tests, refer to the test suite's README

Troubleshooting

Time sensitive chip-tool tests might fail because of the latencies in Unify Matter Bridge. The ' --delayInMs <number of mili

seconds> ' command line option to chip-tool can be helpful in such cases.

The Unify Matter Bridge needs to be commissioned to the Matter fabric before running the tests. Or you will see following

message on the chip-tool tests

***** Test Step 0 : 1: Wait for the commissioned device to be retrieved

To run all the tests without exiting on a failed one, ' --continueOnFailure true ' can be used.

Every cluster command sent by chip-tool can be seen on Unify Matter bridge as MQTT topic publish as follows

https://github.com/SiliconLabs/matter/blob/latest/src/app/tests/suites/README.md

Running The Matter Bridge

239/362

for .e.g if chip-tool sends OnOff On command on zw-CE7F3772-0008 Unify end node(Matter Endpoint 2). Then Unify

Matter bridge publishes following MQTT payload and topic

2023�Jan-30 10�36�43.803360 <d> [command_translator_interface] --- send_unify_mqtt_cmd ucl/by-unid/zw-CE7F3772�

0008/ep0/OnOff/Commands/On → {} ---

The above MQTT debug message can also be traced in Unify logs.

Every attribute read sent by chip-tool will only get correct value, if Unify Matter Bridge publishes MQTT payload and topic

like following, before chip-tool sends the attribute read command.

For e.g. if chip-tool tries to read OnOff attribute of OnOff cluster on zw-CE7F3772-0008 Unify end node(Matter Endpoint

2) Unify Matter Bridge must have received following kind of MQTT message before the correct attribute value will be

reflected in Unify Matter Bridge.

2023�Jan-30 10�36�44.515748 <d> [mqtt_client] mqtt_client::on_message: ucl/by-unid/zw-CE7F3772�0008/ep0/OnOff/Attributes/OnOff/Reported,

{"value":true}, 0

The above MQTT debug messages can also be traced in Unify logs.

Alternatively to disable a particular command or disable reading particular attributes from the test refer to PICS Usage from

README

https://github.com/SiliconLabs/matter/blob/latest/src/app/tests/suites/README.md

Overview Guides

240/362

Overview Guides

Overview Guides
The Overview pages offer a general review of Matter topics including:

Matter Provisioning

Test Matter Certificates for Development

Matter Commissioning

Matter Intermittently Connected Devices (ICD)

Matter Over Thread ICD End Devices

Matter Serial Port Communication

Matter SLC CLI Setup and Build Instructions

Matter Solutions

Matter Provisioning

241/362

Matter Provisioning

Matter Provisioning
Tools in the S ilicon Labs Matter G itHub provision folder are used to load mandatory authentication information into Matter

devices. For more information on accessing the provision tools and cloning the S ilicon Labs Matter G itHub repository, see

the documentation located here: S ilicon Labs Matter G itHub repo.

Most of the required parameters are stored once during the manufacturing process, and shall not change during the lifetime

of the device. During runtime, two interfaces are used to pull the authentication data from permanent storage:

CommissionableDataProvider, implemented as EFR32DeviceDataProvider

DeviceAttestationCredsProvider, implemented as S ilabsDeviceAttestationCreds

The provisioning script in this folder now supersedes the following tool:

Factory Data Provider

Provisioned Data

The Commissionable Data includes Serial Number, Vendor Id, Product Id, and the Setup Payload (typicallty displayed in the

QR), while the Attestation Credentials includes the Certificate Declaration (CD), the Product Attestation Intermediate (PAI)

certificate, and the DAC (Device Attestation Certificate).

During commissioning, Matter devices perform a Password Authenticated Key Exchange using the SPAKE2+ protocol. The

SPAKE2+ verifier is pre-calculated using an external tool.

The passcode is used to derive a QR code, typically printed on the label, or displayed by the device itself. The QR code

contains the pre-computed setup payload, which allows the commissioner to establish a session with the device. The

parameters required to generate and validate the session keys are static and stored in NVM3.

To protect the attestation private-key (used to generate the DAC), the asymmetric key-pair should be generated on-

device, using PSA, and the most secure storage location available to the specific part. However, the private-key may be

generated externally, and imported using the --dac_key parameter.

The DAC is generated and signed by a Certification Authority (CA), which may reside on a separate host. The

modules/signing_server.py script simulates the role of the CA, and uses OpenSSL to to generate and sign the DAC. In a real

factory environment, this script is replaced by an actual CA.

Generator Firmware

The Generator Firmware (GFW) is a baremetal application that runs on the targeted device, and assists with the initial setup

of the device. The GFW performs the following tasks:

Generates the device key-pair on the most secure location available

Returns a CSR (Certificate S igning Request) to the provisioning script. The CSR contains the device public-key, Vendor Id,

Product Id, and Serial Number.

Calculates the Setup Payload

Stores the Commissionable Data into NVM3 (including the Setup Payload)

Stores the Attestation Data on the main flash (CD, PAI, DAC)

Stores the size and offsets used to store the Attestation Data, along with the KeyId used to generate the private-key

The main source code of the GFW is located under provision/generator , while the board support is located under

provision/support . Pre-compiled images for the supported chips can be found in provision/images .

https://github.com/SiliconLabs/matter
https://github.com/project-chip/connectedhomeip/blob/master/src/include/platform/CommissionableDataProvider.h
https://github.com/project-chip/connectedhomeip/blob/master/examples/platform/silabs/efr32/EFR32DeviceDataProvider.cpp
https://github.com/project-chip/connectedhomeip/blob/master/src/credentials/DeviceAttestationCredsProvider.h
https://github.com/project-chip/connectedhomeip/blob/master/examples/platform/silabs/SilabsDeviceAttestationCreds.h
https://github.com/project-chip/connectedhomeip/tree/master/scripts/tools/silabs
https://github.com/project-chip/connectedhomeip/tree/master/src/tools/spake2p

Matter Provisioning

242/362

The directory structure is as follows:

provision

generator

images

modules

support

efr32mg12

efr32mg24

Provisioner Script

The provision.py file is the main script used to load all the required data on the Matter device. This script requires:

S implicity Commander

SEGGER J-Link

SPAKE2+ generator

PyLink

sudo pip3 install ecdsa

The Provisioner Script executes the following steps:

 Parses and validates the command-line arguments

 Obtains the Part Number from the connected device (using S implicity Commander)

 If no SPAKE2+ verifier is provided: 3.1. Generates SPAKE2+ verifier (using the external spake2p tool)

 Loads the Generator Firmware into the device (if no GFW path is provided, the Part Number is used to choose the

corresponding file from the provision/images)

 Configures the NVM3 based on the flash size of the connected device

 If CSR mode is used (--csr): 6.1. Requests a CSR from the device - The GFW generates the key-pair and CSR, then

returns the the CSR to the host script 6.2. Sends the CSR to the S igning Server (provision/modules/signing_server.py), and

retrieves the DAC

 Sends CD, PAI, and DAC to the GFW - The GFW stores CD, PAI, and DAC on the last page of main flash, and updates the

offsets and sizes in NVM3

 Sends the Commissionable Data to the GFW - The GFW initializes the flash, generates the Setup Payload, and stores the

data into NVM3

 If a PFW is provided, writes the PFW into flash using S implicity Commander

The provisioning script and the GFW communicates through J-Link RTT using the PyLink module.

Arguments

Arguments Conformance Type Description

-c, --config optional string Path to a JSON configuration file

-j, --jlink optional ^1 dec/hex JLink connection string.

-l, --pylink_lib optional string Path to the PyLink library.

-g, --generate optional flag Auto-generate test certificates

-m, --stop optional flag Stop mode: When true, only generate the JSON configuration, and exit.

-r, --csr optional flag CSR mode: When true, instructs the GFW to generate the private key, and

issue a CSR.

-gf, --gen_fw optional dec/hex Path to the Generator Firmware image.

-pf, --prod_fw optional dec/hex Path to the Production Firmware image.

-v, --vendor_ id optional dec/hex Vendor ID. e.g: 65521 or 0xFFF1 (Max 2 bytes).

-V, --

vendor_name

optional string Vendor name (Max 32 char).

https://community.silabs.com/s/article/simplicity-commander?language=en_US
https://www.segger.com/downloads/jlink/
https://github.com/project-chip/connectedhomeip/tree/master/src/tools/spake2p
https://pylink.readthedocs.io/en/latest/index.html

Matter Provisioning

243/362

Arguments Conformance Type Description

-p, --product_ id optional dec/hex Product ID. e.g: 32773 or 0x8005 (Max 2 bytes).

-P, --product_name optional string Product name (Max 32 char).

-pl, --product_label optional string Product label.

-pu, --product_url optional string Product URL.

-pn, --part_number optional dec/hex Device Part Number (Max 32 char).

-hv, --hw_version optional dec/hex The hardware version value (Max 2 bytes).

-hs, --hw_version_str optional string The hardware version string (Max 64 char).

-cf, --

commissioning_flow

optional dec/hex Commissioning Flow 0=Standard, 1=User Action, 2=Custom.

-rf, --rendezvous_flags optional dec/hex Rendez-vous flag: 1=SoftAP, 2=BLE 4=OnNetwork (Can be

combined).

-md, --

manufacturing_date

optional string Manufacturing date.

-d, --discriminator optional ^2 dec/hex BLE pairing discriminator. e.g: 3840 or 0xF00. (12-bit)

-ct, --cert_tool optional string Path to the chip-cert tool. Defaults to ../out/too ls/chip-cert

-ki, --key_ id required dec/hex Attestation Key ID.

-kp, --key_pass optional ^3 string Password for the key file.

-xc, --att_certs optional ^3 string Path to the PKCS#12 attestation certificates file.

-ic, --pai_cert required string Path to the PAI certificate.

-dc, --dac_cert optional ^3 string Path to the PAI certificate.

-dk, --dac_key optional ^3 dec/hex Path to the PAI private-key.

-cd, --certification required string Path to the Certification Declaration (CD) file.

-cn, --common_name optional ^4 string Common Name to use in the Device Certificate (DAC) .

-u, --unique_ id optional ^5 hex

string

A 128 bits hex string unique id (without 0x).

-sv, --spake2p_verifier optional string ^6 Pre-generated SPAKE2+ verifier.

-sp, --spake2p_passcode required dec/hex Session passcode used to generate the SPAKE2+ verifier.

-ss, --spake2p_salt required string ^6 Salt used to generate the SPAKE2+ verifier.

-si, --spake2p_ iterations required dec/hex Iteration count used to generate the SPAKE2+ verifier.

^1 Use xxxxxxxxx for serial, or xxx.xxx.xxx.xxx[:yyyy] for TCP. ^2 If not provided (or zero), the discriminator is calculated as

the last 12 bits of SHA256(serial_number) ^3 If the DAC is provided, its corresponding private-key also must be provided ^4

Required if the DAC is not provided ^5 If not provided, the unique_id is calculated as the first 128 bits of

SHA256(serial_number) ^6 Salt and verifier must be provided as base64 string

For the hex type, provide the value with the 0x prefix. For hex string type, do not add the 0x prefix.

The -c/--config argument allows to read all the required parameters from a JSON file. The same validation rules apply both

for command line or configuration file, but JSON does not support hexadecimal numbers. Command line arguments override

arguments read from a configuration file. For instance, with the configuration example .json :

{

 "version": "1.0",

 "matter": {

 "prod_fw": "/git/matter/out/lighting-app/BRD4187C/chip-efr32-lighting-example.s37",

 "vendor_id": 4169,

 "product_id": 32773,

 "discriminator": 3841,

 "attestation": {

Matter Provisioning

244/362

"dac_key": "temp/certs/dac_key.pem",

 "pai_cert": "temp/certs/pai_cert.pem",

 "certification": "temp/certs/cd.der",

 },

 "spake2p": {

 "passcode": 62034001,

 "salt": "95834coRGvFhCB69IdmJyr5qYIzFgSirw6Ja7g5ySYA",

 "iterations": 15000

 }

 }

}

You may run:

python3 ./provision.py -c example.json -d 2748 -p 0�8006 -si 10000

Which will set the connected device with discriminator 2748 (instead of 3841), product ID 32774 (instead of 32773), and

use 10000 SPAKE2+ iterations (instead of 15000).

To ease development and testing, the provision.py script provides defaults for most of the parameters. The only arguments

that are truly mandatory are vendor_id , and product_id . Test certificates may be auto-generated using the -g flag, provided

the chip-cert can be found, either in the default location, or through the --cert-too l argument. For instance, you may run:

python3 ./provision.py -v 0�1049 -p 0�8005 -g

Which will generate the test certificates using chip-cert , and set the device with the following parameters:

{

 "version": "1.0",

 "matter": {

 "generate": true,

 "vendor_id": 65522,

 "product_id": 32773,

 "discriminator": 3840,

 "attestation": {

 "cert_tool": "./out/tools/chip-cert",

 "key_id": 2,

 },

 "spake2p": {

 "verifier": null,

 "passcode": 62034001,

 "salt": "95834coRGvFhCB69IdmJyr5qYIzFgSirw6Ja7g5ySYA�",

 "iterations": 15000

 }

 }

}

For each run, provision.py will generate the file provision/config/latest.json , containing the arguments used to set up the

device. A default configuration with developer settings can be found at provision/config/develop.json :

python ./provision.py -c config/develop.json

Attestation Files

The --generate option instructs the provider.py script to generate test attestation files with the given Vendor ID, and

Product ID. These files are generated using the chip-cert tool, and stored under the provision/temp folder.

To generate the certificates manually:

https://github.com/project-chip/connectedhomeip/tree/master/src/tools/chip-cert

Matter Provisioning

245/362

./chip-cert gen-cd -f 1 �V 0xfff1 -p 0�8005 -d 0�0016 -c ZIG20142ZB330003�24 -l 0 -i 0 -n 257 -t 0 -o 0xfff1 -r 0�8005 �C

./credentials/test/certification-declaration/Chip-Test-CD�Signing-Cert.pem �K ./credentials/test/certification-declaration/Chip-Test-CD�Signing-

Key.pem �O ./temp/cd.der

./chip-cert gen-att-cert -t a -l 3660 -c "Matter PAA" �V 0xfff1 -o ./temp/paa_cert.pem �O ./temp/paa_key.pem

./chip-cert gen-att-cert -t i -l 3660 -c "Matter PAI" �V 0xfff1 �P 0�8005 �C ./temp/paa_cert.pem �K ./temp/paa_key.pem -o ./temp/pai_cert.pem �O

./temp/pai_key.pem

./chip-cert gen-att-cert -t d -l 3660 -c "Matter DAC" �V 0xfff1 �P 0�8005 �C ./temp/pai_cert.pem �K ./temp/pai_key.pem -o ./temp/dac_cert.pem -

O ./temp/dac_key.pem

NOTE: The commissioning fails if the commissioner do not recognize the root certificate (PAA). When using chip-tool, you

can use the --paa-trust-store-path to enabled the PAA certificates for testing purposes.

Example

In S implicity Studio, add the Attestation Certificate provisioning configuration component to the project and build it. The

resulting s37 file is used as an input to the provision.py script in the next step.

Set up the device with key generation:

python3 ./provision.py -v 0�1049 -p 0�8005 \

 -r -ki 2 -cn "Silabs Device" -ic ./temp/pai_cert.pem -cd ./temp/cd.der \

 -sp 62034001 -ss 95834coRGvFhCB69IdmJyr5qYIzFgSirw6Ja7g5ySYA� -si 15000 \

 -d 0xf01 -j 440266330 -pf chip-efr32-lighting-example.s37

Or, set up the device with imported key:

python3 ./provision.py -v 0�1049 -p 0�8005 \

 -ki 2 -cn "Silabs Device" -dc ./temp/dac_cert.pem -dk ./temp/dac_key.pem -ic ./temp/pai_cert.pem -cd ./temp/cd.der \

 -sp 62034001 -ss 95834coRGvFhCB69IdmJyr5qYIzFgSirw6Ja7g5ySYA� -si 15000 \

 -d 0xf01 -j 440266330 -pf chip-efr32-lighting-example.s37

Self-Provisioning

S ilicon Labs' Matter examples include the same provisioning engine used by the GFW. This allows applications to be flashed

once but provisioned multiple times. There are two ways to put the application in provisioning mode:

Factory-reset by pressing both BTN0 and BTN1 for six seconds

Write 1 to the NVM3 key 0x87228. This is useful in boards with less than two buttons, and can be accomplished using

S implicity Commander:

commander nvm3 read -o ./temp/nvm3.s37

commander nvm3 set ./temp/nvm3.s37 --object 0�87228�01 --outfile ./temp/nvm3�.s37

commander flash ./temp/nvm3�.s37

Once in provisioning mode, the example firmware can be used as GFW, for instance:

python3 provision.py -c config/develop.json -gf ../out/light/BRD4187C/matter-silabs-lighting-example.s37

If the device was factory-reset, it becomes ready for commissioning right after self-provisioning.

Validation

https://github.com/project-chip/connectedhomeip/tree/master/examples/chip-tool

Matter Provisioning

246/362

If the certificate injection is successful, the commissioning process should complete normally. In order to verify that the new

certificates are actually being used, first check the last page of the flash using Commander. The content of the flash must

then be compared with the credentials received by the commissioner, which can be done using a debugger.

Flash Dump

On EFR32MG12, the last page starts at address 0x000FF800. On EFR32MG24, the last page is located at 0x0817E000.

These addresses can be found in the memory map of the board's datasheet. For instance, for a MG24 board:

commander readmem --range 0�0817E000��1536 --serialno 440266330`

The output should look something like:

commander readmem --range 0�0817E000��1536 --serialno 440266330

Reading 1536 bytes from 0�0817e000...

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F�

000ff800� 30 82 01 D8 30 82 01 7F A0 03 02 01 02 02 04 07

000ff810� 5B CD 15 30 0A 06 08 2A 86 48 CE 3D 04 03 02 30

...

000ff9c0� 2B BA 15 32 2F 4C 69 F2 38 48 D2 BC 62 2A 47 FB

000ff9d0� 3F F7 28 8A 7C 90 75 72 58 84 96 E7 00 00 00 00

000ff9e0� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ff9f0� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ffa00� 30 82 01 C8 30 82 01 6E A0 03 02 01 02 02 08 79

000ffa10� 6E 32 5A FA 5B D1 F8 30 0A 06 08 2A 86 48 CE 3D

...

000ffbb0� FD 92 D1 EB 59 95 D8 38 DE 5D 80 E3 05 65 24 4A

000ffbc0� 62 FD 9F E9 D8 00 FA CD 0F 32 7C C9 00 00 00 00

000ffbd0� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ffbe0� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ffbf0� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ffc00� 30 81 EF 06 09 2A 86 48 86 F7 0D 01 07 02 A0 81

000ffc10� E1 30 81 DE 02 01 03 31 0D 30 0B 06 09 60 86 48

...

000ffce0� 28 41 FD B8 28 CD 19 F2 BB DB A0 0F 33 B2 21 D3

000ffcf0� 33 CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000ffd00� 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

On this example, the DAC is located at address 0817e000 (offset 0), and has 476 octets:

0817e000� 30 82 01 D9 30 82 01 7F A0 03 02 01 02 02 04 07

0817e010� 5B CD 15 30 0A 06 08 2A 86 48 CE 3D 04 03 02 30

...

0817e1c0� 2E 4F 10 20 38 BA A6 B5 F6 A4 77 7A 19 91 23 79

0817e1d0� 2F A0 FF AF F5 5C A1 59 98 08 C7 BC 5F 00 00 00

This should match the contents of the DER-formatted DAC certificate, which is stored by the setup script as

./temp/dac.der :

$ xxd ./temp/dac.der

Matter Provisioning

247/362

00000000� 3082 01d8 3082 017f a003 0201 0202 0407 0...0...........

00000010� 5bcd 1530 0a06 082a 8648 ce3d 0403 0230 [..0...*.H.=...0

...

000001c0� 2bba 1532 2f4c 69f2 3848 d2bc 622a 47fb +..2/Li.8H..b*G.

000001d0� 3ff7 288a 7c90 7572 5884 96e7 ?.(.|.urX...

The PAI certificate is located at address 0�0817e200 (offset 512�, and

has 460 octets:

0817e200� 30 82 01 C8 30 82 01 6E A0 03 02 01 02 02 08 79

0817e210� 6E 32 5A FA 5B D1 F8 30 0A 06 08 2A 86 48 CE 3D

...

0817e3b0� FD 92 D1 EB 59 95 D8 38 DE 5D 80 E3 05 65 24 4A

0817e3c0� 62 FD 9F E9 D8 00 FA CD 0F 32 7C C9 00 00 00 00

This should match the contents of the DER-formatted PAI certificate, which is stored by the setup script as

./temp/pai_cert.der :

$ xxd ./temp/pai_cert.der

00000000� 3082 01c8 3082 016e a003 0201 0202 0879 0...0..n.......y

00000010� 6e32 5afa 5bd1 f830 0a06 082a 8648 ce3d n2Z.[..0...*.H.=

...

000001b0� fd92 d1eb 5995 d838 de5d 80e3 0565 244a Y..8.]...e$J

000001c0� 62fd 9fe9 d800 facd 0f32 7cc9 b........2|.

Finally, on this example the CD is located at address 0817e400 (offset 1024), and contains 541 octets:

0817e400� 30 81 EF 06 09 2A 86 48 86 F7 0D 01 07 02 A0 81

0817e410� E1 30 81 DE 02 01 03 31 0D 30 0B 06 09 60 86 48

...

0817e4d0� 02 20 38 B9 9C 73 B2 30 92 D7 A2 92 47 30 14 F7

0817e4e0� 28 41 FD B8 28 CD 19 F2 BB DB A0 0F 33 B2 21 D3

0817e4f0� 33 CE 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The CD is a binary file, and is neither modified, nor validated by the setup script. It is simply stored in flash after the DAC:

$ xxd cd.der

00000000� 3081 ef06 092a 8648 86f7 0d01 0702 a081 0....*.H........

00000010� e130 81de 0201 0331 0d30 0b06 0960 8648 .0.....1.0...̀ .H

...

000000e0� 2841 fdb8 28cd 19f2 bbdb a00f 33b2 21d3 �A..(.......3.!.

000000f0� 33ce 3.

The 0xff octets between the files and at the end of the flash are unmodified sections of the flash storage.

Device Terminal

Logs have beed added to the S ilabsDeviceAttestationCreds, to help verifying if the Attestation files are loaded correctly.

The size and first eight bytes of CD, PAI, and DAC are printed, and must match the contents of cd.der , pai_cert.der , and

dac.der , respectively:

Matter Provisioning

248/362

...

�00�00�05.109][info ��ZCL� OpCreds: Certificate Chain request received for PAI

�00�00�05.109][info ��DL� GetProductAttestationIntermediateCert, addr:0xffa00, size:460

�00�00�05.110][detail][ZCL] 0�30, 0�82, 0�01, 0xc8, 0�30, 0�82, 0�01, 0�6e,

...

�00�00�05.401][info ��ZCL� OpCreds: Certificate Chain request received for DAC

�00�00�05.402][info ��DL� GetDeviceAttestationCert, addr:0xff800, size:477

�00�00�05.402][detail][ZCL] 0�30, 0�82, 0�01, 0xd8, 0�30, 0�82, 0�01, 0�7f,

...

�00�00�05.694][info ��ZCL� OpCreds: Received an AttestationRequest command

�00�00�05.695][info ��DL� GetCertificationDeclaration, addr:0xffc00, size:242

�00�00�05.695][detail][ZCL] 0�30, 0�81, 0xef, 0�06, 0�09, 0�2a, 0�86, 0�48,

...

Board Support

Pre-compiled images of the Generator Firmware can be found under provision/images. The source code of these images is

found under provision/support. A single image is provided for all EFR32MG12 parts, and another one for the EFR32MG24

family. To copy with the different flash sizes, the provision.py script reads the device information using commander , and

send it to the GFW, which configures the NVM3 during the initialization step.

Test Matter Certificates for Development

249/362

Test Matter Certificates for Development

Test Matter Certificates for Development

Hardware and Software Requirements

Commissioner

Raspberry Pi flashed with the Matter Hub Image

Setting Up you Matter Hub: Developing with S ilicon Labs Matter

WSTK with supported boards for RCP

How to set up your RCP: Developing with S ilicon Labs Matter

Commissionee

WSTK with MG24A or MG24B (Initial boards supported for Matter CPMS Alpha program). The provisioning script also

supports MG12. In this tutorial, you will build an application with a BRD4187C.

Introduction to Provisioning

Matter devices require a minimum amount of data that should be installed. Besides the Vendor ID, Product ID, Discriminator,

and other device information, session establishment requires a CD (Certification Declaration), PAI (Product Attestation

Intermediate certificate), and DAC (Device Attestation Certificate). There is no requirement about how or where this data is

stored, but the Matter stack uses three distinct interfaces to retrieve it:

DeviceInstanceInfoProvider

CommissionableDataProvider

DeviceAttestationCredsProvider

There is a long list of parameters that may be loaded on the device in-factory, and there are also complex dependencies

between different arguments and files. For instance, Vendor ID must be returned by the DeviceInstanceInfoProvider

interface, but Vendor ID must also be present in the CD and DAC and must match in all instances. Furthermore, each DAC

must be loaded alongside its private key, which is used to sign outgoing messages. The secrecy of the private key is critical

for the security of the inter-device communication; therefore, measures must be taken to limit access to this key, and this

key should be stored in the most secure part of your device.

In a production environment, different devices should have unique identifiers, passcodes, discriminators, private-keys and

DACs, which implies customization during the manufacturing process. To ease the development and manufacturing of

customized devices, S ilicon Labs provides the Custom Part Manufacturing Service (CPMS).

In a development environment, S ilicon Labs provides a Provisioning Tool that is used to generate a Matter Certificate Chain

based on Test or Development Certificates provided by the CSA. These certificates can have data modified such as VID,

PID, Discriminator, Passcode, etc. For more information and arguments to this tool, refer to Using CPMS.

To provide flexibility, S ilicon Labs provides two ways to write Commissionable Data and Device Attestation Credentials to

Matter Devices. The following figure depicts these two flows:

https://docs.silabs.com/matter/2.2.0/matter-start
https://docs.silabs.com/matter/2.2.0/matter-start
https://github.com/project-chip/connectedhomeip/blob/master/src/include/platform/DeviceInstanceInfoProvider.h
https://github.com/project-chip/connectedhomeip/blob/master/src/include/platform/CommissionableDataProvider.h
https://github.com/project-chip/connectedhomeip/blob/master/src/credentials/DeviceAttestationCredsProvider.h
https://www.silabs.com/services/custom-part-manufacturing-service
https://docs.silabs.com/matter/2.2.0/matter-using-cpms

Test Matter Certificates for Development

250/362

These two provisioning flows use the same Python Provisioning Tool script to initiate writing the Commissionable Data and

the Device Attestation Data. The Generator Firmware and the Matter Sample application have the ability to store all the

required data for a successful commissioning.

The use of a Generator Firmware is intended for Provisioning at Manufacturing and to reduce time writing Matter

Credentials as there is no need for a bootloader or Matter Application.

When using a Matter Sample Application for provisioning, the user must ensure that the Matter Device has the flag

use_provision_channel = true upon booting the device. The provision flag may be set to 1 at runtime. This may be

accomplished in three ways:

On example application with two buttons, factory reset by pressing BTN0 and BNT1 at the same time. Besides the regular

factory reset, the provision flag is set to 1, and the device will wait for provisioning upon restart.

The application may set the provision flag to 1 given certain condition, for instance, upon receiving a wireless command.

When connected through USB or TCP/IP, the provision flag may be overwritten using S implicity Commander:

commander nvm3 read -o ./temp/nvm3.s37

commander nvm3 set ./temp/nvm3.s37 --object 0�87228�01 --outfile ./temp/nvm3�.s37

commander flash ./temp/nvm3�.s37

A hands-on example of these provisioning flows will be provided in the following Sections.

Initial Setup

Test Matter Certificates for Development

251/362

Using your PC for development, including:

Studio with Matter Extension or SMG - preferably the latest GSDK version.
Clone the matter repo

git clone https://github.com/SiliconLabs/matter.git

cd matter

git submodule update --init

In the matter repo directory:

source ./scripts/bootstrap.sh

source ./scripts/activate.sh

gn gen out/tools

ninja �C out/tools

cd provision/

Generating Matter Certificates �CD, PAA,PAI,DAC� - Provisioning Script

Reference and detailed explanation of the different processes that take place in the provisioning script are detailed in

https://github.com/S iliconLabs/matter_extension/tree/v2.2.0/provision. The following is an example on how to generate

certificates using the chip-cert tool. Start with generating the Certification Declaration as follows:

./out/tools/chip-cert gen-cd �K credentials/test/certification-declaration/Chip-Test-CD�Signing-Key.pem �C credentials/test/certification-

declaration/Chip-Test-CD�Signing-Cert.pem �O credentials/test/certification-declaration/Chip-Test-CD�1049�8005.der -f 1 �V 0�1049 -p 0�8005 -

c ZIG20142ZB330001�24 -l 0 -i 0 -n 257 -t 0 -o 0�1049 -r 0�8005

This chip-cert command uses the Chip-Test-CD-S igning-Key.pem and Chip-Test-CD-S igning-Cert.pem to sign the output CD

which is Chip-Test-CD-1049-8005.der with Vendor ID: 0x1049 and Product ID: 0x8005.

The next step is to generate the Product Attestation Intermediate (PAI) and Device Attestation Certificate (DAC) using a

test Product Attestation Authority (PAA) provided by the CSA and can be found in

~/matter/credentials/test/attestation/Chip-Test-PAA-NoVID-Cert.pem. This PAA will be the root certificate to sign the PAI

which will then sign the DAC and we will obtain our Public Key Infrastructure Matter Certificate Chain:

./out/tools/chip-cert gen-att-cert -t i -l 3660 -c "Matter PAI" �V 0�1049 �P 0�8005 �C ./credentials/test/attestation/Chip-Test-PAA�NoVID�Cert.pem

�K ./credentials/test/attestation/Chip-Test-PAA�NoVID�Key.pem -o ./credentials/test/attestation/pai_cert.pem �O

./credentials/test/attestation/pai_key.pem

If you plan on using different PID for different Matter devices you can remove the -P 0x8005 from the PAI and this will

provide more flexibility to generate DACs with different PIDs under the same PAI. You can use the following command to

generate a DAC using the PAI Cert and the PAI key:

./out/tools/chip-cert gen-att-cert -t d -l 3660 -c "Matter DAC" �V 0�1049 �P 0�8005 �C ./credentials/test/attestation/pai_cert.pem �K

./credentials/test/attestation/pai_key.pem -o ./credentials/test/attestation/dac_cert.pem �O ./credentials/test/attestation/dac_key.pem

To verify the Certificate Chain you can also use chip-cert:

./out/tools/chip-cert validate-att-cert --dac credentials/test/attestation/dac_cert.pem --pai credentials/test/attestation/pai_cert.pem --paa

credentials/test/attestation/Chip-Test-PAA�NoVID�Cert.pem

If the chain is correctly verified, no errors should be output from this command.

Once you have finished generating you Certificates, you can proceed with installing the Provisioning Tool in order to flash

the Matter Commissionable Data and the Device Attestation Data onto your device.

https://github.com/SiliconLabs/matter_extension/tree/v2.2.0/provision

Test Matter Certificates for Development

252/362

Provisioning Tool

Important: Please review the required installations in the Provisioner Script Section.

Required Installation

S implicity Commander:

Please install S implicity Commander and add it to you environment variables.

example for Mac:

export

PATH=$PATH:"/Applications/SimplicityStudio.app/Contents/Eclipse/developer/adapter_packs/commander/Commander.app/Contents/MacOS/

SEGGER:

You can use the dlibjlinkarm.dylib in S implicity Studio Eclipse/developer/adapter_packs/jlink/ or,

You can download SEGGER depending on your OS here.

Once you have the dlibjlinkarm.dylib please try one of these options so the provisioning script can use jlink:

Option A� Copy the library to your libraries directory.

$ cp libjlinkarm.dylib /usr/local/lib/

Option B� Add SEGGER's J�Link directory to your dynamic libraries path.

$ export DYLD_LIBRARY_PATH=/Applications/SEGGER/JLink:$DYLD_LIBRARY_PATH

SPAKE2 + generator: This tool is already part of the files in the cloned repo.

Pylink

Please follow the PyLink Installation Instructions.

Running the Provisioning Tool

Once you have generated the PAA, PAI and DAC and have installed the provisioning tool you can use it to write the

Commissionable Data and the Device Attestation Data. As previously mentioned, there are two provisioning flows possible,

following are the necessary steps to correctly provision your device.

Go to the ~/matter/provision/directory:

Generator Firmware

To choose different provisioning flows, the provisioning script has the argument option -gf to direct the script:

python3.7 ./provision.py -c config/silabs.json -ic ../credentials/test/attestation/pai_cert.pem -dc ../credentials/test/attestation/dac_cert.pem -dk

../credentials/test/attestation/dac_key.pem -cd ../credentials/test/certification-declaration/Chip-Test-CD�1049�8005.der -d 0xab2 -gf

images/efr32mg24.s37 -j 10.4.215.22

Provisioning Tool Output

https://github.com/SiliconLabs/matter_extension/tree/v2.2.0/provision#provisioner-script
https://www.segger.com/downloads/jlink/
https://pylink.readthedocs.io/en/latest/installation.html

Test Matter Certificates for Development

253/362

 ‣ commander device info --ip 10.4.215.22

 ‣ mkdir -p ./temp

◆ Device Info:

 ∙ part: 'efr32mg24b220f1536im48'

 ∙ family: 'efr32mg24'

 ∙ version: '4'

 ∙ revision: 'A1'

 ∙ flash_addr: 0�08000000

 ∙ flash_size: 0�00180000

◆ Writing firmware

 ‣ commander flash images/efr32mg24.s37 --ip 10.4.215.22

 ‣ commander device reset --ip 10.4.215.22

◆ Preparing credentials

◆ SPAKE2� Verifier

 ∙ pass: 62034001

 ∙ salt: U1BBS0UyUCBLZXkgU2FsdA==

 ∙ iter: 1500

 ▪

EBoBESpGG�XUOhcw8DXk4�4C7 jQ8KQI5ZtrA7BEIZz4EDK2I6QnVVInxr1VfGIa2ht3VIIj1gs/ZPUZ57GZuVcf2�0KN0gjM0GBj0mzvzoYAV0Dxo8RcL3Dxuo9

 ‣ cp ../credentials/test/certification-declaration/Chip-Test-CD�1049�8005.der ./temp/cd.der

 ‣ cp ../credentials/test/attestation/pai_cert.pem ./temp/pai_cert.pem

 ‣ openssl x509 -outform der -in ./temp/pai_cert.pem -out ./temp/pai_cert.der

 ‣ cp ../credentials/test/attestation/dac_cert.pem ./temp/dac_cert.pem

 ‣ openssl x509 -outform der -in ./temp/dac_cert.pem -out ./temp/dac_cert.der

 ‣ cp ../credentials/test/attestation/dac_key.pem ./temp/dac_key.pem

 ‣ openssl ec -inform pem -in ./temp/dac_key.pem -outform der -out ./temp/dac_key.der

◆ Connecting to device

▪ Open TCP connection 10.4.215.22�19020 to efr32mg24b220f1536im48

▵ Init send(12)

▴ Init response(17)

Init:

 ∙ addr:0817e000, page:8192

◆ Credentials: Import

▵ KEY send(135)

▴ KEY response(22)

Import(KEY):

 ∙ key:0, off:0�0, size:121

◆ Credentials: Write

▵ DAC send(491)

▴ DAC response(22)

Import(DAC):

 ∙ key:0, off:0�0, size:477

▵ PAI send(456)

▴ PAI response(22)

Import(PAI):

 ∙ key:0, off:0�0, size:442

▵ CD send(257)

▴ CD response(22)

Import(CD):

 ∙ key:0, off:0�0, size:243

◆ Credentials: silabs_creds.h (legacy)

◆ Write Factory Data

Test Matter Certificates for Development

254/362

Setup:

 ∙ passcode: 0�3b29051

 ∙ discriminator: 0xab2

 ∙ uid: 4974be050220f9d10f899828fba42562

 ∙ payload: 48822800444056a3206507

Note: If you have connected more than one device, provide the -j <j-link no>.

Note: Invalid chip-cert path (--cert_tool): '../out/tools/chip-cert' (The provisioning script uses the cert-tool. If the

activate.sh script has not been successfully run, this error will occur.)

Building a Sample Application - SMG

To build a lighting app using SMG, you can run these commands for an MG24 or an MG12. This example is using a

BRD4162A. Go to the matter directory and execute the following command (in the matter directory):

cd ..

./scripts/examples/gn_silabs_example.sh ./examples/lighting-app/silabs/ ./out/lighting-app/ BRD4187C

chip_build_platform_attestation_credentials_provider = true

chip_build_platform_attestation_credentials_provider = true instructs the software to use the credentials that have been

provided by the provisioning tool in the last page of flash.

Your application will be in /out/lighting-app/BRD4187C.

Building a Sample Application - Studio - Matter Extension

Create a New Lighting Over Thread Project

Test Matter Certificates for Development

255/362

Install Matter Device Attestation Credentials Component

Test Matter Certificates for Development

256/362

This component is meant for the firmware to refer to the credentials injected by the provisioning tool.

Once this is completed, you can build your image and flash the <image>.s37 using S implicity Studio.

Store Commissionable Data �NVM3�, Attestation Data CD,PAI, DAC �Main Flash)

python3.7 ./provision.py -c config/silabs.json -r -cn "Silabs Device" -ic ./temp/pai_cert.pem -cd ./temp/cd.der -pf \<prod-fw-path\> -j \<jlink-no or

ip-address\>

Flashing Certificates Provisioning Tool Output

Test Matter Certificates for Development

257/362

 ‣ commander device info --serialno 440292679

 ‣ mkdir -p ./temp

◆ Device Info:

 ∙ part: 'efr32mg12p332f1024gl125'

 ∙ family: 'efr32mg12'

 ∙ version: '25'

 ∙ revision: 'A2'

 ∙ flash_addr: 0�00000000

 ∙ flash_size: 0�00100000

◆ Prepare

 ‣ openssl x509 -outform der -in ./temp/pai_cert.pem -out ./temp/pai_cert.der

◆ Loading Generator Firmware

 ‣ commander flash ./images/efr32mg12.s37 --serialno 440292679

▪ Open SERIAL connection 440292679 to efr32mg12p332f1024gl125

Init:

 ∙ addr:000ff800, page:2048

◆ Credentials: CSR

CSR, key:1, len:391

�����BEGIN CERTIFICATE REQUEST�����

MIHqMIGOAgEAMCwxKjAoBgNVBAMMIVNpbGFicyBEZXZpY2UgTXZpZDoxMDQ5IE1w

aWQ6ODAwNTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABBiaLc2VN15CDtv1EVGQ

iv5jSchjW2f8cx56rc4tq6/LY9COnZoAmj2fNrHonD60GO78bXJ+ka42/Uaxyecq

/wWgADAMBggqhkjOPQQDAgUAA0kAMEYCIQCrfnIrRWirEy0dP9ybK78Ty0G3mCFf

UmYFbvFb4LpcTgIhALd+70nQO/zKdipBmHscHZ9PN7UyjcflMZa5L7WzzC4l

�����END CERTIFICATE REQUEST�����

◆ Credentials: DAC

◆ Sign

∙ serial number: 41449

 ‣ openssl x509 -sha256 -req -days 18250 -extensions v3_ica -extfile ./csa_openssl.cnf -set_serial 41449 �CA ./temp/pai_cert.der �CAkey

./temp/pai_key.der �CAform DER �CAkeyform DER -in ./temp/csr.pem -outform der -out ./temp/dac_cert.der

◆ Credentials: Write

Import(DAC):

 ∙ key:1, off:0�0, size:453

Import(PAI):

 ∙ key:1, off:0�200, size:460

Import(CD):

 ∙ key:1, off:0�400, size:243

◆ Credentials: silabs_creds.h (legacy)

◆ Write Factory Data

Setup:

 ∙ passcode: 0�5abcdef

 ∙ discriminator: 0xe9a

 ∙ uid: b3d79923b02237dd75903fdf553c887d

 ∙ payload: 488228004440d3df9b570b

◆ Write app

 ‣ commander flash ../out/lighting-app/BRD4162A/matter-silabs-lighting-example.hex --serialno 440292679

You can see in the provisioning tool output the Payload Setup

Test Matter Certificates for Development

258/362

Setup:

∙ passcode: 0�5abcdef

∙ discriminator: 0xe9a

∙ uid: b3d79923b02237dd75903fdf553c887d

∙ payload: 488228004440d3df9b570b

Matter Commissioning - Using MatterHub �RaspberryPi)

Start a Thread Network

mattertool startThread

This will provide you with the Thread Network Dataset.

mattertool pairing ble-thread 1111

hex:0e080000000000000000000300000b35060004001fffe00208dead00beef00cafe0708fddead00beef000005106dab1ff61b8a77e5795876fda

 0�5ABCDEF 0xd02 --paa-trust-store-path /home/ubuntu/temp

Where:

1111 is the Node Id that will be assigned to the MAD being commissioned

hex:0e080000000000000000000300000b35060004001fffe00208dead00beef00cafe0708fddead00beef000005106dab1ff61b

is the dataset of the thread network created

0x5ABCDEF is the passcode

0xd02 is the discriminator

/home/ubuntu/temp/ is the folder where the corresponding PAA is located in the Commissioner.

Matter Commissioning

259/362

Matter Commissioning

Commissioning

Overview

The commissioning process supports two potential starting points:

 The device is already on the network

 The device needs network credentials for Wi-Fi or Thread (requires Bluetooth LE (BLE) support)

The current Matter revision supports Ethernet, Wi-Fi, and Thread devices.

Ethernet devices get into the operational network when their Ethernet cable is connected. Therefore the devices are

normally already on the network before commissioning.

Wi-Fi and Thread devices must have credentials configured before the devices can be joined into the operational network.

This is normally done over BLE.

This page focuses on Wi-Fi and Thread. The first step for these devices is to enter commissioning mode, following one of

two scenarios:

Scenario

Name
Description

Standard Device automatically goes into the commissioning mode on power-up. Beneficial for limited UI devices (such

as light bulbs)

User-

Directed

Device only enters commissioning mode when initiated by the user. Helpful for devices that have user

interfaces or for which commissioning should not be initiated without a user present.

The following figure provides an overview of the commissioning process and the actions each role performs.

Example Commissioning Flow

Matter Commissioning

260/362

In step 1, the Matter device must enter commissioning mode in one of the two scenarios described above.

Usually, a mobile phone serves as the administrator. Step 2 is to use the mobile phone to scan the QR code of the Matter

device. The QR code is used as a passcode to set up a secured BLE connection.

Step 3 is to set up the BLE beaconing and connection between the mobile phone and the Matter device, so that the

commissioning information can be exchanged through the BLE connection channel.

As the connection should be secure, step 4 is to secure the connection in a process known as password-authenticated

session establishment (PASE). The passcode derived from the QR code is used as an input for this process. The output is

the security key used by the connection.

After the secured connection is established, step 5 is to verify the Matter device's manufacturer certificate and compliance

status. Each Matter device must have a device certificate programmed before it is shipped. The mobile phone, acting as

administrator, reads the device certificate through the commissioning channel, then communicates with a remote database

to validate the certificate and the compliance status of the device. The remote database is called the Distributed

Compliance Ledger (DCL).

Step 6 is to install the operational certificate for the device. The administrator either obtains the certificate from the

remote server or generates the certificate locally and then transfers the certificate to the device. The administrator also

Matter Commissioning

261/362

configures the Access Control List (ACL) with the list of administrators.

After operational security is configured, step 7 is to configure the operational network for the device. For Wi-Fi devices, the

SSID and the password are configured. For Thread devices, the PAN ID, network key, and other parameters are configured.

In step 8, the device starts to join the operational network with the configured parameters.

Once the device is attached to the network (step 9), it can be discovered through Service Registration Protocol (SRP). To

control that device, you must establish a secured connection through the Certification Authorized Session Establishment

(CASE) process.

After the CASE session is established, the Matter device is commissioned successfully and can communicate with other

devices in the Matter network (step 10).

Matter Intermittently Connected Devices �ICD�

262/362

Matter Intermittently Connected Devices �ICD�

Matter Intermittently Connected Devices �ICD�
Matter introduces the concept of Intermittently Connected Devices (ICD) in the SDK and in the specification. An

Intermittently Connected Device is the Matter representation of a device that is not always reachable. This covers battery-

powered devices that disable their underlying hardware when in a low-power mode or devices that can be disconnected

from the network, like a phone app.

This page focuses on features designed to improve the performance and reliability of battery-powered devices. Matter ICD

functionality can be enabled with the matter_icd component.

Configuration

To change default values corresponding to Matter ICD examples, modify them in either:

 config/sl_matter_icd_config.h

 ICD component configurator

ICD Device Types

Matter introduces two types of ICDs.

Short Idle Time ICDs

Long Idle Time ICDs

Short Idle Time ICDs

Short Idle Time ICDs are battery powered devices that can always be reached by clients. This means that their polling

intervals are small enough to guarantee that a message sent from a client will be able to reach the ICD without any

Matter Intermittently Connected Devices �ICD�

263/362

synchronization. A door lock, for example, is typicaly a short idle time ICD because it needs to be able to receive

commands from clients at any given time. These devices are usually not the initiators in the communication flow.

Long Idle ICDs

Long Idle Time ICDs are battery powered devices that require synchronization between the client and the ICD for

communication to succeed. A sensor device is an example of a device that are typicaly long idle time ICDs.

Long Idle Time ICDs are provisionnal with the Matter 1.2 release.

ICD Management Cluster

The ICD Management Cluster enables configuration of the ICD’s behavior. It is required for an ICD to have this cluster

enabled on endpoint 0.

The ICDM Cluster exposes three configuration attributes that enable to configure an ICD.

Attribute Type Constraints Description

IdleModeInterval uint32 1 to 64800 Maximum interval in seconds or milliseconds the server can stay in idle

mode

ActiveModeInterval uint32 min 300 minimum interval in milliseconds the server will stay in active mode

ActiveModeThreshold uint32 min 300 minimum amount of time in milliseconds the server typically will stay active

after network activity when in active mode

These configurations can be changed by modifying the values within sl_matter_icd_config.h or within the settings of the

matter_icd component.

 #define SL_IDLE_MODE_INTERVAL = 600 // 10min Idle Mode Interval

 #define SL_ACTIVE_MODE_INTERVAL = 1000 // 1s Active Mode Interval

 #define SL_ACTIVE_MODE_THRESHOLD = 500 // 500ms Active Mode Threshold

Subscription Maximum Interval

The subscription mechanism is used by ecosystems and controllers to receive attribute change updates and liveness

checks. The maximum interval of a subscription request is what defines the frequency at which a device will send a liveness

check if there are no attribute changes.

Within the subscription request / response model, a device has the opportunity to decide the maximum interval at which it

will send its liveness check (Empty Report Update). The device can set a maximum interval within this range if and only if it

is an ICD:

MinIntervalRequested ≤ MaxInterval ≤ MAX�IdleModeInterval, MaxIntervalRequested)

The following table shows the subscribe response fields.

Action Field Type Description

SubscriptionId uint32 identifies the subscription

MaxInterval uint16 the final maximum interval for the subscription in seconds

Maximum Interval Negotiation

The Matter SDK provides a default implementation that allows an ICD to negotiate its MaxInterval. The goal of the algorithm

is to set the MaxInterval to the IdleModeInterval.

#if CHIP_CONFIG_ENABLE_ICD_SERVER

// Default behavior for ICDs where the wanted MaxInterval for a subscription is the IdleModeInterval

// defined in the ICD Management Cluster.

// Behavior can be changed with the OnSubscriptionRequested function defined in the application callbacks

Matter Intermittently Connected Devices �ICD�

264/362

// Default Behavior Steps :// If MinInterval > IdleModeInterval, try to set the MaxInterval to the first interval of IdleModeIntervals above the//

MinInterval.// If the next interval is greater than the MaxIntervalCeiling, use the MaxIntervalCeiling.// Otherwise, use IdleModeInterval as

MaxInterval// GetPublisherSelectedIntervalLimit() returns the IdleModeInterval if the device is an ICD

 uint32_t decidedMaxInterval =GetPublisherSelectedIntervalLimit();// Check if the PublisherSelectedIntervalLimit is 0. If so, set

decidedMaxInterval to MaxIntervalCeilingif(decidedMaxInterval ==0){

 decidedMaxInterval = mMaxInterval;}// If requestedMinInterval is greater than the IdleT imeInterval, select next active up time as max

intervalif(mMinIntervalFloorSeconds > decidedMaxInterval){

 uint16_t ratio = mMinIntervalFloorSeconds / static_cast<uint16_t>(decidedMaxInterval);if(mMinIntervalFloorSeconds % decidedMaxInterval){

 ratio++;}

 decidedMaxInterval *= ratio;}// Verify that decidedMaxInterval is an acceptable value (overflow)if(decidedMaxInterval >

System::Clock::Seconds16::max().count()){

 decidedMaxInterval = System::Clock::Seconds16::max().count();}// Verify that the decidedMaxInterval respects

MAX�GetPublisherSelectedIntervalLimit(), MaxIntervalCeiling)

 uint16_t maximumMaxInterval = std::max(GetPublisherSelectedIntervalLimit(), mMaxInterval);if(decidedMaxInterval > maximumMaxInterval){

 decidedMaxInterval = maximumMaxInterval;}// Set max interval of the subscription

 mMaxInterval = static_cast<uint16_t>(decidedMaxInterval);

#endif // CHIP_CONFIG_ENABLE_ICD_SERVER

If the default implementation does fit within the use-case, an implementation can override the default implementation. The

first step is to implement the ApplicationCallback class from the ReadHandler.h header.

/*

 * A callback used to interact with the application.

 */

class ApplicationCallback

{

public:

 virtual ~ApplicationCallback() = default;

/*

 * Called right after a SubscribeRequest has been parsed and processed. This notifies an interested application

 * of a subscription that is about to be established. It also provides an avenue for altering the parameters of the

 * subscription (specifically, the min/max negotiated intervals) or even outright rejecting the subscription for

 * application-specific reasons.

 *

 * TODO� Need a new IM status code to convey application-rejected subscribes. Currently, a Failure IM status code is sent

 * back to the subscriber, which isn't sufficient.

 *

 * To reject the subscription, a CHIP_ERROR code that is not equivalent to CHIP_NO_ERROR should be returned.

 *

 * More information about the set of paths associated with this subscription can be retrieved by calling the appropriate

 * Get* methods below.

 *

 * aReadHandler: Reference to the ReadHandler associated with the subscription.

 * aSecureSession: A reference to the underlying secure session associated with the subscription.

 *

 */

 virtual CHIP_ERROR OnSubscriptionRequested(ReadHandler & aReadHandler, Transport::SecureSession & aSecureSession)

{

return CHIP_NO_ERROR;

}

/*

 * Called after a subscription has been fully established.

 */

 virtual void OnSubscriptionEstablished(ReadHandler & aReadHandler){};

/*

 * Called right before a subscription is about to get terminated. This is only called on subscriptions that were terminated

 * after they had been fully established (and therefore had called OnSubscriptionEstablished).

 * OnSubscriptionEstablishment().

 */

 virtual void OnSubscriptionTerminated(ReadHandler & aReadHandler){};

};

Matter Intermittently Connected Devices �ICD�

265/362

The second step is registering the callback object to the Interaction Model Engine.

// Register ICD subscription callback to match subscription max intervals to its idle time interval

chip::app::InteractionModelEngine::GetInstance()->RegisterReadHandlerAppCallback(&mICDSubscriptionHandler);

Persistent Subscriptions

Persistent subscriptions were added to Matter as a means to ensure that an ICD can re-establish its subscription and by

extension its secure session to a subscriber in the event of a power cycle. When a device accepts a subscription request,

it will persist the subscription. When the device reboots, it will try to re-establish its subscription with the subscriber. If the

subscription is torn down during normal operations or if the re-establishment fails, the subscription will be deleted.

Persistent subscriptions are enabled by default on all S ilicon Labs sample applications.

Subscription Timeout Resumption

Matter also provides a retry mechanism for devices to try to re-establish a lost subscription with a client. This functionality

is provided by the component matter_subscription_timeout_resumption . This feature should not be used on an ICD since it can

significantly reduce battery life.

This feature is enabled by default on all examples with the exception of the door-lock and light-switch example.

Subscription Synchronization

To avoid forcing an ICD to become active multiple times, the Matter SDK allows an ICD to synchronize its subscription

reporting and send all the reports at the same time. The mechanism synchronizes the maximum interval of all subscriptions

to only require the ICD to become active once. This functionality is provided by component

matter_subscription_synchronization .

This feature is enabled by default on the door-lock sample app and the light-switch sample application.

Matter OpenThread ICD Device

266/362

Matter OpenThread ICD Device

Matter Intermittently Connected Devices over
OpenThread
This page explains how Matter OpenThread Intermittently Connected Devices (ICDs) work and how to configure an ICD

example.

Overview

Matter provides an Intermittently Connected Device (ICD) operating mode to extend the battery life of power-limited

devices. The Matter ICD manager leverages subscription report synchronization and OpenThread functionalities to allow

devices to sleep for set periods without disrupting their Matter sessions.

Currently, in Matter v1.2, only ICD with Short Idle Time (SIT) is supported. ICD SIT are devices that SHOULD be configured

with a S low Polling Interval shorter than or equal to 15 seconds. For example, in a typical scenario for door locks and

window coverings, commands need to be sent to the ICD with a use-case imposed latency requirement. Typically, devices

that are Short Idle Time ICDs are not initiators in the communication flow.

Operating Modes

ICDs have two operating modes: Idle and Active. An ICD alternates normally between the Idle mode and Active mode based

on the IdleMode Interval and ActiveMode Interval respectively.

When the device is in Active Mode, the ICD is set into a fast-polling interval for maximum responsiveness. The

CHIP_DEVICE_CONFIG_ICD_FAST_POLL_INTERVAL parameter communicates the maximum sleep interval of a node in active mode.

Any of the following device states will start or keep the ICD in Active Mode:

A commissioning window is open

An exchange context is awaiting a response or ack

The fail-safe is armed

Any of the following events can trigger the start of the Active Mode interval or extend it by one ActiveModeThresho ld :

A message needs to be sent

A message was received

An implemented user action occurred

Once the active mode is triggered, the ICD stays in this mode for a minimum duration of ActiveMode Interval When the active

interval has elapsed and none of the aforementioned states are active, the device will switch its operating mode to the Idle

Mode.

In Idle mode, the ICD will poll its associated router at its slow-polling interval to see if another device has tried to

communicate with it while it was sleeping. If no event occurs, the ICD stays in its idle mode for the entirety of the

IdleMode Interval . The CHIP_DEVICE_CONFIG_ICD_SLOW_POLL_INTERVAL parameter communicates the slow-polling interval and

therefore the maximum sleep interval of the node in idle mode. This parameter affects both the minimum power

consumption and maximum latency.

Thread Communication

Matter OpenThread ICD Device

267/362

In order to receive messages that were sent while the ICD was sleeping, the ICD relies on its associated Thread router

which buffers any incoming messages. The Thread router will send all buffered messages to the ICD when it polls the router

at the end of its slow-polling interval.

Configuration

Matter exposes some defines to configure the polling intervals of the OpenThread stack in both Idle and Active modes.

Parameter

Name
Define Description

Default

Value

Maximum Allowed

Value

S lowPollInterval CHIP_DEVICE_CONFIG_ICD_SLOW_POLL_INTERVAL

(SL_OT_IDLE_INTERVAL)

Interval, in

milliseconds, at

which the thread

radio will poll its

network in idle

mode.

15000

ms

<=

IdleModeInterval

FastPollInterval CHIP_DEVICE_CONFIG_ICD_FAST_POLL_INTERVAL

(SL_OT_ACTIVE_INTERVAL)

Interval, in

milliseconds, at

which the thread

radio will poll its

network in active

mode.

200 ms <

ActiveModeInterval

For Matter configuration, see the Matter ICD documentation.

Building

Enabling/Building

 To begin creating an OpenThread ICD example, create a generic Matter over Thread example via the New Project Wizard.

Lighting example will be used for demonstration purposes. Lock and Light-Switch applications come out-of-box with ICD

enabled.

https://docs.silabs.com/matter/2.2.0/matter-overview-guides/matter-icd#Configuration

Matter OpenThread ICD Device

268/362

 Once the project is generated, navigate to the software components section and install the Matter ICD component. Replace

all subsequent conflicting components via the ensuing pop-up options (See below). This will install the necessary Thread

Network Layer (MTD) component and ICD source code. This will also remove the conflicting Thread Network Layer (FTD)

component.

Matter OpenThread ICD Device

269/362

 ICD functionality should be installed and ready to build. Build the project as you would a normal example and flash the

resulting binary to your specified end device. You should be able to commission the device the same way as non-ICD

examples using the QR code URL (generated within the RTT logs at startup/BTN0 press).

Minimal Power Consumption

The Lower Power Mode component is optional for low-power builds with the component matter_platform_low_power .

The Lower Power Mode component will disable:

Matter OpenThread ICD Device

270/362

Matter Shell

OpenThread CLI

LCD and QR Code

Matter Serial Port Communication �Matter Shell)

271/362

Matter Serial Port Communication �Matter Shell)

Serial Port Communication on the Silicon Labs
Platform
The matter-shell exposes the configuration and the management APIs via the matter command line interface (matter CLI).

This interface can be used to change the state of the device.

Hardware Requirements

To run matter shell on the S ilicon Labs Platform, refer to the Hardware Requirements.

Software Requirements

To run matter shell on the S ilicon Labs Platform, refer to the Software Requirements.

Execute Matter Shell on Silicon Labs Platform

 Download and Install S implicity Studio.

 To install the software packages for S implicity Studio, refer Software Package Installation.

 Log in to S implicity Studio and connect the EFR32MG2x or S iWx917 SOC board to the computer.

 Go to the All Products section.

 Type and Select the radio board from the displayed list and select Start.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements
https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-software-packages

Matter Serial Port Communication �Matter Shell)

272/362

 The Launcher page will display the selected radio board's details.

 Verify the following in the General Information section:

The Debug Mode is Onboard Device (MCU).

The Preferred SDK is the version you selected earlier.

Matter Serial Port Communication �Matter Shell)

273/362

 Open the Example Projects and Demos tab and create a project for Matter Lock Application.

Matter Serial Port Communication �Matter Shell)

274/362

 In the New Project Wizard window, click Finish.

Matter Serial Port Communication �Matter Shell)

275/362

 After creation of project, open the Software Components tab and in search bar type Matter Shell and install it.

Matter Serial Port Communication �Matter Shell)

276/362

 Build the project after enabling Matter Shell component.

 After a successful build, commission the device as described in Commission Matter Platform.

 For S iWx917 SOC Connect the TTL cables with Radio Board to execute Matter Shell.

Note:- For EFR32MG2x Devices TTL Cable support is not required.

 Open Tera Term and under New Connection, under Serial Port, select JLink port and click OK.

https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/use-case-execution#creating-the-matter-network

Matter Serial Port Communication �Matter Shell)

277/362

 Click on Setup from Menu bar and change the value to 115200 under Speed category, then click on New setting.

 Inside Terminal Set the below values and click OK.

Terminal S ize : 80 * 24

New-Line

Receive : CR+LF

Transmit : CR+LF

Matter Serial Port Communication �Matter Shell)

278/362

 Click on File from Menu bar again, select Serial Port option.

 Increase the speed to 115200 and click on New setting.

Matter Serial Port Communication �Matter Shell)

279/362

 Click on File from Menu bar, select TTY Record. Create any empty file with extension " .tty " and click on save.

Matter Serial Port Communication �Matter Shell)

280/362

 After creating tty file just click on Enter button from Keyboard then it will show you matterCli terminal.

 Send any command through matterCli terminal, from the below list of commands:

doorlock event door-state-change "DoorState"

Door State List

DoorOpen = 0

DoorClosed = 1

DoorJammed = 2

DoorForcedOpen = 3

DoorUnspecifiedError = 4

DoorAjar = 5

doorlock event lock-alarm "AlarmCode"

Alarm Code List

LockJammed = 0

LockFactoryReset = 1

LockRadioPowerCycle = 3

WrongCodeEntryLimit = 4

FrontEsceutcheonRemoved = 5

DoorForcedOpen = 6

DoorAjar = 7

ForcedUser = 8

onboardingcodes ble, command will show QR Code.

Matter Serial Port Communication �Matter Shell)

281/362

 After changing DoorState and AlarmCode in matterCli, run the commands below using chip-tool on Raspberry PI to verify the

event.

To Read Door State

./chip-tool doorlock read-event door-state-change "node_ id" "endpoint"

To Read Alarm Code

./chip-tool doorlock read-event door-lock-alarm "node_ id" "endpoint"

Note: Type help in matterCli terminal for more information about supported features.

Matter SLC CLI Setup and Build Instructions

282/362

Matter SLC CLI Setup and Build Instructions

Creating Matter Applications using SLC CLI
The S ilicon Labs Configurator (SLC) offers command-line access to application configuration and generation functions.

Software Project Generation and Configuration with SLC-CLI provides a complete description and instructions on

downloading and using the SLC-CLI tool.

This guide lists the steps to create and build a S ilicon Labs Matter SLC project using SLC-CLI and make . These scripts are

evaluation quality and have been verified to work on Ubuntu 22.04.3 LTS, MacOS Version 13.5.1, and Windows 10.

Setting up the Environment

Clone Gecko SDK:

git clone https://github.com/SiliconLabs/gecko_sdk.git

Create a directory named extension inside the Gecko SDK directory.

Clone the Matter GSDK Extension inside the extension directory:

git clone https://github.com/SiliconLabs/matter_extension.git

Your path to the Matter extension should look like

<Path/To/Gsdk/Download>/extension/matter_extension

Install the following python packages:

pip3 install dload

Change directory to cloned extension directory and run the sl_setup.py script. This will install the ARM gcc toolchain, SLC-

CLI, ZAP, S implicity-commander, and Java.

For Mac and Linux:

cd extension/matter_extension

python3 slc/sl_setup_env.py

For Windows:

cd extension\matter_extension

python slc\sl_setup_env.py

The sl_setup_env.py script creates an .env file to be used to set the environment variables needed for the installed tools,

ARM toolchain, SLC-CLI, Java ZAP, S implicity-commander, and Java.

Creating an Application Project

https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

Matter SLC CLI Setup and Build Instructions

283/362

Run the sl_create_new_app.py script to create a BRD4161A project with name MyNewApp starting from the lighting-app-

thread.slcp example application project file:

The script will ask user permission to trust the gecko_sdk and matter_extension before generating.

For Mac and Linux:

python3 slc/sl_create_new_app.py MyNewApp slc/sample-app/lighting-app/efr32/lighting-app-thread.slcp brd4161a

For Windows:

python slc\sl_create_new_app.py MyNewApp slc\sample-app\lighting-app\efr32\lighting-app-thread.slcp brd4161a

Building an Application Project

After a project is created the sl_build.py script can be used to re-generate the MyNewApp project and build it:

For Mac and Linux:

python3 slc/sl_build.py MyNewApp/lighting-app-thread.slcp brd4161a

For Windows:

python slc\sl_build.py MyNewApp\lighting-app-thread.slcp brd4161a

Alternately, one can use SLC-CLI commands directly to generate the project and then use make to build it.

Windows users will need to install make in their system. You can use your own or follow these steps to get make .

 Install the MSYS terminal, which provides a Unix-like environment on Windows.

 Open the MSYS terminal and install make using the command pacman -S make .

 Run command where make , copy the path, and add it to the PATH environment variable.

 Restart your command line terminal and run slc/sl_build.py or run make directly. You might need to reboot.

Note: In rare cases, the build may fail due to missing files in the zap-generated/ directory. The workaround is to delete the

.zap folder in the home directory.

Modifying an Application Project

The resulting user project can be modified like any other SLC project: software components can be added or removed by

modifying the project's .slcp file, configuration can be applied by modifying the files in the config directory, the application

logic can be managed through the files in the src directory. Various SLC-CLI commands can be used to examine, validate,

or re-generate the project after a modification, see Software Project Generation and Configuration with SLC-CLI for more

information.

For modifying Matter endpoints and clusters invoke the ZAP tool passing to it the application's ZAP file:

./scripts/tools/zap/run_zaptool.sh MyNewApp/config/common/lighting-thread-app.zap

https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

Matter Solutions

284/362

Matter Solutions

Solutions

General

Matter solutions allow the user to generate multiple projects at once, to generate a combined solution/binary and allow

multiple post-build operations to provide flexibility and unison when developing a Matter example or application. For

example, with the Matter Lighting over Thread with Bootloader Solution a user can generate a Matter Bootloader, a Matter

Lighting example, and the combined Bootloader + Example production image. Solutions will also generate a .gbl binary for

the users to make use of and create an .ota software image update binary (directions listed below).

Solution Creation

To create a Matter Solution, proceed to the "Example Project Selection" section of S implicty Studio's "New Project Wizard".

On the left hand side, ensure "Example Projects" is turned off, "Solution Examples" is turned on, and "Matter" under the

"Technology" section is checked. Then, select for which application example you wish to create a project from.

Matter Solutions

285/362

Solution Building

Building via solutions behaves just like a normal project. Just ensure the top-level solution is selected and build! Artifacts

from the resulting projects can be found within the artifact directory under each distinct project within the solution.

Matter Solutions

286/362

OTA Creation

Due to certain limitations with the way our Matter examples are built within S implicity Studio, OTA file generation must be

conducted by the user via the command line.

To create an OTA file, first build a Matter example via solutions. Locate the resulting .gbl file within the artifact directory.

This will be used as an argument to the GBL creation script. Then, locate the directory that holds the Matter Extension

within the GSDK in S implicity Studio. The location should be similar to:

/Users/User/SimplicityStudio/SDKs/gecko_sdk/extension/matter_extension . Once found, open a terminal at this location and run

the command:

./src/app/ota_image_tool.py create -v 0xFFF1 -p 0�8005 -vn <SoftwareVersion> -vs <SoftwareVersionString> -da sha256

<PathToArtifactDirectory>/<GblFile> <PathToArtifactDirectory>/<ResultingOtaFileName>

Where SoftwareVersion and the SoftwareVersionString correspond to the

CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION and CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING

parameters the project has been compiled with. And where ResultingOtaFileName is the name of the OTA file you wish to

generate, PathToArtifactDirectory is the location of your artifact directory within your project, and GblFile is the name of the

GBL file that was produced after building the solution. The OTA file should now have been populated within the artifact

directory in S implicity Studio.

Matter OTA

287/362

Matter OTA

Matter OTA
The Over The Air (OTA) Software Update functionality is enabled by default for all of the EFR32 and S iWx917 example

applications. Its inclusion in an application is controlled by the OTA Requestor component in a Matter Studio project.

Matter OTA Bootloader

Matter OTA Software Update

Matter 917 SOC OTA Software Update

Matter OTA WiFi Project

Matter OTA Bootloader

288/362

Matter OTA Bootloader

Creating a Gecko Bootloader for Use in Matter OTA
Software Update
The Matter OTA Software Update functionality on EFR32 devices requires the use of a Gecko Bootloader built with correct

configuration parameters. The key parameters are the storage slot size and (in case of internal storage) storage slot

address. The current document lists the steps required to build the Gecko Bootloader for Matter OTA Update and discusses

the configuration parameter selection. For a detailed discussion of Gecko Bootloader refer to UG489: Silicon Labs Gecko
Bootloader User's Guide for GSDK 4.0 and Higher.

The Gecko Bootloader is built with S ilicon Labs S implicity Studio. These instructions assume that you have installed

S implicity Studio 5, the S implicity Commander tool (installed by default with S implicity Studio), the GSDK and associated

utilities, and that you are familiar with generating, compiling, and flashing an example application in the relevant version.

Bootloader Project In Studio

Creating the Project

In S implicity Studio click on Project->New->S ilicon Labs Project Wizard to create a new project. Select the correct Target

Board, SDK and the Toolchain.

In the next screen select the example project the bootloader will be based on. For a bootloader using external storage

select "Bootloader SoC SPI Flash Storage (single image with slot size of 1024K)". For a bootloader using internal storage

select "Bootloader - SoC Internal Storage (single image on 512kB device)"

Configuring Storage Components and Parameters

In the newly created project select the project's .slcp file, click the "Software Components" tab, and select Platform-

>Bootloader->Storage. In the Bootloader Storage S lot component (it should be already installed) configure S lot 0's Start

Address and S lot size.

For external storage bootloaders the Start Address should be 0 and S lot size should be 1048576 -- both values are set by

default

For internal storage bootloaders see the "Internal Bootloader: Image S ize, Selecting Storage S lot Address and S ize" section

below In the Common Storage component leave the "Start address of bootload info" at 0.

Configuring Other Components

It is recommended to install the "GBL Compression (LZMA)" component under Platform->Bootloader->Core: this allows the

bootloader to handle compressed GBL files. This component is required for internal storage bootloaders.

At this point the project contains all the components necessary to support the Matter OTA Software Update functionality.

Other components can now be added to support additional features such as Secure Boot. Refer to UG489: Silicon Labs
Gecko Bootloader User's Guide for GSDK 4.0 and Higher for the description of various Bootloader features and the steps to

enable them.

Building and Flashing the Bootloader

Build the project by clicking on the hammer icon in the Studio toolbar. Flash the bootloader to the board using the "Upload

Application" option from the Debug Adapters view.

Combined bootloader for MG12 boards

Matter OTA Bootloader

289/362

The MG12 boards (which are Series 1 EFR32 boards) require a combined bootloader image (first stage bootloader + main

bootloader) the first time a device is programmed -- whether during development or manufacturing. For subsequent

programming, if the combined bootloader had been previously flashed to the device use the regular version.

To create the combined bootloader follow this additional step (Step 6 in Section 6 of UG489: Silicon Labs Gecko
Bootloader User's Guide for GSDK 4.0 and Higher) before clicking the build icon: Right-click the project name in the Project

Explorer view and select Properties. In the C/C++ Build group, click Settings. On the Build Steps tab, in the Post Build Steps

Command field enter

$../postbuild.sh "$�ProjDirPath}" "$�StudioSdkPath}" "$�CommanderAdapterPackPath}"

Click Apply and Close. Three bootloader images will be generated into the build directory: a main bootloader, a main

bootloader with CRC32 checksum, and a combined first stage and main bootloader with CRC32 checksum. The main

bootloader image is called [project-name].s37, the main bootloader with CRC32 checksum is called [projectname]-crc.s37,

while the combined first stage image + main bootloader image with a CRC32 checksum is called [projectname]-

combined.s37.

Internal Bootloader: Image Size, Selecting Storage Slot Address and Size

The internal storage bootloader for Matter OTA Software Update is supported on MG24 boards only. In this use case both

the running image and the downloadable update image must fit on the internal flash at the same time. This in turn requires

that both images are built with a reduced feature set such as disabled logging and Matter shell (see here for the list of

features). Using LZMA compression when building the GBL file further reduces the downloaded image size.

When building an internal storage bootloader the two key configuration parameters are the S lot Start Address and S lot S ize

in the Bootloader Storage S lot component. The storage slot must not overlap with the running image and the NVM section

of the flash. In other words, the slot start address must be greater than the end of the running image address and the sum

of the start address and the slot size must be less than the address of the NVM section.

The simplest way to get the relevant addresses for the running image and NVM is by using the S implicity Commander tool:

Build the running image for the Matter application

Erase the chip and flash the running image to it (For example: use S implicity Studio's Debug Adapters view context menu to

flash the application image and some bootloader valid for the device board. Make sure to select the "Erase chip before

uploading image" option).

In S implicity Commander, select Device Info -> Flash Map. The blank area in the middle of the flash (between the running

image in the beginning and NVM at the end) is available for the bootloader storage slot. Each block represents a flash page

(8K on MG24 boards). Hovering the mouse over a block shows the block's start and end address.

Set the S lot Start Address to be the address of the first available block. Calculate the S lot S ize to be the difference

between the end address of the last free block and the S lot Start Address. The S lot S ize must be greater that the size of

the GBL file for the update image.

(Optional) It might be advisable to set the S lot Start Address to the beginning of the second or third available block to

account for potential growth of the application image -- this way the bootloader won't have to be reconfigured for every

increase in the image size. The storage slot must still be able to accommodate the GBL image for the update.

Another way to calculate the Storage S lot parameters is by examining the application's .map file:

Matter OTA Bootloader

290/362

Build the running image for the Matter application

In the application .map file find the highest address preceding the .data section, round it up to align on the 8K page boundary

(e.g. 0x00000000080f1704 would round up to 0x00000000080f2000) and then add 0x2000 get the next page block

address -- the result would be the S lot Start Address. The address of the .nvm section in the .map file is the end of the

space available for the Storage S lot. The S lot S ize is the difference of the .nvm address and the S lot Start Address.

Example

This example is for an internal storage bootloader for the Matter lighting app on BRD4186C.

Build the application in S implicity Studio after disabling all optional features such as the Matter QR Code, Matter Display,

Matter Shell, OpenThread CLI components.

Build the GBL file for the update image and note its size

$ commander gbl create --compress lzma ~/chip/connectedhomeip/out/lighting-app/BRD4186A/chip-efr32-lighting-example.gbl --app

~/chip/connectedhomeip/out/lighting-app/BRD4186A/chip-efr32-lighting-example.s37

$ ls -la out/lighting-app/BRD4186A/chip-efr32-lighting-example.gbl

451176 Jul 19 16�39 out/lighting-app/BRD4186A/chip-efr32-lighting-example.gbl

Flash the application image, bootloader. Erase the flash.

In S implicity Commander display the flash map

Matter OTA Bootloader

291/362

The address of the first available page is 0x080b8000, the end address of the last available block is 0x08172000. This

means you can set the S lot Start Address to 0x080b8000 and the S lot S ize to 761856 (761856 = 0x08172000 -

0x080b8000). The slot size is sufficient for our GBL file (451176 bytes)

Create a project base on the "Bootloader - SoC Internal Storage (single image on 512kB device)" example. Configure the

Bootloader Storage S lot component and set S lot Address and S lot S ize.

Matter OTA Bootloader

292/362

Enable the "GBL Compression (LZMA)" component.

Build the project

Matter OTA Software Update

293/362

Matter OTA Software Update

Matter OTA Software Update with Silicon Labs
Example Applications
This page outlines the steps for a scenario that demonstrates the The Over The Air (OTA) Software Update functionality in

Matter.

The Over The Air (OTA) Software Update functionality is enabled by default for all S ilicon Labs example applications. Its

inclusion in an application is controlled by the OTA Requestor component in a Matter Studio project.

Overview

The OTA Software Update scenario requires the following binaries:

OTA-A, the running image: a regular application built with the default/older software version value. This application will be

updated to the one with a higher software version. In the OTA Software Update process it acts as the OTA Requestor.

OTA-B, the update image: a regular application built with a higher software version value.

Chip-tool: the controller that announces the OTA-Provider's address to the application thus triggering the OTA Software

Update.

OTA-Provider: the server that carries the update image and from which the OTA Requestor will download the updated

software.

Bootloader: S ilicon Labs Gecko Bootloader image that supports OTA; supports the external (SPI-flash) or the internal

storage option.

Setting up the OTA Environment

Setting up chip-tool

The chip-tool binary is a part of the S ilicon Labs' Matter Hub Raspberry Pi Image available as a part of the Release

Artifacts page. If you are planning to run chip-tool on the Matter Hub you may skip the rest of this section.

If you have not downloaded or cloned this repository, you can run the following commands on a Linux terminal running on a

Mac, Linux, WSL or Virtual Machine to clone the repository and run bootstrap to prepare to build the sample application

images.

 To download the S iliconLabs Matter codebase, run the following commands.

 $ git clone https://github.com/SiliconLabs/matter.git

 Bootstrapping:

$ cd matter

$./scripts/checkout_submodules.py --shallow --recursive --platform efr32

$. scripts/bootstrap.sh

Create a directory where binaries will be updated/compiled called `out`

$ mkdir out

To control the Matter application you will have to compile and run the chip-tool on either a Linux, Mac, or Raspberry Pi. The

chip-tool builds faster on the Mac and Linux machines so that is recommended, but if you have access to a Raspberry Pi

that will work as well.

 Build the chip-tool

https://github.com/SiliconLabs/matter.git

Matter OTA Software Update

294/362

$ scripts/examples/gn_build_example.sh examples/chip-tool out/

Setting up OTA�Provider

The chip-ota-provider-app binary for a Raspberry Pi is a part of the Artifacts package available with the Matter Extension

release. If you are planning to run the OTA-Provider on a Raspberry Pi there is no need to build it.

To build the OTA-Provider app in Linux, run the following command in a Matter repository:

$ scripts/examples/gn_build_example.sh examples/ota-provider-app/linux out chip_config_network_layer_ble=false

Building Application Images Using Simplicity Studio

The running image and the update image are regular Matter application images and are built using the standard procedure.

The only additional configuration required is the use of a higher software version in the update image. See the following

document for detailed steps: build OTA application using studio.

Obtaining the Bootloader binary

Build or download the Gecko Bootloader binary which can be obtained in one of the following ways:

Follow the instructions in Creating the Bootloader for Use in Matter OTA

Pre-built binaries (only valid for the external SPI-flash storage OTA update) are available on the Matter Artifacts page.

Bootloader (only valid for the external SPI-flash storage OTA update) project can be built as a part of any Matter Solution

in Studio

Using the commander tool or S implicity Studio, upload the bootloader to the device running the application.

Running the OTA Download Scenario

Create a bootable image file (using the Lighting application image as an example):

$ commander gbl create chip-efr32-lighting-example.gbl --app chip-efr32-lighting-example.s37

Create the Matter OTA file from the bootable image file:

$ commander ota create --type matter --input chip-efr32-lighting-example.gbl --vendorid 0xFFF1 --productid 0�8005 --swstring "2.0" --

swversion 2 --digest sha256 -o chip-efr32-lighting-example.ota

In a terminal start the Provider app and pass to it the path to the Matter OTA file created in the previous step:

$ rm -r /tmp/chip_kvs_provider

./out/chip-ota-provider-app ��KVS /tmp/chip_kvs_provider -f chip-efr32-lighting-example.ota

In a separate terminal run the chip-tool commands to provision the Provider:

$./out/chip-tool pairing onnetwork 1 20202021

$./out/chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": �112233�, "targets": null}, {"fabricIndex":

1, "privilege": 3, "authMode": 2, "subjects": null, "targets": null}]' 1 0

For Matter over OpenThread, bring up the OpenThread Border Router and get its operational dataset, for Matter over WiFi

bring up the AP.

If the application device had been previously commissioned, hold Button 0 for six seconds to factory-reset the device.

Commission the device. For Matter over OpenThread:

$./out/chip-tool pairing ble-thread 2 hex:<operationalDataset> 20202021 3840

where operationalDataset is obtained from the OpenThread Border Router.

For Matter over WiFi:

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/matter-artifacts

Matter OTA Software Update

295/362

 ./out/chip-tool pairing ble-wifi "node_id" "SSID" "PSK" 20202021 3840

Once the commissioning process completes enter:

$./out/chip-tool otasoftwareupdaterequestor announce-otaprovider 1 0 0 0 2 0

The application device will connect to the Provider and start the image download. Once the image is downloaded the device

will reboot into the downloaded image.

Internal Storage Bootloader

Internal storage bootloader for Matter OTA software update is supported on MG24 boards only. In this use case both the

running image and the downloadable update image must fit on the internal flash at the same time. This in turn requires that

both images are built with a reduced feature set, such as disabled logging and Matter shell. See Creating the Bootloader for

Use in Matter OTA for more details.

Installing the Lower Power Mode component in the project's Software Components tool in Studio will uninstall the following

optional components and reduce the image size:

 Matter QR Code Display,

 Matter Display,

 Matter Shell,

 OpenThread CLI.

Disabling logging in the configuration of the Matter Core Components component also helps to reduce the image size.

Using LZMA compression when building the .gbl file (passing --compress lzma parameter to the commander gbl create

command) further reduces the downloaded image size.

When building an internal storage bootloader the two key configuration parameters are the S lot Start Address and S lot S ize

in the Bootloader Storage S lot component. The storage slot must not overlap with the running image and the NVM section

of the flash. In other words, the slot start address must be greater than the end of the running image address and the sum

of the start address and the slot size must be less than the address of the NVM section. The simplest way to get the

relevant addresses for the running image and NVM is by using the S ilicon Labs Simplicity Commander (Device Info->Main

Flash->Flash Map).

The pre-built bootloader binaries are configured with slot start address of 0x080EC000 and slot size of 548864

Managing the Software Version

In order for the Provider to successfully serve the image to a device during the OTA Software Update process the

Software Version parameter that the .ota file was built with must be greater than the

CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION parameter set in the application's sl_matter_config.h file which is a

config file for the Matter Core Components component in the Matter Studio project. The Software Version parameter is set

by the -vn parameter passed to the commander ota create command. For example, if the application's running image was

built with CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION set to 1 and if the .ota file is built with -vn 2 then the

Provider will serve the update image when requested.

In order for the OTA Software Update subsystem to consider an update to be successful and for the NotifyUpdateApplied

command to be transmitted the CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION in the updated image must exceed

the software version of the running image (continuing the above example, the image for the update must be built with

CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION set to 2).

Managing the Vendor and Product ID

Starting the ota-provider-app with the --otaImageList command line option allows the user to supply a JSON file specifying

the Software Version, Vendor and Product ID that identify the image served by the Provider, see the ota-provider-app for

Linux in examples directory.

Matter OTA Software Update

296/362

Example provider configuration file:

{ "foo": 1, // ignored by parser

"deviceSoftwareVersionModel":

[

{

"vendorId": 65521, "productId": 32773, "softwareVersion": 1, "softwareVersionString": "1.0.0", "cDVersionNumber": 18,

"softwareVersionValid": true, "minApplicableSoftwareVersion": 0, "maxApplicableSoftwareVersion": 100, "otaURL": "chip-efr32-lighting-example.ota"

}

]

}

Additional Info

Developers can find more resources on S ilicon Labs Matter Community Page.

https://community.silabs.com/s/article/connected-home-over-ip-chip-faq?language=en_US

Matter 917 SOC OTA Software Update

297/362

Matter 917 SOC OTA Software Update

Matter OTA For 917 SOC
The scope of this page describes the MATTER OTA upgrade on 917 SoC mode for combined image(TA+M4) as well as

single M4 and TA image upgrade.

Hardware Requirements

To run matter ota on S ilicon Labs Platform, refer to Hardware Requirements.

Software Requirements

To run matter ota on S ilicon Labs Platform, refer to Software Requirements.

Setting up OTA Environment

To run OTA on Matter over Wi-Fi, Need to build two different application below:

OTA-A is a normal application with default or older software version. It acts as ota-requestor where it needs to update

latest software version.

OTA-B is a normal application with updated software version.

Chip-tool is a controller for sending commands to ota-requestor to update the software version and receving commands

from device.

OTA-Provider is the server who has the latest software version and from which ota-requestor will download the updated

software.

Building OTA Application Using Simplicity Studio For 917 SOC

To create and build Matter OTA using S implicity Studio, refer to build OTA application using S implicity Studio.

Combined Image Upgrade

For 917 SoC, storing a single Matter combined upgrade image(TA+M4) and then providing sample code that can transfer the

image to the co-processor and rewrite the 917 firmware as well as M4 firmware Image then boot loading with the upgraded

TA processor image and the M4 processor image.

Host will initiate OTA download to receive combined image (TA+M4) on to host. Host will store M4 and TA image on flash

backup location.

Use Case Of OTA

Combined image will be created and uploaded onto Raspberry Pi which provides the firmware image chunk by chunk to the

device.

Host will initiate the OTA download and provider app will start the OTA image transfer.

Host will receive combined image and host will transfer the M4 and TA firmware images on to TA chunk by chunk, TA will

write the TA image onto TA flash backup location.

Once both images are downloaded, the device will reboot into the downloaded image.

Create Combined �TA�M4� Firmware Image

The first step is to create a combined Image that contains both the firmware (TA & M4).

This image is created by combining the binary images of both images.

https://docs.silabs.com/matter/2.2.0/matter-prerequisites/hardware-requirements
https://docs.silabs.com/matter/2.2.0/matter-prerequisites/software-requirements

Matter 917 SOC OTA Software Update

298/362

For Matter OTA file, create a bootable image file (using the Lighting application image as an example) and then create the

Matter OTA file from the bootable image file using commands provided below.

Once combined image .ota file is created , the same will be uploaded onto raspberry pi where OTA provider application is

running.

Generating The Combined OTA image

Create TA image (.rps) with combined image flag set by using command.

commander rps convert <ta_image_combined.rps> --taapp <ta_image.rps> --combinedimage

Create M4 .rps file from .s37 using below command.

- commander rps create <m4_image.rps> --app <m4_image.s37>

Create M4 (.rps) with combined image flag set by using command.

commander rps convert <m4_image_combined.rps> --app <m4_image.rps> --combinedimage

Create combined image from the above created TA and M4 images.

commander rps convert "combined_image.rps" --app "m4_image_combined.rps" --taapp "ta_image_combined.rps"

Create the Matter OTA file from the bootable image file.

./src/app/ota_image_tool.py create -v 0xFFF1 -p 0�8005 -vn 2 -vs "2.0" -da sha256 combined_image.rps combined_image.ota

Note: For TA(alone) OTA firmware upgrade, follow the same steps as combined image

Running OTA Provider

Locate ota-provider terminal. Run the Provider app along with the Matter OTA file created in the previous step.

 rm -r /tmp/chip_*

 ./out/debug/chip-ota-provider-app -f combined_image.ota

Setting Up OTA�Requestor

Before running ota-requestor app, flash the bootloader binary images for S ilicon Labs Devices.

Running OTA�Requestor

Enhancements to the Wi-Fi sdk IOT firmware upgrade application for MATTER OTA combined firmware application.

 In a separate terminal, locate the chip-tool and ota-requestor and run the chip-tool commands to provision the Provider.

 ./out/chip-tool pairing onnetwork 1 20202021

 ./out/chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": �112233�, "targets": null}, {"fabricIndex":

1, "privilege": 3, "authMode": 2, "subjects": null, "targets": null}]' 1 0

 If the application device had been previously commissioned, hold Button 0 for six seconds to factory-reset the device.

 In the chip-tool terminal, commission the Device by passing below command.

 ./out/chip-tool pairing ble-wifi "node_id" "SSID" "PSK" 20202021 3840

where SSID and PSK are AP username and password.

 Once the commissioning process completes in the same terminal, run below requestor command to start downloading the

image.

Matter 917 SOC OTA Software Update

299/362

 ./out/chip-tool otasoftwareupdaterequestor announce-ota-provider 1 0 0 0 2 0

The application device will connect to the Provider and start the image download. Once the image is downloaded, the device

will reboot into the downloaded image.

Note: once image download is done, disconnect jlink. it will reboot automatically with new image.

Matter Software Update with SOC M4 Example Applications

Host will initiate OTA download to receive M4 image on to host. Host will store M4 image on flash backup location.

Use Case M4(alone) OTA

OTA image will be created and uploaded onto Raspberry Pi which provides the firmware image chunk by chunk to the device.

Host will initiate the OTA download, and provider app will start the OTA image transfer.

Host will receive M4 image and host will transfer the M4 image on to flash chunk by chunk.

TA will write the M4 image onto flash backup location.

Once image is downloaded, the device will reboot into the upgraded M4 image.

Generating The M4 OTA image

Create M4 (.s37) image to (.rps) image using below command.

 commander rps create <m4_image.rps> --app <m4_image.s37>

Create the Matter OTA file from the bootable image file

 ./src/app/ota_image_tool.py create -v 0xFFF1 -p 0�8005 -vn 2 -vs "2.0" -da sha256 m4_image.rps m4_image.ota

Running OTA Provider

Locate ota-provider terminal, Run the Provider app along with the Matter OTA file created in the previous step.

 rm -r /tmp/chip_*

 ./out/debug/chip-ota-provider-app -f m4_image.ota

Setting Up OTA�Requestor

Before running ota-requestor app, flash the bootloader binary images for S ilicon Labs Devices.

Running OTA�Requestor

Enhancements to the Wi-Fi sdk IOT firmware upgrade application for matter OTA combined firmware application.

 In a separate terminal, locate the chip-tool and ota-requestor, and run the chip-tool commands to provision the Provider.

 ./out/chip-tool pairing onnetwork 1 20202021

 ./out/chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": �112233�, "targets": null}, {"fabricIndex":

1, "privilege": 3, "authMode": 2, "subjects": null, "targets": null}]' 1 0

 If the application device had been previously commissioned, hold Button 0 for six seconds to factory-reset the device.

 In the chip-tool terminal, commission the Device by passing below command.

 ./out/chip-tool pairing ble-wifi "node_id" "SSID" "PSK" 20202021 3840

where SSID and PSK are AP username and password.

 Once the commissioning process completes in the same terminal, run below requestor command to start downloading the

image.

Matter 917 SOC OTA Software Update

300/362

 ./out/chip-tool otasoftwareupdaterequestor announce-ota-provider 1 0 0 0 2 0

The application device will connect to the Provider and start the image download. Once the image is downloaded, the device

will reboot into the downloaded image.

Note: once image download is done, disconnect jlink. it will reboot automatically with new image.

Matter OTA WiFi Project

301/362

Matter OTA WiFi Project

Building Matter applications for OTA Software
Update
In Matter OTA Software Update scenario the running image (OTA-A) and the update image (OTA-B) are regular Matter

application images and are built using the standard procedure, the only additional configuration required is the use of a

higher software version in the update image. This document gives information about creation of OTA-A and OTA-B

Application for EFR32 and 917 SOC Boards.

Note: Examples used in this document for EFR32. Select BRD4338A Board to create OTA-A and OTA-B application for 917

SOC.

Create and Build Project for Matter OTA�A Application

 Download and Install S implicity Studio.

 To install the software packages for S implicity Studio, refer Software Package Installation

 Log in to S implicity Studio and connect the board to the computer.

 Go to the All Products section.

 Type and Select the radio board from the displayed list and select Start.

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-getting-started-example/software-installation#installation-of-software-packages

Matter OTA WiFi Project

302/362

 The Launcher page will display the selected radio board's details.

 Verify the following in the General Information section:

The Debug Mode is Onboard Device (MCU).

The Preferred SDK is the version you selected earlier.

Matter OTA WiFi Project

303/362

 Click on Example Projects and Demos Option and Create Project.

Matter OTA WiFi Project

304/362

 In the New Project Wizard window, click Finish.

Matter OTA WiFi Project

305/362

 Once the project is created, right-click on the project and select Build Project in the Project Explorer tab.

Matter OTA WiFi Project

306/362

 Once the project is compiled successfully, Go to the Project Explorer view and expand binaries folder to flash the binary.

 Right-click on the selected .s37 binary and click on flash to device.

Matter OTA WiFi Project

307/362

 Flash programmer window will be opened, Click on Erase button and then Program button to start the flashing.

Note: Output of the EFR32 NCP Host application will be displayed on the J-Link RTT Viewer.

Matter OTA WiFi Project

308/362

Create and build Project for matter OTA�B application

Matter OTA-B application will be used to create gbl for EFR32MG2x & .rps for S iWx917 SOC OTA file and OTA-A will be used

to flash to the matter device.

For Matter OTA-B application need to change Version in sl_matter_config.h file before building.

 Download and Install S implicity Studio.

 To install the software packages for S implicity Studio, refer Software Package Installation

 Log in to S implicity Studio and connect the board to the computer.

 Go to the All Products section.

 Type and Select the radio board from the displayed list and select Start.

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/software-installation.md#installation-of-software-packages

Matter OTA WiFi Project

309/362

 The Launcher page will display the selected radio board's details.

 Verify the following in the General Information section:

The Debug Mode is Onboard Device (MCU).

The Preferred SDK is the version you selected earlier.

Matter OTA WiFi Project

310/362

 Click on Example Projects and Demos Option and Create Project.

Matter OTA WiFi Project

311/362

 In the New Project Wizard window, click Finish.

Matter OTA WiFi Project

312/362

 In Project Explorer section , open sl_matter_config file which is present in the config folder. Modify the

CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION 2 and CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING

"1"

Note: Make sure always CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION should be greater than

CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING

 Once the modification is done for Software version, right-click on the project and select Build Project in the Project Explorer

tab.

Matter OTA WiFi Project

313/362

 Once the project is compiled successfully, Go to the Project Explorer view and expand OTA-B project binaries folder , using

application .s37 file Need to Create .gbl file using S implicity commander.

 After Creation of OTA-B Application run the OTA Scenario.

Introduction

314/362

Introduction

Introduction
The Matter Production Guide includes:

Device Development Prerequisites provides the prerequisites and next steps to facilitate your production journey through

Matter.

Custom Part Manufacturing Services describes the Matter support that S ilicon Labs offers through our Custom Part

Manufacturing Services (CPMS).

Device Attestation describes this step in the Commissioning process for Matter devices to be commissioned into a Matter

network.

https://docs.silabs.com/matter/2.2.0/matter-device-dev-prereqs
https://docs.silabs.com/matter/2.2.0/matter-using-cpms
https://docs.silabs.com/matter/2.2.0/matter-device-attestation

Device Development Prerequisites

315/362

Device Development Prerequisites

Matter Device Development Prerequisites
If you plan to develop a Matter end product, this page lists the prerequisites and next steps to facilitate your production

journey through Matter.

Become a CSA Member

Your organization must be an associate member or better to get your product certified by a CSA-approved testing facility.

As a member, your organization will receive membership perks:

Official resources to assist you in developing Matter products.

Authorization to contribute to the Matter G ithub repository.

Once approved, CSA will reserve a unique Vendor ID (VID) chosen by your organization. This VID will be needed to provision

your device.

Your unique VID will be added to the CSA Distributed Compliance Ledger (DCL).

Matter Certification tool access

Allows you to evaluate your product for certification before the official certification process.

Become a member at CSA Membership. You can see a list of the different memberships offered at CSA.

Develop Your Matter Application

Creating a Matter Application is an exciting journey. To start your journey, you need to understand the Matter Fundamentals

- S ilabs. We also provide two development paths that you can choose from. Refer to Developing with S ilicon Labs Matter

to help you choose these paths.

Once you are ready to develop your Matter Application, you should review the Matter Developer's Guide, which provides

detailed background and instructions for Matter developers working in either the Thread or Wi-Fi models. The Developer's

Guide contains a deeper dive into development.

Additionally, S ilicon Labs recommends that you become familiar with the Matter Specification documents:

Matter Core Specification

Matter Device Library Specification

Matter Application Cluster Specification

These specifications can be downloaded from the CSA's Specifications Download Request website.

CSA Certification

Once a device/product is ready for production, you must have your product certified by a CSA-approved testing facility to

certify compliance with the Matter Standard. Review the CSA Certification Process to ensure a smooth and prompt Matter

product certification.

By becoming a member of the CSA, access to their Matter Certification Tool is granted. The Matter Certification Tool

facilitates applying to certify your Matter product, after which you can create your application and upload your images and

required documents. For additional resources on the certification process, refer to the Certifying your Matter Product, an

Overview KBA. This KBA provides information on:

Overview of Matter Certification Steps and milestones

Thread Certification

https://github.com/project-chip/connectedhomeip
https://webui.dcl.csa-iot.org/
https://csa-iot.org/certification/tools/certification-tool/
https://csa-iot.org/become-member/
https://docs.silabs.com/matter/2.2.0/matter-fundamentals
https://docs.silabs.com/matter/2.2.0/matter-start#two-paths-for-development/
https://docs.silabs.com/matter/2.2.0/matter-developers-guide-overview/
https://csa-iot.org/developer-resource/specifications-download-request/
https://csa-iot.org/certification/why-certify/
https://csa-iot.org/certification/tools/certification-tool/
https://community.silabs.com/s/article/Certifying-your-Matter-Product-an-Overview?language=en_US

Device Development Prerequisites

316/362

Matter Test Harness Guide

Important Matter CSA Resources and a Q&A

Once your device is approved, your organization will be issued an official Certification Declaration (CD). This CD is a

cryptographic document issued by CSA that confirms that your device has been certified. The CD is included in the

attestation process sent by the Commissionee during device attestation. To view a list of authorized test facilities, check

out the CSA Authorized Testing Providers summary. This CD is required to be injected during the manufacturing process if

you are using the S ilicon Labs CPMS process. This certification process can take some time to complete. You should

ensure that this time is accounted for during your development lifecycle to keep your product on schedule.

Helpful CSA Links

CSA Membership

CSA Specifications Download Request page

CSA Pre-Certification Tool

CSA Authorized Testing Providers

CSA Distributed Compliance Ledger (DCL)

CSA Test Distributed Compliance Ledger (DCL)

PAA Providers

Standards Development Organizations �SDO� Membership

Matter is an application layer that works on top of other proven network technologies. Your organization may also be

required to be a member of an SDO and be able to pass the certification processes that these organizations require.

Examples of these SDOs are Bluetooth, WiFi, Thread, and others. Be sure to take these organizational requirements into

account when planning your products. Refer to the Certifying your Matter Product, an Overview KBA.

Ready for Production

S ilicon Labs is the only IoT embedded solution provider offering a Custom Part Manufacturing Service (CPMS) to device

makers. This secure provisioning service allows IoT device makers to order customized hardware straight from the factory

via the CPMS web portal. CPMS removes the numerous complexities, time, and expense of custom provisioning Matter

devices at scale. To provide this solution, S ilicon Labs has partnered with Kudelski Security to provide scalable access to

Device Attestation Certificates (DACs) for Matter Devices.

When moving to production, if you decide to provision your devices at scale using CPMS and would like to learn more about

Kudelski, refer to their Matter-compliant certificate service. To use the S ilicon Labs CPMS solution, contact Kudelski to

create an account. When creating a Kudelski account and using CPMS for production, you will need to specify S ilicon Labs

as a requestor and recipient of DACs for any PAIs that will be programmed in the S ilicon Labs manufacturing facilities.

https://csa-iot.org/certification/testing-providers/
https://csa-iot.org/become-member/
https://csa-iot.org/developer-resource/specifications-download-request/
https://csa-iot.org/certification/tools/certification-tool/
https://csa-iot.org/certification/testing-providers/
https://webui.dcl.csa-iot.org/
https://testnet.iotledger.io/
https://csa-iot.org/certification/paa/
https://community.silabs.com/s/article/Certifying-your-Matter-Product-an-Overview?language=en_US
https://cpms.silabs.com/login
https://www.kudelski-iot.com/services-and-systems/matter-paa-pai
https://www.kudelski-iot.com/services-and-systems/matter-paa-pai

Custom Part Manufacturing Services

317/362

Custom Part Manufacturing Services

Using Custom Part Manufacturing Services �CPMS�
S ilicon Labs offers Matter support through our Custom Part Manufacturing Services (CPMS). Your organization can order

your Matter devices directly from S ilicon Labs or a third-party vendor utilizing our CPMS services. S ilicon Labs is one of the

few providers that can program your information directly to silicon through secure automation with our partner, Kudelski

Security.

What is CPMS?

CPMS allows you to customize S ilicon Labs hardware – wireless SoCs, modules, MCUs – at the factory. The CPMS self-

service web portal guides you through the customization process and its various customizable features and settings. You

can place orders for customized test and production units to our factories securely via the CPMS portal.

Unlike traditional flash programming, CPMS is a secure provisioning service that enables you to customize your chips with

highly advanced features. These include secure boot, secure debug, encrypted OTA, public, private, and secret keys,

secure identity certificates, and more. The custom features, identities, and certificates are injected into the hardware

securely, quickly, and cost efficiently through S ilicon Lab's own factories.

Why CPMS?

Securing an IoT device is a highly complicated and costly process. You must generate public and private keys for secure

boot and secure debug, sign code with a private key, store all the private keys in a Hardware Security Module (HSM), place

the public keys for secure boot and secure debug in one-time-programmable (OTP) memory, flip OTP bits for secure boot

and secure debug, and flash the encrypted code and identity certificates within the hardware. CPMS streamlines the

programming part of this process for you. Even the most advanced security features, certificates, and identities can be

programmed in a secure, fast, and cost-efficient way in S ilicon Lab's factories.

How Does Matter Fit into the CPMS Equation?

S ilicon Labs is the only IoT-embedded solution provider at this time offering a secure provisioning service for Matter

devices at scale. S ilicon Labs has partnered with Kudelski Security to provide scalable access to Device Attestation

Certificates (DACs) for your Matter devices. Kudelski has "30+ years of experience securely provisioning more than 500

million devices". Rest assured that your secrets are stored in HSMs both on and offline to provide maximum security for

your secret key material. Learn more about Security.

CPMS allows you to configure your device and receive production samples for a minimal cost before making a full

production order. To configure your Matter settings, there are two ways to accomplish this with S ilicon Labs tooling.

If your organization uses S implicity Studio, S ilicon Lab's IoT IDE, we have provided a built-in utility that will output a JSON

formatted data file that can be uploaded directly into CPMS. This data file will fill out the necessary Matter information for

you. This is the preferred method as it reduces the potential for errors and/or typos.

The second method is to simply provide the required information through the CPMS web forms. This is a minimal process

that includes important attestation information such as your Vendor ID (VID), Product ID (PID), Certification Declaration, and

other inputs required to generate the Matter certificate chain.

CPMS has automated integrations with Kudelski to obtain the unique DACs for each device at the time of manufacturing. All

data remains encrypted throughout the entire process through secure channels between Kudelski and S ilicon Labs.

I'm Ready to Get my Product to Market. What is Needed by CPMS?

https://www.kudelski-iot.com/services-and-systems/matter-paa-pai
https://www.silabs.com/developers/simplicity-studio

Custom Part Manufacturing Services

318/362

CPMS will ask for various attributes about your device, but these are the primary elements that will be needed for proper

certificate generation.

Vendor ID (VID) - Your unique VID will be required by CPMS to properly generate the necessary PKI infrastructure to allow

your device on the Matter network.

Product ID (PID) - Your organization will need to provide a unique PID that will be used to identify this product on the

network.

Certification Declaration (CD) - This is a cryptographic document that is issued to you by CSA after your device has been

successfully certified by a CSA-approved testing facility.

Pre-Production Checklist

 Choose a Matter-capable part to develop your Matter application on.

 Become a CSA member if your organization is not already a member. An associate-level membership or higher is required to

obtain membership perks, certification, and a Vendor ID. See Device Development Prerequisites. If you have not been

through these steps, please ensure ample time to get this step done before you are ready to go to production.

 If you are already a CSA member, make sure that you have been supplied a VID from CSA. If not, contact CSA to obtain a

VID. The VID should also have been added to the CSA Distributed Compliance Ledger (DCL).

 Confirm that your VID has been added to the DCL.

 As a device maker and CSA member, you should add information about your device to the ledger before shipping your

device to the market. If this is not available at the time of release, your devices will not attest properly.

 Your application has been developed and is ready for certification.

 Using the CSA Pre-certification tool, you can test your application for completeness before submitting your application for

certification. Save your organization time and money by pre-certifying your application before submitting it for certification.

 Submit your application for certification to a CSA-approved testing facility for your product type. Once certified, you will be

issued a Certification Declaration (CD). This is a cryptographic document stating that your device has successfully been

certified and is used in conjunction with the Matter certificate chain to attest to the Matter network. This file should be in a

.der format.

 Begin the process of setting up an account with Kudelski Security as a provider of DACs. Note: Kudelski provides DACs on

the Test DCL for no charge. Learn more about our partnership with Kudelski Security for Matter devices.

 Ensure that you have the CD in hand. This will need to be uploaded to CPMS.

 You're ready to order samples with CPMS!

Choosing the Test DCL or Production DCL

There are two public ledgers available to developers known as the Matter Distributed Compliance Ledger (DCL). The DCL is

a cryptographically secure ledger based on blockchain technology. This ledger preserves an immutable record that stores

public information that can be retrieved by DCL clients. For more details, see the CSA Matter DCL whitepaper. Each DCL

contains five schemas that can be accessed by a client to retrieve information about a device.

Vendor Info Schema - this schema provides public information about the device vendor such as the VID, Vendor Name, and

Company Legal Name.

Device Model Schema - this schema provides public information about the actual device such as the Product Name, PID,

VID, and more.

Device Software Version Model Schema - this schema provides public information about software-specific data about the

device such as Release Notes URL, OTA software image URL, and more.

Compliance Schema - this schema provides public information about the certification of a device such as the VID, PID,

Software Version, CD Certificate ID, and more.

PAA Schema - this schema provides information about valid Product Attestation Authority certificates for approved PAAs.

The Test DCL, as the name suggests, is a public Matter ledger that will allow vendors to test their devices in a test

environment. Entries into the Test DCL are less rigorous than the Production DCL and can be used to test devices using

test certificates provided by Matter or other valid vendors. These test certificates cannot be used on the production DCL.

For the production case, you have to ensure that you have the proper certificate chain in place. For CPMS, Kudelski

provides Test DCL DACs at no additional charge. Your organization needs to ensure that an account has been created with

Kudelski to order these DACs through CPMS. Learn more here.

If you are ready to take your device to production, you have the option to select the Production DCL. This is the primary

Matter DCL for production devices. For your device to properly commission onto the Matter fabric, the commissioner needs

to be able to verify that a valid certificate chain is in place. The information needed must be publicly available in the

https://csa-iot.org/become-member/
https://docs.silabs.com/matter/2.2.0/matter-device-dev-prereqs
https://webui.dcl.csa-iot.org/
https://webui.dcl.csa-iot.org/
https://csa-iot.org/certification/tools/certification-tool/
https://csa-iot.org/certification/testing-providers/
https://confluence.silabs.com/pages/viewpage.action?pageId=387091843
https://cpms.silabs.com/
https://csa-iot.org/developer-resource/white-paper-distributed-compliance-ledger/
https://confluence.silabs.com/pages/viewpage.action?pageId=387091843
https://webui.dcl.csa-iot.org/

Custom Part Manufacturing Services

319/362

production DCL. The device needs to have a valid DAC signed by an approved PAI provider, and a root PAA provider. Your

device also must contain a valid certification of the device, all available in the DCL. S ilicon Labs partners with Kudelski

Security as a PAA provider of choice. Kudelski also signs the Product Attestation Intermediate (PAI) certificate for our

customers using CPMS. Each PAI is specific to our customer's products and is created when you set up a new product on

your account with Kudelski. Production DCL samples must be approved even if you have already approved Test DCL

samples before going to production.

CPMS Workflow

You've completed all of the items in the pre-production checklist and are ready to create samples. With CPMS, you get the

benefit of receiving several actual samples of your product for your approval. This allows you to test the actual device

before placing a large production run. Once you approve the sample, you have an Orderable Part Number (OPN) that can

be used with S ilicon Labs or other third-party distributors. The workflow involves the following steps:

 To access CPMS, you need to register for an account with S ilicon Labs. If you are using S implicity Studio or other S ilicon

Labs tools, you probably already have this. If not, register for a S ilicon Labs account.

 Login to CPMS.

 Create a new Custom Part.

 Select the part on which you have built your Matter application. You will be asked a couple of questions about your future

order. This helps S ilicon Labs prepare for your eventual order and ensure that the factories are ready to go in the timeframe

expected.

https://community.silabs.com/SL_CommunitiesSelfReg
https://cpms.silabs.com/login

Custom Part Manufacturing Services

320/362

 Click Customize to start configuring your device. With CPMS, you have a wide range of options to work with to customize

your device. Matter is only one component of this. You have full control over other features of the part itself such as debug

lock/unlock, secure boot, and many other security features depending on the part selected.

Custom Part Manufacturing Services

321/362

 The Matter-specific configurations can be found in the Ecosystem Identities toggle. Select the toggle to view the available

ecosystems supported by your device.

 Add the Matter Ecosystem to your part and you will be presented with the required Matter inputs to help secure the proper

PAA/PAI/DAC certificates from Kudelski.

 Upload your Certification Declaration. This is the file in .der format that you should have received after successful

certification from a CSA-approved testing facility.

 (optional) If you used S implicity Studio, use the Provisioning Tool to output your Matter information directly from the

application. This tool outputs a cpms.json file that can be uploaded to help you quickly fill out this information.

 Fill out the required Matter fields. This includes the VID, PID, and several additional inputs to help S ilicon Labs generate the

necessary Matter certificate chain. If you use the cpms.json file that is generated through the S ilicon Labs Matter

provisioning tool, these will be automatically filled in for you.

Custom Part Manufacturing Services

322/362

 (optional) Fill out the Matter Optional Fields. These fields will also be automatically filled out for you if you use the cpms.json

file referenced above.

Custom Part Manufacturing Services

323/362

 Once you have satisfied all of the required fields, you will be prompted to Proceed to Review to review the selections in

your order.

 Review your customizations and pricing information. You may also be asked for the shipping information if this is not on file

with us already. The sample orders will be shipped to this address.

 Submit for evaluation.

 For Matter-specific parts, S ilicon Labs works with Kudelski IoT to secure the DACs for your sample parts. These DACs are

signed with the proper PAA/PAI certificate chains and delivered via Secure Vault Services integrations directly with Kudelski.

 Once the DACs are available, the order will go into S ilicon Labs manufacturing to be programmed and shipped to your

address once the samples are complete.

 You can then Approve or Reject the samples once your organization is able to test the sample parts. S ilicon Labs

recommends at this time that you test these samples with your device commissioner to ensure that the samples can

properly attest to the Matter network.

Custom Part Manufacturing Services

324/362

 Once approved, you will be able to order these parts, based on the OPN for that part. You can do this through S ilicon Labs

or through a third-party distributor. You may also opt to work with a S ilicon Labs Field Application Engineer to help get this

order executed.

Kudelski Security

325/362

Kudelski Security

Matter, CPMS, and Kudelski

Kudelski PKI Infrastructure

S ilicon Labs has partnered with Kudelski Security to generate Matter Device Attestation Certificates (DAC) for our Custom

Part Manufacturing Service (CPMS). "Kudelski IoT’s Matter Product Attestation Certificate Service enables companies to

get scalable access to Device Attestation Certificates, allowing each device to join the Matter ecosystem with confidence

and ease". Kudelski is a certified CSA certificate authority that forms the root Product Attestation Authority (PAA)

certificate in the CPMS Matter certificate chain. Each PAA owns a public and private key along with their self-signed PAA

certificate which will be used to sign PAI certificates. Kudelski also manages the Product Attestation Intermediate (PAI)

keys for CPMS used to sign the unique Device Attestation Certificates (DAC). PAIs are submitted in the form of a CSR

request to the PAA to be signed. These three items, the PAA, PAI, and DAC as well as a Certification Declaration form the

basis for a device to attest to the Matter network.

What is Required of My Organization with the Silicon Labs/Kudelski Security
Partnership?

To have DACs generated by Kudelski, your organization will need to have an account created with Kudelski Security. Start

at Kudelski to begin the process of creating this account.

After creating your account, your organization will want to create a Product Attestation Intermediary (PAI) certificate with

Kudelski. This will be used to sign the DACs that will end up in your devices at manufacturing. If you use CPMS, you will

need to specify S ilicon Labs as a requestor and recipient of DACs for any PAIs that will be programmed in the S ilicon Labs

manufacturing facilities. This will allow CPMS Secure Vault Services to request those DACs on your behalf when you are

ready to manufacture those products. Depending on your own internal processes, this may require reviews from within your

own organization. Be sure to allow enough lead time for yourself when planning your Matter devices to account for this.

Why Not Just Do This Myself?

Kudelski IoT has done the heavy lifting for you. Kudelski is a well-established Public Key Infrastructure (PKI) provider that

offers Matter certificates that allow you to be a part of the Matter ecosystem. Kudelski IoT uses its keySTREAM PKI-as-a-

Service application to help manage your Matter PKI artifacts.

Kudelski has done the heavy lifting of becoming a Connectivity Standards Alliance (CSA) authorized PAA for you.

Kudelski has been creating device credentials for more than 30 years and is a trusted leader in PKI-as-a-Service.

Cloud setup of your vendor-specific Product Attestation Intermediate (PAI)

Managed generation and secure delivery of Matter Device Attestation Certificates (DAC)

Kudelski and S ilicon Labs have created an ultra-secure integration straight from the root CA to the factory.

Spare yourself time, and get to market sooner with CPMS. CPMS already handles this for you!

Becoming your own PAA and issuing your own signed attestation certificates for Matter is no small undertaking. CSA

requires very strict requirements for becoming a trusted certificate authority, as well as rigorous security and privacy

requirements, hardware, infrastructure, governance, and much more. This is a costly endeavor that may include specialized

hardware, such as on and offline Hardware Security Modules (HSM), specialized facility and operational needs, and much

more that can quickly be out of reach of all but the largest of organizations, not to mention the time required to put these

processes in place. In most cases, partnering with an established provider is far more economical for vendors and will get

you up and running as quickly as possible.

What Should I Expect When I Create an Account with Kudelski?

https://www.kudelski-iot.com/services-and-systems/matter-paa-pai

Kudelski Security

326/362

There are a few processes in place to get you set up and working quickly to start receiving signed DACs from Kudelski:

 Account Setup - If you are already a CSA member, you can start the setup of your account (fees may apply) on Kudelski's

cloud application. If you are not a CSA member yet, review the CSA requirements. Per CSA requirements, Kudelski will

conduct some manual background checks. Your organization will also need to sign the Kudelski Requestor Agreement

Document (RAD) document before any PAIs are created.

 New Product Family Setup - Once your Product Family is successfully certified by CSA, Kudelski can create your vendor-

specific Product Attestation Intermediate (PAI) on keySTREAM for that Product Family.

 Certificate Request - Once a PAI is created, you can request a batch of certificates for your devices. For the CPMS

workflow, you will need to agree (with Kudelski) to allow S ilicon Labs to be a requestor and receiver of DACs in order for the

CPMS integrations to successfully request and receive those DACs during manufacturing.

 Certificate Delivery - In the CPMS workflow, S ilicon Labs will receive delivery of these DACs through secure services with

Kudelski, which can then be programmed into your devices on the manufacturing line.

 DACs are billed after your devices are manufactured and shipped.

Device Attestation

327/362

Device Attestation

Matter Device Attestation

Matter Certificate Overview

For Matter devices to be commissioned into a Matter network, a Matter commissioner must verify that the devices are

certified by the Connectivity Standards Alliance, this step in the Commissioning process is called Device Attestation. Each

certified device must be configured with a unique Device Attestation Certificate (DAC) and its corresponding DAC private

key, which will be checked by a commissioner to add this device to its Matter fabric. For a more conceptual overview of

the Matter Certificates and Device Attestation Procedure, refer to Matter Security.

Device Attestation Public Key Infrastructure and Certification Declaration

Device Attestation Certificates or DACs must be included in all commissionable Matter products and must be unique in each

product. DACs are immutable, so they must be installed in-factory and must be issued by a Product Attestation Intermediate

(PAI) which chains directly to a Product Attestation Authority (PAA), issued by specified root Certification Authorities (CAs).

These root CAs are entities that have been approved by the CSA to issue digital Matter Certificates. Therefore, if you

decide not to apply to become a Certification Authority, you will need to request the generation of the Matter Certificate

Chain which is a Public Key Infrastructure. To request these certificates, you must meet the following requirements:

Certify your Matter Product. CSA will issue a CD with a corresponding VID and PID.

Select a Certification Authority where you will request your DACs. At S ilicon Labs, we have partnered with Kudelski to offer

the Custom Manufacturing Service to facilitate this process.

The PAA are root certificates (certificates of a Root Certificate Authority) and are used to sign PAIs (intermediate

certificates). For the attestation process to succeed, the certificate chain must start from a trusted Root Certificate; for

this purpose, Matter has a database, called Distributed Compliance Ledger (DCL), where the PAAs will reside.

Note: PAAs are not stored on the target devices.

The PAIs are intermediate certificates, signed by the PAA's private key, and are used to sign the DACs (device certificates).

The PAI is stored on the target device and is sent to the Commissioner during the attestation process.

The DAC is the certificate that uniquely identifies the device itself. It is signed by the PAI, and like the PAI itself, it is sent to

the Commissioner during the attestation process. The DAC public-key must match the device's private-key, which should be

stored in the most secure location possible and is used to sign outgoing messages during commissioning.

The CD (Certification Declaration) is a file issued by CSA upon the firmware's certification process. It contains the Vendor

ID (VID), and a list of Product IDs (PIDs), which should match the VID, and PID stored in the Subject field of both the PID,

and DAC certificates. Along with the PID and DAC, the CD is stored on the device and sent to the Commissioner during the

commissioning process.

Certification Authorities and Recommended Certificate Use

The Certification Authority's certificate chain is used to validate any certificate said authority has signed and confirm the

Matter Device Identity. A Root Certification Authority is a CA whose certificates are self-signed. They are the root of trust.

These are the most trusted and secured CAs, and their private keys are expected to be the most highly secured keys. Root

CAs can generate the whole Certificate Chain (PAA > PAI > DAC). Intermediate Certificate Authorities are CAs whose

certificates have been signed by a higher-level CA from which you can generate DACs that will be signed by these

Intermediate CAs and saved on Matter Devices. These CAs will generate (PAI-DAC). A compromise in the private key of the

https://docs.silabs.com/matter/2.2.0/matter-fundamentals-security/
https://docs.silabs.com/matter/2.2.0/matter-using-cpms/
https://webui.dcl.csa-iot.org/

Device Attestation

328/362

Root CA would jeopardize not only their issued Root Certificates, but also all the certificates in that chain including PAIs and

DACs.

While the information in the certificate location is public, write access to the certificate location should be restricted.

Usually the certificates are installed in-factory, but the exact procedure depends on the CAs involved, and the mechanisms

available to secure the DAC private-key, and the certificate files. Ideally:

 The device must run a small application in privilege mode that generates the key-pair in a secured environment. This

procedure should run on-device.

 The device issues a CSR, signed with its new private key, that is sent to the CA.

 The CA issues the new certificate from the certificate Chain and signs it using its own PAI private key.

 The newly created DAC is returned to the device.

 The device stores the new DAC in a read-only section of non-volatile memory.

 The device boots into normal operation mode, thus forbidding any further modification of either the DAC key-pair, and the

DAC.

 From this point on, the DAC private-key value should never be exposed, and the DAC should never be modified, unless it is

compromised.

However, in some environments, the key-pair is generated outside the device. A CA may generate the DAC private keys on

behalf of the device and use the keys to generate the DAC too. In this case, both the DAC key-pair, and the DAC are

stored into the device on secured locations, and any external copy of the DAC private-key must be destroyed.

Device Attestation Procedure

When commissioning a device, the Commissioner must execute this procedure to validate if the device is indeed Matter

certified and compliant, and if it has been produced by a certified manufacturer. The procedure is as follows:

 The commissioner generates a random 32-byte nonce meant for attestation.

 The commissioner sends the generated nonce to the commissionee (Matter Device being attested) and makes an

Attestation Request.

Device Attestation

329/362

 The commissionee responds with an Attestation Response including an Attestation Information message signed with the DAC

private key. This Attestation Information must be validated by the commissioner to accept the Matter Device into its Matter

Fabric (Network).

 The commissioner will retrieve the Matter Certificate Chain in order to attest the Matter Device.

Attestation Information to validate:

The commissioner validates the PAA retrieved is trusted. Generally, the trusted PAA certificates are included in the

Distributed Compliance Ledger (DCL).

The device presents a valid CD, PAI, and DAC. This is determined by verifying the Certificate Chain.

The VIDs and PIDs on the CD, PAI, and DAC must match. If the VID is included in the PAA, it must also match the other

certificates.

DAC must be valid, and signed by the PAI.

The PAI must be valid, and signed by a trusted PAA.

The Discriminator stored on the device must match the one searched by the Commissioner.

The Passcode provided by the Commissioner must match the one stored on the device.

The Attestation nonce from the device must match the Commissioners provided nonce.

Matter API Reference

330/362

Matter API Reference

Matter API Reference
DataModel

Attributes

Clusters

Commands

Events

Cluster Implementation

DataModel

331/362

DataModel

Data Models
This has high level APIs for Data Models.

Header File

DataModelTypes

https://github.com/project-chip/connectedhomeip/tree/master/src/lib/core/DataModelTypes.h

Attributes

332/362

Attributes

Attribute
This has high level APIs for Attributes.

Header File

Attribute

https://github.com/project-chip/connectedhomeip/tree/master/zzz_generated/app-common/app-common/zap-generated/ids/Attributes.h

Clusters

333/362

Clusters

Cluster
This has high level APIs for Clusters.

Header File

Cluster

https://github.com/project-chip/connectedhomeip/tree/master/zzz_generated/app-common/app-common/zap-generated/ids/Clusters.h

Commands

334/362

Commands

Commands
This has high level APIs for Commands.

Header File

Commands

https://github.com/project-chip/connectedhomeip/tree/master/zzz_generated/app-common/app-common/zap-generated/ids/Commands.h

Events

335/362

Events

Event
This has high level APIs for Event.

Header File

Event

https://github.com/project-chip/connectedhomeip/tree/master/zzz_generated/app-common/app-common/zap-generated/ids/Events.h

Cluster Implementation

336/362

Cluster Implementation

Cluster Implementation on Matter Core
This has the high level implementation of all the clusters present in Matter.

References

Cluster Implementation

https://github.com/project-chip/connectedhomeip/tree/master/src/app/clusters

Reference Guides

337/362

Reference Guides

References
The reference pages provide detailed information and instructions on these topics.

Matter Commit Hashes

How to Flash a S ilicon Labs Device

How to Find Your Raspberry Pi

Using Development Tools in S implicity Studio

Building a Custom Matter Device

Building a Multi-Endpoint Device

Using ZAP, the ZCL Advanced Platform

Using Wireshark with Matter

Matter EFR32 Flash Savings Guide

Matter Commit Hashes

338/362

Matter Commit Hashes

Matter Repositories and Commit Hashes
The following repositories, branches and commit hashes are to be used together in this release of the S ilicon Labs Matter

Out of Box Experience

Open Thread Border Router �OTBR�

Repo Branch Commit Hash

https://github.com/S iliconLabs/ot-br-posix main 1813352247aa60fb8993773918f1e5b4af6f3b79

Radio Co-Processor �RCP�

Repo Branch Commit Hash

https://github.com/S iliconLabs/ot-efr32 main 7a567da02a078546eb34136c1c44170c8832dd55

Connectivity Standards Alliance �CSA� connectedhomeip �Matter)

Repo Branch Commit Hash

https://github.com/project-chip/connectedhomeip v1.1-branch 8f66f4215bc0708efc8cc73bda80620e67d8955f

Matter chip-tool

Repo Branch Commit Hash

https://github.com/S iliconLabs/matter <this branch> <this commit>

Matter Accessory Device �MAD�

Repo Branch Commit Hash

https://github.com/S iliconLabs/matter <this branch> <this commit>

https://github.com/SiliconLabs/ot-br-posix
https://github.com/SiliconLabs/ot-efr32
https://github.com/project-chip/connectedhomeip
https://github.com/SiliconLabs/matter
https://github.com/SiliconLabs/matter

How to Flash a Silicon Labs Device

339/362

How to Flash a Silicon Labs Device

How to Flash a Silicon Labs Device
Once you have an image built, you can flash it onto your EFR or S iWx917 device (either a development board or the

Thunderboard Sense 2) over USB connected to your development machine. This can be done using either S implicity Studio

or the standalone S implicity Commander.

Simplicity Studio

S implicity Studio is a complete development environment and tool suite. It has the ability to discover USB-connected

development boards and flash them.

Download S implicity Studio.

Building application Using S implicity Studio:

Build Application for EFR32

Build Application for SoC

Flash application Using S implicity Studio:

Build Application for EFR32 Step 9

Build Application for SoC Step 9

S implicity Studio Reference Guide

Simplicity Commander

Links to download S implicity Commander's standalone versions are included below. Full documentation on S implicity

Commander is included in the S implicity Commander Reference Guide

Linux: https://www.silabs.com/documents/public/software/S implicityCommander-Linux.zip

Mac: https://www.silabs.com/documents/public/software/S implicityCommander-Mac.zip

Windows: https://www.silabs.com/documents/public/software/S implicityCommander-Windows.zip

https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-efx32-application-using-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-soc-application-using-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-efx32-application-using-studio
https://docs.silabs.com/matter/2.2.0/matter-wifi-run-demo/build-soc-application-using-studio
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-building-and-flashing/flashing
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/software/SimplicityCommander-Linux.zip
https://www.silabs.com/documents/public/software/SimplicityCommander-Mac.zip
https://www.silabs.com/documents/public/software/SimplicityCommander-Windows.zip

How to Find Your Raspberry Pi

340/362

How to Find Your Raspberry Pi

How to find your Raspberry Pi on the Network

Finding the IP address of your Raspberry Pi

Sometimes it can be difficult to find your Raspberry Pi on the network. One way of interacting with the Raspberry Pi is to

connect a keyboard, mouse, and monitor to it. The preferred method, however, is over SSH. For this, you will need to know

the IP address of your Raspberry Pi.

This is a good tutorial on how to find the IP address.

Mac / Linux

Nmap

The use of nmap on the Mac may require a software download. Use nmap with the following command:

 $ sudo nmap -sn <subnet>.0/24`

Example: sudo nmap -sn 1-.4.148.0/24 , Among other returned values, you will see something:

 $ Nmap scan report for ubuntu.silabs.com �10.4.148.44�

 $ Host is up �0.00025s latency).

 $ MAC Address: E4�5F�01�7B�CD�12 �Raspberry Pi Trading)

And this is the Raspberry Pi at 10.4.148.44.

Arp

Alternatively, use Arp with the following command:

 $ arp -a \| grep -i "b8�27:eb\|dc:a6�32"`

Windows

In the command prompt, use nslookup to fnd your Raspberry Pi.

Example: nslookup ubuntu

Connecting to your Raspberry Pi over SSH

Mac / Linux / Windows

Once you have found your Raspberry Pi's IP address, you can use Secure Shell (SSH) to connect to it over the command

line with the following command:

 $ ssh <raspberry pi's username>@<raspberry pi's IP address>

Example:

 $ ssh ubuntu@10.4.148.44

https://raspberryexpert.com/find-raspberry-pi-ip-address/

How to Find Your Raspberry Pi

341/362

password: raspberrypi or ubuntu When prompted provide the raspberry pi's password, in the case of the S ilicon Labs Matter

Hub image the username is ubuntu and the password is either ubuntu or <a user set password> . (Note that if you are

logging into your Raspberry Pi for the first time you may be asked to change the default password to a password of your

choosing.)

Using Development Tools in Simplicity Studio

342/362

Using Development Tools in Simplicity Studio

Development Tools in Simplicity Studio
S implicity Studio contains a number of integrated tools that you can use with projects created within that environment.

Bluetooth GATT Configurator

The S implicity Studio Bluetooth LE (BLE) GATT Configurator is an Advanced Configurator within the S implicity Studio

Project Configuration suite. you can add the BLE GATT configuration by adding the Bluetooth > GATT > Configuration

component to your project. This will enable the BLE GATT Configurator under Configuration Too ls > Bluetooth GATT

Configurator . More information on using the BLE GATT Configurator is provided here.

Energy Profiler

S implicity Studio's Energy Profiler allows you to see a graphical view of your device's energy usage over time. This can be

very useful when developing an energy-friendly device.

Complete documentation on using the S implicity Studio Energy Profiler is provided in the S implicity Studio 5 Energy Profiler

User's Guide.

Custom Hardware Configuration

At some point during product development you may need to move your project over to your custom hardware. In this case,

you will likely need to change the pinout and hardware configuration in the example project to reflect your own custom

project. You can do this using the Pin Tool. The S implicity Studio 5 User's Guide contains full documentation using the Pin

Tool.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/1.0/using-the-tools/energy-profiler/
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/pin-tool

Building a Custom Matter Device

343/362

Building a Custom Matter Device

Custom Matter Device Development
Build a customizable lighting app using the Matter protocol.

Overview

This guide covers the basics of building a customizable lighting application using Matter.

Using Matter with Clusters

In Matter, commands can be issued by using a cluster. A cluster is a set of attributes and commands which are grouped

together under a relevant theme.

Attributes store values (think of them as variables). Commands are used to modify the value of attributes.

For example, the "On/Off" cluster has an attribute named "OnOff" of type boolean. The value of this attribute can be set to

"1" by sending an "On" command or it can be set to "0" by sending an "Off" command.

The C++ implementation of these clusters is located in the clusters directory. Note that you can also create your own

custom cluster.

ZAP Configuration

In Studio, navigate to the ZAP UI in your project by double clicking the zap file located at config/zap/lighting-app.zap .

On the left side of the application, there is a tab for Endpoint 0 and Endpoint 1. Endpoint 0 is known as the root node. This

endpoint is akin to a "read me first" endpoint that describes itself and the other endpoints that make up the node. Endpoint

1 represents a lighting application device type. There are a number of required ZCL clusters enabled in Endpoint 1. Some

clusters are common across most device types, such as identify and group clusters. Others, such as the On/Off, Level

Control and Color Control clusters are required for a lighting application device type.

Clicking on the blue settings icon on the right side of the application brings you to the zap configuration settings for that

cluster. Each cluster has some required attributes that may cause compile-time errors if they are not selected in the zap

configuration. Other attributes are optional and are allowed to be disabled. Clusters also have a list of client-side

commands, again some are mandatory and others are optional depending on the cluster. ZCL offers an extensive list of

optional attributes and commands that allow you to customize your application to the full power of the Matter SDK.

For example, if a lighting application only includes single color LEDs instead of RGB LEDs, it might make sense to disable the

Color Control cluster in the ZAP configuration. S imilarly, if a lighting application does not take advantage of the Level Control

cluster, which allows you to customize current flow to an LED, it might make sense to disable the Level Control cluster.

Receiving Matter Commands

All Matter commands reach the application through the intermediate function MatterPostAttributeChangeCallback() . When a

request is made by a Matter client, the information contained in the request is forwarded to a Matter application through

this function. The command can then be dissected using conditional logic to call the proper application functions based on

the most recent command received.

Adding a Cluster to a ZAP Configuration

In the ZAP UI, navigate to the Level Control cluster. Make sure this cluster is enabled as a server in the drop-down menu in

the "Enable" column. Then click on the blue settings wheel in the "Configure" column. This cluster can be used to gather

Building a Custom Matter Device

344/362

power source configuration settings from a Matter device. It contains a few required attributes, and a number of optional

attributes.

Adding a New Attribute

In the Level Control cluster configurations, ensure the CurrentLevel attribute is set to enabled. Set the default value of this

attribute as 1.

Adding a New Command

Navigate to the commands tab in zap and enable the MoveToLevel command. Now save the current zap configuration, and

run the generate.py script above.

React to Level Control Cluster Commands in ZclCallbacks

In the MatterPostAttributeCallback function in ZclCallbacks, add the following line of code or a similar line. This will give the

application the ability to react to MoveToLevel commands. You can define platform-specific behavior for a MoveToLevel

action.

else if (clusterId == LevelControl::Id)

{

ChipLogProgress(Zcl, "Level Control attribute ID� " ChipLogFormatMEI " Type: %u Value: %u, length %u",

ChipLogValueMEI(attributeId), type, *value, size);

if (attributeId == LevelControl::Attributes::CurrentLevel::Id)

{

 action_type = LightingManager::MOVE_TO_LEVEL;

}

LightMgr().InitiateActionLight(AppEvent::kEventType_Light, action_type, endpoint, *value);

}

Send a MoveToLevel Command and Read the CurrentLevel Attribute

Rebuild the application and load the new executable on your EFR32 device. Send the following mattertool commands and

verify that the current-level default attribute was updated as was configured. Replace {desired_level} with 10, and node_ID

with the node ID assigned to the device upon commissioning.

$ mattertool levelcontrol read current-level 1 1 // Returns 1

$ mattertool levelcontrol move-to-level {desired_level} 0 1 1 {node_ID� 1

$ mattertool levelcontrol read current-level 1 1 // Returns 10

For more information on running a S ilicon Labs lighting example on a Thunderboard Sense 2 see you can view

documentation in the S ilicon Labs Matter G itHub Repo.

Building a Multi-Endpoint Device

345/362

Building a Multi-Endpoint Device

Creating a Multiple Endpoint Matter Device in
Studio
Matter products can have multiple device types spread out across different endpoints. The following guide walks the user

through adding a lighting endpoint to the standard lock example in S implicity Studio.

Develop a Lock + Light Example with Matter.

https://github.com/SiliconLabs/matter_applications/blob/master/matter_thread_ww2023_mat-204_lock_light_mad/README.md

Using ZAP, the ZCL Advanced Platform

346/362

Using ZAP, the ZCL Advanced Platform

ZCL Advanced Platform �ZAP� Tool for Matter

Overview

EFR32 example applications provide a baseline demonstration of a lock device, built using the Matter SDK and the S ilicon

Labs GeckoSDK. It can be controlled by a CHIP controller over OpenThread network.

The EFR32 device can be commissioned over Bluetooth Low Energy (BLE) where the device and the CHIP controller will

exchange security information with the Rendez-vous procedure. Thread Network credentials are provided to the EFR32

device which will then join the network.

The LCD on the S ilicon Labs WSTK shows a QR Code containing the needed commissioning information for the BLE

connection and starting the Rendez-vous procedure.

The lock example is intended to serve both as a means to explore the workings of CHIP, and a template for creating real

products on the S ilicon Labs platform.

Each Matter application consists of the following layers:

Matter SDK: Source code necessary to communicate through the Matter network over Thread or Wi-Fi

Data model layer in the form of clusters. There are two types of clusters:

Utility Clusters:

They represent common management and diagnostic features of a Matter endpoint

Identify cluster is an example of a Utility Cluster. G iven a Node ID, it can be used to Blink LED0 to the corresponding

S ilicon Labs WSTK

Application Clusters:

These clusters represent functionalities specific to a given application

Door Lock Cluster is an example of an Application specific cluster. This cluster contains commands to lock and unlock a

door(door-lock is represented by an LED), with options to set passwords and lock schedules

Clusters

Every Matter Application uses multiple clusters leveraged from the Zigbee Cluster Library (ZCL). A cluster can be seen as a

building block for the Data Model of a Matter application. Clusters contains attributes, commands, and events. Attributes are

customizable variables specified by the Zigbee Advanced Platform (ZAP) tool. Commands are sent to the application, which

may respond with data, LED flickering, lock actuation, etc. Events are notifications sent out by the server.

An application can have multiple Matter endpoints. Application endpoints generally refer to one device, and inherits its

information from the "cluster" it belongs to. Utility clusters are required to be on the endpoint with ID 0. Application clusters

are assigned to endpoints with IDs 1 and higher.

Some applications have callbacks that are left to be implemented by the device manufacturer. For example, the storage

and management of users and credentials in the lock-app is left up to the application developer.

ZAP Tool

The ZAP tool is built and maintained by S ilicon Labs and developers in the ZAP open source community. It inherits its name

and features from the Zigbee Cluster Library, which was the starting point for the Matter data model. ZAP is used for

generating code for Matter applications based on the Zigbee Cluster Library and associated Matter code templates.

Using ZAP, the ZCL Advanced Platform

347/362

The ZAP tool is no longer present as a submodule in the Matter repo. The ZAP tool can be downloaded as a binary from

G itHub or optionally you can clone the entire ZAP repo and build the ZAP binary from scratch.

ZAP binaries can be downloaded from the latest ZAP release here:

https://github.com/pro ject-chip/zap/releases/latest

Optionally, the ZAP tool can be cloned using the following git command. This will create a root level zap folder in your

current directory.

$ git clone https://github.com/pro ject-chip/zap.git

The ZAP tool can be invoked using the run_zaptoo l.sh script located in the Matter repo at ./scripts/too ls/zap/run_zaptoo l.sh .

Before you run this script you have to provide the location of the ZAP instance to be run. This is either the binary that you

downloaded or the binary that you built from scratch in the ZAP repo. You can do this by setting the ZAP_INSTALL_PATH

environment variable like this:

$ export ZAP_INSTALL_PATH=(path to your instance of the ZAP binary)

The run_zaptoo l.sh script can be invoked without arguments, or, you can provide the path to a ZAP file to be opened upon

launch.

In the following examples, the ZAP file for the lock-app has been chosen.

$./scripts/too ls/zap/run_zaptoo l.sh ($PATH_TO_ZAP_FILE)

ZAP files for the various sample applications are included in the sample applications data_model directory such as

./examples/lighting-app/silabs/efr32/data_model/lighting-thread-app.zap .

This shows the output of the run_zaptoo l script with no arguments. To load a new zap file, click the application menu for

Electron (Upper left corner of the screen for macs), then click "Open File". Then navigate to the desired .zap file.

Using ZAP, the ZCL Advanced Platform

348/362

This shows the output of the run_zaptool script with a zap file given as an argument, or after a .zap file has been opened in

the ZAP UI. An Electron application will open, pre-loaded with the information from the .zap file provided as a command line

argument.

The Out of the box (OOB) example lock application has 2 endpoints. Endpoint 0 is called the root node. It contains all

Service and Device management clusters. In general, any cluster or feature that is not specific to a device type belongs in

Endpoint 0. Examples of clusters one might find in Endpoint 0: Device Descriptor cluster, Network Diagnostics cluster.

Endpoint 1 contains information specific to the device type. Conveniently, the ZAP tool offers a Door lock cluster, which

contains Commands (lock, unlock, set credential, and so on) and Attributes (Lock state, Require PIN) that a standard door

lock application might use.

More endpoints can be added. Each endpoint acts like a port on a network interface.

Endpoints contain clusters which are bundles of device functionality. Clusters have both a Client and a Server interface. In

general the Client interface sends commands and the Server interface receives them. For instance a Light would implement

the Server side of the on/off clusters. A Switch would implement the Client side of the same cluster.

Click on Endpoint 1 on the left hand side of the application. The door lock cluster should already be enabled as "Server".

Using ZAP, the ZCL Advanced Platform

349/362

Attributes

Attributes are analogous to member variables of a class. Each attribute is provided with generated setter/getter code from

the ZAP tool. They can be enabled or disabled for each cluster on a Matter endpoint. Some attributes are required to be

enabled, else the application will not function properly. There is an option to add attributes to either the server code or

client code. The ZAP tool also allows you choose a storage space for attributes. Attributes can be stored in standard RAM,

Non-volatile memory or external memory. Each attribute has a type, some are standard C types and some have specially

defined enums. Each attribute can be provided with a default starting value value.

Click the settings wheel to enable/disable, choose a storage option, and choose a default value for attributes, commands

and events for Endpoint 1.

Using ZAP, the ZCL Advanced Platform

350/362

Commands

Commands can be enabled/disabled like attributes. Some commands are required for an application to function properly.

Many of the functions run when a command is received are implemented on the server side. But some of these are left up

to the application to define. In the EFR32 lock example, the set/get user and credential functions are customizable as each

implementation of a lock might store these differently.

Generation of Code

Using ZAP, the ZCL Advanced Platform

351/362

Once you have chosen the cluster options, save the current ZAP configuration using the application menu in the upper left

corner.

Before v1.1.0-1.1 you needed to click the Generate button to generate code. Now, code is generated automatically in the

save function. You will be prompted to choose a save location for the generated ZAP code. In the S ilicon Labs Matter

repository, the lock-app generated files belong in matter/zzz_generated/lock-app/zap-generated.

New Tutorial Button

This new feature helps you understand all the steps needed to create a new endpoint.

Click the Tutorial button at the top-right side, between the Preview and the Settings buttons.

A pop-up displays with instructions for next steps.

These steps guide you on the components of this tool, the effects of each component, and the points you need to

consider carefully when creating a new endpoint.

Using ZAP, the ZCL Advanced Platform

352/362

At the final step, a notification asks if you want to keep the endpoint you just created. Select what you want to finish the

tutorial.

Multiple ZCL Device Types per Endpoint

This is a new Matter-only feature where you can select more than one ZCL device type per endpoint. The addition of

multiple device types will add the cluster configurations within the device types to the endpoint configuration.

You can select multiple ZCL device types per endpoint, but there is only one Primary Device as in the below image.

Using ZAP, the ZCL Advanced Platform

353/362

The image above shows that endpoint 2 has more than one device type selected. The Primary Device denotes the primary

device type that the endpoint will be associated with. The primary device type is always present at index 0 of the list of

device types selected so selecting a different primary device type will change the ordering of the device types selected.

The device type selections also have constraints based on the Data Model specification. ZAP protects you from choosing

invalid combinations of device types on an endpoint using these constraints.

The image above is what the multiple device type endpoints looks like after configured. On the left-hand side, it shows the

list of all clusters sequentially in order, and on the other side are clusters that are ready to be configured.

Using Wireshark with Matter

354/362

Using Wireshark with Matter

Using Wireshark to Capture Network Traffic in
Matter
When developing a wireless application it is often useful to be able to visualize the network traffic. Wireshark is a great tool

for this, but you can't use Wireshark alone. You first have to capture the network traffic off a wireless network interface.

Fortunately S ilicon Labs has provided an open source project for capturing network traffic off its devices called the Java

Packet Trace Library or S ilabs PTI .jar

Here are the following steps for capturing and visualizing network traffic with Wireshark and the Java Packet Trace Library:

1. Clone and Build Silabs-PTI.jar Out of the Java Packet Trace Library

The Java Packet Trace Library can be built locally for your development platform. First clone the repository and then build

the library according to the instructions

2. Download Wireshark

If you don't have Wireshark, you can download Wireshark for your development platform here.

3. Follow Instructions for Wireshark Integration

To capture from a S ilicon Labs device like a WSTK use the S ilabs-PTI.jar utility you built in the previous step. You will further

need to integrate the execution of the utility into Wireshark through Wireshark's excap interface. A complete guide to

Wireshark Integration is provided here. You integrate the S ilabs-PTI.jar utility into Wirehshark by adding a small script into

Wireshark's excap directory. Make sure that you make the script executable using something like

$ chmod 777 <myexcapscript>

This will make it so that Wireshark can execute the script and integrate the WSTK interfaces into its capture functionality.

4. Run Wireshark and Discover and Capture using Silabs-PTI.jar

In order to capture from an adapter such as a WSTK using the utility S ilabs-PTI.jar that you built in step 2, your adapter

must be connected to the network via Ethernet. If your adapter is not connected via Ethernet and only via USB you will

need to use the silink utility to make the adapter show up as a localhost.

Once your adapter is connected, you can test out the visibility of your WSTK on the network by running S ilabs-PTI.jar from

the command line using the following command:

$ java -jar silabs-pti-<VERSION>.jar -discover

https://www.wireshark.org/
https://github.com/SiliconLabs/java_packet_trace_library
https://github.com/SiliconLabs/java_packet_trace_library
https://github.com/SiliconLabs/java_packet_trace_library/blob/master/README.md
https://www.wireshark.org/
https://github.com/SiliconLabs/java_packet_trace_library/blob/master/doc/wireshark.md

Matter EFR32 Flash Savings Guide

355/362

Matter EFR32 Flash Savings Guide

Code Savings Guide for Building Matter
Applications

Remove unnecessary clusters from the zap configuration. Example applications have clusters enabled to support both

Thread and WiFi transport layers such as the Diagnostics clusters.

Remove optional components in from the Matter Project in Studio that may not be needed for a certain application. For

example, removing the components Matter Display and Matter QR Code Display will save flash by disabling the LCD screen.

Matter FAQ

356/362

Matter FAQ

Silicon Labs Matter FAQ
This section provides the following FAQs and troubleshooting information.

Thread FAQ

Wi-Fi FAQ

Thread FAQ

357/362

Thread FAQ

Frequently Asked Questions for Matter over Thread

Demo

Why are the mattertoo l commands not working after all the steps?

Check if the Radio Co-Processor (RCP) image was built and/or flashed correctly to the device.

Make sure you see a QR code on the display of the Matter Accessory Device (MAD).

Make sure the images being used to flash the Raspberry Pi, RCP and MAD are correct.

How can I find the IP address of my Raspberry Pi?

First, make sure the Raspberry Pi is connected to a network (ethernet or Wi-Fi). This page has more information: Setting

up the Matter Hub (Raspberry Pi)

Refer to this page for general questions on finding the Raspberry Pi on your network: Finding your Raspberry Pi

For more detailed information, refer to this page: Raspberry Pi Remote Access

How can I use a crystal value different than the default (39.0 MHz) for my device?

When using an alternative crystal value (i.e.: different than 39.0 MHz), updating the clock speed for both the HFXO and

DPLL values is needed and both must match, where the DPLL is set to 2x the HFXO value. These values are used by the

RAIL library to determine the radio frequency and the proper timings for the BLE packets.

If the DPLL value is left unchanged with a modified HFXO, the radio will be on the right frequency but the BLE packet

timings will not be correct, which will cause issues within a few packets due to BLE's strict timing requirements.

https://docs.silabs.com/matter/2.2.0/matter-thread/raspi-img
https://docs.silabs.com/matter/2.2.0/matter-references/find-raspi
https://www.raspberrypi.com/documentation/computers/remote-access.html

Wi-Fi FAQ

358/362

Wi-Fi FAQ

Frequently Asked Questions and Troubleshooting
for Matter over Wi-Fi

Troubleshooting

1. Bluetooth connection fails when trying to commission the system through the chip-tool

Command leading to error:

$ out/standalone/chip-too l pairing ble-wifi 1122 mySSID myPassword 20202021 3840

Where mySSID is your AP's SSID and mypassword is your AP's password.

Error example:

�1659464425.856025��34818�34823� CHIP�DL� HandlePlatformSpecificBLEEvent 16386

�1659464425.856035��34818�34823� CHIP�IN� Clearing BLE pending packets.

�1659464425.856055��34818�34823� CHIP�IN� BleConnection Error: ../../examples/chip-

tool/third_party/connectedhomeip/src/platform/Linux/bluez/Helper.cpp:1775� CHIP Error 0�000000AC� Internal error

This error indicates that the Bluetooth connection between your system and laptop is failing. Follow the given

procedure and then retry the chip-tool commissioning command.

Procedure:

 Stop Bluetooth service:

$ systemctl stop bluetooth.service

 Wait 20 seconds

 Restart Bluetooth service:

$ sudo service bluetooth restart

 Unblock Bluetooth service:

$ rfkill unblock all

 Enable Bluetooth service:

$ sudo systemctl enable bluetooth

 Issue the pairing command:

$ out/standalone/chip-tool pairing ble-wifi 1122 mySSID mypassword 20202021 3840

Wi-Fi FAQ

359/362

Where mySSID is your AP's SSID and mypassword is your AP's password.

2. Unsupported certificate format error

When trying to commission the system, if an Unsupported certificate format error (example below) is

encountered, follow the procedure stated below.

Error example:

�1659631352.672826��5076�5076� CHIP�TOO� Run command failure: ../../examples/chip-

tool/third_party/connectedhomeip/src/controller/CHIPDeviceController.cpp:1275� CHIP Error 0�00000050� Unsupported certificate format

Procedure:

Delete the existing certificates on your laptop with the following command run from the /connectedhomeip directory:

$ /bin/rm /tmp/chip_*

Issue the commissioning command

3. WLAN connection fails from RS9116 during commissioning when channel 13 is selected on the AP

The required channel becomes available for connection when the WLAN connection region is configured during compilation

to one that supports the channel, such as for Japan for channel 13.

In order to use the desired channel, before building, make sure the WLAN connection region is configured correctly by

reviewing/modifying the following lines in /examples/platform/silabs/efr32/rs911x/rsi_wlan_config.h:

//Make sure this is set to RSI_ENABLE

#define RSI_SET_REGION_SUPPORT RSI_ENABLE

// Note that the channels available for WLAN connection depend on the region selected

// Make sure this is set to 1 to configure from RSI_REGION_CODE value below

// 0� region configurations taken from beacon

// 1� region configurations taken from user

#define RSI_SET_REGION_FROM_USER_OR_BEACON 1

// 0 : Default Region domain

// 1 : US

// 2 : EUROPE

// 3 : JAPAN

#define RSI_REGION_CODE 3

4. Incorrect firmware version

cd ./third_party/silabs/wiseconnect-wifi-bt-sdk/firmware

You will get appropriate firmware in the above mentioned path.

Note:

 How to check the current firmware version?

Wi-Fi FAQ

360/362

You can find the currently used firmware version in the DUT log.

 How to check whether you are using correct firmware version or not?

Compare last 5 digits of firmware version mentioned in the above path with the currently used firmware

version.

5. Apple HomePod associated failures

If there is an Apple HomePod on the network paired with a Thread device, and a commissioning failure is seen with error

3000001 :

Either remove the Apple HomePod from the network, or unpair it from all Thread devices, before re-trying the

commissioning.

6. Commissioning failure at step 18

 Verify router configuration specifically related to IPV6 SLAAC, Internet Group Management Protocol (IGMP) snooping.

 Delete all the files of chip-tool /tmp folder. (rm -rf /tmp/chip_*)

 After checking the router configuration, factory-reset your access point.

7. Commissioning failure at step 16

Verify the access point settings, SSID, PSK, security type, REGION, CHANNEL.

8. Inconsistent logs

Verify external power is supplied to rs911x

9. To enable different security options on AP/Router

 Get the router address by entering route -n or ifconfig of ipconfig.

 Enter the router address in the browser and enter the appropriate username and password.

 Select the appropriate band.

 In security, select type (WPA / WPA2 / WPA3).

10. CHIP Logs are not available on MG12 + WF200 due to image size constraints

Due to apps taking up more space than available flash on the MG12 + WF200 device combination, chip_logging=false needs

to be included on the command line while building the app image, to disable CHIP logs and thereby reduce the image size.

This prevents debugging the code on the MG12 + WF200 device combination.

In order to work around this constraint, disable either the LCD or the use of QR codes, depending on your debugging needs.

Disabling one of these will sufficiently reduce the image size to allow CHIP Logging to be enabled.

If you disabled QR Codes, you may use the chip-too l for commissioning the device.

If you disabled the LCD and need to debug with QR Codes, the URL to display the QR Code will be printed in the device

logs.

Disable LCD and enable CHIP Logging: ./scripts/examples/gn_efr32_example .sh examples/lock-app/efr32 out/wf200_lock_app

BRD4161A is_debug=false disable_lcd=true --wifi wf200 |& tee out/wf200_lock_app.log

Wi-Fi FAQ

361/362

Disable QR Code and enable CHIP Logging: ./scripts/examples/gn_efr32_example .sh examples/lock-app/efr32 out/wf200_lock_app

BRD4161A is_debug=false show_qr_code=false --wifi wf200 |& tee out/wf200_lock.log

11. MG24 device sometimes loses its connection to Ozone during OTA Update with RS9116

While performing an OTA Update with the EFR32MG24 + RS9116 device combination, when the device is reset and

bootloading begins with the new image, the Ozone Debugger sometimes loses its connection.

There are two possible workarounds to this:

 Immediately re-attach the device to the console when the connection is lost.

 Download the RTT Viewer application instead and use it to view the logs during OTA Update.

12. MG24 device sometimes fails to bootload with the new image during OTA Update with WF200

While performing an OTA Update with the EFR32MG24 + WF200 device combination using the external flash, when the

device is reset and bootloading begins with the new image, the device sometimes starts up with the existing image instead

of the newly downloaded one.

When this happens, perform the following steps to run the OTA Update successfully:

 Disconnect the WF200 Expansion Board from the EFR32MG24.

 Go To the S implicity Commander's folder path in the command prompt and run this command:

commander.exe extflash read --range 0�00��<total size to read>

 Reconnect the WF200 Expansion Board to the EFR32MG24 and reset the device.

 Re-run the OTA Update process from the beginning.

Wi-Fi FAQ

362/362

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Developing with Silicon Labs Matter
	New Features
	Quick-Start Guides
	Overview and Setup
	Matter Light and Switch Example
	Wi-Fi
	Thread
	Next Steps

	Fundamentals
	Matter Fundamentals
	Introduction to Matter
	Matter Data Model
	Matter Interactions Model
	Matter Security

	Matter Developer's Guide
	Introduction
	Matter Prerequisites
	Hardware Requirements
	Software Requirements
	Artifacts

	Matter Over Thread Example
	Using the Matter Hub
	Setting up the RCP
	Creating an End Device
	Using the Chip-Tool

	Matter Over Wi-Fi Example
	Overview
	Getting Started
	Software Installation
	Get Started with SoC
	Get Started with NCP
	Set up Chip-Tool

	Running the Matter Demo
	Flash Firmware
	Flash Bootloader
	Flash a Binary
	Build an SoC Application Using Studio
	Build an NCP Application Using Studio
	Set Up the Raspberry Pi
	Run an Application
	Debug an Application

	Supported Features
	Intermittently Connected Devices (ICD)
	Direct Internet Connectivity
	Interoperability with Ecosystems
	Optimizing Memory Usage
	Optimizing ICD Power Consumption
	Jlink RTT Support with SOC

	Direct Internet Connectivity
	AWS Configuration Registration
	OpenSSL Certificate Creation
	Mosquitto Installation
	MQTT Explorer Setup
	Build DIC Application

	Matter Ecosystems
	Single Controller Configuration
	Google Ecosystem Setup
	Apple Ecosystem Setup
	Amazon Ecosystem Setup
	Samsung Ecosystem Setup
	Multi-Controller Configuration

	Matter Bridge
	Matter Bridge Overview
	Building The Matter Bridge
	Running The Matter Bridge

	Detailed Development Topics
	Overview Guides
	Matter Provisioning
	Test Matter Certificates for Development
	Matter Commissioning
	Matter Intermittently Connected Devices (ICD)
	Matter OpenThread ICD Device
	Matter Serial Port Communication (Matter Shell)
	Matter SLC CLI Setup and Build Instructions
	Matter Solutions

	Matter OTA
	Matter OTA Bootloader
	Matter OTA Software Update
	Matter 917 SOC OTA Software Update
	Matter OTA WiFi Project

	Matter Production Guide
	Introduction
	Device Development Prerequisites
	Custom Part Manufacturing Services
	Kudelski Security

	Device Attestation

	Matter API Reference
	DataModel
	Attributes
	Clusters
	Commands
	Events
	Cluster Implementation

	Resources
	Reference Guides
	Matter Commit Hashes
	How to Flash a Silicon Labs Device
	How to Find Your Raspberry Pi
	Using Development Tools in Simplicity Studio
	Building a Custom Matter Device
	Building a Multi-Endpoint Device
	Using ZAP, the ZCL Advanced Platform
	Using Wireshark with Matter
	Matter EFR32 Flash Savings Guide

	Matter FAQ
	Thread FAQ
	Wi-Fi FAQ

