
OpenThread

1/962

OpenThread

Developing with OpenThread

Getting Started

Overview

OpenThread Quick-Start Guide �PDF�

Fundamentals

Overview

Thread Fundamentals �PDF�

Wireless Networking Fundamentals �PDF�

OpenThread Developer's Guide

Overview

Developing and Debugging

Overview

Configuring Sleepy Devices

Sleepy End Devices �SED�

Synchronized Sleepy End Devices �SSED�

SSED Use Cases

Building And Using Silicon Labs Sleepy End Device Demo Applications

Single-Band Proprietary Sub-GHz Support with OpenThread �PDF�

Using OpenThread with Free RTOS �PDF�

Configuring OpenThread Applications for Thread 1.3 �PDF�

OpenThread Border Router

Overview

Using the Silicon Labs RCP with the OpenThread Border Router �PDF�

Coexistence

Overview

Wi-Fi Coexistence Fundamentals �PDF�

Zigbee and Thread Coexistence with Wi-Fi �PDF�

Configuring Antenna Diversity �PDF�

Multiprotocol

Overview

Multiprotocol Fundamentals �PDF�

Dynamic Multiprotocol User's Guide �PDF�

Dynamic Multiprotocol Development with Bluetooth and OpenThread on SoCs �PDF�

Running Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol Co-
Processor �PDF�

Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip �PDF�

Using the Co-Processor Communication Daemon �CPCd) �PDF�

Bootloading

https://www.silabs.com/documents/public/quick-start-guides/qsg170-openthread-sdk-quick-start-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-11-fundamentals-thread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-01-fundamentals-wireless-network.pdf
https://www.silabs.com/documents/public/application-notes/an1350-openthread-single-band-proprietary-sub-ghz.pdf
https://www.silabs.com/documents/public/application-notes/an1264-open-thread-with-free-rtos.pdf
https://www.silabs.com/documents/public/application-notes/an1372-configuring-for-thread-1-3.pdf
https://www.silabs.com/documents/public/application-notes/an1256-using-sl-rcp-with-openthread-border-router.pdf
https://www.silabs.com/documents/public/user-guides/ug103-17-wi-fi-coexistence-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1017-coexistence-with-wifi.pdf
https://www.silabs.com/documents/public/application-notes/an1294-configuring-antenna-diversity-for-openthread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1265-openthread-bluetooth-dynamic-multiprotocol-gsdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf
https://www.silabs.com/documents/public/application-notes/an1418-concurrent-mp-soc.pdf
https://www.silabs.com/documents/public/application-notes/an1351-using-co-processor-communication_daemon.pdf

OpenThread

2/962

Overview

Bootloader Fundamentals �PDF�

Gecko Bootloader User's Guide �PDF�

Series 2 Secure Boot with RTSL �PDF�

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher �PDF�

Non-Volatile Memory Use

Overview

Non-Volatile Data Storage Fundamentals �PDF�

Using NVM3 Data Storage �PDF�

Security

Overview

IoT Endpoint Security Fundamentals �PDF�

Using Silicon Labs Secure Vault Features with OpenThread �PDF�

Series 2 Secure Debug �PDF�

Production Programming of Series 2 Devices �PDF�

Anti-Tamper Protection Configuration and Use �PDF�

Authenticating Silicon Labs Devices using Device Certificates �PDF�

Secure Key Storage �PDF�

Programming Series 2 Devices Using the DCI and SWD �PDF�

Series 2 TrustZone �PDF�

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS �PDF�

Series 2 TrustZone �PDF�

Performance

Overview

Manufacturing Test Overview �PDF�

Manufacturing Test Guidelines �PDF�

Performance Results for Multi-PAN RCP for OpenThread and Zigbee �PDF�

Mesh Network Performance Comparison �PDF�

Thread Mesh Network Performance �PDF�

API Reference Guide

API Reference

Error

otError

otThreadErrorToString

Execution

Instance

otInstance

otChangedFlags

otStateChangedCallback

otInstanceInit

otInstanceInitSingle

otInstanceGetId

otInstanceIsInitialized

otInstanceFinalize

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1329-using-secure-vault-openthread.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf
https://www.silabs.com/documents/public/application-notes/an718-mfg-test-overview.pdf
https://www.silabs.com/documents/public/application-notes/an700-1-mfg-test-guidelines-efr32.pdf
https://www.silabs.com/documents/public/application-notes/an1385-multi-pan-rcp-performance-test.pdf
https://www.silabs.com/documents/public/application-notes/an1142-mesh-network-performance-comparison.pdf
https://www.silabs.com/documents/login/application-notes/an1141-thread-mesh-network-performance.pdf

OpenThread

3/962

otInstanceGetUptime

otInstanceGetUptimeAsString

otSetStateChangedCallback

otRemoveStateChangeCallback

otInstanceReset

otInstanceResetToBootloader

otInstanceFactoryReset

otInstanceResetRadioStack

otInstanceErasePersistentInfo

otGetVersionString

otGetRadioVersionString

OT_UPTIME_STRING_SIZE

OT_CHANGED_IP6_ADDRESS_ADDED

OT_CHANGED_IP6_ADDRESS_REMOVED

OT_CHANGED_THREAD_ROLE

OT_CHANGED_THREAD_LL_ADDR

OT_CHANGED_THREAD_ML_ADDR

OT_CHANGED_THREAD_RLOC_ADDED

OT_CHANGED_THREAD_RLOC_REMOVED

OT_CHANGED_THREAD_PARTITION_ID

OT_CHANGED_THREAD_KEY_SEQUENCE_COUNTER

OT_CHANGED_THREAD_NETDATA

OT_CHANGED_THREAD_CHILD_ADDED

OT_CHANGED_THREAD_CHILD_REMOVED

OT_CHANGED_IP6_MULTICAST_SUBSCRIBED

OT_CHANGED_IP6_MULTICAST_UNSUBSCRIBED

OT_CHANGED_THREAD_CHANNEL

OT_CHANGED_THREAD_PANID

OT_CHANGED_THREAD_NETWORK_NAME

OT_CHANGED_THREAD_EXT_PANID

OT_CHANGED_NETWORK_KEY

OT_CHANGED_PSKC

OT_CHANGED_SECURITY_POLICY

OT_CHANGED_CHANNEL_MANAGER_NEW_CHANNEL

OT_CHANGED_SUPPORTED_CHANNEL_MASK

OT_CHANGED_COMMISSIONER_STATE

OT_CHANGED_THREAD_NETIF_STATE

OT_CHANGED_THREAD_BACKBONE_ROUTER_STATE

OT_CHANGED_THREAD_BACKBONE_ROUTER_LOCAL

OT_CHANGED_JOINER_STATE

OT_CHANGED_ACTIVE_DATASET

OT_CHANGED_PENDING_DATASET

OT_CHANGED_NAT64_TRANSLATOR_STATE

OT_CHANGED_PARENT_LINK_QUALITY

OpenThread

4/962

Tasklets

otTaskletsProcess

otTaskletsArePending

otTaskletsSignalPending

IPv6 Networking

DNS

otDnsTxtEntry

mKey

mValue

mValueLength

otDnsTxtEntryIterator

mPtr

mData

mChar

otDnsQueryConfig

mServerSockAddr

mResponseTimeout

mMaxTxAttempts

mRecursionFlag

mNat64Mode

mServiceMode

mTransportProto

otDnsServiceInfo

mTtl

mPort

mPriority

mWeight

mHostNameBuffer

mHostNameBufferSize

mHostAddress

mHostAddressTtl

mTxtData

mTxtDataSize

mTxtDataTruncated

mTxtDataTtl

otDnsRecursionFlag

otDnsNat64Mode

otDnsServiceMode

otDnsTransportProto

otDnsTxtEntry

otDnsTxtEntryIterator

otDnsQueryConfig

otDnsAddressResponse

otDnsAddressCallback

OpenThread

5/962

otDnsBrowseResponse

otDnsBrowseCallback

otDnsServiceInfo

otDnsServiceResponse

otDnsServiceCallback

otDnsInitTxtEntryIterator

otDnsGetNextTxtEntry

otDnsEncodeTxtData

otDnsSetNameCompressionEnabled

otDnsIsNameCompressionEnabled

otDnsClientGetDefaultConfig

otDnsClientSetDefaultConfig

otDnsClientResolveAddress

otDnsClientResolveIp4Address

otDnsAddressResponseGetHostName

otDnsAddressResponseGetAddress

otDnsClientBrowse

otDnsBrowseResponseGetServiceName

otDnsBrowseResponseGetServiceInstance

otDnsBrowseResponseGetServiceInfo

otDnsBrowseResponseGetHostAddress

otDnsClientResolveService

otDnsClientResolveServiceAndHostAddress

otDnsServiceResponseGetServiceName

otDnsServiceResponseGetServiceInfo

otDnsServiceResponseGetHostAddress

OT_DNS_MAX_NAME_SIZE

OT_DNS_MAX_LABEL_SIZE

OT_DNS_TXT_KEY_MIN_LENGTH

OT_DNS_TXT_KEY_MAX_LENGTH

DNS�SD Server

otDnssdServiceInstanceInfo

mFullName

mHostName

mAddressNum

mAddresses

mPort

mPriority

mWeight

mTxtLength

mTxtData

mTtl

otDnssdHostInfo

mAddressNum

OpenThread

6/962

mAddresses

mTtl

otDnssdCounters

mSuccessResponse

mServerFailureResponse

mFormatErrorResponse

mNameErrorResponse

mNotImplementedResponse

mOtherResponse

mResolvedBySrp

otDnssdQueryType

otDnssdQuerySubscribeCallback

otDnssdQueryUnsubscribeCallback

otDnssdQuery

otDnssdServiceInstanceInfo

otDnssdHostInfo

otDnssdCounters

otDnssdQuerySetCallbacks

otDnssdQueryHandleDiscoveredServiceInstance

otDnssdQueryHandleDiscoveredHost

otDnssdGetNextQuery

otDnssdGetQueryTypeAndName

otDnssdGetCounters

otDnssdUpstreamQuerySetEnabled

otDnssdUpstreamQueryIsEnabled

ICMPv6

otIcmp6Header

otIcmp6Header::OT_TOOL_PACKED_FIELD

m8

m16

m32

mType

mCode

mChecksum

mData

otIcmp6Handler

mReceiveCallback

mContext

mNext

otIcmp6Type

otIcmp6Code

otIcmp6EchoMode

otIcmp6Type

otIcmp6Code

OpenThread

7/962

otIcmp6Header

otIcmp6ReceiveCallback

otIcmp6Handler

otIcmp6EchoMode

OT_TOOL_PACKED_END

otIcmp6GetEchoMode

otIcmp6SetEchoMode

otIcmp6RegisterHandler

otIcmp6SendEchoRequest

OT_ICMP6_HEADER_DATA_SIZE

OT_ICMP6_ROUTER_ADVERT_MIN_SIZE

IPv6

otIp6InterfaceIdentifier

otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD

m8

m16

m32

mFields

otIp6NetworkPrefix

m8

otIp6AddressComponents

mNetworkPrefix

mIid

otIp6Address

otIp6Address::OT_TOOL_PACKED_FIELD

m8

m16

m32

mComponents

mFields

otIp6Prefix

mPrefix

mLength

otNetifAddress

mAddress

mPrefixLength

mAddressOrigin

mPreferred

mValid

mScopeOverrideValid

mScopeOverride

mRloc

mMeshLocal

mNext

OpenThread

8/962

otNetifMulticastAddress

mAddress

mNext

otSockAddr

mAddress

mPort

otMessageInfo

mSockAddr

mPeerAddr

mSockPort

mPeerPort

mLinkInfo

mHopLimit

mEcn

mIsHostInterface

mAllowZeroHopLimit

mMulticastLoop

otIp6AddressInfo

mAddress

mPrefixLength

mScope

mPreferred

otPacketsAndBytes

mPackets

mBytes

otBorderRoutingCounters

mInboundUnicast

mInboundMulticast

mOutboundUnicast

mOutboundMulticast

mRaRx

mRaTxSuccess

mRaTxFailure

mRsRx

mRsTxSuccess

mRsTxFailure

�2

�3

�4

otIp6InterfaceIdentifier

otIp6NetworkPrefix

otIp6AddressComponents

otIp6Address

otIp6Prefix

OpenThread

9/962

otNetifAddress

otNetifMulticastAddress

otSockAddr

otMessageInfo

otIp6ReceiveCallback

otIp6AddressInfo

otIp6AddressCallback

otIp6SlaacPrefixFilter

otIp6RegisterMulticastListenersCallback

otPacketsAndBytes

otBorderRoutingCounters

OT_TOOL_PACKED_END

otIp6SetEnabled

otIp6IsEnabled

otIp6AddUnicastAddress

otIp6RemoveUnicastAddress

otIp6GetUnicastAddresses

otIp6HasUnicastAddress

otIp6SubscribeMulticastAddress

otIp6UnsubscribeMulticastAddress

otIp6GetMulticastAddresses

otIp6IsMulticastPromiscuousEnabled

otIp6SetMulticastPromiscuousEnabled

otIp6NewMessage

otIp6NewMessageFromBuffer

otIp6SetReceiveCallback

otIp6SetAddressCallback

otIp6IsReceiveFilterEnabled

otIp6SetReceiveFilterEnabled

otIp6Send

otIp6AddUnsecurePort

otIp6RemoveUnsecurePort

otIp6RemoveAllUnsecurePorts

otIp6GetUnsecurePorts

otIp6IsAddressEqual

otIp6ArePrefixesEqual

otIp6AddressFromString

otIp6PrefixFromString

otIp6AddressToString

otIp6SockAddrToString

otIp6PrefixToString

otIp6PrefixMatch

otIp6GetPrefix

otIp6IsAddressUnspecified

OpenThread

10/962

otIp6SelectSourceAddress

otIp6IsSlaacEnabled

otIp6SetSlaacEnabled

otIp6SetSlaacPrefixFilter

otIp6RegisterMulticastListeners

otIp6SetMeshLocalIid

otIp6ProtoToString

otIp6GetBorderRoutingCounters

otIp6ResetBorderRoutingCounters

OT_IP6_PREFIX_SIZE

OT_IP6_PREFIX_BITSIZE

OT_IP6_IID_SIZE

OT_IP6_ADDRESS_SIZE

OT_IP6_HEADER_SIZE

OT_IP6_HEADER_PROTO_OFFSET

OT_IP6_ADDRESS_STRING_SIZE

OT_IP6_SOCK_ADDR_STRING_SIZE

OT_IP6_PREFIX_STRING_SIZE

OT_IP6_MAX_MLR_ADDRESSES

NAT64

otIp4Address

otIp4Address::OT_TOOL_PACKED_FIELD

m8

m32

mFields

otIp4Cidr

mAddress

mLength

otNat64Counters

m4To6Packets

m4To6Bytes

m6To4Packets

m6To4Bytes

otNat64ProtocolCounters

mTotal

mIcmp

mUdp

mTcp

otNat64ErrorCounters

mCount4To6

mCount6To4

otNat64AddressMapping

mId

mIp4

OpenThread

11/962

mIp6

mRemainingTimeMs

mCounters

otNat64AddressMappingIterator

mPtr

otNat64DropReason

otNat64State

otIp4Address

otIp4Cidr

otNat64Counters

otNat64ProtocolCounters

otNat64DropReason

otNat64ErrorCounters

otNat64AddressMapping

otNat64AddressMappingIterator

otNat64ReceiveIp4Callback

OT_TOOL_PACKED_END

otNat64GetCounters

otNat64GetErrorCounters

otNat64InitAddressMappingIterator

otNat64GetNextAddressMapping

otNat64GetTranslatorState

otNat64GetPrefixManagerState

otNat64SetEnabled

otIp4NewMessage

otNat64SetIp4Cidr

otNat64Send

otNat64SetReceiveIp4Callback

otNat64GetCidr

otIp4IsAddressEqual

otIp4ExtractFromIp6Address

otIp4AddressToString

otIp4CidrFromString

otIp4CidrToString

otIp4AddressFromString

otNat64SynthesizeIp6Address

OT_IP4_ADDRESS_SIZE

OT_IP4_ADDRESS_STRING_SIZE

OT_IP4_CIDR_STRING_SIZE

SRP

otSrpClientHostInfo

mName

mAddresses

mNumAddresses

OpenThread

12/962

mAutoAddress

mState

otSrpClientService

mName

mInstanceName

mSubTypeLabels

mTxtEntries

mPort

mPriority

mWeight

mNumTxtEntries

mState

mData

mNext

mLease

mKeyLease

otSrpClientBuffersServiceEntry

mService

mTxtEntry

otSrpServerTtlConfig

mMinTtl

mMaxTtl

otSrpServerLeaseConfig

mMinLease

mMaxLease

mMinKeyLease

mMaxKeyLease

otSrpServerLeaseInfo

mLease

mKeyLease

mRemainingLease

mRemainingKeyLease

otSrpServerResponseCounters

mSuccess

mServerFailure

mFormatError

mNameExists

mRefused

mOther

otSrpClientItemState

otSrpServerState

otSrpServerAddressMode

otSrpClientHostInfo

otSrpClientService

OpenThread

13/962

otSrpClientCallback

otSrpClientAutoStartCallback

otSrpClientBuffersServiceEntry

otSrpServerHost

otSrpServerService

otSrpServerServiceUpdateId

otSrpServerAddressMode

otSrpServerTtlConfig

otSrpServerLeaseConfig

otSrpServerLeaseInfo

otSrpServerResponseCounters

otSrpServerServiceUpdateHandler

otSrpClientStart

otSrpClientStop

otSrpClientIsRunning

otSrpClientGetServerAddress

otSrpClientSetCallback

otSrpClientEnableAutoStartMode

otSrpClientDisableAutoStartMode

otSrpClientIsAutoStartModeEnabled

otSrpClientGetTtl

otSrpClientSetTtl

otSrpClientGetLeaseInterval

otSrpClientSetLeaseInterval

otSrpClientGetKeyLeaseInterval

otSrpClientSetKeyLeaseInterval

otSrpClientGetHostInfo

otSrpClientSetHostName

otSrpClientEnableAutoHostAddress

otSrpClientSetHostAddresses

otSrpClientAddService

otSrpClientRemoveService

otSrpClientClearService

otSrpClientGetServices

otSrpClientRemoveHostAndServices

otSrpClientClearHostAndServices

otSrpClientGetDomainName

otSrpClientSetDomainName

otSrpClientItemStateToString

otSrpClientSetServiceKeyRecordEnabled

otSrpClientIsServiceKeyRecordEnabled

otSrpClientBuffersGetHostNameString

otSrpClientBuffersGetHostAddressesArray

otSrpClientBuffersAllocateService

OpenThread

14/962

otSrpClientBuffersFreeService

otSrpClientBuffersFreeAllServices

otSrpClientBuffersGetServiceEntryServiceNameString

otSrpClientBuffersGetServiceEntryInstanceNameString

otSrpClientBuffersGetServiceEntryTxtBuffer

otSrpClientBuffersGetSubTypeLabelsArray

otSrpServerGetDomain

otSrpServerSetDomain

otSrpServerGetState

otSrpServerGetPort

otSrpServerGetAddressMode

otSrpServerSetAddressMode

otSrpServerGetAnycastModeSequenceNumber

otSrpServerSetAnycastModeSequenceNumber

otSrpServerSetEnabled

otSrpServerSetAutoEnableMode

otSrpServerIsAutoEnableMode

otSrpServerGetTtlConfig

otSrpServerSetTtlConfig

otSrpServerGetLeaseConfig

otSrpServerSetLeaseConfig

otSrpServerSetServiceUpdateHandler

otSrpServerHandleServiceUpdateResult

otSrpServerGetNextHost

otSrpServerGetResponseCounters

otSrpServerHostIsDeleted

otSrpServerHostGetFullName

otSrpServerHostMatchesFullName

otSrpServerHostGetAddresses

otSrpServerHostGetLeaseInfo

otSrpServerHostGetNextService

otSrpServerServiceIsDeleted

otSrpServerServiceGetInstanceName

otSrpServerServiceMatchesInstanceName

otSrpServerServiceGetInstanceLabel

otSrpServerServiceGetServiceName

otSrpServerServiceMatchesServiceName

otSrpServerServiceGetNumberOfSubTypes

otSrpServerServiceGetSubTypeServiceNameAt

otSrpServerServiceHasSubTypeServiceName

otSrpServerParseSubTypeServiceName

otSrpServerServiceGetPort

otSrpServerServiceGetWeight

OpenThread

15/962

otSrpServerServiceGetPriority

otSrpServerServiceGetTtl

otSrpServerServiceGetTxtData

otSrpServerServiceGetHost

otSrpServerServiceGetLeaseInfo

Ping Sender

otPingSenderReply

mSenderAddress

mRoundTripTime

mSize

mSequenceNumber

mHopLimit

otPingSenderStatistics

mSentCount

mReceivedCount

mTotalRoundTripTime

mMinRoundTripTime

mMaxRoundTripTime

mIsMulticast

otPingSenderConfig

mSource

mDestination

mReplyCallback

mStatisticsCallback

mCallbackContext

mSize

mCount

mInterval

mTimeout

mHopLimit

mAllowZeroHopLimit

mMulticastLoop

otPingSenderReply

otPingSenderStatistics

otPingSenderReplyCallback

otPingSenderStatisticsCallback

otPingSenderConfig

otPingSenderPing

otPingSenderStop

TCP

TCP

otLinkedBuffer

mNext

mData

OpenThread

16/962

mLength

otTcpEndpoint

mSize

mAlign

mTcb

mNext

mContext

mEstablishedCallback

mSendDoneCallback

mForwardProgressCallback

mReceiveAvailableCallback

mDisconnectedCallback

mTimers

mReceiveLinks

mSockAddr

mPendingCallbacks

otTcpEndpointInitializeArgs

mContext

mEstablishedCallback

mSendDoneCallback

mForwardProgressCallback

mReceiveAvailableCallback

mDisconnectedCallback

mReceiveBuffer

mReceiveBufferSize

otTcpListener

mSize

mAlign

mTcbListen

mNext

mContext

mAcceptReadyCallback

mAcceptDoneCallback

otTcpListenerInitializeArgs

mContext

mAcceptReadyCallback

mAcceptDoneCallback

otTcpDisconnectedReason

�22

�23

otTcpIncomingConnectionAction

otLinkedBuffer

otTcpEndpoint

otTcpEstablished

OpenThread

17/962

otTcpSendDone

otTcpForwardProgress

otTcpReceiveAvailable

otTcpDisconnectedReason

otTcpDisconnected

otTcpEndpointInitializeArgs

otTcpListener

otTcpIncomingConnectionAction

otTcpAcceptReady

otTcpAcceptDone

otTcpListenerInitializeArgs

otTcpEndpointInitialize

otTcpEndpointGetInstance

otTcpEndpointGetContext

otTcpGetLocalAddress

otTcpGetPeerAddress

otTcpBind

otTcpConnect

otTcpSendByReference

otTcpSendByExtension

otTcpReceiveByReference

otTcpReceiveContiguify

otTcpCommitReceive

otTcpSendEndOfStream

otTcpAbort

otTcpEndpointDeinitialize

otTcpListenerInitialize

otTcpListenerGetInstance

otTcpListenerGetContext

otTcpListen

otTcpStopListening

otTcpListenerDeinitialize

OT_TCP_ENDPOINT_TCB_SIZE_BASE

OT_TCP_ENDPOINT_TCB_NUM_PTR

OT_TCP_RECEIVE_BUFFER_SIZE_FEW_HOPS

OT_TCP_RECEIVE_BUFFER_SIZE_MANY_HOPS

OT_TCP_LISTENER_TCB_SIZE_BASE

OT_TCP_LISTENER_TCB_NUM_PTR

TCP Abstractions

otTcpCircularSendBuffer

mDataBuffer

mCapacity

mStartIndex

mCapacityUsed

OpenThread

18/962

mSendLinks

mFirstSendLinkIndex

otTcpEndpointAndCircularSendBuffer

mEndpoint

mSendBuffer

�26

otTcpCircularSendBuffer

otTcpEndpointAndCircularSendBuffer

otTcpCircularSendBufferInitialize

otTcpCircularSendBufferWrite

otTcpCircularSendBufferHandleForwardProgress

otTcpCircularSendBufferGetFreeSpace

otTcpCircularSendBufferForceDiscardAll

otTcpCircularSendBufferDeinitialize

otTcpMbedTlsSslSendCallback

otTcpMbedTlsSslRecvCallback

UDP

UDP

otUdpReceiver

mNext

mHandler

mContext

otUdpSocket

mSockName

mPeerName

mHandler

mContext

mHandle

mNext

otNetifIdentifier

otUdpHandler

otUdpReceiver

otUdpReceive

otUdpSocket

otNetifIdentifier

otUdpAddReceiver

otUdpRemoveReceiver

otUdpSendDatagram

otUdpNewMessage

otUdpOpen

otUdpIsOpen

otUdpClose

otUdpBind

otUdpConnect

OpenThread

19/962

otUdpSend

otUdpGetSockets

UDP Forward

otUdpForwarder

otUdpForwardSetForwarder

otUdpForwardReceive

otUdpIsPortInUse

Link

Link

otThreadLinkInfo

mPanId

mChannel

mRss

mLqi

mLinkSecurity

mIsDstPanIdBroadcast

mTimeSyncSeq

mNetworkTimeOffset

mRadioType

otMacFilterEntry

mExtAddress

mRssIn

otMacCounters

mTxTotal

mTxUnicast

mTxBroadcast

mTxAckRequested

mTxAcked

mTxNoAckRequested

mTxData

mTxDataPoll

mTxBeacon

mTxBeaconRequest

mTxOther

mTxRetry

mTxDirectMaxRetryExpiry

mTxIndirectMaxRetryExpiry

mTxErrCca

mTxErrAbort

mTxErrBusyChannel

mRxTotal

mRxUnicast

mRxBroadcast

mRxData

OpenThread

20/962

mRxDataPoll

mRxBeacon

mRxBeaconRequest

mRxOther

mRxAddressFiltered

mRxDestAddrFiltered

mRxDuplicated

mRxErrNoFrame

mRxErrUnknownNeighbor

mRxErrInvalidSrcAddr

mRxErrSec

mRxErrFcs

mRxErrOther

otActiveScanResult

mExtAddress

mNetworkName

mExtendedPanId

mSteeringData

mPanId

mJoinerUdpPort

mChannel

mRssi

mLqi

mVersion

mIsNative

mDiscover

mIsJoinable

otEnergyScanResult

mChannel

mMaxRssi

otMacFilterAddressMode

otThreadLinkInfo

otMacFilterIterator

otMacFilterAddressMode

otMacFilterEntry

otMacCounters

otActiveScanResult

otEnergyScanResult

otHandleActiveScanResult

otHandleEnergyScanResult

otLinkPcapCallback

otLinkActiveScan

otLinkIsActiveScanInProgress

otLinkEnergyScan

OpenThread

21/962

otLinkIsEnergyScanInProgress

otLinkSendDataRequest

otLinkIsInTransmitState

otLinkGetChannel

otLinkSetChannel

otLinkGetSupportedChannelMask

otLinkSetSupportedChannelMask

otLinkGetExtendedAddress

otLinkSetExtendedAddress

otLinkGetFactoryAssignedIeeeEui64

otLinkGetPanId

otLinkSetPanId

otLinkGetPollPeriod

otLinkSetPollPeriod

otLinkGetShortAddress

otLinkGetMaxFrameRetriesDirect

otLinkSetMaxFrameRetriesDirect

otLinkGetMaxFrameRetriesIndirect

otLinkSetMaxFrameRetriesIndirect

otLinkFilterGetAddressMode

otLinkFilterSetAddressMode

otLinkFilterAddAddress

otLinkFilterRemoveAddress

otLinkFilterClearAddresses

otLinkFilterGetNextAddress

otLinkFilterAddRssIn

otLinkFilterRemoveRssIn

otLinkFilterSetDefaultRssIn

otLinkFilterClearDefaultRssIn

otLinkFilterClearAllRssIn

otLinkFilterGetNextRssIn

otLinkSetRadioFilterEnabled

otLinkIsRadioFilterEnabled

otLinkConvertRssToLinkQuality

otLinkConvertLinkQualityToRss

otLinkGetTxDirectRetrySuccessHistogram

otLinkGetTxIndirectRetrySuccessHistogram

otLinkResetTxRetrySuccessHistogram

otLinkGetCounters

otLinkResetCounters

otLinkSetPcapCallback

otLinkIsPromiscuous

otLinkSetPromiscuous

otLinkGetCslChannel

OpenThread

22/962

otLinkSetCslChannel

otLinkGetCslPeriod

otLinkSetCslPeriod

otLinkGetCslTimeout

otLinkSetCslTimeout

otLinkGetCcaFailureRate

otLinkSetEnabled

otLinkIsEnabled

otLinkIsCslEnabled

otLinkIsCslSupported

otLinkSendEmptyData

otLinkSetRegion

otLinkGetRegion

OT_US_PER_TEN_SYMBOLS

OT_MAC_FILTER_FIXED_RSS_DISABLED

OT_MAC_FILTER_ITERATOR_INIT

OT_LINK_CSL_PERIOD_TEN_SYMBOLS_UNIT_IN_USEC

Link Metrics

otLinkMetricsValues

mMetrics

mPduCountValue

mLqiValue

mLinkMarginValue

mRssiValue

otLinkMetricsSeriesFlags

mLinkProbe

mMacData

mMacDataRequest

mMacAck

otLinkMetricsEnhAckFlags

otLinkMetricsStatus

otLinkMetricsValues

otLinkMetricsSeriesFlags

otLinkMetricsEnhAckFlags

otLinkMetricsStatus

otLinkMetricsReportCallback

otLinkMetricsMgmtResponseCallback

otLinkMetricsEnhAckProbingIeReportCallback

otLinkMetricsQuery

otLinkMetricsConfigForwardTrackingSeries

otLinkMetricsConfigEnhAckProbing

otLinkMetricsSendLinkProbe

otLinkMetricsManagerSetEnabled

otLinkMetricsManagerGetMetricsValueByExtAddr

OpenThread

23/962

Raw Link

otLinkRawReceiveDone

otLinkRawTransmitDone

otLinkRawEnergyScanDone

otLinkRawSetReceiveDone

otLinkRawIsEnabled

otLinkRawGetPromiscuous

otLinkRawSetPromiscuous

otLinkRawSetShortAddress

otLinkRawSleep

otLinkRawReceive

otLinkRawIsTransmittingOrScanning

otLinkRawGetTransmitBuffer

otLinkRawTransmit

otLinkRawGetRssi

otLinkRawGetCaps

otLinkRawEnergyScan

otLinkRawSrcMatchEnable

otLinkRawSrcMatchAddShortEntry

otLinkRawSrcMatchAddExtEntry

otLinkRawSrcMatchClearShortEntry

otLinkRawSrcMatchClearExtEntry

otLinkRawSrcMatchClearShortEntries

otLinkRawSrcMatchClearExtEntries

otLinkRawSetMacKey

otLinkRawSetMacFrameCounter

otLinkRawSetMacFrameCounterIfLarger

otLinkRawGetRadioTime

Message

otMessageSettings

mLinkSecurityEnabled

mPriority

otMessageQueue

mData

otMessageQueueInfo

mNumMessages

mNumBuffers

mTotalBytes

otBufferInfo

mTotalBuffers

mFreeBuffers

mMaxUsedBuffers

m6loSendQueue

m6loReassemblyQueue

OpenThread

24/962

mIp6Queue

mMplQueue

mMleQueue

mCoapQueue

mCoapSecureQueue

mApplicationCoapQueue

otMessagePriority

otMessageOrigin

otMessage

otMessagePriority

otMessageOrigin

otMessageSettings

otMessageQueueInfo

otBufferInfo

otMessageFree

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

otMessageIsLinkSecurityEnabled

otMessageIsLoopbackToHostAllowed

otMessageSetLoopbackToHostAllowed

otMessageGetOrigin

otMessageSetOrigin

otMessageSetDirectTransmission

otMessageGetRss

otMessageAppend

otMessageRead

otMessageWrite

otMessageQueueInit

otMessageQueueEnqueue

otMessageQueueEnqueueAtHead

otMessageQueueDequeue

otMessageQueueGetHead

otMessageQueueGetNext

otMessageGetBufferInfo

otMessageResetBufferInfo

Multi Radio Link

otRadioLinkInfo

mPreference

otMultiRadioNeighborInfo

mSupportsIeee802154

mSupportsTrelUdp6

mIeee802154Info

OpenThread

25/962

mTrelUdp6Info

otRadioLinkInfo

otMultiRadioNeighborInfo

otMultiRadioGetNeighborInfo

TREL - Thread Stack

otTrelPeer

mExtAddress

mExtPanId

mSockAddr

otTrelPeer

otTrelPeerIterator

otTrelSetEnabled

otTrelIsEnabled

otTrelInitPeerIterator

otTrelGetNextPeer

otTrelSetFilterEnabled

otTrelIsFilterEnabled

Thread

Backbone Router

otBackboneRouterConfig

mServer16

mReregistrationDelay

mMlrTimeout

mSequenceNumber

otBackboneRouterMulticastListenerInfo

mAddress

mTimeout

otBackboneRouterNdProxyInfo

mMeshLocalIid

mTimeSinceLastTransaction

mRloc16

otBackboneRouterState

otBackboneRouterMulticastListenerEvent

otBackboneRouterNdProxyEvent

otBackboneRouterDomainPrefixEvent

otBackboneRouterConfig

otBackboneRouterMulticastListenerCallback

otBackboneRouterMulticastListenerIterator

otBackboneRouterMulticastListenerInfo

otBackboneRouterNdProxyCallback

otBackboneRouterNdProxyInfo

otBackboneRouterDomainPrefixCallback

otBackboneRouterGetPrimary

otBackboneRouterSetEnabled

OpenThread

26/962

otBackboneRouterGetState

otBackboneRouterGetConfig

otBackboneRouterSetConfig

otBackboneRouterRegister

otBackboneRouterGetRegistrationJitter

otBackboneRouterSetRegistrationJitter

otBackboneRouterGetDomainPrefix

otBackboneRouterConfigNextDuaRegistrationResponse

otBackboneRouterConfigNextMulticastListenerRegistrationResponse

otBackboneRouterSetMulticastListenerCallback

otBackboneRouterMulticastListenerClear

otBackboneRouterMulticastListenerAdd

otBackboneRouterMulticastListenerGetNext

otBackboneRouterSetNdProxyCallback

otBackboneRouterGetNdProxyInfo

otBackboneRouterSetDomainPrefixCallback

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ITERATOR_INIT

Border Agent

otBorderAgentId

mId

otBorderAgentState

otBorderAgentId

otBorderAgentState

OT_TOOL_PACKED_END

otBorderAgentGetState

otBorderAgentGetUdpPort

otBorderAgentGetId

otBorderAgentSetId

OT_BORDER_AGENT_ID_LENGTH

Border Router

otBorderRouterNetDataFullCallback

otBorderRouterGetNetData

otBorderRouterAddOnMeshPrefix

otBorderRouterRemoveOnMeshPrefix

otBorderRouterGetNextOnMeshPrefix

otBorderRouterAddRoute

otBorderRouterRemoveRoute

otBorderRouterGetNextRoute

otBorderRouterRegister

otBorderRouterSetNetDataFullCallback

Border Routing Manager

otBorderRoutingPrefixTableIterator

mPtr1

mPtr2

OpenThread

27/962

mData32

otBorderRoutingPrefixTableEntry

mRouterAddress

mPrefix

mIsOnLink

mMsecSinceLastUpdate

mValidLifetime

mRoutePreference

mPreferredLifetime

otBorderRoutingState

otBorderRoutingDhcp6PdState

otBorderRoutingPrefixTableIterator

otBorderRoutingPrefixTableEntry

otBorderRoutingInit

otBorderRoutingSetEnabled

otBorderRoutingGetState

otBorderRoutingGetRouteInfoOptionPreference

otBorderRoutingSetRouteInfoOptionPreference

otBorderRoutingClearRouteInfoOptionPreference

otBorderRoutingGetRoutePreference

otBorderRoutingSetRoutePreference

otBorderRoutingClearRoutePreference

otBorderRoutingGetOmrPrefix

otBorderRoutingGetPdOmrPrefix

otBorderRoutingGetFavoredOmrPrefix

otBorderRoutingGetOnLinkPrefix

otBorderRoutingGetFavoredOnLinkPrefix

otBorderRoutingGetNat64Prefix

otBorderRoutingGetFavoredNat64Prefix

otBorderRoutingPrefixTableInitIterator

otBorderRoutingGetNextPrefixTableEntry

otBorderRoutingDhcp6PdSetEnabled

Commissioner

otSteeringData

mLength

m8

otCommissioningDataset

mLocator

mSessionId

mSteeringData

mJoinerUdpPort

mIsLocatorSet

mIsSessionIdSet

mIsSteeringDataSet

OpenThread

28/962

mIsJoinerUdpPortSet

mHasExtraTlv

otJoinerPskd

m8

otJoinerInfo

mType

mEui64

mDiscerner

mSharedId

mPskd

mExpirationTime

otCommissionerState

otCommissionerJoinerEvent

otJoinerInfoType

otCommissionerState

otCommissionerJoinerEvent

otSteeringData

otCommissioningDataset

otJoinerPskd

otJoinerInfoType

otJoinerInfo

otCommissionerStateCallback

otCommissionerJoinerCallback

otCommissionerEnergyReportCallback

otCommissionerPanIdConflictCallback

otCommissionerStart

otCommissionerStop

otCommissionerGetId

otCommissionerSetId

otCommissionerAddJoiner

otCommissionerAddJoinerWithDiscerner

otCommissionerGetNextJoinerInfo

otCommissionerRemoveJoiner

otCommissionerRemoveJoinerWithDiscerner

otCommissionerGetProvisioningUrl

otCommissionerSetProvisioningUrl

otCommissionerAnnounceBegin

otCommissionerEnergyScan

otCommissionerPanIdQuery

otCommissionerSendMgmtGet

otCommissionerSendMgmtSet

otCommissionerGetSessionId

otCommissionerGetState

OT_COMMISSIONING_PASSPHRASE_MIN_SIZE

OpenThread

29/962

OT_COMMISSIONING_PASSPHRASE_MAX_SIZE

OT_PROVISIONING_URL_MAX_SIZE

OT_STEERING_DATA_MAX_LENGTH

OT_JOINER_MAX_PSKD_LENGTH

General

otBorderRouterConfig

mPrefix

mPreference

mPreferred

mSlaac

mDhcp

mConfigure

mDefaultRoute

mOnMesh

mStable

mNdDns

mDp

mRloc16

otLowpanContextInfo

mContextId

mCompressFlag

mPrefix

otExternalRouteConfig

mPrefix

mRloc16

mPreference

mNat64

mStable

mNextHopIsThisDevice

mAdvPio

otServerConfig

mStable

mServerDataLength

mServerData

mRloc16

otServiceConfig

mServiceId

mEnterpriseNumber

mServiceDataLength

mServiceData

mServerConfig

otNetworkDiagConnectivity

mParentPriority

mLinkQuality3

OpenThread

30/962

mLinkQuality2

mLinkQuality1

mLeaderCost

mIdSequence

mActiveRouters

mSedBufferSize

mSedDatagramCount

otNetworkDiagRouteData

mRouterId

mLinkQualityOut

mLinkQualityIn

mRouteCost

otNetworkDiagRoute

mIdSequence

mRouteCount

mRouteData

otNetworkDiagMacCounters

mIfInUnknownProtos

mIfInErrors

mIfOutErrors

mIfInUcastPkts

mIfInBroadcastPkts

mIfInDiscards

mIfOutUcastPkts

mIfOutBroadcastPkts

mIfOutDiscards

otNetworkDiagMleCounters

mDisabledRole

mDetachedRole

mChildRole

mRouterRole

mLeaderRole

mAttachAttempts

mPartitionIdChanges

mBetterPartitionAttachAttempts

mParentChanges

mTrackedTime

mDisabledTime

mDetachedTime

mChildTime

mRouterTime

mLeaderTime

otNetworkDiagChildEntry

mTimeout

OpenThread

31/962

mLinkQuality

mChildId

mMode

otNetworkDiagTlv

mType

mExtAddress

mAddr16

mMode

mTimeout

mConnectivity

mRoute

mLeaderData

mMacCounters

mMleCounters

mBatteryLevel

mSupplyVoltage

mMaxChildTimeout

mVersion

mVendorName

mVendorModel

mVendorSwVersion

mThreadStackVersion

mCount

m8

mNetworkData

mList

mIp6AddrList

mTable

mChildTable

mChannelPages

mData

otLinkModeConfig

mRxOnWhenIdle

mDeviceType

mNetworkData

otNeighborInfo

mExtAddress

mAge

mConnectionTime

mRloc16

mLinkFrameCounter

mMleFrameCounter

mLinkQualityIn

mAverageRssi

OpenThread

32/962

mLastRssi

mLinkMargin

mFrameErrorRate

mMessageErrorRate

mVersion

mRxOnWhenIdle

mFullThreadDevice

mFullNetworkData

mIsChild

otLeaderData

mPartitionId

mWeighting

mDataVersion

mStableDataVersion

mLeaderRouterId

otRouterInfo

mExtAddress

mRloc16

mRouterId

mNextHop

mPathCost

mLinkQualityIn

mLinkQualityOut

mAge

mAllocated

mLinkEstablished

mVersion

mCslClockAccuracy

mCslUncertainty

otIpCounters

mTxSuccess

mRxSuccess

mTxFailure

mRxFailure

otMleCounters

mDisabledRole

mDetachedRole

mChildRole

mRouterRole

mLeaderRole

mAttachAttempts

mPartitionIdChanges

mBetterPartitionAttachAttempts

mDisabledTime

OpenThread

33/962

mDetachedTime

mChildTime

mRouterTime

mLeaderTime

mTrackedTime

mParentChanges

otThreadParentResponseInfo

mExtAddr

mRloc16

mRssi

mPriority

mLinkQuality3

mLinkQuality2

mLinkQuality1

mIsAttached

otThreadDiscoveryRequestInfo

mExtAddress

mVersion

mIsJoiner

otRoutePreference

otNetDataPublisherEvent

�5

otDeviceRole

otNetworkDataIterator

otBorderRouterConfig

otLowpanContextInfo

otExternalRouteConfig

otRoutePreference

otServerConfig

otServiceConfig

otNetDataPublisherEvent

otNetDataDnsSrpServicePublisherCallback

otNetDataPrefixPublisherCallback

otNetworkDiagIterator

otNetworkDiagConnectivity

otNetworkDiagRouteData

otNetworkDiagRoute

otNetworkDiagMacCounters

otNetworkDiagMleCounters

otNetworkDiagChildEntry

otNetworkDiagTlv

otReceiveDiagnosticGetCallback

otLinkModeConfig

otNeighborInfoIterator

OpenThread

34/962

otLeaderData

otIpCounters

otMleCounters

otThreadParentResponseInfo

otDetachGracefullyCallback

otThreadParentResponseCallback

otThreadDiscoveryRequestInfo

otThreadDiscoveryRequestCallback

otThreadAnycastLocatorCallback

otNetDataGet

otNetDataGetLength

otNetDataGetMaxLength

otNetDataResetMaxLength

otNetDataGetNextOnMeshPrefix

otNetDataGetNextRoute

otNetDataGetNextService

otNetDataGetNextLowpanContextInfo

otNetDataGetCommissioningDataset

otNetDataGetVersion

otNetDataGetStableVersion

otNetDataSteeringDataCheckJoiner

otNetDataSteeringDataCheckJoinerWithDiscerner

otNetDataContainsOmrPrefix

otNetDataPublishDnsSrpServiceAnycast

otNetDataPublishDnsSrpServiceUnicast

otNetDataPublishDnsSrpServiceUnicastMeshLocalEid

otNetDataIsDnsSrpServiceAdded

otNetDataSetDnsSrpServicePublisherCallback

otNetDataUnpublishDnsSrpService

otNetDataPublishOnMeshPrefix

otNetDataPublishExternalRoute

otNetDataReplacePublishedExternalRoute

otNetDataIsPrefixAdded

otNetDataSetPrefixPublisherCallback

otNetDataUnpublishPrefix

otThreadGetNextDiagnosticTlv

otThreadSendDiagnosticGet

otThreadSendDiagnosticReset

otThreadGetVendorName

otThreadGetVendorModel

otThreadGetVendorSwVersion

otThreadSetVendorName

otThreadSetVendorModel

otThreadSetVendorSwVersion

OpenThread

35/962

otThreadSetEnabled

otThreadGetVersion

otThreadIsSingleton

otThreadDiscover

otThreadIsDiscoverInProgress

otThreadSetJoinerAdvertisement

otThreadGetChildTimeout

otThreadSetChildTimeout

otThreadGetExtendedPanId

otThreadSetExtendedPanId

otThreadGetLeaderRloc

otThreadGetLinkMode

otThreadSetLinkMode

otThreadGetNetworkKey

otThreadGetNetworkKeyRef

otThreadSetNetworkKey

otThreadSetNetworkKeyRef

otThreadGetRloc

otThreadGetMeshLocalEid

otThreadGetMeshLocalPrefix

otThreadSetMeshLocalPrefix

otThreadGetLinkLocalIp6Address

otThreadGetLinkLocalAllThreadNodesMulticastAddress

otThreadGetRealmLocalAllThreadNodesMulticastAddress

otThreadGetServiceAloc

otThreadGetNetworkName

otThreadSetNetworkName

otThreadGetDomainName

otThreadSetDomainName

otThreadSetFixedDuaInterfaceIdentifier

otThreadGetFixedDuaInterfaceIdentifier

otThreadGetKeySequenceCounter

otThreadSetKeySequenceCounter

otThreadGetKeySwitchGuardTime

otThreadSetKeySwitchGuardTime

otThreadBecomeDetached

otThreadBecomeChild

otThreadGetNextNeighborInfo

otThreadGetDeviceRole

otThreadDeviceRoleToString

otThreadGetLeaderData

otThreadGetLeaderRouterId

otThreadGetLeaderWeight

otThreadGetPartitionId

OpenThread

36/962

otThreadGetRloc16

otThreadGetParentInfo

otThreadGetParentAverageRssi

otThreadGetParentLastRssi

otThreadSearchForBetterParent

otThreadGetIp6Counters

otThreadResetIp6Counters

otThreadGetTimeInQueueHistogram

otThreadGetMaxTimeInQueue

otThreadResetTimeInQueueStat

otThreadGetMleCounters

otThreadResetMleCounters

otThreadRegisterParentResponseCallback

otThreadSetDiscoveryRequestCallback

otThreadLocateAnycastDestination

otThreadIsAnycastLocateInProgress

otThreadSendAddressNotification

otThreadSendProactiveBackboneNotification

otThreadDetachGracefully

otConvertDurationInSecondsToString

OT_NETWORK_DATA_ITERATOR_INIT

OT_SERVICE_DATA_MAX_SIZE

OT_SERVER_DATA_MAX_SIZE

OT_NETWORK_DIAGNOSTIC_TYPELIST_MAX_ENTRIES

OT_NETWORK_DIAGNOSTIC_CHILD_TABLE_ENTRY_SIZE

OT_NETWORK_DIAGNOSTIC_ITERATOR_INIT

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_NAME_TLV_LENGTH

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_MODEL_TLV_LENGTH

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_SW_VERSION_TLV_LENGTH

OT_NETWORK_DIAGNOSTIC_MAX_THREAD_STACK_VERSION_TLV_LENGTH

OT_NETWORK_BASE_TLV_MAX_LENGTH

OT_NETWORK_MAX_ROUTER_ID

OT_NEIGHBOR_INFO_ITERATOR_INIT

OT_JOINER_ADVDATA_MAX_LENGTH

OT_DURATION_STRING_SIZE

Joiner

otJoinerDiscerner

mValue

mLength

otJoinerState

otJoinerState

otJoinerDiscerner

otJoinerCallback

otJoinerStart

OpenThread

37/962

otJoinerStop

otJoinerGetState

otJoinerGetId

otJoinerSetDiscerner

otJoinerGetDiscerner

otJoinerStateToString

OT_JOINER_MAX_DISCERNER_LENGTH

Operational Dataset

otNetworkKey

m8

otNetworkName

m8

otExtendedPanId

m8

otPskc

m8

otSecurityPolicy

mRotationTime

mObtainNetworkKeyEnabled

mNativeCommissioningEnabled

mRoutersEnabled

mExternalCommissioningEnabled

mCommercialCommissioningEnabled

mAutonomousEnrollmentEnabled

mNetworkKeyProvisioningEnabled

mTobleLinkEnabled

mNonCcmRoutersEnabled

mVersionThresholdForRouting

otOperationalDatasetComponents

mIsActiveTimestampPresent

mIsPendingTimestampPresent

mIsNetworkKeyPresent

mIsNetworkNamePresent

mIsExtendedPanIdPresent

mIsMeshLocalPrefixPresent

mIsDelayPresent

mIsPanIdPresent

mIsChannelPresent

mIsPskcPresent

mIsSecurityPolicyPresent

mIsChannelMaskPresent

otTimestamp

mSeconds

mTicks

OpenThread

38/962

mAuthoritative

otOperationalDataset

mActiveTimestamp

mPendingTimestamp

mNetworkKey

mNetworkName

mExtendedPanId

mMeshLocalPrefix

mDelay

mPanId

mChannel

mPskc

mSecurityPolicy

mChannelMask

mComponents

otOperationalDatasetTlvs

mTlvs

mLength

otMeshcopTlvType

otNetworkKey

otNetworkKeyRef

otNetworkName

otExtendedPanId

otMeshLocalPrefix

otPskc

otPskcRef

otSecurityPolicy

otChannelMask

otOperationalDatasetComponents

otTimestamp

otOperationalDataset

otOperationalDatasetTlvs

otMeshcopTlvType

otDatasetMgmtSetCallback

otDatasetUpdaterCallback

OT_TOOL_PACKED_END

otDatasetIsCommissioned

otDatasetGetActive

otDatasetGetActiveTlvs

otDatasetSetActive

otDatasetSetActiveTlvs

otDatasetGetPending

otDatasetGetPendingTlvs

otDatasetSetPending

OpenThread

39/962

otDatasetSetPendingTlvs

otDatasetSendMgmtActiveGet

otDatasetSendMgmtActiveSet

otDatasetSendMgmtPendingGet

otDatasetSendMgmtPendingSet

otDatasetGeneratePskc

otNetworkNameFromString

otDatasetParseTlvs

otDatasetConvertToTlvs

otDatasetUpdateTlvs

otDatasetCreateNewNetwork

otDatasetGetDelayTimerMinimal

otDatasetSetDelayTimerMinimal

otDatasetUpdaterRequestUpdate

otDatasetUpdaterCancelUpdate

otDatasetUpdaterIsUpdateOngoing

OT_NETWORK_KEY_SIZE

OT_NETWORK_NAME_MAX_SIZE

OT_EXT_PAN_ID_SIZE

OT_MESH_LOCAL_PREFIX_SIZE

OT_PSKC_MAX_SIZE

OT_CHANNEL_1_MASK

OT_CHANNEL_2_MASK

OT_CHANNEL_3_MASK

OT_CHANNEL_4_MASK

OT_CHANNEL_5_MASK

OT_CHANNEL_6_MASK

OT_CHANNEL_7_MASK

OT_CHANNEL_8_MASK

OT_CHANNEL_9_MASK

OT_CHANNEL_10_MASK

OT_CHANNEL_11_MASK

OT_CHANNEL_12_MASK

OT_CHANNEL_13_MASK

OT_CHANNEL_14_MASK

OT_CHANNEL_15_MASK

OT_CHANNEL_16_MASK

OT_CHANNEL_17_MASK

OT_CHANNEL_18_MASK

OT_CHANNEL_19_MASK

OT_CHANNEL_20_MASK

OT_CHANNEL_21_MASK

OT_CHANNEL_22_MASK

OT_CHANNEL_23_MASK

OpenThread

40/962

OT_CHANNEL_24_MASK

OT_CHANNEL_25_MASK

OT_CHANNEL_26_MASK

OT_OPERATIONAL_DATASET_MAX_LENGTH

Router/Leader

otChildInfo

mExtAddress

mTimeout

mAge

mConnectionTime

mRloc16

mChildId

mNetworkDataVersion

mLinkQualityIn

mAverageRssi

mLastRssi

mFrameErrorRate

mMessageErrorRate

mQueuedMessageCnt

mSupervisionInterval

mVersion

mRxOnWhenIdle

mFullThreadDevice

mFullNetworkData

mIsStateRestoring

mIsCslSynced

otCacheEntryInfo

mTarget

mRloc16

mState

mCanEvict

mRampDown

mValidLastTrans

mLastTransTime

mMeshLocalEid

mTimeout

mRetryDelay

otCacheEntryIterator

mData

otDeviceProperties

mPowerSupply

mIsBorderRouter

mSupportsCcm

mIsUnstable

OpenThread

41/962

mLeaderWeightAdjustment

otNeighborTableEntryInfo

mInstance

mChild

mRouter

mInfo

otCacheEntryState

otPowerSupply

otNeighborTableEvent

otChildIp6AddressIterator

otCacheEntryState

otCacheEntryInfo

otCacheEntryIterator

otDeviceProperties

otNeighborTableCallback

otThreadGetMaxAllowedChildren

otThreadSetMaxAllowedChildren

otThreadIsRouterEligible

otThreadSetRouterEligible

otThreadSetPreferredRouterId

otThreadGetDeviceProperties

otThreadSetDeviceProperties

otThreadGetLocalLeaderWeight

otThreadSetLocalLeaderWeight

otThreadGetPreferredLeaderPartitionId

otThreadSetPreferredLeaderPartitionId

otThreadGetJoinerUdpPort

otThreadSetJoinerUdpPort

otThreadSetSteeringData

otThreadGetContextIdReuseDelay

otThreadSetContextIdReuseDelay

otThreadGetNetworkIdTimeout

otThreadSetNetworkIdTimeout

otThreadGetRouterUpgradeThreshold

otThreadSetRouterUpgradeThreshold

otThreadGetChildRouterLinks

otThreadSetChildRouterLinks

otThreadReleaseRouterId

otThreadBecomeRouter

otThreadBecomeLeader

otThreadGetRouterDowngradeThreshold

otThreadSetRouterDowngradeThreshold

otThreadGetRouterSelectionJitter

otThreadSetRouterSelectionJitter

OpenThread

42/962

otThreadGetChildInfoById

otThreadGetChildInfoByIndex

otThreadGetChildNextIp6Address

otThreadGetRouterIdSequence

otThreadGetMaxRouterId

otThreadGetRouterInfo

otThreadGetNextCacheEntry

otThreadGetPskc

otThreadGetPskcRef

otThreadSetPskc

otThreadSetPskcRef

otThreadGetParentPriority

otThreadSetParentPriority

otThreadGetMaxChildIpAddresses

otThreadSetMaxChildIpAddresses

otThreadRegisterNeighborTableCallback

otThreadSetCcmEnabled

otThreadSetThreadVersionCheckEnabled

otThreadGetRouterIdRange

otThreadSetRouterIdRange

otThreadGetAdvertisementTrickleIntervalMax

otThreadIsRouterIdAllocated

otThreadGetNextHopAndPathCost

OT_CHILD_IP6_ADDRESS_ITERATOR_INIT

Server

otServerGetNetDataLocal

otServerAddService

otServerRemoveService

otServerGetNextService

otServerRegister

Add-Ons

Channel Manager

otChannelManagerRequestChannelChange

otChannelManagerGetRequestedChannel

otChannelManagerGetDelay

otChannelManagerSetDelay

otChannelManagerRequestChannelSelect

otChannelManagerSetAutoChannelSelectionEnabled

otChannelManagerGetAutoChannelSelectionEnabled

otChannelManagerSetAutoChannelSelectionInterval

otChannelManagerGetAutoChannelSelectionInterval

otChannelManagerGetSupportedChannels

otChannelManagerSetSupportedChannels

otChannelManagerGetFavoredChannels

OpenThread

43/962

otChannelManagerSetFavoredChannels

otChannelManagerGetCcaFailureRateThreshold

otChannelManagerSetCcaFailureRateThreshold

Channel Monitoring

otChannelMonitorSetEnabled

otChannelMonitorIsEnabled

otChannelMonitorGetSampleInterval

otChannelMonitorGetRssiThreshold

otChannelMonitorGetSampleWindow

otChannelMonitorGetSampleCount

otChannelMonitorGetChannelOccupancy

Child Supervision

otChildSupervisionGetInterval

otChildSupervisionSetInterval

otChildSupervisionGetCheckTimeout

otChildSupervisionSetCheckTimeout

otChildSupervisionGetCheckFailureCounter

otChildSupervisionResetCheckFailureCounter

CoAP

CoAP

otCoapOption

mNumber

mLength

otCoapOptionIterator

mMessage

mOption

mNextOptionOffset

otCoapResource

mUriPath

mHandler

mContext

mNext

otCoapBlockwiseResource

mUriPath

mHandler

mReceiveHook

mTransmitHook

mContext

mNext

otCoapTxParameters

mAckTimeout

mAckRandomFactorNumerator

mAckRandomFactorDenominator

mMaxRetransmit

OpenThread

44/962

otCoapType

otCoapCode

otCoapOptionType

otCoapOptionContentFormat

otCoapBlockSzx

otCoapType

otCoapCode

otCoapOptionType

otCoapOption

otCoapOptionIterator

otCoapOptionContentFormat

otCoapBlockSzx

otCoapResponseHandler

otCoapRequestHandler

otCoapBlockwiseReceiveHook

otCoapBlockwiseTransmitHook

otCoapResource

otCoapBlockwiseResource

otCoapTxParameters

otCoapMessageInit

otCoapMessageInitResponse

otCoapMessageSetToken

otCoapMessageGenerateToken

otCoapMessageAppendContentFormatOption

otCoapMessageAppendOption

otCoapMessageAppendUintOption

otCoapMessageAppendObserveOption

otCoapMessageAppendUriPathOptions

otCoapBlockSizeFromExponent

otCoapMessageAppendBlock2Option

otCoapMessageAppendBlock1Option

otCoapMessageAppendProxyUriOption

otCoapMessageAppendMaxAgeOption

otCoapMessageAppendUriQueryOption

otCoapMessageSetPayloadMarker

otCoapMessageGetType

otCoapMessageGetCode

otCoapMessageSetCode

otCoapMessageCodeToString

otCoapMessageGetMessageId

otCoapMessageGetTokenLength

otCoapMessageGetToken

otCoapOptionIteratorInit

otCoapOptionIteratorGetFirstOptionMatching

OpenThread

45/962

otCoapOptionIteratorGetFirstOption

otCoapOptionIteratorGetNextOptionMatching

otCoapOptionIteratorGetNextOption

otCoapOptionIteratorGetOptionUintValue

otCoapOptionIteratorGetOptionValue

otCoapNewMessage

otCoapSendRequestWithParameters

otCoapSendRequestBlockWiseWithParameters

otCoapSendRequestBlockWise

otCoapSendRequest

otCoapStart

otCoapStop

otCoapAddResource

otCoapRemoveResource

otCoapAddBlockWiseResource

otCoapRemoveBlockWiseResource

otCoapSetDefaultHandler

otCoapSendResponseWithParameters

otCoapSendResponseBlockWiseWithParameters

otCoapSendResponseBlockWise

otCoapSendResponse

OT_DEFAULT_COAP_PORT

OT_COAP_DEFAULT_TOKEN_LENGTH

OT_COAP_MAX_TOKEN_LENGTH

OT_COAP_MAX_RETRANSMIT

OT_COAP_MIN_ACK_TIMEOUT

OT_COAP_CODE

CoAP Secure

otHandleCoapSecureClientConnect

otCoapSecureStart

otCoapSecureStop

otCoapSecureSetPsk

otCoapSecureGetPeerCertificateBase64

otCoapSecureSetSslAuthMode

otCoapSecureSetCertificate

otCoapSecureSetCaCertificateChain

otCoapSecureConnect

otCoapSecureDisconnect

otCoapSecureIsConnected

otCoapSecureIsConnectionActive

otCoapSecureSendRequestBlockWise

otCoapSecureSendRequest

otCoapSecureAddResource

otCoapSecureRemoveResource

OpenThread

46/962

otCoapSecureAddBlockWiseResource

otCoapSecureRemoveBlockWiseResource

otCoapSecureSetDefaultHandler

otCoapSecureSetClientConnectedCallback

otCoapSecureSendResponseBlockWise

otCoapSecureSendResponse

OT_DEFAULT_COAP_SECURE_PORT

Command Line Interface

otCliCommand

mName

mCommand

mCommand

otCliOutputCallback

otCliCommand

otCliInit

otCliInputLine

otCliSetUserCommands

otCliOutputBytes

otCliOutputFormat

otCliAppendResult

otCliPlatLogv

otCliVendorSetUserCommands

Crypto - Thread Stack

otCryptoSha256Hash

otCryptoHmacSha256

otCryptoAesCcm

Factory Diagnostics - Thread Stack

otDiagProcessCmd

otDiagProcessCmdLine

otDiagIsEnabled

Heap

otHeapCAlloc

otHeapFree

History Tracker

otHistoryTrackerIterator

mData32

mData16

otHistoryTrackerNetworkInfo

mRole

mMode

mRloc16

mPartitionId

otHistoryTrackerUnicastAddressInfo

mAddress

OpenThread

47/962

mPrefixLength

mAddressOrigin

mEvent

mScope

mPreferred

mValid

mRloc

otHistoryTrackerMulticastAddressInfo

mAddress

mAddressOrigin

mEvent

otHistoryTrackerMessageInfo

mPayloadLength

mNeighborRloc16

mSource

mDestination

mChecksum

mIpProto

mIcmp6Type

mAveRxRss

mLinkSecurity

mTxSuccess

mPriority

mRadioIeee802154

mRadioTrelUdp6

otHistoryTrackerNeighborInfo

mExtAddress

mRloc16

mAverageRssi

mEvent

mRxOnWhenIdle

mFullThreadDevice

mFullNetworkData

mIsChild

otHistoryTrackerRouterInfo

mEvent

mRouterId

mNextHop

mOldPathCost

mPathCost

otHistoryTrackerOnMeshPrefixInfo

mPrefix

mEvent

otHistoryTrackerExternalRouteInfo

OpenThread

48/962

mRoute

mEvent

otHistoryTrackerAddressEvent

�1

otHistoryTrackerNeighborEvent

otHistoryTrackerRouterEvent

otHistoryTrackerNetDataEvent

otHistoryTrackerIterator

otHistoryTrackerNetworkInfo

otHistoryTrackerUnicastAddressInfo

otHistoryTrackerMulticastAddressInfo

otHistoryTrackerMessageInfo

otHistoryTrackerNeighborInfo

otHistoryTrackerRouterInfo

otHistoryTrackerOnMeshPrefixInfo

otHistoryTrackerExternalRouteInfo

otHistoryTrackerInitIterator

otHistoryTrackerIterateNetInfoHistory

otHistoryTrackerIterateUnicastAddressHistory

otHistoryTrackerIterateMulticastAddressHistory

otHistoryTrackerIterateRxHistory

otHistoryTrackerIterateTxHistory

otHistoryTrackerIterateNeighborHistory

otHistoryTrackerIterateRouterHistory

otHistoryTrackerIterateOnMeshPrefixHistory

otHistoryTrackerIterateExternalRouteHistory

otHistoryTrackerEntryAgeToString

OT_HISTORY_TRACKER_MAX_AGE

OT_HISTORY_TRACKER_ENTRY_AGE_STRING_SIZE

OT_HISTORY_TRACKER_NO_NEXT_HOP

OT_HISTORY_TRACKER_INFINITE_PATH_COST

Jam Detection

otJamDetectionCallback

otJamDetectionSetRssiThreshold

otJamDetectionGetRssiThreshold

otJamDetectionSetWindow

otJamDetectionGetWindow

otJamDetectionSetBusyPeriod

otJamDetectionGetBusyPeriod

otJamDetectionStart

otJamDetectionStop

otJamDetectionIsEnabled

otJamDetectionGetState

OpenThread

49/962

otJamDetectionGetHistoryBitmap

Logging - Thread Stack

otLogHexDumpInfo

mDataBytes

mDataLength

mTitle

mLine

mIterator

otLoggingGetLevel

otLoggingSetLevel

otLogCritPlat

otLogWarnPlat

otLogNotePlat

otLogInfoPlat

otLogDebgPlat

otDumpCritPlat

otDumpWarnPlat

otDumpNotePlat

otDumpInfoPlat

otDumpDebgPlat

otLogPlat

otLogPlatArgs

otLogCli

otLogGenerateNextHexDumpLine

OT_LOG_HEX_DUMP_LINE_SIZE

Mesh Diagnostics

otMeshDiagDiscoverConfig

mDiscoverIp6Addresses

mDiscoverChildTable

otMeshDiagRouterInfo

mExtAddress

mRloc16

mRouterId

mVersion

mIsThisDevice

mIsThisDeviceParent

mIsLeader

mIsBorderRouter

mLinkQualities

mIp6AddrIterator

mChildIterator

otMeshDiagChildInfo

mRloc16

mMode

OpenThread

50/962

mLinkQuality

mIsThisDevice

mIsBorderRouter

otMeshDiagChildEntry

mRxOnWhenIdle

mDeviceTypeFtd

mFullNetData

mCslSynchronized

mSupportsErrRate

mRloc16

mExtAddress

mVersion

mTimeout

mAge

mConnectionTime

mSupervisionInterval

mLinkMargin

mAverageRssi

mLastRssi

mFrameErrorRate

mMessageErrorRate

mQueuedMessageCount

mCslPeriod

mCslTimeout

mCslChannel

otMeshDiagRouterNeighborEntry

mSupportsErrRate

mRloc16

mExtAddress

mVersion

mConnectionTime

mLinkMargin

mAverageRssi

mLastRssi

mFrameErrorRate

mMessageErrorRate

otMeshDiagDiscoverConfig

otMeshDiagIp6AddrIterator

otMeshDiagChildIterator

otMeshDiagRouterInfo

otMeshDiagChildInfo

otMeshDiagDiscoverCallback

otMeshDiagChildEntry

otMeshDiagQueryChildTableCallback

OpenThread

51/962

otMeshDiagChildIp6AddrsCallback

otMeshDiagRouterNeighborEntry

otMeshDiagQueryRouterNeighborTableCallback

otMeshDiagDiscoverTopology

otMeshDiagCancel

otMeshDiagGetNextIp6Address

otMeshDiagGetNextChildInfo

otMeshDiagQueryChildTable

otMeshDiagQueryChildrenIp6Addrs

otMeshDiagQueryRouterNeighborTable

OT_MESH_DIAG_VERSION_UNKNOWN

Network Co-Processor

otNcpHdlcSendCallback

otNcpDelegateAllowPeekPoke

otNcpHdlcSendDone

otNcpHdlcReceive

otNcpHdlcInit

otNcpSpiInit

otNcpStreamWrite

otNcpPlatLogv

otNcpRegisterPeekPokeDelegates

Network Time Synchronization

otNetworkTimeStatus

otNetworkTimeStatus

otNetworkTimeSyncCallbackFn

otNetworkTimeGet

otNetworkTimeSetSyncPeriod

otNetworkTimeGetSyncPeriod

otNetworkTimeSetXtalThreshold

otNetworkTimeGetXtalThreshold

otNetworkTimeSyncSetCallback

OT_TIME_SYNC_INVALID_SEQ

Radio Statistics

otRadioTimeStats

mDisabledTime

mSleepTime

mTxTime

mRxTime

otRadioTimeStats

otRadioTimeStatsGet

otRadioTimeStatsReset

Random Number Generator

RNG Cryptographic

otRandomCryptoFillBuffer

OpenThread

52/962

RNG Non-cryptographic

otRandomNonCryptoGetUint32

otRandomNonCryptoGetUint8

otRandomNonCryptoGetUint16

otRandomNonCryptoGetUint8InRange

otRandomNonCryptoGetUint16InRange

otRandomNonCryptoGetUint32InRange

otRandomNonCryptoFillBuffer

otRandomNonCryptoAddJitter

SNTP

otSntpQuery

mMessageInfo

otSntpQuery

otSntpResponseHandler

otSntpClientQuery

otSntpClientSetUnixEra

OT_SNTP_DEFAULT_SERVER_IP

OT_SNTP_DEFAULT_SERVER_PORT

Platform Abstraction

Alarm

otPlatAlarmMicroStartAt

otPlatAlarmMicroStop

otPlatAlarmMicroGetNow

otPlatAlarmMicroFired

otPlatAlarmMilliStartAt

otPlatAlarmMilliStop

otPlatAlarmMilliGetNow

otPlatAlarmMilliFired

otPlatDiagAlarmFired

Crypto - Platform

otCryptoKey

mKey

mKeyLength

mKeyRef

otCryptoContext

mContext

mContextSize

otPlatCryptoSha256Hash

m8

otPlatCryptoEcdsaKeyPair

mDerBytes

mDerLength

otPlatCryptoEcdsaPublicKey

m8

OpenThread

53/962

otPlatCryptoEcdsaSignature

m8

otCryptoKeyType

otCryptoKeyAlgorithm

�11

otCryptoKeyStorage

otCryptoKeyRef

otCryptoKey

otCryptoContext

otPlatCryptoSha256Hash

otPlatCryptoEcdsaKeyPair

otPlatCryptoEcdsaPublicKey

otPlatCryptoEcdsaSignature

OT_TOOL_PACKED_END

otPlatCryptoInit

otPlatCryptoImportKey

otPlatCryptoExportKey

otPlatCryptoDestroyKey

otPlatCryptoHasKey

otPlatCryptoHmacSha256Init

otPlatCryptoHmacSha256Deinit

otPlatCryptoHmacSha256Start

otPlatCryptoHmacSha256Update

otPlatCryptoHmacSha256Finish

otPlatCryptoAesInit

otPlatCryptoAesSetKey

otPlatCryptoAesEncrypt

otPlatCryptoAesFree

otPlatCryptoHkdfInit

otPlatCryptoHkdfExpand

otPlatCryptoHkdfExtract

otPlatCryptoHkdfDeinit

otPlatCryptoSha256Init

otPlatCryptoSha256Deinit

otPlatCryptoSha256Start

otPlatCryptoSha256Update

otPlatCryptoSha256Finish

otPlatCryptoRandomInit

otPlatCryptoRandomDeinit

otPlatCryptoRandomGet

otPlatCryptoEcdsaGenerateKey

otPlatCryptoEcdsaGetPublicKey

otPlatCryptoEcdsaSign

otPlatCryptoEcdsaVerify

OpenThread

54/962

otPlatCryptoEcdsaSignUsingKeyRef

otPlatCryptoEcdsaExportPublicKey

otPlatCryptoEcdsaGenerateAndImportKey

otPlatCryptoEcdsaVerifyUsingKeyRef

otPlatCryptoPbkdf2GenerateKey

OT_CRYPTO_SHA256_HASH_SIZE

OT_CRYPTO_ECDSA_MAX_DER_SIZE

OT_CRYPTO_ECDSA_PUBLIC_KEY_SIZE

OT_CRYPTO_ECDSA_SIGNATURE_SIZE

OT_CRYPTO_PBDKF2_MAX_SALT_SIZE

DNS - Platform

otPlatDnsUpstreamQuery

otPlatDnsStartUpstreamQuery

otPlatDnsCancelUpstreamQuery

otPlatDnsUpstreamQueryDone

Entropy

otPlatEntropyGet

Factory Diagnostics - Platform

otGpioMode

otPlatDiagProcess

otPlatDiagModeSet

otPlatDiagModeGet

otPlatDiagChannelSet

otPlatDiagTxPowerSet

otPlatDiagRadioReceived

otPlatDiagAlarmCallback

otPlatDiagGpioSet

otPlatDiagGpioGet

otPlatDiagGpioSetMode

otPlatDiagGpioGetMode

otPlatDiagRadioSetRawPowerSetting

otPlatDiagRadioGetRawPowerSetting

otPlatDiagRadioRawPowerSettingEnable

otPlatDiagRadioTransmitCarrier

otPlatDiagRadioTransmitStream

otPlatDiagRadioGetPowerSettings

Logging - Platform

otLogRegion

otLogLevel

otLogRegion

otPlatLog

otPlatLogHandleLevelChanged

OT_LOG_LEVEL_NONE

OT_LOG_LEVEL_CRIT

OpenThread

55/962

OT_LOG_LEVEL_WARN

OT_LOG_LEVEL_NOTE

OT_LOG_LEVEL_INFO

OT_LOG_LEVEL_DEBG

Memory

otPlatCAlloc

otPlatFree

Message Pool

otMessageBuffer

mNext

otMessageBuffer

otPlatMessagePoolInit

otPlatMessagePoolNew

otPlatMessagePoolFree

otPlatMessagePoolNumFreeBuffers

Miscellaneous

otPlatResetReason

otPlatMcuPowerState

otPlatReset

otPlatResetToBootloader

otPlatGetResetReason

otPlatAssertFail

otPlatWakeHost

otPlatSetMcuPowerState

otPlatGetMcuPowerState

Network Simulator

otPlatOtnsStatus

Radio

Radio Types

otExtAddress

m8

otMacKey

m8

otMacKeyMaterial

mKeyRef

mKey

mKeyMaterial

otRadioIeInfo

mNetworkTimeOffset

mTimeIeOffset

mTimeSyncSeq

otRadioFrame

mPsdu

mLength

OpenThread

56/962

mChannel

mRadioType

mIid

mAesKey

mIeInfo

mTxDelayBaseTime

mTxDelay

mMaxCsmaBackoffs

mMaxFrameRetries

mRxChannelAfterTxDone

mIsHeaderUpdated

mIsARetx

mCsmaCaEnabled

mCslPresent

mIsSecurityProcessed

mTxInfo

mTimestamp

mAckFrameCounter

mAckKeyId

mRssi

mLqi

mAckedWithFramePending

mAckedWithSecEnhAck

mRxInfo

mInfo

otRadioCoexMetrics

mNumGrantGlitch

mNumTxRequest

mNumTxGrantImmediate

mNumTxGrantWait

mNumTxGrantWaitActivated

mNumTxGrantWaitTimeout

mNumTxGrantDeactivatedDuringRequest

mNumTxDelayedGrant

mAvgTxRequestToGrantTime

mNumRxRequest

mNumRxGrantImmediate

mNumRxGrantWait

mNumRxGrantWaitActivated

mNumRxGrantWaitTimeout

mNumRxGrantDeactivatedDuringRequest

mNumRxDelayedGrant

mAvgRxRequestToGrantTime

mNumRxGrantNone

OpenThread

57/962

mStopped

otLinkMetrics

mPduCount

mLqi

mLinkMargin

mRssi

mReserved

�12

�13

�14

�15

�16

otRadioKeyType

otRadioState

otRadioCaps

otPanId

otShortAddress

otExtAddress

otMacKey

otMacKeyRef

otMacKeyMaterial

otRadioIeInfo

otRadioFrame

otRadioState

otRadioCoexMetrics

otLinkMetrics

OT_TOOL_PACKED_END

OT_PANID_BROADCAST

OT_EXT_ADDRESS_SIZE

CSL_IE_HEADER_BYTES_LO

CSL_IE_HEADER_BYTES_HI

OT_MAC_KEY_SIZE

OT_TOOL_PACKED_END

Radio Configuration

otPlatRadioGetCaps

otPlatRadioGetVersionString

otPlatRadioGetReceiveSensitivity

otPlatRadioGetIeeeEui64

otPlatRadioSetPanId

otPlatRadioSetExtendedAddress

otPlatRadioSetShortAddress

otPlatRadioGetTransmitPower

otPlatRadioSetTransmitPower

otPlatRadioGetCcaEnergyDetectThreshold

OpenThread

58/962

otPlatRadioSetCcaEnergyDetectThreshold

otPlatRadioGetFemLnaGain

otPlatRadioSetFemLnaGain

otPlatRadioGetPromiscuous

otPlatRadioSetPromiscuous

otPlatRadioSetMacKey

otPlatRadioSetMacFrameCounter

otPlatRadioSetMacFrameCounterIfLarger

otPlatRadioGetNow

otPlatRadioGetBusSpeed

Radio Operation

otPlatRadioGetState

otPlatRadioEnable

otPlatRadioDisable

otPlatRadioIsEnabled

otPlatRadioSleep

otPlatRadioReceive

otPlatRadioReceiveAt

otPlatRadioReceiveDone

otPlatDiagRadioReceiveDone

otPlatRadioGetTransmitBuffer

otPlatRadioTransmit

otPlatRadioTxStarted

otPlatRadioTxDone

otPlatDiagRadioTransmitDone

otPlatRadioGetRssi

otPlatRadioEnergyScan

otPlatRadioEnergyScanDone

otPlatRadioEnableSrcMatch

otPlatRadioAddSrcMatchShortEntry

otPlatRadioAddSrcMatchExtEntry

otPlatRadioClearSrcMatchShortEntry

otPlatRadioClearSrcMatchExtEntry

otPlatRadioClearSrcMatchShortEntries

otPlatRadioClearSrcMatchExtEntries

otPlatRadioGetSupportedChannelMask

otPlatRadioGetPreferredChannelMask

otPlatRadioSetCoexEnabled

otPlatRadioIsCoexEnabled

otPlatRadioGetCoexMetrics

otPlatRadioEnableCsl

otPlatRadioUpdateCslSampleTime

otPlatRadioGetCslAccuracy

otPlatRadioGetCslUncertainty

OpenThread

59/962

otPlatRadioSetChannelMaxTransmitPower

otPlatRadioSetRegion

otPlatRadioGetRegion

otPlatRadioConfigureEnhAckProbing

otPlatRadioAddCalibratedPower

otPlatRadioClearCalibratedPowers

otPlatRadioSetChannelTargetPower

otPlatRadioGetRawPowerSetting

Radio Extension

otPlatRadioExtensionCoexEvent_t

otPlatRadioExtensionGetTxAntennaMode

otPlatRadioExtensionSetTxAntennaMode

otPlatRadioExtensionGetRxAntennaMode

otPlatRadioExtensionSetRxAntennaMode

otPlatRadioExtensionGetActivePhy

otPlatRadioExtensionGetDpState

otPlatRadioExtensionSetDpState

otPlatRadioExtensionGetGpioInputOverride

otPlatRadioExtensionSetGpioInputOverride

otPlatRadioExtensionGetActiveRadio

otPlatRadioExtensionGetPhySelectTimeout

otPlatRadioExtensionSetPhySelectTimeout

otPlatRadioExtensionGetCoexOptions

otPlatRadioExtensionSetCoexOptions

otPlatRadioExtensionGetCoexConstantOptions

otPlatRadioExtensionIsCoexEnabled

otPlatRadioExtensionSetCoexEnable

otPlatRadioExtensionGetRequestPwmArgs

otPlatRadioExtensionSetRequestPwmArgs

otPlatRadioExtensionClearCoexCounters

otPlatRadioExtensionGetCoexCounters

otPlatRadioExtensionSetRadioHoldoff

otPlatRadioExtensionGetRadioCounters

otPlatRadioExtensionClearRadioCounters

Settings

�21

otPlatSettingsInit

otPlatSettingsDeinit

otPlatSettingsGet

otPlatSettingsSet

otPlatSettingsAdd

otPlatSettingsDelete

otPlatSettingsWipe

SPI Slave

OpenThread

60/962

otPlatSpiSlaveTransactionCompleteCallback

otPlatSpiSlaveTransactionProcessCallback

otPlatSpiSlaveEnable

otPlatSpiSlaveDisable

otPlatSpiSlavePrepareTransaction

Time Service

otPlatTimeGet

otPlatTimeGetXtalAccuracy

Toolchain

OT_MUST_USE_RESULT

OT_TOOL_PACKED_BEGIN

OT_TOOL_PACKED_FIELD

OT_TOOL_WEAK

OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK

OT_UNUSED_VARIABLE

OT_UNREACHABLE_CODE

OT_APPLE_IGNORE_GNU_FOLDING_CONSTANT

OT_FALL_THROUGH

TREL - Platform

otPlatTrelPeerInfo

mRemoved

mTxtData

mTxtLength

mSockAddr

otPlatTrelPeerInfo

otPlatTrelEnable

otPlatTrelDisable

otPlatTrelHandleDiscoveredPeerInfo

otPlatTrelRegisterService

otPlatTrelSend

otPlatTrelHandleReceived

Infrastructure Interface

otPlatInfraIfHasAddress

otPlatInfraIfSendIcmp6Nd

otPlatInfraIfRecvIcmp6Nd

otPlatInfraIfStateChanged

otPlatInfraIfDiscoverNat64Prefix

otPlatInfraIfDiscoverNat64PrefixDone

OpenThread Modules

Developing with OpenThread

61/962

Developing with OpenThread

Developing Silicon Labs OpenThread Applications
OpenThread released by Google is:

An open-source implementation of the Thread® networking protocol. Google Nest has released OpenThread to make the

technology used in Nest products more broadly available to developers to accelerate the development of products for the

connected home.

OS and platform agnostic, with a narrow platform abstraction layer and a small memory footprint, making it highly portable. It

supports both system-on-chip (SoC) and co-processor designs.

A Thread Certified Component, implementing all features defined in the Thread 1.3.0 specification, including all Thread

networking layers (IPv6, 6LoWPAN, IEEE 802.15.4 with MAC security, Mesh Link Establishment, Mesh Routing) and device

roles, as well as Border Router support.

S ilicon Labs has implemented an OpenThread-based protocol tailored to work with S ilicon Labs hardware. This protocol is

available on G itHub and also as a software development kit (SDK) installed with S implicity Studio 5. The SDK is a fully

tested snapshot of the G itHub source. It supports a broader range of hardware than does the G itHub version, and includes

documentation and example applications not available on G itHub.The content on these pages is intended for those who

want to experiment with or are already developing an OpenThread application using the S ilicon Labs OpenThread SDK.

For details about this release: Links to release notes are available on the silabs.com Gecko SDK page.

For Silicon Labs' OpenThread product information: See the product pages on silabs.com.

For background about the OpenThread protocol and other wireless networking topics: The Fundamentals section is a good

place to start. This section also contains information and resources for the open source OpenThread protocol.

To get started with development: See the Getting Started section to get started working with example applications.

https://www.silabs.com/developers/gecko-software-development-kit
https://www.silabs.com/wireless/thread
https://docs.silabs.com/openthread/2.4.0/openthread-fundamentals-overview
https://docs.silabs.com/openthread/2.4.0/openthread-getting-started-overview

Developing with OpenThread

62/962

If you are already in development: See the Developer's Guide for details or go directly to the API Reference.

https://docs.silabs.com/openthread/2.4.0/openthread-developers-guide-overview
https://docs.silabs.com/openthread/2.4.0/openthread-api

Overview

63/962

Overview

Getting Started with Silicon Labs OpenThread
Development
To get started with S ilicon Labs OpenThread development, download the S implicity Studio Development environment as

described in the S implicity Studio 5 User's Guide.

This will also prompt you to install the Gecko SDK (GSDK), which contains the OpenThread SDK. The GSDK combines

S ilicon Labs wireless software development kits (SDKs) and Gecko Platform into a single, integrated package. The GSDK is

your primary tool for developing in the S ilicon Labs IoT Software ecosystem. All of S ilicon Labs' stacks are written in-house

to provide a seamless experience from silicon to tools, allowing you to unlock powerful features with ease, including:

Abstraction of complex requirements like multiprotocol and pre-certification

Industry-leading ability to support a large number of nodes

Ultra-low power consumption

Strong network reliability

S ilicon Labs also helps future-proof your devices with over-the-air software and security updates, helping to minimize

maintenance cost and improve your end user product experience!

Once you have downloaded S implicity Studio and the GSDK, detailed instructions for using the OpenThread examples and

configuration tools are provided in the OpenThread SDK Quick-Start Guide (PDF).

Note: The recommended method to get started with the GSDK is to first install S implicity Studio 5, which will set up your

development environment and walk you through the GSDK installation. Alternatively, GSDK and other required tools may be

installed manually from the G itHub GSDK site.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/
https://cn.silabs.com/documents/public/quick-start-guides/qsg170-openthread-sdk-quick-start-guide.pdf
https://github.com/SiliconLabs/gecko_sdk/#README.MD

Overview

64/962

Overview

OpenThread Fundamentals
S ilicon Labs has produced a series of documents on topics that provide useful background for S ilicon Labs OpenThread

developers. This page also includes resources for OpenThread.

Silicon Labs OpenThread Resources

Thread Fundamentals: For those new to OpenThread, includes a brief background on the emergence of Thread, provides a

technology overview, and describes some key features of Thread to consider when implementing a Thread solution.

Wireless Networking Fundamentals: For those new to wireless networking, introduces some fundamental concepts of

wireless networking.

Additional OpenThread Resources

Documentation

Generic OpenThread end-user documentation and guides are located at openthread.io. Here you can:

Learn more about OpenThread features and enhancements

Use OpenThread in your products

Learn how to build and configure a Thread network

Port OpenThread to a new platform

Build an application on top of OpenThread -Certify a product using OpenThread

Note: For users in China, end-user documentation is available at openthread.google.cn.

Contributing

We would love for you to contribute to OpenThread and help make it even better than it is today! See the Contributing

Guidelines for more information.

Contributors are required to abide by OpenThread Code of Conduct and Coding Conventions and Style Guide.

Versioning

OpenThread follows the Semantic Versioning guidelines for release cycle transparency and to maintain backwards

compatibility. OpenThread's versioning is independent of the Thread protocol specification version but will clearly indicate

which version of the specification it currently supports.

License

OpenThread is released under the BSD 3-Clause license. See the LICENSE file for more information.

Only use the OpenThread name and marks when accurately referencing this software distribution. Do not use the marks in a

way that suggests you are endorsed by or otherwise affiliated with Nest, Google, or The Thread Group.

Need help?

There are numerous avenues for OpenThread support:

Bugs and feature requests — submit to the Issue Tracker

Stack Overflow — post questions using the openthread tag

Google Groups — discussion and announcements at openthread-users This is the recommended place for users to discuss

OpenThread and interact directly with the OpenThread team.

https://www.silabs.com/documents/public/user-guides/ug103-11-fundamentals-thread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-01-fundamentals-wireless-network.pdf
https://openthread.io/
https://github.com/openthread/openthread/blob/master/CONTRIBUTING.md
https://github.com/openthread/openthread/blob/master/CODE_OF_CONDUCT.md
https://github.com/openthread/openthread/blob/master/STYLE_GUIDE.md
https://github.com/openthread/openthread/issues
https://stackoverflow.com/questions/tagged/openthread
https://groups.google.com/forum/#!forum/openthread-users

Overview

65/962

Overview

OpenThread Developers Guide
The Developer's Guide content is organized in the following groups:

Developing and Debugging: A description of development resources as well as detailed information on a variety of topics.

OpenThread Border Router: About developing and using an OpenThread Border Router

Coexistence: Background on coexistence issues and strategies for improving performance in the presence of other protocol

traffic.

Multiprotocol: Background on implementing multiprotocol applications and information on different multiprotocol models.

Bootloading: Information on using the Gecko Bootloader with OpenThread applications.

Non-Volatile Memory: Background on managing device memory.

Security: Describes S ilicon Labs security resources and how to manage OpenThread security.

Performance: Provides performance testing and measurement tools and techniques as well as results.

https://docs.silabs.com/openthread/2.4.0/openthread-developing-debugging-overview
https://docs.silabs.com/openthread/2.4.0/openthread-border-router-overview
https://docs.silabs.com/openthread/2.4.0/openthread-coexistence-overview
https://docs.silabs.com/openthread/2.4.0/openthread-multiprotocol-overview
https://docs.silabs.com/openthread/2.4.0/openthread-bootloading-overview
https://docs.silabs.com/openthread/2.4.0/openthread-memory-use-overview
https://docs.silabs.com/openthread/2.4.0/openthread-security-overview
https://docs.silabs.com/openthread/2.4.0/openthread-performance-overview

Overview

66/962

Overview

Developing and Debugging Silicon Labs
OpenThread Applications
These pages provide details on developing and debugging OpenThread applications. Content includes:

Configuring and Building OpenThread Applications for Sleepy Devices: Describes how to configure OpenThread applications

to operate on a proprietary sub-GHz band using the S ilicon Labs OpenThread SDK and S implicity Studio 5 with a compatible

mainboard. It also provides details on the proprietary radio PHY supported with this feature.

Single-Band Proprietary Sub-GHz Support with OpenThread: Describes how to configure OpenThread applications to

operate on a proprietary sub-GHz band using the S ilicon Labs OpenThread SDK and S implicity Studio 5 with a compatible

mainboard. It also provides details on the proprietary radio PHY supported with this feature.

Using OpenThread with Free RTOS: Describes how to build OpenThread applications with FreeRTOS.

Configuring OpenThread Applications for Thread 1.3: Provides instructions for configuring OpenThread SoC and Border

Router applications to use Thread 1.3 features.

Development Tools

Simplicity Studio and the Simplicity IDE: S implicity Studio® is the unified development environment for all S ilicon Labs

technologies, SoCs, and modules. It provides you with access to the target device-specific web and SDK resources,

software and hardware configuration tools, and an integrated development environment (IDE) featuring industry-standard

code editors, compilers, and debuggers. See the silabs.com S implicity Studio page to download the tools and for more

information.

Network Analyzer: S implicity Studio® 5 (SSv5)'s Network Analyzer enables debugging of complex wireless systems. This

tool captures a trace of wireless network activity that can be examined in detail live or at a later time. See the Network

Analyzer section of the S implicity Studio 5 User's Guide for more information.

Wireshark: Download instructions are provided for Windows/Mac users or Linux users. S implicity Studio® 5 supports live

interaction between the application running on a S ilicon Labs device and Wireshark.

Energy Profiler: S implicity Studio® 5 (SSv5)'s Energy Profiler enables you to visualize the energy consumption of individual

devices, multiple devices on one target system, or a network of interacting wireless devices to analyze and improve the

power performance of these systems. Real-time information on current consumption is correlated with the program counter

providing advanced energy software monitoring capabilities. It also provides a basic level of integration with the Network

Analyzer network analysis tool. See the Energy Profiler section of the S implicity Studio 5 User's Guide for more information.

Simplicity Commander: S implicity Commander is a single, all-purpose tool to be used in a production environment. It is

invoked using a simple Command Line Interface (CLI) that is also scriptable. S implicity Commander enables customers to

complete essential tasks such as configuring and building applications and bootloaders and flashing images to their devices.

S implicity Commander is available through S implicity Studio or can be downloaded through system-specific installers. The

Simplicity Commander User's Guide provides more information.

Silicon Labs Configurator (SLC): SLC offers command-line access to application configuration and generation functions.

Software Project Generation and Configuration with SLC-CLI provides instructions on downloading and using the SLC-CLI

tool.

https://docs.silabs.com/openthread/2.4.0/openthread-sleepy-devices
https://www.silabs.com/documents/public/application-notes/an1350-openthread-single-band-proprietary-sub-ghz.pdf
https://www.silabs.com/documents/public/application-notes/an1264-open-thread-with-free-rtos.pdf
https://www.silabs.com/documents/public/application-notes/an1372-configuring-for-thread-1-3.pdf
https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-network-analyzer/
https://www.wireshark.org/download.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-wireshark
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-energy-profiler/
https://www.silabs.com/developers/mcu-programming-options#programming
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

Configuring Sleepy Devices

67/962

Configuring Sleepy Devices

Configuring and Building OpenThread Applications
for Sleepy Devices
Minimal Thread Devices (MTDs) communicate only through their Thread Router parent and cannot relay messages for other

devices. Sleepy Devices are MTDs that achieve low-power duty cycling by turning off their transceiver to reduce power.

For more information on these device roles in a Thread network, refer to the Thread specification or UG103.11: Thread

Fundamentals.

There are two categories of S leepy Devices:

Regular S leepy End Devices (SEDs) that poll for new messages when they wake up.

Synchronized S leepy End Devices (SSEDs) that use IEEE 802.15.4 Coordinated Sampled Listening (CSL) so that the parent

can forward its messages during designated transmission and reception windows.

S ilicon Labs provides sample applications to demonstrate both kinds of S leepy End Device behavior.

S leepy Devices can greatly help extend the battery power of power-limited devices. Note that simply building a S leepy

Device application does not guarantee the lowest power consumption, as this is dependent on many configuration

parameters as well as the application’s general use case. Additionally, any application code such as shell or CLI, LCD code,

or other peripheral components can also adversely affect the power consumption. For an example of such current

consumption optimization, refer to the S ilicon Labs example at

https://github.com/S iliconLabs/zigbee_applications/tree/master/zigbee_sed_z3switch.

Note: This document describes how to configure S leepy Devices. Further detail about power consumption, optimizing

current consumption values, or providing benchmark values for various platforms is outside the document's scope.

https://www.silabs.com/documents/public/user-guides/ug103-11-fundamentals-thread.pdf
https://github.com/SiliconLabs/zigbee_applications/tree/master/zigbee_sed_z3switch

Sleepy End Devices �SED�

68/962

Sleepy End Devices �SED�

Sleepy End Devices �SEDs)
SEDs achieve lower power consumption by sleeping for a set period, periodically waking up to send data polls (MAC data

requests) to their parent. If the parent has any pending data to send to its child, it is indicated by a frame pending bit in the

802.15.4 Acknowledgement to the data poll. This lets the S leepy End Device keep its receiver on for the anticipated data

which the parent will send immediately.

Starting with Thread 1.2, the OpenThread stack automatically also makes use of the 802.15.4 Enhanced Frame Pending

feature, which lets the SED use regular data messages to get an indication of pending data. Without this feature, the SED

would have to send a data poll on its scheduled period to extract the data from the parent.

Note that a smaller poll period (that is, polling more frequently) means better latency at the cost of higher power

consumption.

SED Configuration in OpenThread

APIs:

otLinkGetPo llPeriod / otLinkSetPo llPeriod : Get/Set/Clear user-specified/external data poll period for sleepy end device.

Warning: The following poll-related configuration items have standardized values in the Thread specification. Changing them

might affect the certifiability of your component or end product.

OPENTHREAD_CONFIG_MAC_MAX_TX_ATTEMPTS_INDIRECT_POLLS: Maximum number of received IEEE 802.15.4 Data

Requests for a queued indirect transaction.

OPENTHREAD_CONFIG_MAC_ATTACH_DATA_POLL_PERIOD: The Data Poll period during attach in milliseconds.

OPENTHREAD_CONFIG_MAC_MINIMUM_POLL_PERIOD: Minimum poll period in milliseconds.

OPENTHREAD_CONFIG_MAC_RETX_POLL_PERIOD: Retransmission poll period in milliseconds.

Synchronized Sleepy End Devices �SSED�

69/962

Synchronized Sleepy End Devices �SSED�

Synchronized Sleepy End Devices �SSEDs)
An SSED is an rx-off-when-idle end device that uses the IEEE 802.15.4-2015 CSL feature, available beginning with Thread

1.2, to further optimize power consumption. An SSED CSL receiver is synchronized with a parent that is a CSL transmitter,

so both parent and child require implementation of this feature.

Coordinated Sampled Listening (CSL) involves the receiver sampling for any data from the transmitter during set intervals.

The transmitter always targets the synchronized window, eliminating the need for data polling and optimizing power

consumption. In the following figure, note the comparison of activity with a regular SED.

SSEDs automatically reduce the average TX-ON time by avoiding wasted data polling. Therefore, optimized power

consumption depends on configuring minimal average RX-ON time for a platform and the given application use case.

Note that an SSED periodically must send some packets within a specified timeout to maintain synchronization with its

parent. In OpenThread, the auto-synchronization happens automatically using data polls (usually at a much less frequent

rate than regular polling). Note that other data packets from the SSED, including application data, can also be used by the

stack to re-synchronize the connection as needed.

IEEE 802.15.4�2015 Coordinated Sampled Listening �CSL�

CSL Parameters and CSL Information Elements

Synchronized Sleepy End Devices �SSED�

70/962

Following are the parameters that indicate CSL configuration on a receiver:

CSL Period: A CSL receiver performs periodic channel sampling by configuring a non-zero period value (see macCslPeriod in
[IEEE802154-2015]).
CSL Phase: Thread uses the CSL phase definition from [IEEE802154-2015] : “the time from the first symbol of the frame
containing the CSL IE … until the next channel sample”.
“First symbol” is interpreted as the first symbol of the MAC header.

The CSL receiver should be ready to receive slightly earlier than the preamble time (CSL-Phase – CCA time) and should

stay in receive mode until after the CSL-Phase time to detect the Sync-Frame-Detect (SFD) of the incoming packet from

the CSL transmitter. These timing values account for the platform’s implementation and accuracy.

CSL Channel: If the CSL receiver expects to receive and process unsynchronized CSL transmissions, then it should use a

different channel from the Thread network channel for receiving CSL messages. However, most Thread applications use

cases for SSEDs only involve synchronized communications, so the CSL channel can remain the same as the network

channel.

CSL Timeout: Timeout before which an SSED and its parent must re-synchronize to keep the connection valid and active.

CSL synchronization happens by the SSED child communicating CSL parameters to its parent. The CSL channel and timeout

are initially configured during mesh link establishment (MLE) attach. The period and phase are communicated by the receiver

in IEEE 802.15.4 Information Elements in the MAC header. The CSL IE in the IEEE 802.15.4 MAC header is a tuple containing

[CSL period, CSL phase].

An SSED device should include CSL IEs in all the IEEE 802.15.4 Commands, ACKs, and Data frames unicast to its parent

router. IEEE 802.15.4 ACKs that include IEs are called Enhanced Acknowledgements (EnhAcks), as defined in [IEEE802154-
2015].

Note that the CSL period, channel, and timeout are configured by the application, whereas the phase value is dynamically

determined on the SSED relative to the exact moment the frame containing the CSL IE is sent out to the parent. CSL

retransmissions involve recalculating the CSL IE with a new phase value.

OpenThread CSL Timing Calculations

The CSL transmitter’s delay for its scheduled transmission points to the moment when the end of the SFD will be present at

the receiver’s local antenna, relative to the local radio clock. The CSL receiver should be ready to receive the first symbol

of a scheduled frame ’s Sync Header (SHR) at its own receive window start time. If no SHR is detected at the end of its

minimum receive window, the radio should be turned off or switched to TX mode as needed.

The CSL sample window of the CSL receiver extends before and after its calculated sample time. This marks a timestamp in

the CSL sample window where a frame would be received in "ideal conditions" if there was no inaccuracy or clock drift.

However, the realistic sampling representation is as follows:

timeAhead accounts for the SSED to wake and be ready for RX.

timeAfter is the when the RX-ON window closes. If needed, the S ilicon Labs radio driver automatically extends the duration

of the receive window.

Uncert is the fixed uncertainty (that is, random jitter) of the arrival time of CSL transmissions. In addition to uncertainty

accumulated over elapsed time, the CSL channel sample ("RX window") must be extended by twice this value such that an

actual transmission is guaranteed to be detected by the local receiver in the presence of random arrival time jitter.

The calculations also account for clock drift and the estimated worst-case accuracy (maximum ± deviation from the nominal

frequency) of the local radio clock used to schedule CSL operations.

Synchronized Sleepy End Devices �SSED�

71/962

SSED Configuration in OpenThread

APIs:

otPlatRadioEnableCsl : Enable or disable CSL receiver.

otPlatRadioUpdateCslSampleTime : Update CSL sample time in radio driver.

otPlatRadioGetCslAccuracy : Get the current estimated worst-case accuracy of the local radio clock in PPM.

otPlatRadioGetCslUncertainty : The fixed uncertainty (that is, random jitter) of the arrival time of CSL transmissions received by

this device in 10-microsecond units.

otLinkGetCslChannel / otLinkSetCslChannel : Get/Set CSL Channel.

otLinkGetCslPeriod / otLinkSetCslPeriod : Get/Set CSL Period.

otLinkGetCslTimeout / otLinkSetCslTimeout : Get/Set CSL Timeout.

otLinkIsCslEnabled : Indicates whether or not CSL is enabled.

otLinkIsCslSupported : Indicates whether the device is connected to a parent that supports CSL.

Configurable parameters:

The following parameters are configurable in the OpenThread stack component in S implicity Studio or at run-time using the

S ilicon Labs Configurator (SLC).

OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE: Configure CSL receiver support at build time.

SL_OPENTHREAD_CSL_TX_UNCERTAINTY: CSL Scheduling Uncertainty (±10 microseconds). SSED’s receive window will

increase by twice this value.

OPENTHREAD_CONFIG_MAC_CSL_DEBUG_ENABLE: Enable CSL debug printing (will affect timing, so use only for debug).

WARNING: The following configuration parameters have standardized values for S ilicon Labs platforms and changing them

might affect certifiability of your component or end product.

OPENTHREAD_CONFIG_MAC_CSL_TRANSMITTER_ENABLE: Enable CSL transmitter functions. Automatically enabled for

Thread 1.2 or greater devices.

OPENTHREAD_CONFIG_MAC_CSL_AUTO_SYNC_ENABLE: Configure CSL auto synchronization based on data poll mechanism

in Thread 1.2. This is turned off for some reference devices for certification testing purposes. For OpenThread device end

products, this should never be turned off.

OPENTHREAD_CONFIG_MAC_CSL_MIN_PERIOD: Minimum CSL period in milliseconds.

OPENTHREAD_CONFIG_MAC_CSL_MAX_TIMEOUT: Maximum CSL timeout in seconds.

OPENTHREAD_CONFIG_CSL_TIMEOUT: Default CSL timeout in seconds.

OPENTHREAD_CONFIG_MAC_CSL_REQUEST_AHEAD_US: For a CSL transmitter, this indicates the time, measured in

microseconds, by which the MAC should advance the delivery of the CSL frame to the radio layer before the actual transmit

time.

OPENTHREAD_CONFIG_CSL_TRANSMIT_TIME_AHEAD: Transmission scheduling and ramp-up time needed for the CSL

transmitter to be ready, in microseconds.

OPENTHREAD_CONFIG_CSL_RECEIVE_TIME_AHEAD: Reception scheduling and ramp up time needed for the CSL receiver to

be ready, in f microseconds.

OPENTHREAD_CONFIG_MIN_RECEIVE_ON_AHEAD: The minimum time (in microseconds) before the MAC Header (MHR) start

that the radio should be in the receive state in order to properly receive any IEEE 802.15.4 frame. Defaults to the duration of

Sync Header (SHR) + PHY Header (PHR).

OPENTHREAD_CONFIG_MIN_RECEIVE_ON_AFTER: The minimum time (in microseconds) after the MHR start that the radio

should be in receive state in order to properly receive any IEEE 802.15.4 frame. For S ilicon Labs products, this value is zero,

as the S ilicon Labs radio driver will automatically extend the receive window when the SHR is detected.

SL_OPENTHREAD_HFXO_ACCURACY: Worst case HFXO XTAL accuracy in units of ± ppm. Set to platform’s

SL_DEVICE_INIT_HFXO_PRECISION value.

SL_OPENTHREAD_LFXO_ACCURACY: Worst case LFXO XTAL accuracy in units of ± ppm. Set to platform’s

SL_DEVICE_INIT_LFXO_PRECISION value.

SSED Use Cases

72/962

SSED Use Cases

SSED Use Cases
In dense network settings, SSEDs can reduce over-the-air radio traffic by avoiding frequent data polling.

SSEDs are also useful in settings with sparse data traffic patterns that require high responsivity from the sleepy devices.

When comparing viability of SEDs and SSEDs, note that SSEDs may have lower power consumption in a direct comparison

only in settings that ensure tight CSL accuracy and uncertainty. With worse uncertainty deviations, or in settings with high

interference, any power savings sought by reducing time spent in data polling traffic will be compromised by power spent

on larger receive windows. Referring to the following figure, the goal should be to minimize receive windows on the SSEDs

when there is no data, while still supporting the application use case.

Building And Using Silicon Labs Sleepy End Device Demo Applications

73/962

Building And Using Silicon Labs Sleepy End Device Demo Applications

Building and Using Silicon Labs Sleepy End Device
Demo Applications
The EFR32 S leepy applications demonstrate S leepy End Device behavior using the EFR32's low power deep sleep EM2

mode.

OpenThread – SoC Sleepy Demo (FTD) (sleepy-demo-ftd): An application to start and form a Thread network on a Full

Thread Device (FTD) for the sleepy-demo. This application is used in conjunction with the other sleepy demo applications.

OpenThread – SoC Sleepy Demo (sleepy-demo-mtd): An application to demonstrate S leepy End Device (SED) behavior on

a Minimal Thread Device (MTD) that attaches to a Thread network started by a node running sleepy-demo-ftd. This

application demonstrates power manager feature support and EM2 mode for the EFR32.

OpenThread – SoC Synchronized Sleepy Demo (sleepy-demo-ssed): An application to demonstrate SSED behavior using

CSL that attaches to a Thread network started by a node running sleepy-demo-ftd. This application demonstrates power

manager feature support and EM2 mode for the EFR32.

Building Sleepy Demo Applications

 With the target part connected to your computer, open S implicity Studio 5’s File menu and select New > Silicon Labs Project

Wizard.

 The Target, SDK, and Toolchain Selection dialog opens. Click NEXT.

 The Example Project Selection dialog opens. Use the Technology Type and Keyword filters to search for “sleepy demo” as

the keyword.

Building And Using Silicon Labs Sleepy End Device Demo Applications

74/962

To build an FTD that can act as a parent / router for the example, select sleepy-demo-ftd.

To demonstrate a regular S leepy End Device that can work with the sleepy-demo-ftd as its parent, select sleepy-

demo-mtd.

To demonstrate a Synchronized S leepy End Device that can use CSL with the sleepy-demo-ftd as its parent, select

sleepy-demo-ssed.

The Project Configuration dialog opens.

 Rename the project, change the default project file location, and determine if you will link to or copy project files. Note that,

if you change any linked resource, it is changed for any other project that references it. Click FINISH.

 The S implicity IDE Perspective opens with the Project Configurator open to the OVERVIEW tab. See the online S implicity

Studio 5 User’s Guide for details about the functionality available through the S implicity IDE perspective and the Project

Configurator. The following is an example of how the sleepy-demo-ftd project will look in this perspective.

 Make any configuration changes to the software components. The autogeneration progress is available in the bottom right

of the S implicity IDE perspective. Make sure that progress is complete before you build.

 Compile and flash the application image as described in QSG170: S ilicon Labs OpenThread Quick Start Guide .

Demonstration

For demonstration purposes the network settings are hardcoded within the source files. Within a few seconds of powering

on, the devices start Thread and form a network. In a real-life application the devices should implement and go through a

commissioning process to create a network and add devices.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-configurator
https://www.silabs.com/documents/public/quick-start-guides/qsg170-openthread-sdk-quick-start-guide.pdf

Building And Using Silicon Labs Sleepy End Device Demo Applications

75/962

When the sleepy-demo-ftd device is started, the CLI displays:

sleepy-demo-ftd started

sleepy-demo-ftd changed to leader

When the sleepy-demo-mtd device is started, the CLI displays:

sleepy-demo-mtd started

[poll period: 2000 ms.]

The application is configured to join the pre-configured Thread network, disabling Rx-on-when-idle mode to become a

S leepy End Device. The default poll period is set in sleepy-mtd.c.

Issue the command to retrieve child table in the FTD console and observe that the R (Rx-on-when-idle) flag of the child is

0.

> child table

| ID | RLOC16 | T imeout | Age | LQ In | C_VN |R|D|N|Ver|CSL|QMsgCnt|Suprvsn| Extended MAC |

+-----+--------+------------+------------+-------+------+-+-+-+---+---+-------+-------+------------------+

| 1 | 0�8401 | 240 | 3 | 3 | 3 |0|0|0| 4| 0 | 0 | 129 | 667bf54fcc2aed8a |

Done

When the sleepy-demo-ssed device is started, the CLI displays:

sleepy-demo-ssed started

[csl period: 500000 us.] [csl timeout: 20 sec.]

The application is configured to join the pre-configured Thread network, disabling Rx-on-when-idle mode to become a

Synchronous S leepy End Device. The default CSL parameters are set in sleepy-ssed.c

Issue the command to retrieve the child table in the FTD console and observe that the R (Rx-on-when-idle) flag of the

child is 0 and that the CSL flag is 1.

> child table

| ID | RLOC16 | T imeout | Age | LQ In | C_VN |R|D|N|Ver|CSL|QMsgCnt|Suprvsn| Extended MAC |

+-----+--------+------------+------------+-------+------+-+-+-+---+---+-------+-------+------------------+

| 1 | 0�8402 | 240 | 3 | 3 | 3 |0|0|0| 4| 1 | 0 | 129 | 8e8582dbd78c243c |

Done

Buttons on the MTD/SSED

Pressing button 0 on the MTD/SSED toggles between EM2 (sleep) and EM1 (idle) modes.

Pressing button 1 on the MTD/SSED sends a multicast UDP message containing a pre-defined string. The FTD listens on the

multicast address and displays “Message Received: <string>” in the CLI.

Buttons on the FTD

Pressing either button 0 or 1 on the FTD sends a UDP message to the FTD containing the string "ftd button". Before

pressing either button on the FTD, press the MTD's or SSED's button 1 to send a multicast message so that the FTD knows

the address of the sleepy device to send messages to.

Monitoring Power Consumption of the MTD/SSED

Open the Energy Profiler in S implicity Studio 5 (SSv5). In the Quick Access menu select Start Energy Capture... and select
the MTD / SSED device. For further information on monitoring power consumption and energy profiler, see sections 5.3 and

5.3.1 in QSG170: S ilicon Labs OpenThread QuickStart Guide.

Notes on Sleeping, Sleepy Callback, and Interrupts

To allow the EFR32 to enter sleepy mode, the application must register a callback with efr32SetS leepCallback. The return

value of the callback is used to indicate that the application has no further work to do and that it is safe to go into a low

https://www.silabs.com/documents/public/quick-start-guides/qsg170-openthread-sdk-quick-start-guide.pdf

Building And Using Silicon Labs Sleepy End Device Demo Applications

76/962

power mode. Because the callback is called with interrupts disabled, it should do the minimum required to check if it can

sleep.

Overview

77/962

Overview

OpenThread Border Router
A Thread Border Router connects a Thread Network to other IPbased networks, such as Wi-Fi® or Ethernet®. A Thread

Network requires a Border Router to connect to other networks. The Border Router provides services for devices within the

Thread Network, including routing services for off-network operations, bidirectional connectivity over IPv6 infrastructure

links, and service registry to enable DNS-based service discovery.

Using the Silicon Labs RCP with the OpenThread Border Router: Describes using the OpenThread Border Router G itHub

repository and the S ilicon Labs OpenThread Radio Co-Processor (RCP) application to create a Thread Border Router.

https://www.silabs.com/documents/public/application-notes/an1256-using-sl-rcp-with-openthread-border-router.pdf

Overview

78/962

Overview

Coexistence
This section describes implementing managed coexistence to improve coexistence of 2.4 GHz IEEE 802.11b/g/n Wi-Fi and

other 2.4 GHz radios with IEEE 802.15.4-based radios such as Zigbee® and OpenThread.

Wi-Fi Coexistence Fundamentals: Introduces methods to improve the coexistence of 2.4 GHz IEEE 802.11b/g/n Wi-Fi and

other 2.4 GHz radios such as Bluetooth, Bluetooth Mesh, Bluetooth Low Energy, and IEEE 802.15.4-based radios such as

Zigbee and OpenThread.

Zigbee and OpenThread Coexistence with Wi-Fi: Details the impact of Wi-Fi on Zigbee and Thread, and methods to improve

coexistence. First, methods to improve coexistence without direct interaction between Zigbee/Thread and Wi-Fi radios are

described. Second, S ilicon Labs's Packet Traffic Arbitration (PTA) support to coordinate 2.5 GHz RF traffic for co-located

Zigbee/Thread and Wi-Fi radios is described (for the EFR32MG only).

Configuring Antenna Diversity for OpenThread: Describes how to use Project Configurator and Component Editor in

S implicity Studio 5 to configure antenna diversity in OpenThread applications.

https://www.silabs.com/documents/public/user-guides/ug103-17-wi-fi-coexistence-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1017-coexistence-with-wifi.pdf
https://www.silabs.com/documents/public/application-notes/an1294-configuring-antenna-diversity-for-openthread.pdf

Overview

79/962

Overview

OpenThread in Multiprotocol Applications
This section provides background information on multiprotocol applications, and details on using OpenThread in multiprotocol

applications, including dynamic multiprotocol and concurrent multiprotocol models.

Multiprotocol Fundamentals (PDF): Describes the four multiprotocol modes, discusses considerations when selecting

protocols for multiprotocol implementations, and reviews the Radio Scheduler, a required component of a dynamic

multiprotocol solution.

Dynamic Multiprotocol User's Guide (PDF): Describes how to implement a dynamic multiprotocol solution.

Dynamic Multiprotocol Development with Bluetooth and OpenThread on SoCs (PDF): Provides details on developing

Dynamic Multiprotocol applications for SoCs using Bluetooth and OpenThread.

Running Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol Co-Processor (PDF):

Describes how to run any combination of Zigbee EmberZNet, OpenThread, and Bluetooth networking stacks on a Linux host

processor, interfacing with a single EFR32 Radio Coprocessor (RCP) with multiprotocol and multi-PAN support. It also

describes how to run the Zigbee stack on the EFR32 as a network co-processor (NCP) alongside the OpenThread RCP.

Running Zigbee, OpenThread, and Bluetooth Concurrently on a System-on-Chip (PDF): Describes how to run a combination

of Zigbee, Bluetooth, and OpenThread networking stacks and the Zigbee application layer on a System-on-Chip (SoC).

Using the Co-Processor Communication Daemon (CPCd) (PDF): Documents the steps needed to properly configure and run

the CPC daemon (CPCd) on Linux or Android.

https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1265-openthread-bluetooth-dynamic-multiprotocol-gsdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf
https://www.silabs.com/documents/public/application-notes/an1418-concurrent-mp-soc.pdf
https://www.silabs.com/documents/public/application-notes/an1351-using-co-processor-communication_daemon.pdf

Overview

80/962

Overview

Bootloading Embedded Applications
Bootloading allows you to update application firmware images on your devices. This section provides background

information about bootloading using the S ilicon Labs Gecko Bootloader.

Bootloader Fundamentals: Introduces bootloading for S ilicon Labs networking devices. Discusses the Gecko Bootloader as

well as legacy Ember and Bluetooth bootloaders, and describes the file formats used by each.

Gecko Bootloader User's Guide: Describes the high-level implementation of the S ilicon Labs Gecko Bootloader for EFR32

SoCs and NCPs, and provides information on how to get started using the Gecko Bootloader with S ilicon Labs wireless

protocol stacks in GSDK 4.0 and higher.

Series 2 Secure Boot with RTSL: Contains detailed information on configuring and using the Secure Boot with hardware Root

of Trust and Secure Loader on Series 2 devices, including how to provision the signing key. This is a companion document to

UG266: S ilicon Labs Gecko Bootloader User's Guide.

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher: Gecko Bootloader v2.x, introduced in GSDK 4.0,

contains a number of changes compared to Gecko Bootloader v1.x. This document describes the differences between the

versions, including how to configure the new Gecko Bootloader in S implicity Studio 5.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf

Overview

81/962

Overview

Non-Volatile Data Storage
This section offers an introduction to non-volatile data storage and describes how to use NVM3 data storage.

Non-Volatile Data Storage Fundamentals: Introduces non-volatile data storage using flash and the three different storage

implementations offered for S ilicon Labs microcontrollers and SoCs: S imulated EEPROM, PS Store, and NVM3.

Using NVM3 Data Storage: Explains how NVM3 can be used as non-volatile data storage in various protocol implementations.

https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Overview

82/962

Overview

Security
S ilicon Labs offers a range of security features depending on the part you are using and your application and production

needs. As well as the security features available, this section describes security issues specific to OpenThread.

IoT Security Fundamentals: Introduces the security concepts that must be considered when implementing an Internet of

Things (IoT) system. Using the ioXt Alliance's eight security principles as a structure, it clearly delineates the solutions S ilicon

Labs provides to support endpoint security and what you must do outside of the S ilicon Labs framework.

Using Silicon Labs Secure Vault Features with OpenThread: Describes how Secure Vault features are leveraged in

OpenThread applications. It focuses on specific PSA features and emphasizes how these are integrated into the OpenThread

stack.

Series 2 Secure Debug: Describes how to lock and unlock the debug access of EFR32 Gecko Series 2 devices. Many

aspects of the debug access, including the secure debug unlock are described. The Debug Challenge Interface (DCI) and

Secure Engine (SE) Mailbox Interface for locking and unlocking debug access are also included.

Production Programming of Series 2 Devices: Provides details on programming, provisioning, and configuring Series 2 devices

in production environments. Covers Secure Engine Subsystem of Series 2 devices, which runs easily upgradeable Secure

Engine (SE) or Virtual Secure Engine (VSE) firmware.

Anti-Tamper Protection Configuration and Use : Shows how to program, provision, and configure the anti-tamper module on

EFR32 Series 2 devices with Secure Vault.

Authenticating Silicon Labs Devices using Device Certificates: Shows how to authenticate an EFR32 Series 2 device with

Secure Vault, using secure device certificates and signatures.

Secure Key Storage: Explains how to securely "wrap" keys in EFR32 Series 2 devices with Secure Vault, so they can be

stored in non-volatile storage.

Programming Series 2 Devices Using the DCI and SWD: Describes how to provision and configure Series 2 devices through

the DCI and SWD.

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS: Describes how to integrate crypto functionality into

applications using PSA Crypto compared to Mbed TLS.

Series 2 TrustZone (PDF): Provides background and information on implementing TrustZone on series 2 devices.

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1329-using-secure-vault-openthread.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf

Overview

83/962

Overview

Performance
This section describes tools to use to help improve performance as well as network performance results.

Manufacturing Test Overview: Provides a high-level description of the different options for integrating RF testing and

characterization into standard test flows. It is intended for customers who are moving from the early prototype development

stage to the manufacturing production environment and need assistance with manufacturing test.

Manufacturing Test Guidelines for the EFR32: Details the different options for integrating RF testing and characterization

into standard test flows.

Performance Results for Multi-PAN RCP for OpenThread and Zigbee: Summarizes the performance test effort and results

for some testing scenarios of the CPCd interface using multi-PAN for both OpenThread and Zigbee protocols.

Mesh Network Performance Comparison: Reviews the Zigbee, Thread, and Bluetooth mesh networks to evaluate their

differences in performance and behavior.

Thread Mesh Network Performance (requires login to the customer portal): Details methods for testing Thread mesh

network performance; results are intended to provide guidance on design practices and principles as well as expected field

performance results.

https://www.silabs.com/documents/public/application-notes/an718-mfg-test-overview.pdf
https://www.silabs.com/documents/public/application-notes/an700-1-mfg-test-guidelines-efr32.pdf
https://www.silabs.com/documents/public/application-notes/an1385-multi-pan-rcp-performance-test.pdf
https://www.silabs.com/documents/public/application-notes/an1142-mesh-network-performance-comparison.pdf
https://www.silabs.com/documents/login/application-notes/an1141-thread-mesh-network-performance.pdf

OpenThread Modules

84/962

OpenThread Modules

OpenThread Modules

Modules

Alarm This module includes the platform abstraction for the alarm service.

Backbone Router This module includes functions for the OpenThread Backbone Router Service.

Border Agent This module includes functions for the Thread Border Agent role.

Border Router This module includes functions to manage local network data with the OpenThread

Border Router.

Border Routing Manager This module includes definitions related to Border Routing Manager.

Channel Manager This module includes functions for Channel Manager.

Channel Monitoring This module includes functions for channel monitoring feature.

Child Supervision This module includes functions for Child Supervision feature.

CoAP This module includes functions that control CoAP communication.

CoAP Secure This module includes functions that control CoAP Secure (CoAP over DTLS)

communication.

Command Line Interface This module includes functions that control the Thread stack's execution.

Commissioner This module includes functions for the Thread Commissioner role.

Crypto - Platform This module includes the platform abstraction for Crypto.

Crypto - Thread Stack This module includes cryptographic functions.

DNS This module includes functions that control DNS communication.

DNS - Platform This module includes the platform abstraction for sending recursive DNS query to

upstream DNS servers.

DNS-SD Server This module includes APIs for DNS-SD server.

Entropy This module includes the platform abstraction for entropy generation.

Error This module includes error definitions used in OpenThread.

Factory Diagnostics -

Platform

This module includes the platform abstraction for diagnostics features.

Factory Diagnostics - Thread

Stack

This module includes functions that control the Thread stack's execution.

General This module includes functions for all Thread roles.

Heap This module includes functions that set the external OpenThread heap.

History Tracker Records the history of different events, for example RX and TX messages or network

info changes.

ICMPv6 This module includes functions that control ICMPv6 communication.

IPv6 This module includes functions that control IPv6 communication.

Infrastructure Interface This module includes the platform abstraction for the adjacent infrastructure network

interface.

Instance This module includes functions that control the OpenThread Instance.

OpenThread Modules

85/962

Modules

Jam Detection This module includes functions for signal jamming detection feature.

Joiner This module includes functions for the Thread Joiner role.

Link This module includes functions that control link-layer configuration.

Link Metrics This module includes functions that control the Link Metrics protocol.

Logging - Platform This module includes the platform abstraction for the debug log service.

Logging - Thread Stack This module includes OpenThread logging related definitions.

Memory This module includes the platform abstraction for dynamic memory allocation.

Mesh Diagnostics This module includes definitions and functions for Mesh Diagnostics.

Message This module includes functions that manipulate OpenThread message buffers.

Message Pool This module includes the platform abstraction for the message pool.

Miscellaneous This module includes platform abstractions for miscellaneous behaviors.

Multi Radio Link This module includes definitions and functions for multi radio link.

NAT64 This module includes functions and structs for the NAT64 function on the border router.

Network Co-Processor This module includes functions that control the Thread stack's execution.

Network S imulator This module includes the platform abstraction for OTNS.

Network Time

Synchronization

This module includes functions that control network time synchronization service.

Operational Dataset Includes functions for the Operational Dataset API.

Ping Sender This file includes the OpenThread API for the ping sender module.

RNG Cryptographic This module includes functions that generates cryptographic random numbers.

RNG Non-cryptographic This module includes functions that generates non cryptographic random numbers.

Radio Configuration This module includes the platform abstraction for radio configuration.

Radio Extension This module includes the S ilicon Labs extension to the openthread platform radio interface.

Radio Operation This module includes the platform abstraction for radio operations.

Radio Types This module includes the platform abstraction for a radio frame.

Raw Link This module includes functions that control the raw link-layer configuration.

Router/Leader This module includes functions for Thread Routers and Leaders.

SNTP This module includes functions that control SNTP communication.

SPI S lave This module includes the platform abstraction for SPI slave communication.

SRP This module includes functions that control SRP client behavior.

Server This module includes functions to manage local network data with the OpenThread Server.

Settings This module includes the platform abstraction for non-volatile storage of settings.

TCP This module includes functions that control TCP communication.

TCP Abstractions This module includes easy-to-use abstractions on top of the base TCP API.

TREL - Platform This module includes the platform abstraction for Thread Radio Encapsulation Link (TREL) using

DNS-SD and UDP/IPv6.

TREL - Thread Stack This module defines Thread Radio Encapsulation Link (TREL) APIs for Thread Over

Infrastructure.

Tasklets This module includes functions that control the Thread stack's execution.

Time Service This module includes the platform abstraction for the time service.

Toolchain This module defines a toolchain abstraction layer through macros.

UDP This module includes functions that control UDP communication.

UDP Forward This module includes functions for UDP forward feature.

API Reference

86/962

API Reference

API Reference
This module includes the application programming interface to the OpenThread stack.

Modules

Error

Execution

IPv6 Networking

Link

Message

Multi Radio Link

TREL - Thread Stack

Thread

Add-Ons

Error

87/962

Error

Error
This module includes error definitions used in OpenThread.

Typedefs

typedef enum
OT_MUST_USE_R
ESULTotError

otError
Represents error codes used throughout OpenThread.

Functions

const char * otThreadErrorToString(otError aError)
Converts an otError enum into a string.

Typedef Documentation

otError

enum OT_MUST_USE_RESULT otError

Represents error codes used throughout OpenThread.

Definition at line 251 of file include/openthread/error.h

Function Documentation

otThreadErrorToString

const char * otThreadErrorToString (otError aError)

Converts an otError enum into a string.

Parameters

[in] aError An otError enum.

Returns

A string representation of an otError.

Definition at line 261 of file include/openthread/error.h

Execution

88/962

Execution

Execution

Modules

Instance

Tasklets

Instance

89/962

Instance

Instance
This module includes functions that control the OpenThread Instance.

Typedefs

typedef struct
otInstance

otInstance
Represents the OpenThread instance structure .

typedef uint32_t otChangedFlags
Represents a bit-field indicating specific state/configuration that has changed.

typedef void(* otStateChangedCallback)(otChangedFlags aFlags, void *aContext)
Po inter is called to notify certain configuration or state changes within OpenThread.

Functions

otInstance * otInstanceInit(void *aInstanceBuffer, size_t *aInstanceBufferSize)
Initializes the OpenThread library.

otInstance * otInstanceInitSingle(void)
Initializes the static single instance of the OpenThread library.

uint32_t otInstanceGetId(otInstance *aInstance)
Gets the instance identifier.

bool otInstanceIsInitialized(otInstance *aInstance)
Indicates whether or not the instance is valid/initialized.

void otInstanceFinalize(otInstance *aInstance)
Disables the OpenThread library.

uint64_t otInstanceGetUptime(otInstance *aInstance)
Returns the current instance uptime (in msec).

void otInstanceGetUptimeAsString(otInstance *aInstance, char *aBuffer, uint16_t aSize)
Returns the current instance uptime as a human-readable string.

otError otSetStateChangedCallback(otInstance *aInstance, otStateChangedCallback aCallback, void *aContext)
Registers a callback to indicate when certain configuration or state changes within OpenThread.

void otRemoveStateChangeCallback(otInstance *aInstance, otStateChangedCallback aCallback, void *aContext)
Removes a callback to indicate when certain configuration or state changes within OpenThread.

void otInstanceReset(otInstance *aInstance)
Triggers a platform reset.

otError otInstanceResetToBootloader(otInstance *aInstance)
Triggers a platform reset to bootloader mode , if supported.

void otInstanceFactoryReset(otInstance *aInstance)
Deletes all the settings stored on non-vo latile memory, and then triggers a platform reset.

Instance

90/962

void otInstanceResetRadioStack(otInstance *aInstance)
Resets the internal states of the OpenThread radio stack.

otError otInstanceErasePersistentInfo(otInstance *aInstance)
Erases all the OpenThread persistent info (network settings) stored on non-vo latile memory.

const char * otGetVersionString(void)
Gets the OpenThread version string.

const char * otGetRadioVersionString(otInstance *aInstance)
Gets the OpenThread radio version string.

Macros

#define OT_UPTIME_STRING_SIZE 24
Recommended size for string representation of uptime .

#define OT_CHANGED_IP6_ADDRESS_ADDED �1U << 0�
IPv6 address was added.

#define OT_CHANGED_IP6_ADDRESS_REMOVED �1U << 1�
IPv6 address was removed.

#define OT_CHANGED_THREAD_ROLE �1U << 2�
Ro le (disabled, detached, child, router, leader) changed.

#define OT_CHANGED_THREAD_LL_ADDR �1U << 3�
The link-local address changed.

#define OT_CHANGED_THREAD_ML_ADDR �1U << 4�
The mesh-local address changed.

#define OT_CHANGED_THREAD_RLOC_ADDED �1U << 5�
RLOC was added.

#define OT_CHANGED_THREAD_RLOC_REMOVED �1U << 6�
RLOC was removed.

#define OT_CHANGED_THREAD_PARTITION_ID �1U << 7�
Partition ID changed.

#define OT_CHANGED_THREAD_KEY_SEQUENCE_COUNTER �1U << 8�
Thread Key Sequence changed.

#define OT_CHANGED_THREAD_NETDATA �1U << 9�
Thread Network Data changed.

#define OT_CHANGED_THREAD_CHILD_ADDED �1U << 10�
Child was added.

#define OT_CHANGED_THREAD_CHILD_REMOVED �1U << 11�
Child was removed.

#define OT_CHANGED_IP6_MULTICAST_SUBSCRIBED �1U << 12�
Subscribed to a IPv6 multicast address.

#define OT_CHANGED_IP6_MULTICAST_UNSUBSCRIBED �1U << 13�
Unsubscribed from a IPv6 multicast address.

#define OT_CHANGED_THREAD_CHANNEL �1U << 14�
Thread network channel changed.

Instance

91/962

#define OT_CHANGED_THREAD_PANID �1U << 15�
Thread network PAN Id changed.

#define OT_CHANGED_THREAD_NETWORK_NAME �1U << 16�
Thread network name changed.

#define OT_CHANGED_THREAD_EXT_PANID �1U << 17�
Thread network extended PAN ID changed.

#define OT_CHANGED_NETWORK_KEY �1U << 18�
Network key changed.

#define OT_CHANGED_PSKC �1U << 19�
PSKc changed.

#define OT_CHANGED_SECURITY_POLICY �1U << 20�
Security Po licy changed.

#define OT_CHANGED_CHANNEL_MANAGER_NEW_CHANNEL �1U << 21�
Channel Manager new pending Thread channel changed.

#define OT_CHANGED_SUPPORTED_CHANNEL_MASK �1U << 22�
Supported channel mask changed.

#define OT_CHANGED_COMMISSIONER_STATE �1U << 23�
Commissioner state changed.

#define OT_CHANGED_THREAD_NETIF_STATE �1U << 24�
Thread network interface state changed.

#define OT_CHANGED_THREAD_BACKBONE_ROUTER_STATE �1U << 25�
Backbone Router state changed.

#define OT_CHANGED_THREAD_BACKBONE_ROUTER_LOCAL �1U << 26�
Local Backbone Router configuration changed.

#define OT_CHANGED_JOINER_STATE �1U << 27�
Jo iner state changed.

#define OT_CHANGED_ACTIVE_DATASET �1U << 28�
Active Operational Dataset changed.

#define OT_CHANGED_PENDING_DATASET �1U << 29�
Pending Operational Dataset changed.

#define OT_CHANGED_NAT64_TRANSLATOR_STATE �1U << 30�
The state of NAT64 translator changed.

#define OT_CHANGED_PARENT_LINK_QUALITY �1U << 31�
Parent link quality changed.

Typedef Documentation

otInstance

typedef struct otInstance otInstance

Represents the OpenThread instance structure.

Definition at line 71 of file include/openthread/instance.h

Instance

92/962

otChangedFlags

typedef uint32_t otChangedFlags

Represents a bit-field indicating specific state/configuration that has changed.

See OT_CHANGED_* definitions.

Definition at line 212 of file include/openthread/instance.h

otStateChangedCallback

typedef void(* otStateChangedCallback) (otChangedFlags aFlags, void *aContext))(otChangedFlags aFlags, void
*aContext)

Pointer is called to notify certain configuration or state changes within OpenThread.

Parameters

[in] aFlags A bit-field indicating specific state that has changed. See OT_CHANGED_* definitions.

[in] aContext A pointer to application-specific context.

Definition at line 221 of file include/openthread/instance.h

Function Documentation

otInstanceInit

otInstance * otInstanceInit (void *aInstanceBuffer, size_t *aInstanceBufferSize)

Initializes the OpenThread library.

Parameters

[in] aInstanceBuffer The buffer for OpenThread to use for allocating the otInstance structure.

[inout] aInstanceBufferSize On input, the size of aInstanceBuffer. On output, if not enough space for otInstance, the

number of bytes required for otInstance.

Initializes OpenThread and prepares it for subsequent OpenThread API calls. This function must be called before any other

calls to OpenThread.

Is available and can only be used when support for multiple OpenThread instances is enabled.

Returns

A pointer to the new OpenThread instance.

See Also

otInstanceFinalize

Definition at line 90 of file include/openthread/instance.h

otInstanceInitSingle

otInstance * otInstanceInitSingle (void)

Instance

93/962

Initializes the static single instance of the OpenThread library.

Parameters

N/A

Initializes OpenThread and prepares it for subsequent OpenThread API calls. This function must be called before any other

calls to OpenThread.

Is available and can only be used when support for multiple OpenThread instances is disabled.

Returns

A pointer to the single OpenThread instance.

Definition at line 103 of file include/openthread/instance.h

otInstanceGetId

uint32_t otInstanceGetId (otInstance *aInstance)

Gets the instance identifier.

Parameters

N/A aInstance

The instance identifier is set to a random value when the instance is constructed, and then its value will not change after

initialization.

Returns

The instance identifier.

Definition at line 114 of file include/openthread/instance.h

otInstanceIsInitialized

bool otInstanceIsInitialized (otInstance *aInstance)

Indicates whether or not the instance is valid/initialized.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The instance is considered valid if it is acquired and initialized using either otInstance InitSingle() (in single instance case) or

otInstance Init() (in multi instance case). A subsequent call to otInstanceFinalize() causes the instance to be considered as

uninitialized.

Returns

TRUE if the given instance is valid/initialized, FALSE otherwise.

Definition at line 128 of file include/openthread/instance.h

otInstanceFinalize

void otInstanceFinalize (otInstance *aInstance)

Instance

94/962

Disables the OpenThread library.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Call this function when OpenThread is no longer in use.

Definition at line 138 of file include/openthread/instance.h

otInstanceGetUptime

uint64_t otInstanceGetUptime (otInstance *aInstance)

Returns the current instance uptime (in msec).

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires OPENTHREAD_CONFIG_UPTIME_ENABLE to be enabled.

The uptime is given as number of milliseconds since OpenThread instance was initialized.

Returns

The uptime (number of milliseconds).

Definition at line 152 of file include/openthread/instance.h

otInstanceGetUptimeAsString

void otInstanceGetUptimeAsString (otInstance *aInstance, char *aBuffer, uint16_t aSize)

Returns the current instance uptime as a human-readable string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aBuffer A pointer to a char array to output the string.

[in] aSize The size of aBuffer (in bytes). Recommended to use OT_UPTIME_STRING_SIZE .

Requires OPENTHREAD_CONFIG_UPTIME_ENABLE to be enabled.

The string follows the format "<hh>:<mm>:<ss>.<mmmm>" for hours, minutes, seconds and millisecond (if uptime is shorter

than one day) or "<dd>d.<hh>:<mm>:<ss>.<mmmm>" (if longer than a day).

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 172 of file include/openthread/instance.h

otSetStateChangedCallback

otError otSetStateChangedCallback (otInstance *aInstance, otStateChangedCallback aCallback, void *aContext)

Registers a callback to indicate when certain configuration or state changes within OpenThread.

Instance

95/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called with certain configuration or state changes.

[in] aContext A pointer to application-specific context.

Definition at line 235 of file include/openthread/instance.h

otRemoveStateChangeCallback

void otRemoveStateChangeCallback (otInstance *aInstance, otStateChangedCallback aCallback, void *aContext)

Removes a callback to indicate when certain configuration or state changes within OpenThread.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called with certain configuration or state changes.

[in] aContext A pointer to application-specific context.

Definition at line 245 of file include/openthread/instance.h

otInstanceReset

void otInstanceReset (otInstance *aInstance)

Triggers a platform reset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The reset process ensures that all the OpenThread state/info (stored in volatile memory) is erased. Note that the

otPlatformReset does not erase any persistent state/info saved in non-volatile memory.

Definition at line 256 of file include/openthread/instance.h

otInstanceResetToBootloader

otError otInstanceResetToBootloader (otInstance *aInstance)

Triggers a platform reset to bootloader mode, if supported.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires OPENTHREAD_CONFIG_PLATFORM_BOOTLOADER_MODE_ENABLE .

Definition at line 270 of file include/openthread/instance.h

otInstanceFactoryReset

void otInstanceFactoryReset (otInstance *aInstance)

Instance

96/962

Deletes all the settings stored on non-volatile memory, and then triggers a platform reset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 278 of file include/openthread/instance.h

otInstanceResetRadioStack

void otInstanceResetRadioStack (otInstance *aInstance)

Resets the internal states of the OpenThread radio stack.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Callbacks and configurations are preserved.

This API is only available under radio builds (OPENTHREAD_RADIO = 1).

Definition at line 290 of file include/openthread/instance.h

otInstanceErasePersistentInfo

otError otInstanceErasePersistentInfo (otInstance *aInstance)

Erases all the OpenThread persistent info (network settings) stored on non-volatile memory.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Erase is successful only if the device is in disabled state/role.

Definition at line 302 of file include/openthread/instance.h

otGetVersionString

const char * otGetVersionString (void)

Gets the OpenThread version string.

Parameters

N/A

Returns

A pointer to the OpenThread version.

Definition at line 310 of file include/openthread/instance.h

otGetRadioVersionString

const char * otGetRadioVersionString (otInstance *aInstance)

Instance

97/962

Gets the OpenThread radio version string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the OpenThread radio version.

Definition at line 320 of file include/openthread/instance.h

Macro Definition Documentation

OT_UPTIME_STRING_SIZE

#define OT_UPTIME_STRING_SIZE

Value:

24

Recommended size for string representation of uptime.

Definition at line 154 of file include/openthread/instance.h

OT_CHANGED_IP6_ADDRESS_ADDED

#define OT_CHANGED_IP6_ADDRESS_ADDED

Value:

�1U << 0�

IPv6 address was added.

Definition at line 174 of file include/openthread/instance.h

OT_CHANGED_IP6_ADDRESS_REMOVED

#define OT_CHANGED_IP6_ADDRESS_REMOVED

Value:

�1U << 1�

IPv6 address was removed.

Definition at line 175 of file include/openthread/instance.h

OT_CHANGED_THREAD_ROLE

#define OT_CHANGED_THREAD_ROLE

Value:

Instance

98/962

�1U << 2�

Role (disabled, detached, child, router, leader) changed.

Definition at line 176 of file include/openthread/instance.h

OT_CHANGED_THREAD_LL_ADDR

#define OT_CHANGED_THREAD_LL_ADDR

Value:

�1U << 3�

The link-local address changed.

Definition at line 177 of file include/openthread/instance.h

OT_CHANGED_THREAD_ML_ADDR

#define OT_CHANGED_THREAD_ML_ADDR

Value:

�1U << 4�

The mesh-local address changed.

Definition at line 178 of file include/openthread/instance.h

OT_CHANGED_THREAD_RLOC_ADDED

#define OT_CHANGED_THREAD_RLOC_ADDED

Value:

�1U << 5�

RLOC was added.

Definition at line 179 of file include/openthread/instance.h

OT_CHANGED_THREAD_RLOC_REMOVED

#define OT_CHANGED_THREAD_RLOC_REMOVED

Value:

�1U << 6�

RLOC was removed.

Definition at line 180 of file include/openthread/instance.h

Instance

99/962

OT_CHANGED_THREAD_PARTITION_ID

#define OT_CHANGED_THREAD_PARTITION_ID

Value:

�1U << 7�

Partition ID changed.

Definition at line 181 of file include/openthread/instance.h

OT_CHANGED_THREAD_KEY_SEQUENCE_COUNTER

#define OT_CHANGED_THREAD_KEY_SEQUENCE_COUNTER

Value:

�1U << 8�

Thread Key Sequence changed.

Definition at line 182 of file include/openthread/instance.h

OT_CHANGED_THREAD_NETDATA

#define OT_CHANGED_THREAD_NETDATA

Value:

�1U << 9�

Thread Network Data changed.

Definition at line 183 of file include/openthread/instance.h

OT_CHANGED_THREAD_CHILD_ADDED

#define OT_CHANGED_THREAD_CHILD_ADDED

Value:

�1U << 10�

Child was added.

Definition at line 184 of file include/openthread/instance.h

OT_CHANGED_THREAD_CHILD_REMOVED

#define OT_CHANGED_THREAD_CHILD_REMOVED

Value:

Instance

100/962

�1U << 11�

Child was removed.

Definition at line 185 of file include/openthread/instance.h

OT_CHANGED_IP6_MULTICAST_SUBSCRIBED

#define OT_CHANGED_IP6_MULTICAST_SUBSCRIBED

Value:

�1U << 12�

Subscribed to a IPv6 multicast address.

Definition at line 186 of file include/openthread/instance.h

OT_CHANGED_IP6_MULTICAST_UNSUBSCRIBED

#define OT_CHANGED_IP6_MULTICAST_UNSUBSCRIBED

Value:

�1U << 13�

Unsubscribed from a IPv6 multicast address.

Definition at line 187 of file include/openthread/instance.h

OT_CHANGED_THREAD_CHANNEL

#define OT_CHANGED_THREAD_CHANNEL

Value:

�1U << 14�

Thread network channel changed.

Definition at line 188 of file include/openthread/instance.h

OT_CHANGED_THREAD_PANID

#define OT_CHANGED_THREAD_PANID

Value:

�1U << 15�

Thread network PAN Id changed.

Definition at line 189 of file include/openthread/instance.h

Instance

101/962

OT_CHANGED_THREAD_NETWORK_NAME

#define OT_CHANGED_THREAD_NETWORK_NAME

Value:

�1U << 16�

Thread network name changed.

Definition at line 190 of file include/openthread/instance.h

OT_CHANGED_THREAD_EXT_PANID

#define OT_CHANGED_THREAD_EXT_PANID

Value:

�1U << 17�

Thread network extended PAN ID changed.

Definition at line 191 of file include/openthread/instance.h

OT_CHANGED_NETWORK_KEY

#define OT_CHANGED_NETWORK_KEY

Value:

�1U << 18�

Network key changed.

Definition at line 192 of file include/openthread/instance.h

OT_CHANGED_PSKC

#define OT_CHANGED_PSKC

Value:

�1U << 19�

PSKc changed.

Definition at line 193 of file include/openthread/instance.h

OT_CHANGED_SECURITY_POLICY

#define OT_CHANGED_SECURITY_POLICY

Value:

Instance

102/962

�1U << 20�

Security Policy changed.

Definition at line 194 of file include/openthread/instance.h

OT_CHANGED_CHANNEL_MANAGER_NEW_CHANNEL

#define OT_CHANGED_CHANNEL_MANAGER_NEW_CHANNEL

Value:

�1U << 21�

Channel Manager new pending Thread channel changed.

Definition at line 195 of file include/openthread/instance.h

OT_CHANGED_SUPPORTED_CHANNEL_MASK

#define OT_CHANGED_SUPPORTED_CHANNEL_MASK

Value:

�1U << 22�

Supported channel mask changed.

Definition at line 196 of file include/openthread/instance.h

OT_CHANGED_COMMISSIONER_STATE

#define OT_CHANGED_COMMISSIONER_STATE

Value:

�1U << 23�

Commissioner state changed.

Definition at line 197 of file include/openthread/instance.h

OT_CHANGED_THREAD_NETIF_STATE

#define OT_CHANGED_THREAD_NETIF_STATE

Value:

�1U << 24�

Thread network interface state changed.

Definition at line 198 of file include/openthread/instance.h

Instance

103/962

OT_CHANGED_THREAD_BACKBONE_ROUTER_STATE

#define OT_CHANGED_THREAD_BACKBONE_ROUTER_STATE

Value:

�1U << 25�

Backbone Router state changed.

Definition at line 199 of file include/openthread/instance.h

OT_CHANGED_THREAD_BACKBONE_ROUTER_LOCAL

#define OT_CHANGED_THREAD_BACKBONE_ROUTER_LOCAL

Value:

�1U << 26�

Local Backbone Router configuration changed.

Definition at line 200 of file include/openthread/instance.h

OT_CHANGED_JOINER_STATE

#define OT_CHANGED_JOINER_STATE

Value:

�1U << 27�

Joiner state changed.

Definition at line 201 of file include/openthread/instance.h

OT_CHANGED_ACTIVE_DATASET

#define OT_CHANGED_ACTIVE_DATASET

Value:

�1U << 28�

Active Operational Dataset changed.

Definition at line 202 of file include/openthread/instance.h

OT_CHANGED_PENDING_DATASET

#define OT_CHANGED_PENDING_DATASET

Value:

Instance

104/962

�1U << 29�

Pending Operational Dataset changed.

Definition at line 203 of file include/openthread/instance.h

OT_CHANGED_NAT64_TRANSLATOR_STATE

#define OT_CHANGED_NAT64_TRANSLATOR_STATE

Value:

�1U << 30�

The state of NAT64 translator changed.

Definition at line 204 of file include/openthread/instance.h

OT_CHANGED_PARENT_LINK_QUALITY

#define OT_CHANGED_PARENT_LINK_QUALITY

Value:

�1U << 31�

Parent link quality changed.

Definition at line 205 of file include/openthread/instance.h

Tasklets

105/962

Tasklets

Tasklets
This module includes functions that control the Thread stack's execution.

Functions

void otTaskletsProcess(otInstance *aInstance)
Run all queued OpenThread tasklets at the time this is called.

bool otTaskletsArePending(otInstance *aInstance)
Indicates whether or not OpenThread has tasklets pending.

void otTaskletsSignalPending(otInstance *aInstance)
OpenThread calls this function when the tasklet queue transitions from empty to non-empty.

Function Documentation

otTaskletsProcess

void otTaskletsProcess (otInstance *aInstance)

Run all queued OpenThread tasklets at the time this is called.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 60 of file include/openthread/tasklet.h

otTaskletsArePending

bool otTaskletsArePending (otInstance *aInstance)

Indicates whether or not OpenThread has tasklets pending.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 71 of file include/openthread/tasklet.h

otTaskletsSignalPending

void otTaskletsSignalPending (otInstance *aInstance)

OpenThread calls this function when the tasklet queue transitions from empty to non-empty.

Parameters

Tasklets

106/962

[in] aInstance A pointer to an OpenThread instance.

Definition at line 79 of file include/openthread/tasklet.h

IPv6 Networking

107/962

IPv6 Networking

IPv6 Networking

Modules

DNS

DNS-SD Server

ICMPv6

IPv6

NAT64

SRP

Ping Sender

TCP

UDP

DNS

108/962

DNS

DNS
This module includes functions that control DNS communication.

The functions in this module are available only if feature OPENTHREAD_CONFIG_DNS_CLIENT_ENABLE is enabled.

Modules

otDnsTxtEntry

otDnsTxtEntryIterator

otDnsQueryConfig

otDnsServiceInfo

Enumerations

enum otDnsRecursionFlag {

OT_DNS_FLAG_UNSPECIFIED = 0
OT_DNS_FLAG_RECURSION_DESIRED = 1
OT_DNS_FLAG_NO_RECURSION = 2

}
Type represents the "Recursion Desired" (RD) flag in an otDnsQueryConfig .

enum otDnsNat64Mode {

OT_DNS_NAT64_UNSPECIFIED = 0
OT_DNS_NAT64_ALLOW = 1
OT_DNS_NAT64_DISALLOW = 2

}
Type represents the NAT64 mode in an otDnsQueryConfig .

enum otDnsServiceMode {

OT_DNS_SERVICE_MODE_UNSPECIFIED = 0
OT_DNS_SERVICE_MODE_SRV = 1
OT_DNS_SERVICE_MODE_TXT = 2
OT_DNS_SERVICE_MODE_SRV_TXT = 3
OT_DNS_SERVICE_MODE_SRV_TXT_SEPARATE = 4
OT_DNS_SERVICE_MODE_SRV_TXT_OPTIMIZE = 5

}
Type represents the service reso lution mode in an otDnsQueryConfig .

enum otDnsTransportProto {

OT_DNS_TRANSPORT_UNSPECIFIED = 0
OT_DNS_TRANSPORT_UDP = 1
OT_DNS_TRANSPORT_TCP = 2

}
Type represents the DNS transport protoco l in an otDnsQueryConfig .

Typedefs

DNS

109/962

typedef struct
otDnsTxtEntry

otDnsTxtEntry
Represents a TXT record entry representing a key/value pair (RFC 6763 - section 6.3).

typedef struct
otDnsTxtEntryIter

ator

otDnsTxtEntryIterator
Represents an iterator for TXT record entries (key/value pairs).

typedef struct
otDnsQueryConfi

g

otDnsQueryConfig
Represents a DNS query configuration.

typedef struct
otDnsAddressRes

ponse

otDnsAddressResponse
An opaque representation of a response to an address reso lution DNS query.

typedef void(* otDnsAddressCallback)(otError aError, const otDnsAddressResponse *aResponse, void *aContext)
Po inter is called when a DNS response is received for an address reso lution query.

typedef struct
otDnsBrowseRes

ponse

otDnsBrowseResponse
An opaque representation of a response to a browse (service instance enumeration) DNS query.

typedef void(* otDnsBrowseCallback)(otError aError, const otDnsBrowseResponse *aResponse, void *aContext)
Po inter is called when a DNS response is received for a browse (service instance enumeration) query.

typedef struct
otDnsServiceInfo

otDnsServiceInfo
Provides info for a DNS service instance .

typedef struct
otDnsServiceRes

ponse

otDnsServiceResponse
An opaque representation of a response to a service instance reso lution DNS query.

typedef void(* otDnsServiceCallback)(otError aError, const otDnsServiceResponse *aResponse, void *aContext)
Po inter is called when a DNS response is received for a service instance reso lution query.

Functions

void otDnsInitTxtEntryIterator(otDnsTxtEntryIterator *aIterator, const uint8_t *aTxtData, uint16_t aTxtDataLength)
Initializes a TXT record iterator.

otError otDnsGetNextTxtEntry(otDnsTxtEntryIterator *aIterator, otDnsTxtEntry *aEntry)
Parses the TXT data from an iterator and gets the next TXT record entry (key/value pair).

otError otDnsEncodeTxtData(const otDnsTxtEntry *aTxtEntries, uint16_t aNumTxtEntries, uint8_t *aTxtData, uint16_t
*aTxtDataLength)
Encodes a given list of TXT record entries (key/value pairs) into TXT data (fo llowing format specified by RFC 6763).

void otDnsSetNameCompressionEnabled(bool aEnabled)
Enables/disables the "DNS name compression" mode .

bool otDnsIsNameCompressionEnabled(void)
Indicates whether the "DNS name compression" mode is enabled or not.

const
otDnsQueryConfi

g *

otDnsClientGetDefaultConfig(otInstance *aInstance)
Gets the current default query config used by DNS client.

void otDnsClientSetDefaultConfig(otInstance *aInstance, const otDnsQueryConfig *aConfig)
Sets the default query config on DNS client.

DNS

110/962

otError otDnsClientResolveAddress(otInstance *aInstance, const char *aHostName, otDnsAddressCallback
aCallback, void *aContext, const otDnsQueryConfig *aConfig)
Sends an address reso lution DNS query for AAAA (IPv6) record(s) for a given host name .

otError otDnsClientResolveIp4Address(otInstance *aInstance, const char *aHostName, otDnsAddressCallback
aCallback, void *aContext, const otDnsQueryConfig *aConfig)
Sends an address reso lution DNS query for A (IPv4) record(s) for a given host name .

otError otDnsAddressResponseGetHostName(const otDnsAddressResponse *aResponse, char *aNameBuffer,
uint16_t aNameBufferSize)
Gets the full host name associated with an address reso lution DNS response .

otError otDnsAddressResponseGetAddress(const otDnsAddressResponse *aResponse, uint16_t aIndex,
otIp6Address *aAddress, uint32_t *aTtl)
Gets an IPv6 address associated with an address reso lution DNS response .

otError otDnsClientBrowse(otInstance *aInstance, const char *aServiceName, otDnsBrowseCallback aCallback, void
*aContext, const otDnsQueryConfig *aConfig)
Sends a DNS browse (service instance enumeration) query for a given service name .

otError otDnsBrowseResponseGetServiceName(const otDnsBrowseResponse *aResponse, char *aNameBuffer,
uint16_t aNameBufferSize)
Gets the service name associated with a DNS browse (service instance enumeration) response .

otError otDnsBrowseResponseGetServiceInstance(const otDnsBrowseResponse *aResponse, uint16_t aIndex, char
*aLabelBuffer, uint8_t aLabelBufferSize)
Gets a service instance associated with a DNS browse (service instance enumeration) response .

otError otDnsBrowseResponseGetServiceInfo(const otDnsBrowseResponse *aResponse, const char
*aInstanceLabel, otDnsServiceInfo *aServiceInfo)
Gets info for a service instance from a DNS browse (service instance enumeration) response .

otError otDnsBrowseResponseGetHostAddress(const otDnsBrowseResponse *aResponse, const char
*aHostName, uint16_t aIndex, otIp6Address *aAddress, uint32_t *aTtl)
Gets the host IPv6 address from a DNS browse (service instance enumeration) response .

otError otDnsClientResolveService(otInstance *aInstance, const char *aInstanceLabel, const char *aServiceName,
otDnsServiceCallback aCallback, void *aContext, const otDnsQueryConfig *aConfig)
Starts a DNS service instance reso lution for a given service instance .

otError otDnsClientResolveServiceAndHostAddress(otInstance *aInstance, const char *aInstanceLabel, const char
*aServiceName, otDnsServiceCallback aCallback, void *aContext, const otDnsQueryConfig *aConfig)
Starts a DNS service instance reso lution for a given service instance , with a potential fo llow-up address reso lution for

the host name discovered for the service instance .

otError otDnsServiceResponseGetServiceName(const otDnsServiceResponse *aResponse, char *aLabelBuffer,
uint8_t aLabelBufferSize, char *aNameBuffer, uint16_t aNameBufferSize)
Gets the service instance name associated with a DNS service instance reso lution response .

otError otDnsServiceResponseGetServiceInfo(const otDnsServiceResponse *aResponse, otDnsServiceInfo
*aServiceInfo)
Gets info for a service instance from a DNS service instance reso lution response .

otError otDnsServiceResponseGetHostAddress(const otDnsServiceResponse *aResponse, const char
*aHostName, uint16_t aIndex, otIp6Address *aAddress, uint32_t *aTtl)
Gets the host IPv6 address from a DNS service instance reso lution response .

Macros

#define OT_DNS_MAX_NAME_SIZE 255
Maximum name string size (includes null char at the end of string).

DNS

111/962

#define OT_DNS_MAX_LABEL_SIZE 64
Maximum label string size (include null char at the end of string).

#define OT_DNS_TXT_KEY_MIN_LENGTH 1
Minimum length of TXT record key string (RFC 6763 - section 6.4).

#define OT_DNS_TXT_KEY_MAX_LENGTH 9
Recommended maximum length of TXT record key string (RFC 6763 - section 6.4).

Enumeration Documentation

otDnsRecursionFlag

otDnsRecursionFlag

Type represents the "Recursion Desired" (RD) flag in an otDnsQueryConfig .

Enumerator

OT_DNS_FLAG_UNSPECIFIED Indicates the flag is not specified.

OT_DNS_FLAG_RECURSION_DESIRED Indicates DNS name server can resolve the query recursively.

OT_DNS_FLAG_NO_RECURSION Indicates DNS name server can not resolve the query recursively.

Definition at line 62 of file include/openthread/dns_client.h

otDnsNat64Mode

otDnsNat64Mode

Type represents the NAT64 mode in an otDnsQueryConfig .

The NAT64 mode indicates whether to allow or disallow NAT64 address translation during DNS client address resolution.

This mode is only used when OPENTHREAD_CONFIG_DNS_CLIENT_NAT64_ENABLE is enabled.

Enumerator

OT_DNS_NAT64_UNSPECIFIED NAT64 mode is not specified. Use default NAT64 mode.

OT_DNS_NAT64_ALLOW Allow NAT64 address translation during DNS client address resolution.

OT_DNS_NAT64_DISALLOW Do not allow NAT64 address translation during DNS client address resolution.

Definition at line 76 of file include/openthread/dns_client.h

otDnsServiceMode

otDnsServiceMode

Type represents the service resolution mode in an otDnsQueryConfig .

This is only used during DNS client service resolution otDnsClientReso lveService() . It determines which record types to query.

Enumerator

OT_DNS_SERVICE_MODE_UNSPECIFIED Mode is not specified. Use default service mode.

OT_DNS_SERVICE_MODE_SRV Query for SRV record only.

OT_DNS_SERVICE_MODE_TXT Query for TXT record only.

DNS

112/962

OT_DNS_SERVICE_MODE_SRV_TXT Query for both SRV and TXT records in same message.

OT_DNS_SERVICE_MODE_SRV_TXT_SEPARATE Query in parallel for SRV and TXT using separate messages.

OT_DNS_SERVICE_MODE_SRV_TXT_OPTIMIZE Query for TXT/SRV together first, if fails then query separately.

Definition at line 90 of file include/openthread/dns_client.h

otDnsTransportProto

otDnsTransportProto

Type represents the DNS transport protocol in an otDnsQueryConfig .

This OT_DNS_TRANSPORT_TCP is only supported when OPENTHREAD_CONFIG_DNS_CLIENT_OVER_TCP_ENABLE is enabled.

Enumerator

OT_DNS_TRANSPORT_UNSPECIFIED

OT_DNS_TRANSPORT_UDP DNS transport is unspecified.

OT_DNS_TRANSPORT_TCP DNS query should be sent via UDP.

Definition at line 106 of file include/openthread/dns_client.h

Typedef Documentation

otDnsTxtEntry

typedef struct otDnsTxtEntry otDnsTxtEntry

Represents a TXT record entry representing a key/value pair (RFC 6763 - section 6.3).

The string buffers pointed to by mKey and mValue MUST persist and remain unchanged after an instance of such structure

is passed to OpenThread (as part of otSrpClientService instance).

An array of otDnsTxtEntry entries are used in otSrpClientService to specify the full TXT record (a list of entries).

Definition at line 95 of file include/openthread/dns.h

otDnsTxtEntryIterator

typedef struct otDnsTxtEntryIterator otDnsTxtEntryIterator

Represents an iterator for TXT record entries (key/value pairs).

The data fields in this structure are intended for use by OpenThread core and caller should not read or change them.

Definition at line 108 of file include/openthread/dns.h

otDnsQueryConfig

typedef struct otDnsQueryConfig otDnsQueryConfig

Represents a DNS query configuration.

DNS

113/962

Any of the fields in this structure can be set to zero to indicate that it is not specified. How the unspecified fields are

treated is determined by the function which uses the instance of otDnsQueryConfig .

Definition at line 129 of file include/openthread/dns_client.h

otDnsAddressResponse

typedef struct otDnsAddressResponse otDnsAddressResponse

An opaque representation of a response to an address resolution DNS query.

Pointers to instance of this type are provided from callback otDnsAddressCallback .

Definition at line 177 of file include/openthread/dns_client.h

otDnsAddressCallback

typedef void(* otDnsAddressCallback) (otError aError, const otDnsAddressResponse *aResponse, void *aContext))
(otError aError, const otDnsAddressResponse *aResponse, void *aContext)

Pointer is called when a DNS response is received for an address resolution query.

Parameters

[in] aError The result of the DNS transaction.

[in] aResponse A pointer to the response (it is always non-NULL).

[in] aContext A pointer to application-specific context.

Within this callback the user can use otDnsAddressResponseGet{Item}() functions along with the aResponse pointer to get

more info about the response.

The aResponse pointer can only be used within this callback and after returning from this function it will not stay valid, so

the user MUST NOT retain the aResponse pointer for later use.

The aError can have the following:

OT_ERROR_NONE A response was received successfully.

OT_ERROR_ABORT A DNS transaction was aborted by stack.

OT_ERROR_RESPONSE_TIMEOUT No DNS response has been received within timeout.

If the server rejects the address resolution request the error code from server is mapped as follow:

(0) NOERROR Success (no error condition) -> OT_ERROR_NONE

(1) FORMERR Server unable to interpret due to format error -> OT_ERROR_PARSE

(2) SERVFAIL Server encountered an internal failure -> OT_ERROR_FAILED

(3) NXDOMAIN Name that ought to exist, does not exist -> OT_ERROR_NOT_FOUND

(4) NOTIMP Server does not support the query type (OpCode) -> OT_ERROR_NOT_IMPLEMENTED

(5) REFUSED Server refused for policy/security reasons -> OT_ERROR_SECURITY

(6) YXDOMAIN Some name that ought not to exist, does exist -> OT_ERROR_DUPLICATED

(7) YXRRSET Some RRset that ought not to exist, does exist -> OT_ERROR_DUPLICATED

(8) NXRRSET Some RRset that ought to exist, does not exist -> OT_ERROR_NOT_FOUND

(9) NOTAUTH Service is not authoritative for zone -> OT_ERROR_SECURITY

(10) NOTZONE A name is not in the zone -> OT_ERROR_PARSE

(20) BADNAME Bad name -> OT_ERROR_PARSE

(21) BADALG Bad algorithm -> OT_ERROR_SECURITY

(22) BADTRUN Bad truncation -> OT_ERROR_PARSE

Other response codes -> OT_ERROR_FAILED

DNS

114/962

Definition at line 217 of file include/openthread/dns_client.h

otDnsBrowseResponse

typedef struct otDnsBrowseResponse otDnsBrowseResponse

An opaque representation of a response to a browse (service instance enumeration) DNS query.

Pointers to instance of this type are provided from callback otDnsBrowseCallback .

Definition at line 323 of file include/openthread/dns_client.h

otDnsBrowseCallback

typedef void(* otDnsBrowseCallback) (otError aError, const otDnsBrowseResponse *aResponse, void *aContext))
(otError aError, const otDnsBrowseResponse *aResponse, void *aContext)

Pointer is called when a DNS response is received for a browse (service instance enumeration) query.

Parameters

[in] aError The result of the DNS transaction.

[in] aResponse A pointer to the response (it is always non-NULL).

[in] aContext A pointer to application-specific context.

Within this callback the user can use otDnsBrowseResponseGet{Item}() functions along with the aResponse pointer to get

more info about the response.

The aResponse pointer can only be used within this callback and after returning from this function it will not stay valid, so

the user MUST NOT retain the aResponse pointer for later use.

For the full list of possible values for aError , please see otDnsAddressCallback() .

Definition at line 341 of file include/openthread/dns_client.h

otDnsServiceInfo

typedef struct otDnsServiceInfo otDnsServiceInfo

Provides info for a DNS service instance.

Definition at line 361 of file include/openthread/dns_client.h

otDnsServiceResponse

typedef struct otDnsServiceResponse otDnsServiceResponse

An opaque representation of a response to a service instance resolution DNS query.

Pointers to instance of this type are provided from callback otDnsAddressCallback .

Definition at line 497 of file include/openthread/dns_client.h

otDnsServiceCallback

DNS

115/962

typedef void(* otDnsServiceCallback) (otError aError, const otDnsServiceResponse *aResponse, void *aContext))
(otError aError, const otDnsServiceResponse *aResponse, void *aContext)

Pointer is called when a DNS response is received for a service instance resolution query.

Parameters

[in] aError The result of the DNS transaction.

[in] aResponse A pointer to the response (it is always non-NULL).

[in] aContext A pointer to application-specific context.

Within this callback the user can use otDnsServiceResponseGet{Item}() functions along with the aResponse pointer to get

more info about the response.

The aResponse pointer can only be used within this callback and after returning from this function it will not stay valid, so

the user MUST NOT retain the aResponse pointer for later use.

For the full list of possible values for aError , please see otDnsAddressCallback() .

Definition at line 515 of file include/openthread/dns_client.h

Function Documentation

otDnsInitTxtEntryIterator

void otDnsInitTxtEntryIterator (otDnsTxtEntryIterator *aIterator, const uint8_t *aTxtData, uint16_t aTxtDataLength)

Initializes a TXT record iterator.

Parameters

[in] aIterator A pointer to the iterator to initialize (MUST NOT be NULL).

[in] aTxtData A pointer to buffer containing the encoded TXT data.

[in] aTxtDataLength The length (number of bytes) of aTxtData .

The buffer pointer aTxtData and its content MUST persist and remain unchanged while aIterator object is being used.

Definition at line 121 of file include/openthread/dns.h

otDnsGetNextTxtEntry

otError otDnsGetNextTxtEntry (otDnsTxtEntryIterator *aIterator, otDnsTxtEntry *aEntry)

Parses the TXT data from an iterator and gets the next TXT record entry (key/value pair).

Parameters

[in] aIterator A pointer to the iterator (MUST NOT be NULL).

[out] aEntry A pointer to a otDnsTxtEntry structure to output the parsed/read entry (MUST NOT be NULL).

The aIterator MUST be initialized using otDnsInitTxtEntryIterator() before calling this function and the TXT data buffer used

to initialize the iterator MUST persist and remain unchanged. Otherwise the behavior of this function is undefined.

If the parsed key string length is smaller than or equal to OT_DNS_TXT_KEY_MAX_LENGTH (recommended max key length) the

key string is returned in mKey in aEntry . But if the key is longer, then mKey is set to NULL and the entire encoded TXT

DNS

116/962

entry string is returned in mValue and mValueLength .

Definition at line 142 of file include/openthread/dns.h

otDnsEncodeTxtData

otError otDnsEncodeTxtData (const otDnsTxtEntry *aTxtEntries, uint16_t aNumTxtEntries, uint8_t *aTxtData, uint16_t
*aTxtDataLength)

Encodes a given list of TXT record entries (key/value pairs) into TXT data (following format specified by RFC 6763).

Parameters

[in] aTxtEntries Pointer to an array of otDnsTxtEntry .

[in] aNumTxtEntries Number of entries in aTxtEntries array.

[out] aTxtData A pointer to a buffer to output the encoded TXT data.

[inout] aTxtDataLength On input, size of buffer aTxtData . On output, length of the encoded TXT data.

Definition at line 157 of file include/openthread/dns.h

otDnsSetNameCompressionEnabled

void otDnsSetNameCompressionEnabled (bool aEnabled)

Enables/disables the "DNS name compression" mode.

Parameters

[in] aEnabled TRUE to enable the "DNS name compression" mode, FALSE to disable.

By default DNS name compression is enabled. When disabled, DNS names are appended as full and never compressed. This

is applicable to OpenThread's DNS and SRP client/server modules.

This is intended for testing only and available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE config is enabled.

Note that in the case OPENTHREAD_CONFIG_MULTIPLE_INSTANCE_ENABLE is used, this mode applies to all OpenThread

instances (i.e., calling this function enables/disables the compression mode on all OpenThread instances).

Definition at line 176 of file include/openthread/dns.h

otDnsIsNameCompressionEnabled

bool otDnsIsNameCompressionEnabled (void)

Indicates whether the "DNS name compression" mode is enabled or not.

Parameters

N/A

This is intended for testing only and available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE config is enabled.

Returns

TRUE if the "DNS name compression" mode is enabled, FALSE otherwise.

DNS

117/962

Definition at line 186 of file include/openthread/dns.h

otDnsClientGetDefaultConfig

const otDnsQueryConfig * otDnsClientGetDefaultConfig (otInstance *aInstance)

Gets the current default query config used by DNS client.

Parameters

[in] aInstance A pointer to an OpenThread instance.

When OpenThread stack starts, the default DNS query config is determined from a set of OT config options such as

OPENTHREAD_CONFIG_DNS_CLIENT_DEFAULT_SERVER_IP6_ADDRESS , _DEFAULT_SERVER_PORT , _DEFAULT_RESPONSE_TIMEOUT , etc.

(see config/dns_client.h for all related config options).

Returns

A pointer to the current default config being used by DNS client.

Definition at line 143 of file include/openthread/dns_client.h

otDnsClientSetDefaultConfig

void otDnsClientSetDefaultConfig (otInstance *aInstance, const otDnsQueryConfig *aConfig)

Sets the default query config on DNS client.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig A pointer to the new query config to use as default.

Note

Any ongoing query will continue to use the config from when it was started. The new default config will be used for any

future DNS queries.

The aConfig can be NULL. In this case the default config will be set to the defaults from OT config options

OPENTHREAD_CONFIG_DNS_CLIENT_DEFAULT_{} . This resets the default query config back to to the config when the

OpenThread stack starts.

In a non-NULL aConfig , caller can choose to leave some of the fields in otDnsQueryConfig instance unspecified (value

zero). The unspecified fields are replaced by the corresponding OT config option definitions

OPENTHREAD_CONFIG_DNS_CLIENT_DEFAULT_{} to form the default query config.

When OPENTHREAD_CONFIG_DNS_CLIENT_DEFAULT_SERVER_ADDRESS_AUTO_SET_ENABLE is enabled, the server's IPv6 address in

the default config is automatically set and updated by DNS client. This is done only when user does not explicitly set or

specify it. This behavior requires SRP client and its auto-start feature to be enabled. SRP client will then monitor the Thread

Network Data for DNS/SRP Service entries to select an SRP server. The selected SRP server address is also set as the

DNS server address in the default config.

Definition at line 169 of file include/openthread/dns_client.h

otDnsClientResolveAddress

otError otDnsClientResolveAddress (otInstance *aInstance, const char *aHostName, otDnsAddressCallback aCallback,
void *aContext, const otDnsQueryConfig *aConfig)

DNS

118/962

Sends an address resolution DNS query for AAAA (IPv6) record(s) for a given host name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHostName The host name for which to query the address (MUST NOT be NULL).

[in] aCallback A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aConfig A pointer to the config to use for this query.

The aConfig can be NULL. In this case the default config (from otDnsClientGetDefaultConfig()) will be used as the config for

this query. In a non-NULL aConfig , some of the fields can be left unspecified (value zero). The unspecified fields are then

replaced by the values from the default config.

Definition at line 238 of file include/openthread/dns_client.h

otDnsClientResolveIp4Address

otError otDnsClientResolveIp4Address (otInstance *aInstance, const char *aHostName, otDnsAddressCallback aCallback,
void *aContext, const otDnsQueryConfig *aConfig)

Sends an address resolution DNS query for A (IPv4) record(s) for a given host name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHostName The host name for which to query the address (MUST NOT be NULL).

[in] aCallback A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aConfig A pointer to the config to use for this query.

Requires and is available when OPENTHREAD_CONFIG_DNS_CLIENT_NAT64_ENABLE is enabled.

When a successful response is received, the addresses are returned from aCallback as NAT64 IPv6 translated versions of

the IPv4 addresses from the query response.

The aConfig can be NULL. In this case the default config (from otDnsClientGetDefaultConfig()) will be used as the config for

this query. In a non-NULL aConfig , some of the fields can be left unspecified (value zero). The unspecified fields are then

replaced by the values from the default config.

Definition at line 268 of file include/openthread/dns_client.h

otDnsAddressResponseGetHostName

otError otDnsAddressResponseGetHostName (const otDnsAddressResponse *aResponse, char *aNameBuffer, uint16_t
aNameBufferSize)

Gets the full host name associated with an address resolution DNS response.

Parameters

[in] aResponse A pointer to the response.

[out] aNameBuffer A buffer to char array to output the full host name (MUST NOT be NULL).

[in] aNameBufferSize The size of aNameBuffer .

DNS

119/962

MUST only be used from otDnsAddressCallback .

Definition at line 287 of file include/openthread/dns_client.h

otDnsAddressResponseGetAddress

otError otDnsAddressResponseGetAddress (const otDnsAddressResponse *aResponse, uint16_t aIndex, otIp6Address
*aAddress, uint32_t *aTtl)

Gets an IPv6 address associated with an address resolution DNS response.

Parameters

[in] aResponse A pointer to the response.

[in] aIndex The address record index to retrieve.

[out] aAddress A pointer to a IPv6 address to output the address (MUST NOT be NULL).

[out] aTtl A pointer to an uint32_t to output TTL for the address. It can be NULL if caller does not want to get

the TTL.

MUST only be used from otDnsAddressCallback .

The response may include multiple IPv6 address records. aIndex can be used to iterate through the list of addresses. Index

zero gets the first address and so on. When we reach end of the list, OT_ERROR_NOT_FOUND is returned.

Definition at line 312 of file include/openthread/dns_client.h

otDnsClientBrowse

otError otDnsClientBrowse (otInstance *aInstance, const char *aServiceName, otDnsBrowseCallback aCallback, void
*aContext, const otDnsQueryConfig *aConfig)

Sends a DNS browse (service instance enumeration) query for a given service name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aServiceName The service name to query for (MUST NOT be NULL).

[in] aCallback A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aConfig A pointer to the config to use for this query.

Is available when OPENTHREAD_CONFIG_DNS_CLIENT_SERVICE_DISCOVERY_ENABLE is enabled.

The aConfig can be NULL. In this case the default config (from otDnsClientGetDefaultConfig()) will be used as the config for

this query. In a non-NULL aConfig , some of the fields can be left unspecified (value zero). The unspecified fields are then

replaced by the values from the default config.

Definition at line 382 of file include/openthread/dns_client.h

otDnsBrowseResponseGetServiceName

otError otDnsBrowseResponseGetServiceName (const otDnsBrowseResponse *aResponse, char *aNameBuffer, uint16_t
aNameBufferSize)

DNS

120/962

Gets the service name associated with a DNS browse (service instance enumeration) response.

Parameters

[in] aResponse A pointer to the response.

[out] aNameBuffer A buffer to char array to output the service name (MUST NOT be NULL).

[in] aNameBufferSize The size of aNameBuffer .

MUST only be used from otDnsBrowseCallback .

Definition at line 401 of file include/openthread/dns_client.h

otDnsBrowseResponseGetServiceInstance

otError otDnsBrowseResponseGetServiceInstance (const otDnsBrowseResponse *aResponse, uint16_t aIndex, char
*aLabelBuffer, uint8_t aLabelBufferSize)

Gets a service instance associated with a DNS browse (service instance enumeration) response.

Parameters

[in] aResponse A pointer to the response.

[in] aIndex The service instance record index to retrieve.

[out] aLabelBuffer A buffer to char array to output the service instance label (MUST NOT be NULL).

[in] aLabelBufferSize The size of aLabelBuffer .

MUST only be used from otDnsBrowseCallback .

The response may include multiple service instance records. aIndex can be used to iterate through the list. Index zero gives

the the first record. When we reach end of the list, OT_ERROR_NOT_FOUND is returned.

Note that this function gets the service instance label and not the full service instance name which is of the form

< Instance>.<Service>.<Domain> .

Definition at line 427 of file include/openthread/dns_client.h

otDnsBrowseResponseGetServiceInfo

otError otDnsBrowseResponseGetServiceInfo (const otDnsBrowseResponse *aResponse, const char *aInstanceLabel,
otDnsServiceInfo *aServiceInfo)

Gets info for a service instance from a DNS browse (service instance enumeration) response.

Parameters

[in] aResponse A pointer to the response.

[in] aInstanceLabel The service instance label (MUST NOT be NULL).

[out] aServiceInfo A Service Info to output the service instance information (MUST NOT be NULL).

MUST only be used from otDnsBrowseCallback .

A browse DNS response can include SRV, TXT, and AAAA records for the service instances that are enumerated. This is a

SHOULD and not a MUST requirement, and servers/resolvers are not required to provide this. This function attempts to

retrieve this info for a given service instance when available.

DNS

121/962

If no matching SRV record is found in aResponse , OT_ERROR_NOT_FOUND is returned. In this case, no additional records (no

TXT and/or AAAA) are read.

If a matching SRV record is found in aResponse , aService Info is updated and OT_ERROR_NONE is returned.

If no matching TXT record is found in aResponse , mTxtDataSize in aService Info is set to zero.

If TXT data length is greater than mTxtDataSize , it is read partially and mTxtDataTruncated is set to true.

If no matching AAAA record is found in aResponse , mHostAddress is set to all zero or unspecified address.

If there are multiple AAAA records for the host name in @p aResponse , mHostAddress is set to the first one . The other addresses can be

retrieved using otDnsBrowseResponseGetHostAddress()`.

Definition at line 460 of file include/openthread/dns_client.h

otDnsBrowseResponseGetHostAddress

otError otDnsBrowseResponseGetHostAddress (const otDnsBrowseResponse *aResponse, const char *aHostName,
uint16_t aIndex, otIp6Address *aAddress, uint32_t *aTtl)

Gets the host IPv6 address from a DNS browse (service instance enumeration) response.

Parameters

[in] aResponse A pointer to the response.

[in] aHostName The host name to get the address (MUST NOT be NULL).

[in] aIndex The address record index to retrieve.

[out] aAddress A pointer to a IPv6 address to output the address (MUST NOT be NULL).

[out] aTtl A pointer to an uint32_t to output TTL for the address. It can be NULL if caller does not want to get

the TTL.

MUST only be used from otDnsBrowseCallback .

The response can include zero or more IPv6 address records. aIndex can be used to iterate through the list of addresses.

Index zero gets the first address and so on. When we reach end of the list, OT_ERROR_NOT_FOUND is returned.

Definition at line 485 of file include/openthread/dns_client.h

otDnsClientResolveService

otError otDnsClientResolveService (otInstance *aInstance, const char *aInstanceLabel, const char *aServiceName,
otDnsServiceCallback aCallback, void *aContext, const otDnsQueryConfig *aConfig)

Starts a DNS service instance resolution for a given service instance.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aInstanceLabel The service instance label.

[in] aServiceName The service name (together with aInstanceLabel form full instance name).

[in] aCallback A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aConfig A pointer to the config to use for this query.

Is available when OPENTHREAD_CONFIG_DNS_CLIENT_SERVICE_DISCOVERY_ENABLE is enabled.

The aConfig can be NULL. In this case the default config (from otDnsClientGetDefaultConfig()) will be used as the config for

this query. In a non-NULL aConfig , some of the fields can be left unspecified (value zero). The unspecified fields are then

DNS

122/962

replaced by the values from the default config.

The function sends queries for SRV and/or TXT records for the given service instance. The mServiceMode field in

otDnsQueryConfig determines which records to query (SRV only, TXT only, or both SRV and TXT) and how to perform the

query (together in the same message, separately in parallel, or in optimized mode where client will try in the same message

first and then separately if it fails to get a response).

The SRV record provides information about service port, priority, and weight along with the host name associated with the

service instance. This function DOES NOT perform address resolution for the host name discovered from SRV record. The

server/resolver may provide AAAA/A record(s) for the host name in the Additional Data section of the response to

SRV/TXT query and this information can be retrieved using otDnsServiceResponseGetService Info() in otDnsServiceCallback .

Users of this API MUST NOT assume that host address will always be available from otDnsServiceResponseGetService Info() .

Definition at line 550 of file include/openthread/dns_client.h

otDnsClientResolveServiceAndHostAddress

otError otDnsClientResolveServiceAndHostAddress (otInstance *aInstance, const char *aInstanceLabel, const char
*aServiceName, otDnsServiceCallback aCallback, void *aContext, const otDnsQueryConfig *aConfig)

Starts a DNS service instance resolution for a given service instance, with a potential follow-up address resolution for the

host name discovered for the service instance.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aInstanceLabel The service instance label.

[in] aServiceName The service name (together with aInstanceLabel form full instance name).

[in] aCallback A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aConfig A pointer to the config to use for this query.

Is available when OPENTHREAD_CONFIG_DNS_CLIENT_SERVICE_DISCOVERY_ENABLE is enabled.

The aConfig can be NULL. In this case the default config (from otDnsClientGetDefaultConfig()) will be used as the config for

this query. In a non-NULL aConfig , some of the fields can be left unspecified (value zero). The unspecified fields are then

replaced by the values from the default config. This function cannot be used with mServiceMode in DNS config set to

OT_DNS_SERVICE_MODE_TXT (i.e., querying for TXT record only) and will return OT_ERROR_INVALID_ARGS .

Behaves similarly to otDnsClientReso lveService() sending queries for SRV and TXT records. However, if the server/resolver

does not provide AAAA/A records for the host name in the response to SRV query (in the Additional Data section), it will

perform host name resolution (sending an AAAA query) for the discovered host name from the SRV record. The callback

aCallback is invoked when responses for all queries are received (i.e., both service and host address resolutions are

finished).

Definition at line 587 of file include/openthread/dns_client.h

otDnsServiceResponseGetServiceName

otError otDnsServiceResponseGetServiceName (const otDnsServiceResponse *aResponse, char *aLabelBuffer, uint8_t
aLabelBufferSize, char *aNameBuffer, uint16_t aNameBufferSize)

Gets the service instance name associated with a DNS service instance resolution response.

Parameters

[in] aResponse A pointer to the response.

DNS

123/962

[out] aLabelBuffer A buffer to char array to output the service instance label (MUST NOT be NULL).

[in] aLabelBufferSize The size of aLabelBuffer .

[out] aNameBuffer A buffer to char array to output the rest of service name (can be NULL if user is not

interested in getting the name.

[in] aNameBufferSize The size of aNameBuffer .

MUST only be used from otDnsServiceCallback .

Definition at line 610 of file include/openthread/dns_client.h

otDnsServiceResponseGetServiceInfo

otError otDnsServiceResponseGetServiceInfo (const otDnsServiceResponse *aResponse, otDnsServiceInfo
*aServiceInfo)

Gets info for a service instance from a DNS service instance resolution response.

Parameters

[in] aResponse A pointer to the response.

[out] aServiceInfo A Service Info to output the service instance information (MUST NOT be NULL).

MUST only be used from a otDnsServiceCallback triggered from otDnsClientReso lveService() or

otDnsClientReso lveServiceAndHostAddress() .

When this is is used from a otDnsClientReso lveService() callback, the DNS response from server/resolver may include AAAA

records in its Additional Data section for the host name associated with the service instance that is resolved. This is a

SHOULD and not a MUST requirement so servers/resolvers are not required to provide this. This function attempts to parse

AAAA record(s) if included in the response. If it is not included mHostAddress is set to all zeros (unspecified address). To

also resolve the host address, user can use the DNS client API function otDnsClientReso lveServiceAndHostAddress() which

will perform service resolution followed up by a host name address resolution query (when AAAA records are not provided

by server/resolver in the SRV query response).

If a matching SRV record is found in aResponse , aService Info is updated.

If no matching SRV record is found, OT_ERROR_NOT_FOUND is returned unless the query config for this query used

OT_DNS_SERVICE_MODE_TXT for mServiceMode (meaning the request was only for TXT record). In this case, we still try to

parse the SRV record from Additional Data Section of response (in case server provided the info).

If no matching TXT record is found in aResponse , mTxtDataSize in aService Info is set to zero.

If TXT data length is greater than mTxtDataSize , it is read partially and mTxtDataTruncated is set to true.

If no matching AAAA record is found in aResponse , mHostAddress is set to all zero or unspecified address.

If there are multiple AAAA records for the host name in @p aResponse , mHostAddress is set to the first one . The other addresses can be

retrieved using otDnsServiceResponseGetHostAddress()`.

Definition at line 649 of file include/openthread/dns_client.h

otDnsServiceResponseGetHostAddress

otError otDnsServiceResponseGetHostAddress (const otDnsServiceResponse *aResponse, const char *aHostName,
uint16_t aIndex, otIp6Address *aAddress, uint32_t *aTtl)

Gets the host IPv6 address from a DNS service instance resolution response.

Parameters

[in] aResponse A pointer to the response.

DNS

124/962

[in] aHostName The host name to get the address (MUST NOT be NULL).

[in] aIndex The address record index to retrieve.

[out] aAddress A pointer to a IPv6 address to output the address (MUST NOT be NULL).

[out] aTtl A pointer to an uint32_t to output TTL for the address. It can be NULL if caller does not want to get

the TTL.

MUST only be used from otDnsServiceCallback .

The response can include zero or more IPv6 address records. aIndex can be used to iterate through the list of addresses.

Index zero gets the first address and so on. When we reach end of the list, OT_ERROR_NOT_FOUND is returned.

Definition at line 672 of file include/openthread/dns_client.h

Macro Definition Documentation

OT_DNS_MAX_NAME_SIZE

#define OT_DNS_MAX_NAME_SIZE

Value:

255

Maximum name string size (includes null char at the end of string).

Definition at line 57 of file include/openthread/dns.h

OT_DNS_MAX_LABEL_SIZE

#define OT_DNS_MAX_LABEL_SIZE

Value:

64

Maximum label string size (include null char at the end of string).

Definition at line 59 of file include/openthread/dns.h

OT_DNS_TXT_KEY_MIN_LENGTH

#define OT_DNS_TXT_KEY_MIN_LENGTH

Value:

1

Minimum length of TXT record key string (RFC 6763 - section 6.4).

Definition at line 61 of file include/openthread/dns.h

OT_DNS_TXT_KEY_MAX_LENGTH

DNS

125/962

#define OT_DNS_TXT_KEY_MAX_LENGTH

Value:

9

Recommended maximum length of TXT record key string (RFC 6763 - section 6.4).

Definition at line 63 of file include/openthread/dns.h

otDnsTxtEntry

126/962

otDnsTxtEntry

Represents a TXT record entry representing a key/value pair (RFC 6763 - section 6.3).

The string buffers pointed to by mKey and mValue MUST persist and remain unchanged after an instance of such structure

is passed to OpenThread (as part of otSrpClientService instance).

An array of otDnsTxtEntry entries are used in otSrpClientService to specify the full TXT record (a list of entries).

Public Attributes

const char * mKey
The TXT record key string.

const uint8_t * mValue
The TXT record value or already encoded TXT-DATA (depending on mKey).

uint16_t mValueLength
Number of bytes in mValue buffer.

Public Attribute Documentation

mKey

const char* otDnsTxtEntry::mKey

The TXT record key string.

If mKey is not NULL, then it MUST be a null-terminated C string. The entry is treated as key/value pair with mValue buffer

providing the value.

The entry is encoded as follows:

A single string length byte followed by "key=value" format (without the quotation marks).

In this case, the overall encoded length must be 255 bytes or less.

If mValue is NULL, then key is treated as a boolean attribute and encoded as "key" (with no =).

If mValue is not NULL but mValueLength is zero, then it is treated as empty value and encoded as "key=".

If mKey is NULL, then mValue buffer is treated as an already encoded TXT-DATA and is appended as is in the DNS

message.

Definition at line 92 of file include/openthread/dns.h

mValue

const uint8_t* otDnsTxtEntry::mValue

The TXT record value or already encoded TXT-DATA (depending on mKey).

Definition at line 93 of file include/openthread/dns.h

otDnsTxtEntry

127/962

mValueLength

uint16_t otDnsTxtEntry::mValueLength

Number of bytes in mValue buffer.

Definition at line 94 of file include/openthread/dns.h

otDnsTxtEntryIterator

128/962

otDnsTxtEntryIterator

Represents an iterator for TXT record entries (key/value pairs).

The data fields in this structure are intended for use by OpenThread core and caller should not read or change them.

Public Attributes

const void * mPtr

uint16_t mData

char mChar

Public Attribute Documentation

mPtr

const void* otDnsTxtEntryIterator::mPtr

Definition at line 105 of file include/openthread/dns.h

mData

uint16_t otDnsTxtEntryIterator::mData[2]

Definition at line 106 of file include/openthread/dns.h

mChar

char otDnsTxtEntryIterator::mChar[OT_DNS_TXT_KEY_MAX_LENGTH�1�

Definition at line 107 of file include/openthread/dns.h

otDnsQueryConfig

129/962

otDnsQueryConfig

Represents a DNS query configuration.

Any of the fields in this structure can be set to zero to indicate that it is not specified. How the unspecified fields are

treated is determined by the function which uses the instance of otDnsQueryConfig .

Public Attributes

otSockAddr mServerSockAddr
Server address (IPv6 addr/port). All zero or zero port for unspecified.

uint32_t mResponseTimeout
Wait time (in msec) to rx response . Zero indicates unspecified value .

uint8_t mMaxTxAttempts
Maximum tx attempts before reporting failure . Zero for unspecified value .

otDnsRecursionFl
ag

mRecursionFlag
Indicates whether the server can reso lve the query recursively or not.

otDnsNat64Mode mNat64Mode
Allow/Disallow NAT64 address translation during address reso lution.

otDnsServiceMod
e

mServiceMode
Determines which records to query during service reso lution.

otDnsTransportPr
oto

mTransportProto
Select default transport protoco l.

Public Attribute Documentation

mServerSockAddr

otSockAddr otDnsQueryConfig::mServerSockAddr

Server address (IPv6 addr/port). All zero or zero port for unspecified.

Definition at line 122 of file include/openthread/dns_client.h

mResponseTimeout

uint32_t otDnsQueryConfig::mResponseTimeout

Wait time (in msec) to rx response. Zero indicates unspecified value.

Definition at line 123 of file include/openthread/dns_client.h

mMaxTxAttempts

otDnsQueryConfig

130/962

uint8_t otDnsQueryConfig::mMaxTxAttempts

Maximum tx attempts before reporting failure. Zero for unspecified value.

Definition at line 124 of file include/openthread/dns_client.h

mRecursionFlag

otDnsRecursionFlag otDnsQueryConfig::mRecursionFlag

Indicates whether the server can resolve the query recursively or not.

Definition at line 125 of file include/openthread/dns_client.h

mNat64Mode

otDnsNat64Mode otDnsQueryConfig::mNat64Mode

Allow/Disallow NAT64 address translation during address resolution.

Definition at line 126 of file include/openthread/dns_client.h

mServiceMode

otDnsServiceMode otDnsQueryConfig::mServiceMode

Determines which records to query during service resolution.

Definition at line 127 of file include/openthread/dns_client.h

mTransportProto

otDnsTransportProto otDnsQueryConfig::mTransportProto

Select default transport protocol.

Definition at line 128 of file include/openthread/dns_client.h

otDnsServiceInfo

131/962

otDnsServiceInfo

Provides info for a DNS service instance.

Public Attributes

uint32_t mTtl
Service record TTL (in seconds).

uint16_t mPort
Service port number.

uint16_t mPriority
Service priority.

uint16_t mWeight
Service weight.

char * mHostNameBuffer
Buffer to output the service host name (can be NULL if not needed).

uint16_t mHostNameBufferSize
Size of mHostNameBuffer .

otIp6Address mHostAddress
The host IPv6 address. Set to all zero if not available .

uint32_t mHostAddressTtl
The host address TTL.

uint8_t * mTxtData
Buffer to output TXT data (can be NULL if not needed).

uint16_t mTxtDataSize
On input, size of mTxtData buffer. On output number bytes written.

bool mTxtDataTruncated
Indicates if TXT data could not fit in mTxtDataSize and was truncated.

uint32_t mTxtDataTtl
The TXT data TTL.

Public Attribute Documentation

mTtl

uint32_t otDnsServiceInfo::mTtl

Service record TTL (in seconds).

Definition at line 349 of file include/openthread/dns_client.h

mPort

otDnsServiceInfo

132/962

uint16_t otDnsServiceInfo::mPort

Service port number.

Definition at line 350 of file include/openthread/dns_client.h

mPriority

uint16_t otDnsServiceInfo::mPriority

Service priority.

Definition at line 351 of file include/openthread/dns_client.h

mWeight

uint16_t otDnsServiceInfo::mWeight

Service weight.

Definition at line 352 of file include/openthread/dns_client.h

mHostNameBuffer

char* otDnsServiceInfo::mHostNameBuffer

Buffer to output the service host name (can be NULL if not needed).

Definition at line 353 of file include/openthread/dns_client.h

mHostNameBufferSize

uint16_t otDnsServiceInfo::mHostNameBufferSize

S ize of mHostNameBuffer .

Definition at line 354 of file include/openthread/dns_client.h

mHostAddress

otIp6Address otDnsServiceInfo::mHostAddress

The host IPv6 address. Set to all zero if not available.

Definition at line 355 of file include/openthread/dns_client.h

mHostAddressTtl

otDnsServiceInfo

133/962

uint32_t otDnsServiceInfo::mHostAddressTtl

The host address TTL.

Definition at line 356 of file include/openthread/dns_client.h

mTxtData

uint8_t* otDnsServiceInfo::mTxtData

Buffer to output TXT data (can be NULL if not needed).

Definition at line 357 of file include/openthread/dns_client.h

mTxtDataSize

uint16_t otDnsServiceInfo::mTxtDataSize

On input, size of mTxtData buffer. On output number bytes written.

Definition at line 358 of file include/openthread/dns_client.h

mTxtDataTruncated

bool otDnsServiceInfo::mTxtDataTruncated

Indicates if TXT data could not fit in mTxtDataSize and was truncated.

Definition at line 359 of file include/openthread/dns_client.h

mTxtDataTtl

uint32_t otDnsServiceInfo::mTxtDataTtl

The TXT data TTL.

Definition at line 360 of file include/openthread/dns_client.h

DNS�SD Server

134/962

DNS�SD Server

DNS�SD Server
This module includes APIs for DNS-SD server.

Modules

otDnssdServiceInstanceInfo

otDnssdHostInfo

otDnssdCounters

Enumerations

enum otDnssdQueryType {

OT_DNSSD_QUERY_TYPE_NONE = 0
OT_DNSSD_QUERY_TYPE_BROWSE = 1
OT_DNSSD_QUERY_TYPE_RESOLVE = 2
OT_DNSSD_QUERY_TYPE_RESOLVE_HOST = 3

}
Specifies a DNS-SD query type .

Typedefs

typedef void(* otDnssdQuerySubscribeCallback)(void *aContext, const char *aFullName)
Is called when a DNS-SD query subscribes one of:

typedef void(* otDnssdQueryUnsubscribeCallback)(void *aContext, const char *aFullName)
Is called when a DNS-SD query unsubscribes one of:

typedef void otDnssdQuery
This opaque type represents a DNS-SD query.

typedef struct
otDnssdServiceIn

stanceInfo

otDnssdServiceInstanceInfo
Represents information of a discovered service instance for a DNS-SD query.

typedef struct
otDnssdHostInfo

otDnssdHostInfo
Represents information of a discovered host for a DNS-SD query.

typedef struct
otDnssdCounters

otDnssdCounters
Contains the counters of DNS-SD server.

Functions

void otDnssdQuerySetCallbacks(otInstance *aInstance, otDnssdQuerySubscribeCallback aSubscribe,
otDnssdQueryUnsubscribeCallback aUnsubscribe, void *aContext)
Sets DNS-SD server query callbacks.

DNS�SD Server

135/962

void otDnssdQueryHandleDiscoveredServiceInstance(otInstance *aInstance, const char *aServiceFullName,
otDnssdServiceInstanceInfo *aInstanceInfo)
Notifies a discovered service instance .

void otDnssdQueryHandleDiscoveredHost(otInstance *aInstance, const char *aHostFullName, otDnssdHostInfo
*aHostInfo)
Notifies a discovered host.

const
otDnssdQuery *

otDnssdGetNextQuery(otInstance *aInstance, const otDnssdQuery *aQuery)
Acquires the next query in the DNS-SD server.

otDnssdQueryTyp
e

otDnssdGetQueryTypeAndName(const otDnssdQuery *aQuery, char(*aNameOutput)
�OT_DNS_MAX_NAME_SIZE��
Acquires the DNS-SD query type and name for a specific query.

const
otDnssdCounters

*

otDnssdGetCounters(otInstance *aInstance)
Returns the counters of the DNS-SD server.

void otDnssdUpstreamQuerySetEnabled(otInstance *aInstance, bool aEnabled)
Enable or disable forwarding DNS queries to platform DNS upstream API.

bool otDnssdUpstreamQueryIsEnabled(otInstance *aInstance)
Returns whether the DNSSD server will forward DNS queries to the platform DNS upstream API.

Enumeration Documentation

otDnssdQueryType

otDnssdQueryType

Specifies a DNS-SD query type.

Enumerator

OT_DNSSD_QUERY_TYPE_NONE Service type unspecified.

OT_DNSSD_QUERY_TYPE_BROWSE Service type browse service.

OT_DNSSD_QUERY_TYPE_RESOLVE Service type resolve service instance.

OT_DNSSD_QUERY_TYPE_RESOLVE_HOST Service type resolve hostname.

Definition at line 142 of file include/openthread/dnssd_server.h

Typedef Documentation

otDnssdQuerySubscribeCallback

typedef void(* otDnssdQuerySubscribeCallback) (void *aContext, const char *aFullName))(void *aContext, const char
*aFullName)

Is called when a DNS-SD query subscribes one of:

Parameters

[in] aContext A pointer to the application-specific context.

[in] aFullName The null-terminated full service name (e.g. "_ ipps._tcp.default.service.arpa."), or full service instance name

(e.g. "OpenThread._ ipps._tcp.default.service.arpa."), or full host name (e.g. "ot-host.default.service.arpa.").

 a service name.

 a service instance name.

DNS�SD Server

136/962

a host name.

The DNS-SD query implementation is responsible for identifying what aFullName is. If aFullName is a service name or

service instance name, the DNS-SD query implementation should discover corresponding service instance information and

notify the DNS-SD server using otDnssdQueryHandleDiscoveredService Instance . If aFullName is a host name, the DNS-SD

query implementation should discover the host information and notify the DNS-SD server using

otDnssdQueryHandleDiscoveredHost .

Note

There can be multiple subscription to the same name. DNS-SD query implementation should record the number of active

subscriptions and stop notifying when there is no active subscription for aFullName .

See Also

otDnssdQueryHandleDiscoveredServiceInstance

otDnssdQueryHandleDiscoveredHost

Definition at line 83 of file include/openthread/dnssd_server.h

otDnssdQueryUnsubscribeCallback

typedef void(* otDnssdQueryUnsubscribeCallback) (void *aContext, const char *aFullName))(void *aContext, const char
*aFullName)

Is called when a DNS-SD query unsubscribes one of:

Parameters

[in] aContext A pointer to the application-specific context.

[in] aFullName The null-terminated full service name (e.g. "_ ipps._tcp.default.service.arpa."), or full service instance name

(e.g. "OpenThread._ ipps._tcp.default.service.arpa.").

 a service name.

 a service instance name.

 a host name.

The DNS-SD query implementation is responsible for identifying what aFullName is.

Note

There can be multiple subscription to the same name. DNS-SD query implementation should record the number of active

subscriptions and stop notifying when there is no active subscription for aFullName .

Definition at line 101 of file include/openthread/dnssd_server.h

otDnssdQuery

typedef void otDnssdQuery

This opaque type represents a DNS-SD query.

Definition at line 107 of file include/openthread/dnssd_server.h

otDnssdServiceInstanceInfo

typedef struct otDnssdServiceInstanceInfo otDnssdServiceInstanceInfo

DNS�SD Server

137/962

Represents information of a discovered service instance for a DNS-SD query.

Definition at line 125 of file include/openthread/dnssd_server.h

otDnssdHostInfo

typedef struct otDnssdHostInfo otDnssdHostInfo

Represents information of a discovered host for a DNS-SD query.

Definition at line 136 of file include/openthread/dnssd_server.h

otDnssdCounters

typedef struct otDnssdCounters otDnssdCounters

Contains the counters of DNS-SD server.

Definition at line 164 of file include/openthread/dnssd_server.h

Function Documentation

otDnssdQuerySetCallbacks

void otDnssdQuerySetCallbacks (otInstance *aInstance, otDnssdQuerySubscribeCallback aSubscribe,
otDnssdQueryUnsubscribeCallback aUnsubscribe, void *aContext)

Sets DNS-SD server query callbacks.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aSubscribe A pointer to the callback function to subscribe a service or service instance.

[in] aUnsubscribe A pointer to the callback function to unsubscribe a service or service instance.

[in] aContext A pointer to the application-specific context.

The DNS-SD server calls aSubscribe to subscribe to a service or service instance to resolve a DNS-SD query and

aUnsubscribe to unsubscribe when the query is resolved or timeout.

Note

aSubscribe and aUnsubscribe must be both set or unset.

Definition at line 180 of file include/openthread/dnssd_server.h

otDnssdQueryHandleDiscoveredServiceInstance

void otDnssdQueryHandleDiscoveredServiceInstance (otInstance *aInstance, const char *aServiceFullName,
otDnssdServiceInstanceInfo *aInstanceInfo)

Notifies a discovered service instance.

Parameters

DNS�SD Server

138/962

[in] aInstance The OpenThread instance structure.

[in] aServiceFullName The null-terminated full service name.

[in] aInstanceInfo A pointer to the discovered service instance information.

The external query resolver (e.g. Discovery Proxy) should call this function to notify OpenThread core of the subscribed

services or service instances.

Note

aInstance Info must not contain unspecified or link-local or loop-back or multicast IP addresses.

Definition at line 198 of file include/openthread/dnssd_server.h

otDnssdQueryHandleDiscoveredHost

void otDnssdQueryHandleDiscoveredHost (otInstance *aInstance, const char *aHostFullName, otDnssdHostInfo
*aHostInfo)

Notifies a discovered host.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aHostFullName The null-terminated full host name.

[in] aHostInfo A pointer to the discovered service instance information.

The external query resolver (e.g. Discovery Proxy) should call this function to notify OpenThread core of the subscribed

hosts.

Note

aHostInfo must not contain unspecified or link-local or loop-back or multicast IP addresses.

Definition at line 214 of file include/openthread/dnssd_server.h

otDnssdGetNextQuery

const otDnssdQuery * otDnssdGetNextQuery (otInstance *aInstance, const otDnssdQuery *aQuery)

Acquires the next query in the DNS-SD server.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aQuery The query pointer. Pass NULL to get the first query.

Returns

A pointer to the query or NULL if no more queries.

Definition at line 225 of file include/openthread/dnssd_server.h

otDnssdGetQueryTypeAndName

otDnssdQueryType otDnssdGetQueryTypeAndName (const otDnssdQuery *aQuery, char(*aNameOutput)
�OT_DNS_MAX_NAME_SIZE��

DNS�SD Server

139/962

Acquires the DNS-SD query type and name for a specific query.

Parameters

[in] aQuery The query pointer acquired from otDnssdGetNextQuery .

[out] aNameOutput The name output buffer, which should be OT_DNS_MAX_NAME_SIZE bytes long.

Returns

The DNS-SD query type.

Definition at line 236 of file include/openthread/dnssd_server.h

otDnssdGetCounters

const otDnssdCounters * otDnssdGetCounters (otInstance *aInstance)

Returns the counters of the DNS-SD server.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

A pointer to the counters of the DNS-SD server.

Definition at line 246 of file include/openthread/dnssd_server.h

otDnssdUpstreamQuerySetEnabled

void otDnssdUpstreamQuerySetEnabled (otInstance *aInstance, bool aEnabled)

Enable or disable forwarding DNS queries to platform DNS upstream API.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled A boolean to enable/disable forwarding DNS queries to upstream.

Available when OPENTHREAD_CONFIG_DNS_UPSTREAM_QUERY_ENABLE is enabled.

See Also

otPlatDnsStartUpstreamQuery

otPlatDnsCancelUpstreamQuery

otPlatDnsUpstreamQueryDone

Definition at line 261 of file include/openthread/dnssd_server.h

otDnssdUpstreamQueryIsEnabled

bool otDnssdUpstreamQueryIsEnabled (otInstance *aInstance)

Returns whether the DNSSD server will forward DNS queries to the platform DNS upstream API.

Parameters

DNS�SD Server

140/962

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_DNS_UPSTREAM_QUERY_ENABLE is enabled.

See Also

otDnssdUpstreamQuerySetEnabled

Definition at line 275 of file include/openthread/dnssd_server.h

otDnssdServiceInstanceInfo

141/962

otDnssdServiceInstanceInfo

Represents information of a discovered service instance for a DNS-SD query.

Public Attributes

const char * mFullName
Full instance name (e .g. "OpenThread._ipps._tcp.default.service .arpa.").

const char * mHostName
Host name (e .g. "ot-host.default.service .arpa.").

uint8_t mAddressNum
Number of host IPv6 addresses.

const
otIp6Address *

mAddresses
Host IPv6 addresses.

uint16_t mPort
Service port.

uint16_t mPriority
Service priority.

uint16_t mWeight
Service weight.

uint16_t mTxtLength
Service TXT RDATA length.

const uint8_t * mTxtData
Service TXT RDATA.

uint32_t mTtl
Service TTL (in seconds).

Public Attribute Documentation

mFullName

const char* otDnssdServiceInstanceInfo::mFullName

Full instance name (e.g. "OpenThread._ ipps._tcp.default.service.arpa.").

Definition at line 115 of file include/openthread/dnssd_server.h

mHostName

const char* otDnssdServiceInstanceInfo::mHostName

Host name (e.g. "ot-host.default.service.arpa.").

Definition at line 116 of file include/openthread/dnssd_server.h

otDnssdServiceInstanceInfo

142/962

mAddressNum

uint8_t otDnssdServiceInstanceInfo::mAddressNum

Number of host IPv6 addresses.

Definition at line 117 of file include/openthread/dnssd_server.h

mAddresses

const otIp6Address* otDnssdServiceInstanceInfo::mAddresses

Host IPv6 addresses.

Definition at line 118 of file include/openthread/dnssd_server.h

mPort

uint16_t otDnssdServiceInstanceInfo::mPort

Service port.

Definition at line 119 of file include/openthread/dnssd_server.h

mPriority

uint16_t otDnssdServiceInstanceInfo::mPriority

Service priority.

Definition at line 120 of file include/openthread/dnssd_server.h

mWeight

uint16_t otDnssdServiceInstanceInfo::mWeight

Service weight.

Definition at line 121 of file include/openthread/dnssd_server.h

mTxtLength

uint16_t otDnssdServiceInstanceInfo::mTxtLength

Service TXT RDATA length.

Definition at line 122 of file include/openthread/dnssd_server.h

mTxtData

otDnssdServiceInstanceInfo

143/962

const uint8_t* otDnssdServiceInstanceInfo::mTxtData

Service TXT RDATA.

Definition at line 123 of file include/openthread/dnssd_server.h

mTtl

uint32_t otDnssdServiceInstanceInfo::mTtl

Service TTL (in seconds).

Definition at line 124 of file include/openthread/dnssd_server.h

otDnssdHostInfo

144/962

otDnssdHostInfo

Represents information of a discovered host for a DNS-SD query.

Public Attributes

uint8_t mAddressNum
Number of host IPv6 addresses.

const
otIp6Address *

mAddresses
Host IPv6 addresses.

uint32_t mTtl
Service TTL (in seconds).

Public Attribute Documentation

mAddressNum

uint8_t otDnssdHostInfo::mAddressNum

Number of host IPv6 addresses.

Definition at line 133 of file include/openthread/dnssd_server.h

mAddresses

const otIp6Address* otDnssdHostInfo::mAddresses

Host IPv6 addresses.

Definition at line 134 of file include/openthread/dnssd_server.h

mTtl

uint32_t otDnssdHostInfo::mTtl

Service TTL (in seconds).

Definition at line 135 of file include/openthread/dnssd_server.h

otDnssdCounters

145/962

otDnssdCounters

Contains the counters of DNS-SD server.

Public Attributes

uint32_t mSuccessResponse
The number of successful responses.

uint32_t mServerFailureResponse
The number of server failure responses.

uint32_t mFormatErrorResponse
The number of format error responses.

uint32_t mNameErrorResponse
The number of name error responses.

uint32_t mNotImplementedResponse
The number of 'not implemented' responses.

uint32_t mOtherResponse
The number of other responses.

uint32_t mResolvedBySrp
The number of queries completely reso lved by the local SRP server.

Public Attribute Documentation

mSuccessResponse

uint32_t otDnssdCounters::mSuccessResponse

The number of successful responses.

Definition at line 156 of file include/openthread/dnssd_server.h

mServerFailureResponse

uint32_t otDnssdCounters::mServerFailureResponse

The number of server failure responses.

Definition at line 157 of file include/openthread/dnssd_server.h

mFormatErrorResponse

uint32_t otDnssdCounters::mFormatErrorResponse

The number of format error responses.

otDnssdCounters

146/962

Definition at line 158 of file include/openthread/dnssd_server.h

mNameErrorResponse

uint32_t otDnssdCounters::mNameErrorResponse

The number of name error responses.

Definition at line 159 of file include/openthread/dnssd_server.h

mNotImplementedResponse

uint32_t otDnssdCounters::mNotImplementedResponse

The number of 'not implemented' responses.

Definition at line 160 of file include/openthread/dnssd_server.h

mOtherResponse

uint32_t otDnssdCounters::mOtherResponse

The number of other responses.

Definition at line 161 of file include/openthread/dnssd_server.h

mResolvedBySrp

uint32_t otDnssdCounters::mResolvedBySrp

The number of queries completely resolved by the local SRP server.

Definition at line 163 of file include/openthread/dnssd_server.h

ICMPv6

147/962

ICMPv6

ICMPv6
This module includes functions that control ICMPv6 communication.

Modules

otIcmp6Header

otIcmp6Handler

Enumerations

enum otIcmp6Type {

OT_ICMP6_TYPE_DST_UNREACH = 1
OT_ICMP6_TYPE_PACKET_TO_BIG = 2
OT_ICMP6_TYPE_TIME_EXCEEDED = 3
OT_ICMP6_TYPE_PARAMETER_PROBLEM = 4
OT_ICMP6_TYPE_ECHO_REQUEST = 128
OT_ICMP6_TYPE_ECHO_REPLY = 129
OT_ICMP6_TYPE_ROUTER_SOLICIT = 133
OT_ICMP6_TYPE_ROUTER_ADVERT = 134
OT_ICMP6_TYPE_NEIGHBOR_SOLICIT = 135
OT_ICMP6_TYPE_NEIGHBOR_ADVERT = 136

}
ICMPv6 Message Types.

enum otIcmp6Code {

OT_ICMP6_CODE_DST_UNREACH_NO_ROUTE = 0
OT_ICMP6_CODE_FRAGM_REAS_TIME_EX = 1

}
ICMPv6 Message Codes.

enum otIcmp6EchoMode {

OT_ICMP6_ECHO_HANDLER_DISABLED = 0
OT_ICMP6_ECHO_HANDLER_UNICAST_ONLY = 1
OT_ICMP6_ECHO_HANDLER_MULTICAST_ONLY = 2
OT_ICMP6_ECHO_HANDLER_ALL = 3

}
ICMPv6 Echo Reply Modes.

Typedefs

typedef enum
otIcmp6Type

otIcmp6Type
ICMPv6 Message Types.

typedef enum
otIcmp6Code

otIcmp6Code
ICMPv6 Message Codes.

typedef struct
otIcmp6Header

otIcmp6Header
Represents an ICMPv6 header.

ICMPv6

148/962

typedef void(* otIcmp6ReceiveCallback)(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo,
const otIcmp6Header *aIcmpHeader)
This callback allows OpenThread to inform the application of a received ICMPv6 message .

typedef struct
otIcmp6Handler

otIcmp6Handler
Implements ICMPv6 message handler.

typedef enum
otIcmp6EchoMod

e

otIcmp6EchoMode
ICMPv6 Echo Reply Modes.

Variables

OT_TOOL_PACKE
D_BEGIN struct
otIcmp6Header

OT_TOOL_PACKED_END

Functions

otIcmp6EchoMod
e

otIcmp6GetEchoMode(otInstance *aInstance)
Indicates whether or not ICMPv6 Echo processing is enabled.

void otIcmp6SetEchoMode(otInstance *aInstance, otIcmp6EchoMode aMode)
Sets whether or not ICMPv6 Echo processing is enabled.

otError otIcmp6RegisterHandler(otInstance *aInstance, otIcmp6Handler *aHandler)
Registers a handler to provide received ICMPv6 messages.

otError otIcmp6SendEchoRequest(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, uint16_t aIdentifier)
Sends an ICMPv6 Echo Request via the Thread interface .

Macros

#define OT_ICMP6_HEADER_DATA_SIZE 4
Size of ICMPv6 Header.

#define OT_ICMP6_ROUTER_ADVERT_MIN_SIZE 16
Size of a Router Advertisement message without any options.

Enumeration Documentation

otIcmp6Type

otIcmp6Type

ICMPv6 Message Types.

Enumerator

OT_ICMP6_TYPE_DST_UNREACH Destination Unreachable.

OT_ICMP6_TYPE_PACKET_TO_BIG Packet To Big.

OT_ICMP6_TYPE_TIME_EXCEEDED Time Exceeded.

OT_ICMP6_TYPE_PARAMETER_PROBLEM Parameter Problem.

OT_ICMP6_TYPE_ECHO_REQUEST Echo Request.

OT_ICMP6_TYPE_ECHO_REPLY Echo Reply.

ICMPv6

149/962

OT_ICMP6_TYPE_ROUTER_SOLICIT Router Solicitation.

OT_ICMP6_TYPE_ROUTER_ADVERT Router Advertisement.

OT_ICMP6_TYPE_NEIGHBOR_SOLICIT Neighbor Solicitation.

OT_ICMP6_TYPE_NEIGHBOR_ADVERT Neighbor Advertisement.

Definition at line 59 of file include/openthread/icmp6.h

otIcmp6Code

otIcmp6Code

ICMPv6 Message Codes.

Enumerator

OT_ICMP6_CODE_DST_UNREACH_NO_ROUTE Destination Unreachable No Route.

OT_ICMP6_CODE_FRAGM_REAS_TIME_EX Fragment Reassembly Time Exceeded.

Definition at line 77 of file include/openthread/icmp6.h

otIcmp6EchoMode

otIcmp6EchoMode

ICMPv6 Echo Reply Modes.

Enumerator

OT_ICMP6_ECHO_HANDLER_DISABLED ICMPv6 Echo processing disabled.

OT_ICMP6_ECHO_HANDLER_UNICAST_ONLY ICMPv6 Echo processing enabled only for unicast requests only.

OT_ICMP6_ECHO_HANDLER_MULTICAST_ONLY ICMPv6 Echo processing enabled only for multicast requests only.

OT_ICMP6_ECHO_HANDLER_ALL ICMPv6 Echo processing enabled for unicast and multicast requests.

Definition at line 141 of file include/openthread/icmp6.h

Typedef Documentation

otIcmp6Type

typedef enum otIcmp6Type otIcmp6Type

ICMPv6 Message Types.

Definition at line 71 of file include/openthread/icmp6.h

otIcmp6Code

typedef enum otIcmp6Code otIcmp6Code

ICMPv6 Message Codes.

Definition at line 81 of file include/openthread/icmp6.h

ICMPv6

150/962

otIcmp6Header

typedef struct otIcmp6Header otIcmp6Header

Represents an ICMPv6 header.

Definition at line 110 of file include/openthread/icmp6.h

otIcmp6ReceiveCallback

typedef void(* otIcmp6ReceiveCallback) (void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo,
const otIcmp6Header *aIcmpHeader))(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo,
const otIcmp6Header *aIcmpHeader)

This callback allows OpenThread to inform the application of a received ICMPv6 message.

Parameters

[in] aContext A pointer to arbitrary context information.

[in] aMessage A pointer to the received message.

[in] aMessageInfo A pointer to message information associated with aMessage .

[in] aIcmpHeader A pointer to the received ICMPv6 header.

Definition at line 121 of file include/openthread/icmp6.h

otIcmp6Handler

typedef struct otIcmp6Handler otIcmp6Handler

Implements ICMPv6 message handler.

Definition at line 135 of file include/openthread/icmp6.h

otIcmp6EchoMode

typedef enum otIcmp6EchoMode otIcmp6EchoMode

ICMPv6 Echo Reply Modes.

Definition at line 147 of file include/openthread/icmp6.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otIcmp6Header OT_TOOL_PACKED_END

Definition at line 104 of file include/openthread/icmp6.h

ICMPv6

151/962

Function Documentation

otIcmp6GetEchoMode

otIcmp6EchoMode otIcmp6GetEchoMode (otInstance *aInstance)

Indicates whether or not ICMPv6 Echo processing is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 160 of file include/openthread/icmp6.h

otIcmp6SetEchoMode

void otIcmp6SetEchoMode (otInstance *aInstance, otIcmp6EchoMode aMode)

Sets whether or not ICMPv6 Echo processing is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMode The ICMPv6 Echo processing mode.

Definition at line 169 of file include/openthread/icmp6.h

otIcmp6RegisterHandler

otError otIcmp6RegisterHandler (otInstance *aInstance, otIcmp6Handler *aHandler)

Registers a handler to provide received ICMPv6 messages.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHandler A pointer to a handler containing callback that is called when an ICMPv6 message is received.

Note

A handler structure aHandler has to be stored in persistent (static) memory. OpenThread does not make a copy of handler

structure.

Definition at line 182 of file include/openthread/icmp6.h

otIcmp6SendEchoRequest

otError otIcmp6SendEchoRequest (otInstance *aInstance, otMessage *aMessage, const otMessageInfo *aMessageInfo,
uint16_t aIdentifier)

Sends an ICMPv6 Echo Request via the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

ICMPv6

152/962

[in] aMessage A pointer to the message buffer containing the ICMPv6 payload.

[in] aMessageInfo A reference to message information associated with aMessage .

[in] aIdentifier An identifier to aid in matching Echo Replies to this Echo Request. May be zero.

Definition at line 194 of file include/openthread/icmp6.h

Macro Definition Documentation

OT_ICMP6_HEADER_DATA_SIZE

#define OT_ICMP6_HEADER_DATA_SIZE

Value:

4

S ize of ICMPv6 Header.

Definition at line 83 of file include/openthread/icmp6.h

OT_ICMP6_ROUTER_ADVERT_MIN_SIZE

#define OT_ICMP6_ROUTER_ADVERT_MIN_SIZE

Value:

16

S ize of a Router Advertisement message without any options.

Definition at line 84 of file include/openthread/icmp6.h

otIcmp6Header

153/962

otIcmp6Header

Represents an ICMPv6 header.

Modules

otIcmp6Header::OT_TOOL_PACKED_FIELD

Public Attributes

uint8_t mType
Type .

uint8_t mCode
Code .

uint16_t mChecksum
Checksum.

union
otIcmp6Header::O
T_TOOL_PACKED_

FIELD

mData
Message-specific data.

Public Attribute Documentation

mType

uint8_t otIcmp6Header::mType

Type.

Definition at line 95 of file include/openthread/icmp6.h

mCode

uint8_t otIcmp6Header::mCode

Code.

Definition at line 96 of file include/openthread/icmp6.h

mChecksum

uint16_t otIcmp6Header::mChecksum

Checksum.

Definition at line 97 of file include/openthread/icmp6.h

otIcmp6Header

154/962

union otIcmp6Header::OT_TOOL_PACKED_FIELD otIcmp6Header::mData

Message-specific data.

Definition at line 103 of file include/openthread/icmp6.h

otIcmp6Header

155/962

otIcmp6Header

Public Attributes

uint8_t m8

uint16_t m16

uint32_t m32

Public Attribute Documentation

m8

uint8_t otIcmp6Header::OT_TOOL_PACKED_FIELD::m8�OT_ICMP6_HEADER_DATA_SIZE/sizeof(uint8_t)]

Definition at line 100 of file include/openthread/icmp6.h

m16

uint16_t otIcmp6Header::OT_TOOL_PACKED_FIELD::m16�OT_ICMP6_HEADER_DATA_SIZE/sizeof(uint16_t)]

Definition at line 101 of file include/openthread/icmp6.h

m32

uint32_t otIcmp6Header::OT_TOOL_PACKED_FIELD::m32�OT_ICMP6_HEADER_DATA_SIZE/sizeof(uint32_t)]

Definition at line 102 of file include/openthread/icmp6.h

otIcmp6Handler

156/962

otIcmp6Handler

Implements ICMPv6 message handler.

Public Attributes

otIcmp6ReceiveC
allback

mReceiveCallback
The ICMPv6 received callback.

void * mContext
A po inter to arbitrary context information.

struct
otIcmp6Handler *

mNext
A po inter to the next handler in the list.

Public Attribute Documentation

mReceiveCallback

otIcmp6ReceiveCallback otIcmp6Handler::mReceiveCallback

The ICMPv6 received callback.

Definition at line 132 of file include/openthread/icmp6.h

mContext

void* otIcmp6Handler::mContext

A pointer to arbitrary context information.

Definition at line 133 of file include/openthread/icmp6.h

mNext

struct otIcmp6Handler* otIcmp6Handler::mNext

A pointer to the next handler in the list.

Definition at line 134 of file include/openthread/icmp6.h

IPv6

157/962

IPv6

IPv6
This module includes functions that control IPv6 communication.

Modules

otIp6InterfaceIdentifier

otIp6NetworkPrefix

otIp6AddressComponents

otIp6Address

otIp6Prefix

otNetifAddress

otNetifMulticastAddress

otSockAddr

otMessageInfo

otIp6AddressInfo

otPacketsAndBytes

otBorderRoutingCounters

Enumerations

enum �2 {

OT_ADDRESS_ORIGIN_THREAD = 0
OT_ADDRESS_ORIGIN_SLAAC = 1
OT_ADDRESS_ORIGIN_DHCPV6 = 2
OT_ADDRESS_ORIGIN_MANUAL = 3

}
IPv6 Address origins.

enum �3 {

OT_ECN_NOT_CAPABLE = 0�0
OT_ECN_CAPABLE_0 = 0�2
OT_ECN_CAPABLE_1 = 0�1
OT_ECN_MARKED = 0�3

}
ECN statuses, represented as in the IP header.

enum �4 {

OT_IP6_PROTO_HOP_OPTS = 0
OT_IP6_PROTO_TCP = 6
OT_IP6_PROTO_UDP = 17
OT_IP6_PROTO_IP6 = 41
OT_IP6_PROTO_ROUTING = 43
OT_IP6_PROTO_FRAGMENT = 44

IPv6

158/962

OT_IP6_PROTO_ICMP6 =
58
OT_IP6_PROTO_NONE =
59
OT_IP6_PROTO_DST_OPTS
= 60

}
Internet Protoco l Numbers.

Typedefs

typedef struct
otIp6InterfaceIde

ntifier

otIp6InterfaceIdentifier
Represents the Interface Identifier of an IPv6 address.

typedef struct
otIp6NetworkPref

ix

otIp6NetworkPrefix
Represents the Network Prefix of an IPv6 address (most significant 64 bits of the address).

typedef struct
otIp6AddressCom

ponents

otIp6AddressComponents
Represents the components of an IPv6 address.

typedef struct
otIp6Address

otIp6Address
Represents an IPv6 address.

typedef struct
otIp6Prefix

otIp6Prefix
Represents an IPv6 prefix.

typedef struct
otNetifAddress

otNetifAddress
Represents an IPv6 network interface unicast address.

typedef struct
otNetifMulticastA

ddress

otNetifMulticastAddress
Represents an IPv6 network interface multicast address.

typedef struct
otSockAddr

otSockAddr
Represents an IPv6 socket address.

typedef struct
otMessageInfo

otMessageInfo
Represents the local and peer IPv6 socket addresses.

typedef void(* otIp6ReceiveCallback)(otMessage *aMessage, void *aContext)
Po inter is called when an IPv6 datagram is received.

typedef struct
otIp6AddressInfo

otIp6AddressInfo
Represents IPv6 address information.

typedef void(* otIp6AddressCallback)(const otIp6AddressInfo *aAddressInfo, bool aIsAdded, void *aContext)
Po inter is called when an internal IPv6 address is added or removed.

typedef bool(* otIp6SlaacPrefixFilter)(otInstance *aInstance, const otIp6Prefix *aPrefix)
Po inter allows user to filter prefixes and not allow an SLAAC address based on a prefix to be added.

typedef void(* otIp6RegisterMulticastListenersCallback)(void *aContext, otError aError, uint8_t aMlrStatus, const
otIp6Address *aFailedAddresses, uint8_t aFailedAddressNum)
Po inter is called with results of otIp6RegisterMulticastListeners .

typedef struct
otPacketsAndByt

es

otPacketsAndBytes
Represents the counters for packets and bytes.

IPv6

159/962

typedef struct
otBorderRoutingC

ounters

otBorderRoutingCounters
Represents the counters of packets forwarded via Border Routing.

Variables

OT_TOOL_PACKE
D_BEGIN struct

otIp6InterfaceIde
ntifier

OT_TOOL_PACKED_END

Functions

otError otIp6SetEnabled(otInstance *aInstance, bool aEnabled)
Brings the IPv6 interface up or down.

bool otIp6IsEnabled(otInstance *aInstance)
Indicates whether or not the IPv6 interface is up.

otError otIp6AddUnicastAddress(otInstance *aInstance, const otNetifAddress *aAddress)
Adds a Network Interface Address to the Thread interface .

otError otIp6RemoveUnicastAddress(otInstance *aInstance, const otIp6Address *aAddress)
Removes a Network Interface Address from the Thread interface .

const
otNetifAddress *

otIp6GetUnicastAddresses(otInstance *aInstance)
Gets the list of IPv6 addresses assigned to the Thread interface .

bool otIp6HasUnicastAddress(otInstance *aInstance, const otIp6Address *aAddress)
Indicates whether or not a unicast IPv6 address is assigned to the Thread interface .

otError otIp6SubscribeMulticastAddress(otInstance *aInstance, const otIp6Address *aAddress)
Subscribes the Thread interface to a Network Interface Multicast Address.

otError otIp6UnsubscribeMulticastAddress(otInstance *aInstance, const otIp6Address *aAddress)
Unsubscribes the Thread interface to a Network Interface Multicast Address.

const
otNetifMulticastA

ddress *

otIp6GetMulticastAddresses(otInstance *aInstance)
Gets the list of IPv6 multicast addresses subscribed to the Thread interface .

bool otIp6IsMulticastPromiscuousEnabled(otInstance *aInstance)
Checks if multicast promiscuous mode is enabled on the Thread interface .

void otIp6SetMulticastPromiscuousEnabled(otInstance *aInstance, bool aEnabled)
Enables or disables multicast promiscuous mode on the Thread interface .

otMessage * otIp6NewMessage(otInstance *aInstance, const otMessageSettings *aSettings)
Allocate a new message buffer for sending an IPv6 message .

otMessage * otIp6NewMessageFromBuffer(otInstance *aInstance, const uint8_t *aData, uint16_t aDataLength, const
otMessageSettings *aSettings)
Allocate a new message buffer and write the IPv6 datagram to the message buffer for sending an IPv6 message .

void otIp6SetReceiveCallback(otInstance *aInstance, otIp6ReceiveCallback aCallback, void *aCallbackContext)
Registers a callback to provide received IPv6 datagrams.

void otIp6SetAddressCallback(otInstance *aInstance, otIp6AddressCallback aCallback, void *aCallbackContext)
Registers a callback to notify internal IPv6 address changes.

IPv6

160/962

bool otIp6IsReceiveFilterEnabled(otInstance *aInstance)
Indicates whether or not Thread contro l traffic is filtered out when delivering IPv6 datagrams via the callback specified

in otIp6SetReceiveCallback().

void otIp6SetReceiveFilterEnabled(otInstance *aInstance, bool aEnabled)
Sets whether or not Thread contro l traffic is filtered out when delivering IPv6 datagrams via the callback specified in

otIp6SetReceiveCallback().

otError otIp6Send(otInstance *aInstance, otMessage *aMessage)
Sends an IPv6 datagram via the Thread interface .

otError otIp6AddUnsecurePort(otInstance *aInstance, uint16_t aPort)
Adds a port to the allowed unsecured port list.

otError otIp6RemoveUnsecurePort(otInstance *aInstance, uint16_t aPort)
Removes a port from the allowed unsecure port list.

void otIp6RemoveAllUnsecurePorts(otInstance *aInstance)
Removes all ports from the allowed unsecure port list.

const uint16_t * otIp6GetUnsecurePorts(otInstance *aInstance, uint8_t *aNumEntries)
Returns a po inter to the unsecure port list.

bool otIp6IsAddressEqual(const otIp6Address *aFirst, const otIp6Address *aSecond)
Test if two IPv6 addresses are the same .

bool otIp6ArePrefixesEqual(const otIp6Prefix *aFirst, const otIp6Prefix *aSecond)
Test if two IPv6 prefixes are the same .

otError otIp6AddressFromString(const char *aString, otIp6Address *aAddress)
Converts a human-readable IPv6 address string into a binary representation.

otError otIp6PrefixFromString(const char *aString, otIp6Prefix *aPrefix)
Converts a human-readable IPv6 prefix string into a binary representation.

void otIp6AddressToString(const otIp6Address *aAddress, char *aBuffer, uint16_t aSize)
Converts a given IPv6 address to a human-readable string.

void otIp6SockAddrToString(const otSockAddr *aSockAddr, char *aBuffer, uint16_t aSize)
Converts a given IPv6 socket address to a human-readable string.

void otIp6PrefixToString(const otIp6Prefix *aPrefix, char *aBuffer, uint16_t aSize)
Converts a given IPv6 prefix to a human-readable string.

uint8_t otIp6PrefixMatch(const otIp6Address *aFirst, const otIp6Address *aSecond)
Returns the prefix match length (bits) for two IPv6 addresses.

void otIp6GetPrefix(const otIp6Address *aAddress, uint8_t aLength, otIp6Prefix *aPrefix)
Gets a prefix with aLength from aAddress .

bool otIp6IsAddressUnspecified(const otIp6Address *aAddress)
Indicates whether or not a given IPv6 address is the Unspecified Address.

otError otIp6SelectSourceAddress(otInstance *aInstance, otMessageInfo *aMessageInfo)
Perform OpenThread source address selection.

bool otIp6IsSlaacEnabled(otInstance *aInstance)
Indicates whether the SLAAC module is enabled or not.

void otIp6SetSlaacEnabled(otInstance *aInstance, bool aEnabled)
Enables/disables the SLAAC module .

IPv6

161/962

void otIp6SetSlaacPrefixFilter(otInstance *aInstance, otIp6SlaacPrefixFilter aFilter)
Sets the SLAAC module filter handler.

otError otIp6RegisterMulticastListeners(otInstance *aInstance, const otIp6Address *aAddresses, uint8_t
aAddressNum, const uint32_t *aTimeout, otIp6RegisterMulticastListenersCallback aCallback, void *aContext)
Registers Multicast Listeners to Primary Backbone Router.

otError otIp6SetMeshLocalIid(otInstance *aInstance, const otIp6InterfaceIdentifier *aIid)
Sets the Mesh Local IID (for test purpose).

const char * otIp6ProtoToString(uint8_t aIpProto)
Converts a given IP protoco l number to a human-readable string.

const
otBorderRoutingC

ounters *

otIp6GetBorderRoutingCounters(otInstance *aInstance)
Gets the Border Routing counters.

void otIp6ResetBorderRoutingCounters(otInstance *aInstance)
Resets the Border Routing counters.

Macros

#define OT_IP6_PREFIX_SIZE 8
Size of an IPv6 prefix (bytes)

#define OT_IP6_PREFIX_BITSIZE �OT_IP6_PREFIX_SIZE * 8�
Size of an IPv6 prefix (bits)

#define OT_IP6_IID_SIZE 8
Size of an IPv6 Interface Identifier (bytes)

#define OT_IP6_ADDRESS_SIZE 16
Size of an IPv6 address (bytes)

#define OT_IP6_HEADER_SIZE 40
Size of an IPv6 header (bytes)

#define OT_IP6_HEADER_PROTO_OFFSET 6
Offset of the proto field in the IPv6 header (bytes)

#define OT_IP6_ADDRESS_STRING_SIZE 40
Recommended size for string representation of an IPv6 address.

#define OT_IP6_SOCK_ADDR_STRING_SIZE 48
Recommended size for string representation of an IPv6 socket address.

#define OT_IP6_PREFIX_STRING_SIZE 45
Recommended size for string representation of an IPv6 prefix.

#define OT_IP6_MAX_MLR_ADDRESSES 15
Max number of IPv6 addresses supported by Multicast Listener Registration.

Enumeration Documentation

�2

�2

IPv6 Address origins.

Enumerator

IPv6

162/962

OT_ADDRESS_ORIGIN_THREAD Thread assigned address (ALOC, RLOC, MLEID, etc)

OT_ADDRESS_ORIGIN_SLAAC SLAAC assigned address.

OT_ADDRESS_ORIGIN_DHCPV6 DHCPv6 assigned address.

OT_ADDRESS_ORIGIN_MANUAL Manually assigned address.

Definition at line 169 of file include/openthread/ip6.h

�3

�3

ECN statuses, represented as in the IP header.

Enumerator

OT_ECN_NOT_CAPABLE Non-ECT.

OT_ECN_CAPABLE_0 ECT(0)

OT_ECN_CAPABLE_1 ECT(1)

OT_ECN_MARKED Congestion encountered (CE)

Definition at line 219 of file include/openthread/ip6.h

�4

�4

Internet Protocol Numbers.

Enumerator

OT_IP6_PROTO_HOP_OPTS IPv6 Hop-by-Hop Option.

OT_IP6_PROTO_TCP Transmission Control Protocol.

OT_IP6_PROTO_UDP User Datagram.

OT_IP6_PROTO_IP6 IPv6 encapsulation.

OT_IP6_PROTO_ROUTING Routing Header for IPv6.

OT_IP6_PROTO_FRAGMENT Fragment Header for IPv6.

OT_IP6_PROTO_ICMP6 ICMP for IPv6.

OT_IP6_PROTO_NONE No Next Header for IPv6.

OT_IP6_PROTO_DST_OPTS Destination Options for IPv6.

Definition at line 251 of file include/openthread/ip6.h

Typedef Documentation

otIp6InterfaceIdentifier

typedef struct otIp6InterfaceIdentifier otIp6InterfaceIdentifier

Represents the Interface Identifier of an IPv6 address.

Definition at line 83 of file include/openthread/ip6.h

IPv6

163/962

otIp6NetworkPrefix

typedef struct otIp6NetworkPrefix otIp6NetworkPrefix

Represents the Network Prefix of an IPv6 address (most significant 64 bits of the address).

Definition at line 101 of file include/openthread/ip6.h

otIp6AddressComponents

typedef struct otIp6AddressComponents otIp6AddressComponents

Represents the components of an IPv6 address.

Definition at line 120 of file include/openthread/ip6.h

otIp6Address

typedef struct otIp6Address otIp6Address

Represents an IPv6 address.

Definition at line 144 of file include/openthread/ip6.h

otIp6Prefix

typedef struct otIp6Prefix otIp6Prefix

Represents an IPv6 prefix.

Definition at line 163 of file include/openthread/ip6.h

otNetifAddress

typedef struct otNetifAddress otNetifAddress

Represents an IPv6 network interface unicast address.

Definition at line 193 of file include/openthread/ip6.h

otNetifMulticastAddress

typedef struct otNetifMulticastAddress otNetifMulticastAddress

Represents an IPv6 network interface multicast address.

Definition at line 203 of file include/openthread/ip6.h

otSockAddr

IPv6

164/962

typedef struct otSockAddr otSockAddr

Represents an IPv6 socket address.

Definition at line 213 of file include/openthread/ip6.h

otMessageInfo

typedef struct otMessageInfo otMessageInfo

Represents the local and peer IPv6 socket addresses.

Definition at line 245 of file include/openthread/ip6.h

otIp6ReceiveCallback

typedef void(* otIp6ReceiveCallback) (otMessage *aMessage, void *aContext))(otMessage *aMessage, void *aContext)

Pointer is called when an IPv6 datagram is received.

Parameters

[in] aMessage A pointer to the message buffer containing the received IPv6 datagram. This function transfers the

ownership of the aMessage to the receiver of the callback. The message should be freed by the

receiver of the callback after it is processed (see otMessageFree()).

[in] aContext A pointer to application-specific context.

Definition at line 451 of file include/openthread/ip6.h

otIp6AddressInfo

typedef struct otIp6AddressInfo otIp6AddressInfo

Represents IPv6 address information.

Definition at line 480 of file include/openthread/ip6.h

otIp6AddressCallback

typedef void(* otIp6AddressCallback) (const otIp6AddressInfo *aAddressInfo, bool aIsAdded, void *aContext))(const
otIp6AddressInfo *aAddressInfo, bool aIsAdded, void *aContext)

Pointer is called when an internal IPv6 address is added or removed.

Parameters

[in] aAddressInfo A pointer to the IPv6 address information.

[in] aIsAdded TRUE if the aAddress was added, FALSE if aAddress was removed.

[in] aContext A pointer to application-specific context.

IPv6

165/962

Definition at line 490 of file include/openthread/ip6.h

otIp6SlaacPrefixFilter

typedef bool(* otIp6SlaacPrefixFilter) (otInstance *aInstance, const otIp6Prefix *aPrefix))(otInstance *aInstance, const
otIp6Prefix *aPrefix)

Pointer allows user to filter prefixes and not allow an SLAAC address based on a prefix to be added.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix A pointer to prefix for which SLAAC address is about to be added.

otIp6SetSlaacPrefixFilter() can be used to set the filter handler. The filter handler is invoked by SLAAC module when it is

about to add a SLAAC address based on a prefix. Its boolean return value determines whether the address is filtered (not

added) or not.

Definition at line 790 of file include/openthread/ip6.h

otIp6RegisterMulticastListenersCallback

typedef void(* otIp6RegisterMulticastListenersCallback) (void *aContext, otError aError, uint8_t aMlrStatus, const
otIp6Address *aFailedAddresses, uint8_t aFailedAddressNum))(void *aContext, otError aError, uint8_t aMlrStatus, const
otIp6Address *aFailedAddresses, uint8_t aFailedAddressNum)

Pointer is called with results of otIp6RegisterMulticastListeners .

Parameters

[in] aContext A pointer to the user context.

[in] aError OT_ERROR_NONE when successfully sent MLR.req and received MLR.rsp,

OT_ERROR_RESPONSE_TIMEOUT when failed to receive MLR.rsp, OT_ERROR_PARSE when

failed to parse MLR.rsp.

[in] aMlrStatus The Multicast Listener Registration status when aError is OT_ERROR_NONE.

[in] aFailedAddresses A pointer to the failed IPv6 addresses when aError is OT_ERROR_NONE.

[in] aFailedAddressNum The number of failed IPv6 addresses when aError is OT_ERROR_NONE.

See Also

otIp6RegisterMulticastListeners

Definition at line 824 of file include/openthread/ip6.h

otPacketsAndBytes

typedef struct otPacketsAndBytes otPacketsAndBytes

Represents the counters for packets and bytes.

Definition at line 897 of file include/openthread/ip6.h

otBorderRoutingCounters

IPv6

166/962

typedef struct otBorderRoutingCounters otBorderRoutingCounters

Represents the counters of packets forwarded via Border Routing.

Definition at line 915 of file include/openthread/ip6.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otIp6Prefix OT_TOOL_PACKED_END

Definition at line 77 of file include/openthread/ip6.h

Function Documentation

otIp6SetEnabled

otError otIp6SetEnabled (otInstance *aInstance, bool aEnabled)

Brings the IPv6 interface up or down.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE to enable IPv6, FALSE otherwise.

Call this to enable or disable IPv6 communication.

Definition at line 277 of file include/openthread/ip6.h

otIp6IsEnabled

bool otIp6IsEnabled (otInstance *aInstance)

Indicates whether or not the IPv6 interface is up.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 288 of file include/openthread/ip6.h

otIp6AddUnicastAddress

otError otIp6AddUnicastAddress (otInstance *aInstance, const otNetifAddress *aAddress)

Adds a Network Interface Address to the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

IPv6

167/962

[in] aAddress A pointer to a Network Interface Address.

The passed-in instance aAddress is copied by the Thread interface. The Thread interface only supports a fixed number of

externally added unicast addresses. See OPENTHREAD_CONFIG_IP6_MAX_EXT_UCAST_ADDRS .

Definition at line 304 of file include/openthread/ip6.h

otIp6RemoveUnicastAddress

otError otIp6RemoveUnicastAddress (otInstance *aInstance, const otIp6Address *aAddress)

Removes a Network Interface Address from the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress A pointer to an IP Address.

Definition at line 317 of file include/openthread/ip6.h

otIp6GetUnicastAddresses

const otNetifAddress * otIp6GetUnicastAddresses (otInstance *aInstance)

Gets the list of IPv6 addresses assigned to the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the first Network Interface Address.

Definition at line 327 of file include/openthread/ip6.h

otIp6HasUnicastAddress

bool otIp6HasUnicastAddress (otInstance *aInstance, const otIp6Address *aAddress)

Indicates whether or not a unicast IPv6 address is assigned to the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress A pointer to the unicast address.

Definition at line 339 of file include/openthread/ip6.h

otIp6SubscribeMulticastAddress

otError otIp6SubscribeMulticastAddress (otInstance *aInstance, const otIp6Address *aAddress)

Subscribes the Thread interface to a Network Interface Multicast Address.

IPv6

168/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress A pointer to an IP Address.

The passed in instance aAddress will be copied by the Thread interface. The Thread interface only supports a fixed

number of externally added multicast addresses. See OPENTHREAD_CONFIG_IP6_MAX_EXT_MCAST_ADDRS .

Definition at line 358 of file include/openthread/ip6.h

otIp6UnsubscribeMulticastAddress

otError otIp6UnsubscribeMulticastAddress (otInstance *aInstance, const otIp6Address *aAddress)

Unsubscribes the Thread interface to a Network Interface Multicast Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress A pointer to an IP Address.

Definition at line 371 of file include/openthread/ip6.h

otIp6GetMulticastAddresses

const otNetifMulticastAddress * otIp6GetMulticastAddresses (otInstance *aInstance)

Gets the list of IPv6 multicast addresses subscribed to the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the first Network Interface Multicast Address.

Definition at line 381 of file include/openthread/ip6.h

otIp6IsMulticastPromiscuousEnabled

bool otIp6IsMulticastPromiscuousEnabled (otInstance *aInstance)

Checks if multicast promiscuous mode is enabled on the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

See Also

otIp6SetMulticastPromiscuousEnabled

Definition at line 391 of file include/openthread/ip6.h

otIp6SetMulticastPromiscuousEnabled

IPv6

169/962

void otIp6SetMulticastPromiscuousEnabled (otInstance *aInstance, bool aEnabled)

Enables or disables multicast promiscuous mode on the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE to enable Multicast Promiscuous mode, FALSE otherwise.

See Also

otIp6IsMulticastPromiscuousEnabled

Definition at line 402 of file include/openthread/ip6.h

otIp6NewMessage

otMessage * otIp6NewMessage (otInstance *aInstance, const otMessageSettings *aSettings)

Allocate a new message buffer for sending an IPv6 message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSettings A pointer to the message settings or NULL to set default settings.

Note

If aSettings is 'NULL', the link layer security is enabled and the message priority is set to OT_MESSAGE_PRIORITY_NORMAL

by default.

Returns

A pointer to the message buffer or NULL if no message buffers are available or parameters are invalid.

See Also

otMessageFree

Definition at line 418 of file include/openthread/ip6.h

otIp6NewMessageFromBuffer

otMessage * otIp6NewMessageFromBuffer (otInstance *aInstance, const uint8_t *aData, uint16_t aDataLength, const
otMessageSettings *aSettings)

Allocate a new message buffer and write the IPv6 datagram to the message buffer for sending an IPv6 message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aData A pointer to the IPv6 datagram buffer.

[in] aDataLength The size of the IPv6 datagram buffer pointed by aData .

[in] aSettings A pointer to the message settings or NULL to set default settings.

Note

IPv6

170/962

If aSettings is NULL, the link layer security is enabled and the message priority is obtained from IPv6 message itself. If

aSettings is not NULL, the aSetting->mPriority is ignored and obtained from IPv6 message itself.

Returns

A pointer to the message or NULL if malformed IPv6 header or insufficient message buffers are available.

See Also

otMessageFree

Definition at line 437 of file include/openthread/ip6.h

otIp6SetReceiveCallback

void otIp6SetReceiveCallback (otInstance *aInstance, otIp6ReceiveCallback aCallback, void *aCallbackContext)

Registers a callback to provide received IPv6 datagrams.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called when an IPv6 datagram is received or NULL to disable the

callback.

[in] aCallbackContext A pointer to application-specific context.

By default, this callback does not pass Thread control traffic. See otIp6SetReceiveFilterEnabled() to change the Thread

control traffic filter setting.

See Also

otIp6IsReceiveFilterEnabled

otIp6SetReceiveFilterEnabled

Definition at line 468 of file include/openthread/ip6.h

otIp6SetAddressCallback

void otIp6SetAddressCallback (otInstance *aInstance, otIp6AddressCallback aCallback, void *aCallbackContext)

Registers a callback to notify internal IPv6 address changes.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called when an internal IPv6 address is added or removed. NULL to

disable the callback.

[in] aCallbackContext A pointer to application-specific context.

Definition at line 501 of file include/openthread/ip6.h

otIp6IsReceiveFilterEnabled

bool otIp6IsReceiveFilterEnabled (otInstance *aInstance)

IPv6

171/962

Indicates whether or not Thread control traffic is filtered out when delivering IPv6 datagrams via the callback specified in

otIp6SetReceiveCallback().

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

TRUE if Thread control traffic is filtered out, FALSE otherwise.

See Also

otIp6SetReceiveCallback

otIp6SetReceiveFilterEnabled

Definition at line 515 of file include/openthread/ip6.h

otIp6SetReceiveFilterEnabled

void otIp6SetReceiveFilterEnabled (otInstance *aInstance, bool aEnabled)

Sets whether or not Thread control traffic is filtered out when delivering IPv6 datagrams via the callback specified in

otIp6SetReceiveCallback().

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE if Thread control traffic is filtered out, FALSE otherwise.

See Also

otIp6SetReceiveCallback

otIsReceiveIp6FilterEnabled

Definition at line 528 of file include/openthread/ip6.h

otIp6Send

otError otIp6Send (otInstance *aInstance, otMessage *aMessage)

Sends an IPv6 datagram via the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the message buffer containing the IPv6 datagram.

The caller transfers ownership of aMessage when making this call. OpenThread will free aMessage when processing is

complete, including when a value other than OT_ERROR_NONE is returned.

Definition at line 550 of file include/openthread/ip6.h

otIp6AddUnsecurePort

otError otIp6AddUnsecurePort (otInstance *aInstance, uint16_t aPort)

IPv6

172/962

Adds a port to the allowed unsecured port list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPort The port value.

Definition at line 563 of file include/openthread/ip6.h

otIp6RemoveUnsecurePort

otError otIp6RemoveUnsecurePort (otInstance *aInstance, uint16_t aPort)

Removes a port from the allowed unsecure port list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPort The port value.

Note

This function removes aPort by overwriting aPort with the element after aPort in the internal port list. Be careful when

calling otIp6GetUnsecurePorts() followed by otIp6RemoveUnsecurePort() to remove unsecure ports.

Definition at line 580 of file include/openthread/ip6.h

otIp6RemoveAllUnsecurePorts

void otIp6RemoveAllUnsecurePorts (otInstance *aInstance)

Removes all ports from the allowed unsecure port list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 588 of file include/openthread/ip6.h

otIp6GetUnsecurePorts

const uint16_t * otIp6GetUnsecurePorts (otInstance *aInstance, uint8_t *aNumEntries)

Returns a pointer to the unsecure port list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aNumEntries The number of entries in the list.

Note

Port value 0 is used to indicate an invalid entry.

Returns

A pointer to the unsecure port list.

IPv6

173/962

Definition at line 601 of file include/openthread/ip6.h

otIp6IsAddressEqual

bool otIp6IsAddressEqual (const otIp6Address *aFirst, const otIp6Address *aSecond)

Test if two IPv6 addresses are the same.

Parameters

[in] aFirst A pointer to the first IPv6 address to compare.

[in] aSecond A pointer to the second IPv6 address to compare.

Definition at line 613 of file include/openthread/ip6.h

otIp6ArePrefixesEqual

bool otIp6ArePrefixesEqual (const otIp6Prefix *aFirst, const otIp6Prefix *aSecond)

Test if two IPv6 prefixes are the same.

Parameters

[in] aFirst A pointer to the first IPv6 prefix to compare.

[in] aSecond A pointer to the second IPv6 prefix to compare.

Definition at line 625 of file include/openthread/ip6.h

otIp6AddressFromString

otError otIp6AddressFromString (const char *aString, otIp6Address *aAddress)

Converts a human-readable IPv6 address string into a binary representation.

Parameters

[in] aString A pointer to a NULL-terminated string.

[out] aAddress A pointer to an IPv6 address.

Definition at line 637 of file include/openthread/ip6.h

otIp6PrefixFromString

otError otIp6PrefixFromString (const char *aString, otIp6Prefix *aPrefix)

Converts a human-readable IPv6 prefix string into a binary representation.

Parameters

[in] aString A pointer to a NULL-terminated string.

[out] aPrefix A pointer to an IPv6 prefix.

The aString parameter should be a string in the format "<address>/<plen>", where <address> is an IPv6 address and

<plen> is a prefix length.

IPv6

174/962

Definition at line 652 of file include/openthread/ip6.h

otIp6AddressToString

void otIp6AddressToString (const otIp6Address *aAddress, char *aBuffer, uint16_t aSize)

Converts a given IPv6 address to a human-readable string.

Parameters

[in] aAddress A pointer to an IPv6 address (MUST NOT be NULL).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be NULL).

[in] aSize The size of aBuffer (in bytes). Recommended to use OT_IP6_ADDRESS_STRING_SIZE .

The IPv6 address string is formatted as 16 hex values separated by ':' (i.e., "%x:%x:%x:...:%x").

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 669 of file include/openthread/ip6.h

otIp6SockAddrToString

void otIp6SockAddrToString (const otSockAddr *aSockAddr, char *aBuffer, uint16_t aSize)

Converts a given IPv6 socket address to a human-readable string.

Parameters

[in] aSockAddr A pointer to an IPv6 socket address (MUST NOT be NULL).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be NULL).

[in] aSize The size of aBuffer (in bytes). Recommended to use OT_IP6_SOCK_ADDR_STRING_SIZE .

The IPv6 socket address string is formatted as [address]: port where address is shown as 16 hex values separated by :

and port is the port number in decimal format, for example "[%x:%x:...:%x]:%u".

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 688 of file include/openthread/ip6.h

otIp6PrefixToString

void otIp6PrefixToString (const otIp6Prefix *aPrefix, char *aBuffer, uint16_t aSize)

Converts a given IPv6 prefix to a human-readable string.

Parameters

[in] aPrefix A pointer to an IPv6 prefix (MUST NOT be NULL).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be NULL).

[in] aSize The size of aBuffer (in bytes). Recommended to use OT_IP6_PREFIX_STRING_SIZE .

The IPv6 address string is formatted as "%x:%x:%x:...[::]/plen".

IPv6

175/962

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 705 of file include/openthread/ip6.h

otIp6PrefixMatch

uint8_t otIp6PrefixMatch (const otIp6Address *aFirst, const otIp6Address *aSecond)

Returns the prefix match length (bits) for two IPv6 addresses.

Parameters

[in] aFirst A pointer to the first IPv6 address.

[in] aSecond A pointer to the second IPv6 address.

Returns

The prefix match length in bits.

Definition at line 716 of file include/openthread/ip6.h

otIp6GetPrefix

void otIp6GetPrefix (const otIp6Address *aAddress, uint8_t aLength, otIp6Prefix *aPrefix)

Gets a prefix with aLength from aAddress .

Parameters

[in] aAddress A pointer to an IPv6 address.

[in] aLength The length of prefix in bits.

[out] aPrefix A pointer to output the IPv6 prefix.

Definition at line 726 of file include/openthread/ip6.h

otIp6IsAddressUnspecified

bool otIp6IsAddressUnspecified (const otIp6Address *aAddress)

Indicates whether or not a given IPv6 address is the Unspecified Address.

Parameters

[in] aAddress A pointer to an IPv6 address.

Definition at line 737 of file include/openthread/ip6.h

otIp6SelectSourceAddress

otError otIp6SelectSourceAddress (otInstance *aInstance, otMessageInfo *aMessageInfo)

Perform OpenThread source address selection.

IPv6

176/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aMessageInfo A pointer to the message information.

Definition at line 749 of file include/openthread/ip6.h

otIp6IsSlaacEnabled

bool otIp6IsSlaacEnabled (otInstance *aInstance)

Indicates whether the SLAAC module is enabled or not.

Parameters

N/A aInstance

OPENTHREAD_CONFIG_IP6_SLAAC_ENABLE build-time feature must be enabled.

Definition at line 760 of file include/openthread/ip6.h

otIp6SetSlaacEnabled

void otIp6SetSlaacEnabled (otInstance *aInstance, bool aEnabled)

Enables/disables the SLAAC module.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE to enable, FALSE to disable.

OPENTHREAD_CONFIG_IP6_SLAAC_ENABLE build-time feature must be enabled.

When SLAAC module is enabled, SLAAC addresses (based on on-mesh prefixes in Network Data) are added to the

interface. When SLAAC module is disabled any previously added SLAAC address is removed.

Definition at line 774 of file include/openthread/ip6.h

otIp6SetSlaacPrefixFilter

void otIp6SetSlaacPrefixFilter (otInstance *aInstance, otIp6SlaacPrefixFilter aFilter)

Sets the SLAAC module filter handler.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aFilter A pointer to SLAAC prefix filter handler, or NULL to disable filtering.

OPENTHREAD_CONFIG_IP6_SLAAC_ENABLE build-time feature must be enabled.

The filter handler is called by SLAAC module when it is about to add a SLAAC address based on a prefix to decide whether

the address should be added or not.

A NULL filter handler disables filtering and allows all SLAAC addresses to be added.

IPv6

177/962

If this function is not called, the default filter used by SLAAC module will be NULL (filtering is disabled).

Definition at line 808 of file include/openthread/ip6.h

otIp6RegisterMulticastListeners

otError otIp6RegisterMulticastListeners (otInstance *aInstance, const otIp6Address *aAddresses, uint8_t aAddressNum,
const uint32_t *aTimeout, otIp6RegisterMulticastListenersCallback aCallback, void *aContext)

Registers Multicast Listeners to Primary Backbone Router.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddresses A Multicast Address Array to register.

[in] aAddressNum The number of Multicast Address to register (0 if aAddresses is NULL).

[in] aTimeout A pointer to the timeout value (in seconds) to be included in MLR.req. A timeout value of 0 removes

the corresponding Multicast Listener. If NULL, MLR.req would have no Timeout Tlv by default.

[in] aCallback A pointer to the callback function.

[in] aContext A pointer to the user context.

OPENTHREAD_CONFIG_TMF_PROXY_MLR_ENABLE and OPENTHREAD_CONFIG_COMMISSIONER_ENABLE must be enabled.

See Also

otIp6RegisterMulticastListenersCallback

Definition at line 858 of file include/openthread/ip6.h

otIp6SetMeshLocalIid

otError otIp6SetMeshLocalIid (otInstance *aInstance, const otIp6InterfaceIdentifier *aIid)

Sets the Mesh Local IID (for test purpose).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aIid A pointer to the Mesh Local IID to set.

Requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE .

Definition at line 877 of file include/openthread/ip6.h

otIp6ProtoToString

const char * otIp6ProtoToString (uint8_t aIpProto)

Converts a given IP protocol number to a human-readable string.

Parameters

[in] aIpProto An IP protocol number (OT_IP6_PROTO_* enumeration).

IPv6

178/962

Returns

A string representing aIpProto .

Definition at line 887 of file include/openthread/ip6.h

otIp6GetBorderRoutingCounters

const otBorderRoutingCounters * otIp6GetBorderRoutingCounters (otInstance *aInstance)

Gets the Border Routing counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

OPENTHREAD_CONFIG_IP6_BR_COUNTERS_ENABLE build-time feature must be enabled.

Returns

A pointer to the Border Routing counters.

Definition at line 927 of file include/openthread/ip6.h

otIp6ResetBorderRoutingCounters

void otIp6ResetBorderRoutingCounters (otInstance *aInstance)

Resets the Border Routing counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 935 of file include/openthread/ip6.h

Macro Definition Documentation

OT_IP6_PREFIX_SIZE

#define OT_IP6_PREFIX_SIZE

Value:

8

S ize of an IPv6 prefix (bytes)

Definition at line 55 of file include/openthread/ip6.h

OT_IP6_PREFIX_BITSIZE

#define OT_IP6_PREFIX_BITSIZE

Value:

IPv6

179/962

�OT_IP6_PREFIX_SIZE * 8�

S ize of an IPv6 prefix (bits)

Definition at line 56 of file include/openthread/ip6.h

OT_IP6_IID_SIZE

#define OT_IP6_IID_SIZE

Value:

8

S ize of an IPv6 Interface Identifier (bytes)

Definition at line 57 of file include/openthread/ip6.h

OT_IP6_ADDRESS_SIZE

#define OT_IP6_ADDRESS_SIZE

Value:

16

S ize of an IPv6 address (bytes)

Definition at line 58 of file include/openthread/ip6.h

OT_IP6_HEADER_SIZE

#define OT_IP6_HEADER_SIZE

Value:

40

S ize of an IPv6 header (bytes)

Definition at line 59 of file include/openthread/ip6.h

OT_IP6_HEADER_PROTO_OFFSET

#define OT_IP6_HEADER_PROTO_OFFSET

Value:

6

Offset of the proto field in the IPv6 header (bytes)

Definition at line 60 of file include/openthread/ip6.h

IPv6

180/962

OT_IP6_ADDRESS_STRING_SIZE

#define OT_IP6_ADDRESS_STRING_SIZE

Value:

40

Recommended size for string representation of an IPv6 address.

Definition at line 654 of file include/openthread/ip6.h

OT_IP6_SOCK_ADDR_STRING_SIZE

#define OT_IP6_SOCK_ADDR_STRING_SIZE

Value:

48

Recommended size for string representation of an IPv6 socket address.

Definition at line 671 of file include/openthread/ip6.h

OT_IP6_PREFIX_STRING_SIZE

#define OT_IP6_PREFIX_STRING_SIZE

Value:

45

Recommended size for string representation of an IPv6 prefix.

Definition at line 690 of file include/openthread/ip6.h

OT_IP6_MAX_MLR_ADDRESSES

#define OT_IP6_MAX_MLR_ADDRESSES

Value:

15

Max number of IPv6 addresses supported by Multicast Listener Registration.

Definition at line 830 of file include/openthread/ip6.h

otIp6InterfaceIdentifier

181/962

otIp6InterfaceIdentifier

Represents the Interface Identifier of an IPv6 address.

Modules

otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD

Public Attributes

union
otIp6InterfaceIde
ntifier::OT_TOOL_P
ACKED_FIELD

mFields
The Interface Identifier accessor fields.

Public Attribute Documentation

mFields

union otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD otIp6InterfaceIdentifier::mFields

The Interface Identifier accessor fields.

Definition at line 76 of file include/openthread/ip6.h

otIp6InterfaceIdentifier

182/962

otIp6InterfaceIdentifier

Public Attributes

uint8_t m8
8-bit fields

uint16_t m16
16-bit fields

uint32_t m32
32-bit fields

Public Attribute Documentation

m8

uint8_t otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD::m8�OT_IP6_IID_SIZE�

8-bit fields

Definition at line 73 of file include/openthread/ip6.h

m16

uint16_t otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD::m16�OT_IP6_IID_SIZE/sizeof(uint16_t)]

16-bit fields

Definition at line 74 of file include/openthread/ip6.h

m32

uint32_t otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD::m32�OT_IP6_IID_SIZE/sizeof(uint32_t)]

32-bit fields

Definition at line 75 of file include/openthread/ip6.h

otIp6NetworkPrefix

183/962

otIp6NetworkPrefix

Represents the Network Prefix of an IPv6 address (most significant 64 bits of the address).

Public Attributes

uint8_t m8
The Network Prefix.

Public Attribute Documentation

m8

uint8_t otIp6NetworkPrefix::m8�OT_IP6_PREFIX_SIZE�

The Network Prefix.

Definition at line 94 of file include/openthread/ip6.h

otIp6AddressComponents

184/962

otIp6AddressComponents

Represents the components of an IPv6 address.

Public Attributes

otIp6NetworkPref
ix

mNetworkPrefix
The Network Prefix (most significant 64 bits of the address)

otIp6InterfaceIde
ntifier

mIid
The Interface Identifier (least significant 64 bits of the address)

Public Attribute Documentation

mNetworkPrefix

otIp6NetworkPrefix otIp6AddressComponents::mNetworkPrefix

The Network Prefix (most significant 64 bits of the address)

Definition at line 112 of file include/openthread/ip6.h

mIid

otIp6InterfaceIdentifier otIp6AddressComponents::mIid

The Interface Identifier (least significant 64 bits of the address)

Definition at line 113 of file include/openthread/ip6.h

otIp6Address

185/962

otIp6Address

Represents an IPv6 address.

Modules

otIp6Address::OT_TOOL_PACKED_FIELD

Public Attributes

union
otIp6Address::OT_
TOOL_PACKED_FI

ELD

mFields
IPv6 accessor fields.

Public Attribute Documentation

mFields

union otIp6Address::OT_TOOL_PACKED_FIELD otIp6Address::mFields

IPv6 accessor fields.

Definition at line 137 of file include/openthread/ip6.h

otIp6Address

186/962

otIp6Address

Public Attributes

uint8_t m8
8-bit fields

uint16_t m16
16-bit fields

uint32_t m32
32-bit fields

otIp6AddressCom
ponents

mComponents
IPv6 address components.

Public Attribute Documentation

m8

uint8_t otIp6Address::OT_TOOL_PACKED_FIELD::m8�OT_IP6_ADDRESS_SIZE�

8-bit fields

Definition at line 133 of file include/openthread/ip6.h

m16

uint16_t otIp6Address::OT_TOOL_PACKED_FIELD::m16�OT_IP6_ADDRESS_SIZE/sizeof(uint16_t)]

16-bit fields

Definition at line 134 of file include/openthread/ip6.h

m32

uint32_t otIp6Address::OT_TOOL_PACKED_FIELD::m32�OT_IP6_ADDRESS_SIZE/sizeof(uint32_t)]

32-bit fields

Definition at line 135 of file include/openthread/ip6.h

mComponents

otIp6AddressComponents otIp6Address::OT_TOOL_PACKED_FIELD::mComponents

IPv6 address components.

Definition at line 136 of file include/openthread/ip6.h

otIp6Prefix

187/962

otIp6Prefix

Represents an IPv6 prefix.

Public Attributes

otIp6Address mPrefix
The IPv6 prefix.

uint8_t mLength
The IPv6 prefix length (in bits).

Public Attribute Documentation

mPrefix

otIp6Address otIp6Prefix::mPrefix

The IPv6 prefix.

Definition at line 155 of file include/openthread/ip6.h

mLength

uint8_t otIp6Prefix::mLength

The IPv6 prefix length (in bits).

Definition at line 156 of file include/openthread/ip6.h

otNetifAddress

188/962

otNetifAddress

Represents an IPv6 network interface unicast address.

Public Attributes

otIp6Address mAddress
The IPv6 unicast address.

uint8_t mPrefixLength
The Prefix length (in bits).

uint8_t mAddressOrigin
The IPv6 address origin.

bool mPreferred
TRUE if the address is preferred, FALSE otherwise .

bool mValid
TRUE if the address is valid, FALSE otherwise .

bool mScopeOverrideValid
TRUE if the mScopeOverride value is valid, FALSE otherwise .

unsigned int mScopeOverride
The IPv6 scope of this address.

bool mRloc
TRUE if the address is an RLOC, FALSE otherwise .

bool mMeshLocal
TRUE if the address is mesh-local, FALSE otherwise .

const struct
otNetifAddress *

mNext
A po inter to the next network interface address.

Public Attribute Documentation

mAddress

otIp6Address otNetifAddress::mAddress

The IPv6 unicast address.

Definition at line 183 of file include/openthread/ip6.h

mPrefixLength

uint8_t otNetifAddress::mPrefixLength

The Prefix length (in bits).

Definition at line 184 of file include/openthread/ip6.h

otNetifAddress

189/962

mAddressOrigin

uint8_t otNetifAddress::mAddressOrigin

The IPv6 address origin.

Definition at line 185 of file include/openthread/ip6.h

mPreferred

bool otNetifAddress::mPreferred

TRUE if the address is preferred, FALSE otherwise.

Definition at line 186 of file include/openthread/ip6.h

mValid

bool otNetifAddress::mValid

TRUE if the address is valid, FALSE otherwise.

Definition at line 187 of file include/openthread/ip6.h

mScopeOverrideValid

bool otNetifAddress::mScopeOverrideValid

TRUE if the mScopeOverride value is valid, FALSE otherwise.

Definition at line 188 of file include/openthread/ip6.h

mScopeOverride

unsigned int otNetifAddress::mScopeOverride

The IPv6 scope of this address.

Definition at line 189 of file include/openthread/ip6.h

mRloc

bool otNetifAddress::mRloc

TRUE if the address is an RLOC, FALSE otherwise.

Definition at line 190 of file include/openthread/ip6.h

mMeshLocal

otNetifAddress

190/962

bool otNetifAddress::mMeshLocal

TRUE if the address is mesh-local, FALSE otherwise.

Definition at line 191 of file include/openthread/ip6.h

mNext

const struct otNetifAddress* otNetifAddress::mNext

A pointer to the next network interface address.

Definition at line 192 of file include/openthread/ip6.h

otNetifMulticastAddress

191/962

otNetifMulticastAddress

Represents an IPv6 network interface multicast address.

Public Attributes

otIp6Address mAddress
The IPv6 multicast address.

const struct
otNetifMulticastA

ddress *

mNext
A po inter to the next network interface multicast address.

Public Attribute Documentation

mAddress

otIp6Address otNetifMulticastAddress::mAddress

The IPv6 multicast address.

Definition at line 201 of file include/openthread/ip6.h

mNext

const struct otNetifMulticastAddress* otNetifMulticastAddress::mNext

A pointer to the next network interface multicast address.

Definition at line 202 of file include/openthread/ip6.h

otSockAddr

192/962

otSockAddr

Represents an IPv6 socket address.

Public Attributes

otIp6Address mAddress
An IPv6 address.

uint16_t mPort
A transport-layer port.

Public Attribute Documentation

mAddress

otIp6Address otSockAddr::mAddress

An IPv6 address.

Definition at line 211 of file include/openthread/ip6.h

mPort

uint16_t otSockAddr::mPort

A transport-layer port.

Definition at line 212 of file include/openthread/ip6.h

otMessageInfo

193/962

otMessageInfo

Represents the local and peer IPv6 socket addresses.

Public Attributes

otIp6Address mSockAddr
The local IPv6 address.

otIp6Address mPeerAddr
The peer IPv6 address.

uint16_t mSockPort
The local transport-layer port.

uint16_t mPeerPort
The peer transport-layer port.

const void * mLinkInfo
A po inter to link-specific information.

uint8_t mHopLimit
The IPv6 Hop Limit value .

uint8_t mEcn
The ECN status of the packet, represented as in the IPv6 header.

bool mIsHostInterface
TRUE if packets sent/received via host interface , FALSE otherwise .

bool mAllowZeroHopLimit
TRUE to allow IPv6 Hop Limit 0 in mHopLimit , FALSE otherwise .

bool mMulticastLoop
TRUE to allow looping back multicast, FALSE otherwise .

Public Attribute Documentation

mSockAddr

otIp6Address otMessageInfo::mSockAddr

The local IPv6 address.

Definition at line 233 of file include/openthread/ip6.h

mPeerAddr

otIp6Address otMessageInfo::mPeerAddr

The peer IPv6 address.

Definition at line 234 of file include/openthread/ip6.h

otMessageInfo

194/962

mSockPort

uint16_t otMessageInfo::mSockPort

The local transport-layer port.

Definition at line 235 of file include/openthread/ip6.h

mPeerPort

uint16_t otMessageInfo::mPeerPort

The peer transport-layer port.

Definition at line 236 of file include/openthread/ip6.h

mLinkInfo

const void* otMessageInfo::mLinkInfo

A pointer to link-specific information.

Definition at line 237 of file include/openthread/ip6.h

mHopLimit

uint8_t otMessageInfo::mHopLimit

The IPv6 Hop Limit value.

Only applies if mAllowZeroHopLimit is FALSE. If 0 , IPv6 Hop Limit is default value

OPENTHREAD_CONFIG_IP6_HOP_LIMIT_DEFAULT . Otherwise, specifies the IPv6 Hop Limit.

Definition at line 238 of file include/openthread/ip6.h

mEcn

uint8_t otMessageInfo::mEcn

The ECN status of the packet, represented as in the IPv6 header.

Definition at line 241 of file include/openthread/ip6.h

mIsHostInterface

bool otMessageInfo::mIsHostInterface

TRUE if packets sent/received via host interface, FALSE otherwise.

Definition at line 242 of file include/openthread/ip6.h

otMessageInfo

195/962

mAllowZeroHopLimit

bool otMessageInfo::mAllowZeroHopLimit

TRUE to allow IPv6 Hop Limit 0 in mHopLimit , FALSE otherwise.

Definition at line 243 of file include/openthread/ip6.h

mMulticastLoop

bool otMessageInfo::mMulticastLoop

TRUE to allow looping back multicast, FALSE otherwise.

Definition at line 244 of file include/openthread/ip6.h

otIp6AddressInfo

196/962

otIp6AddressInfo

Represents IPv6 address information.

Public Attributes

const
otIp6Address *

mAddress
A po inter to the IPv6 address.

uint8_t mPrefixLength
The prefix length of mAddress if it is a unicast address.

uint8_t mScope
The scope of this address.

bool mPreferred
Whether this is a preferred address.

Public Attribute Documentation

mAddress

const otIp6Address* otIp6AddressInfo::mAddress

A pointer to the IPv6 address.

Definition at line 476 of file include/openthread/ip6.h

mPrefixLength

uint8_t otIp6AddressInfo::mPrefixLength

The prefix length of mAddress if it is a unicast address.

Definition at line 477 of file include/openthread/ip6.h

mScope

uint8_t otIp6AddressInfo::mScope

The scope of this address.

Definition at line 478 of file include/openthread/ip6.h

mPreferred

bool otIp6AddressInfo::mPreferred

Whether this is a preferred address.

otIp6AddressInfo

197/962

Definition at line 479 of file include/openthread/ip6.h

otPacketsAndBytes

198/962

otPacketsAndBytes

Represents the counters for packets and bytes.

Public Attributes

uint64_t mPackets
The number of packets.

uint64_t mBytes
The number of bytes.

Public Attribute Documentation

mPackets

uint64_t otPacketsAndBytes::mPackets

The number of packets.

Definition at line 895 of file include/openthread/ip6.h

mBytes

uint64_t otPacketsAndBytes::mBytes

The number of bytes.

Definition at line 896 of file include/openthread/ip6.h

otBorderRoutingCounters

199/962

otBorderRoutingCounters

Represents the counters of packets forwarded via Border Routing.

Public Attributes

otPacketsAndByt
es

mInboundUnicast
The counters for inbound unicast.

otPacketsAndByt
es

mInboundMulticast
The counters for inbound multicast.

otPacketsAndByt
es

mOutboundUnicast
The counters for outbound unicast.

otPacketsAndByt
es

mOutboundMulticast
The counters for outbound multicast.

uint32_t mRaRx
The number of received RA packets.

uint32_t mRaTxSuccess
The number of RA packets successfully transmitted.

uint32_t mRaTxFailure
The number of RA packets failed to transmit.

uint32_t mRsRx
The number of received RS packets.

uint32_t mRsTxSuccess
The number of RS packets successfully transmitted.

uint32_t mRsTxFailure
The number of RS packets failed to transmit.

Public Attribute Documentation

mInboundUnicast

otPacketsAndBytes otBorderRoutingCounters::mInboundUnicast

The counters for inbound unicast.

Definition at line 905 of file include/openthread/ip6.h

mInboundMulticast

otPacketsAndBytes otBorderRoutingCounters::mInboundMulticast

The counters for inbound multicast.

Definition at line 906 of file include/openthread/ip6.h

otBorderRoutingCounters

200/962

mOutboundUnicast

otPacketsAndBytes otBorderRoutingCounters::mOutboundUnicast

The counters for outbound unicast.

Definition at line 907 of file include/openthread/ip6.h

mOutboundMulticast

otPacketsAndBytes otBorderRoutingCounters::mOutboundMulticast

The counters for outbound multicast.

Definition at line 908 of file include/openthread/ip6.h

mRaRx

uint32_t otBorderRoutingCounters::mRaRx

The number of received RA packets.

Definition at line 909 of file include/openthread/ip6.h

mRaTxSuccess

uint32_t otBorderRoutingCounters::mRaTxSuccess

The number of RA packets successfully transmitted.

Definition at line 910 of file include/openthread/ip6.h

mRaTxFailure

uint32_t otBorderRoutingCounters::mRaTxFailure

The number of RA packets failed to transmit.

Definition at line 911 of file include/openthread/ip6.h

mRsRx

uint32_t otBorderRoutingCounters::mRsRx

The number of received RS packets.

Definition at line 912 of file include/openthread/ip6.h

mRsTxSuccess

otBorderRoutingCounters

201/962

uint32_t otBorderRoutingCounters::mRsTxSuccess

The number of RS packets successfully transmitted.

Definition at line 913 of file include/openthread/ip6.h

mRsTxFailure

uint32_t otBorderRoutingCounters::mRsTxFailure

The number of RS packets failed to transmit.

Definition at line 914 of file include/openthread/ip6.h

NAT64

202/962

NAT64

NAT64
This module includes functions and structs for the NAT64 function on the border router.

These functions are only available when OPENTHREAD_CONFIG_NAT64_BORDER_ROUTING_ENABLE is enabled.

Modules

otIp4Address

otIp4Cidr

otNat64Counters

otNat64ProtocolCounters

otNat64ErrorCounters

otNat64AddressMapping

otNat64AddressMappingIterator

Enumerations

enum otNat64DropReason {

OT_NAT64_DROP_REASON_UNKNOWN = 0
OT_NAT64_DROP_REASON_ILLEGAL_PACKET
OT_NAT64_DROP_REASON_UNSUPPORTED_PROTO
OT_NAT64_DROP_REASON_NO_MAPPING
OT_NAT64_DROP_REASON_COUNT

}
Packet drop reasons.

enum otNat64State {

OT_NAT64_STATE_DISABLED = 0
OT_NAT64_STATE_NOT_RUNNING
OT_NAT64_STATE_IDLE
OT_NAT64_STATE_ACTIVE

}
States of NAT64.

Typedefs

typedef struct
otIp4Address

otIp4Address
Represents an IPv4 address.

typedef struct
otIp4Cidr

otIp4Cidr

typedef struct
otNat64Counters

otNat64Counters
Represents the counters for NAT64.

NAT64

203/962

typedef struct
otNat64Protocol

Counters

otNat64ProtocolCounters
Represents the counters for the protoco ls supported by NAT64.

typedef enum
otNat64DropReas

on

otNat64DropReason
Packet drop reasons.

typedef struct
otNat64ErrorCou

nters

otNat64ErrorCounters
Represents the counters of dropped packets due to errors when handling NAT64 packets.

typedef struct
otNat64Address

Mapping

otNat64AddressMapping
Represents an address mapping record for NAT64.

typedef struct
otNat64Address
MappingIterator

otNat64AddressMappingIterator
Used to iterate through NAT64 address mappings.

typedef void(* otNat64ReceiveIp4Callback)(otMessage *aMessage, void *aContext)
Po inter is called when an IPv4 datagram (translated by NAT64 translator) is received.

Variables

OT_TOOL_PACKE
D_BEGIN struct
otIp4Address

OT_TOOL_PACKED_END

Functions

void otNat64GetCounters(otInstance *aInstance, otNat64ProtocolCounters *aCounters)
Gets NAT64 translator counters.

void otNat64GetErrorCounters(otInstance *aInstance, otNat64ErrorCounters *aCounters)
Gets the NAT64 translator error counters.

void otNat64InitAddressMappingIterator(otInstance *aInstance, otNat64AddressMappingIterator *aIterator)
Initializes an otNat64AddressMappingIterator .

otError otNat64GetNextAddressMapping(otInstance *aInstance, otNat64AddressMappingIterator *aIterator,
otNat64AddressMapping *aMapping)
Gets the next AddressMapping info (using an iterator).

otNat64State otNat64GetTranslatorState(otInstance *aInstance)
Gets the state of NAT64 translator.

otNat64State otNat64GetPrefixManagerState(otInstance *aInstance)
Gets the state of NAT64 prefix manager.

void otNat64SetEnabled(otInstance *aInstance, bool aEnabled)
Enable or disable NAT64 functions.

otMessage * otIp4NewMessage(otInstance *aInstance, const otMessageSettings *aSettings)
Allocate a new message buffer for sending an IPv4 message to the NAT64 translator.

otError otNat64SetIp4Cidr(otInstance *aInstance, const otIp4Cidr *aCidr)
Sets the CIDR used when setting the source address of the outgo ing translated IPv4 packets.

otError otNat64Send(otInstance *aInstance, otMessage *aMessage)
Translates an IPv4 datagram to an IPv6 datagram and sends via the Thread interface .

NAT64

204/962

void otNat64SetReceiveIp4Callback(otInstance *aInstance, otNat64ReceiveIp4Callback aCallback, void
*aContext)
Registers a callback to provide received IPv4 datagrams.

otError otNat64GetCidr(otInstance *aInstance, otIp4Cidr *aCidr)
Gets the IPv4 CIDR configured in the NAT64 translator.

bool otIp4IsAddressEqual(const otIp4Address *aFirst, const otIp4Address *aSecond)
Test if two IPv4 addresses are the same .

void otIp4ExtractFromIp6Address(uint8_t aPrefixLength, const otIp6Address *aIp6Address, otIp4Address
*aIp4Address)
Set aIp4Address by performing NAT64 address translation from aIp6Address as specified in RFC 6052.

void otIp4AddressToString(const otIp4Address *aAddress, char *aBuffer, uint16_t aSize)
Converts the address to a string.

otError otIp4CidrFromString(const char *aString, otIp4Cidr *aCidr)
Converts a human-readable IPv4 CIDR string into a binary representation.

void otIp4CidrToString(const otIp4Cidr *aCidr, char *aBuffer, uint16_t aSize)
Converts the IPv4 CIDR to a string.

otError otIp4AddressFromString(const char *aString, otIp4Address *aAddress)
Converts a human-readable IPv4 address string into a binary representation.

otError otNat64SynthesizeIp6Address(otInstance *aInstance, const otIp4Address *aIp4Address, otIp6Address
*aIp6Address)
Sets the IPv6 address by performing NAT64 address translation from the preferred NAT64 prefix and the given IPv4

address as specified in RFC 6052.

Macros

#define OT_IP4_ADDRESS_SIZE 4
Size of an IPv4 address (bytes)

#define OT_IP4_ADDRESS_STRING_SIZE 17
Length of 000.000.000.000 plus a suffix NUL.

#define OT_IP4_CIDR_STRING_SIZE 20
Length of 000.000.000.000/00 plus a suffix NUL.

Enumeration Documentation

otNat64DropReason

otNat64DropReason

Packet drop reasons.

Enumerator

OT_NAT64_DROP_REASON_UNKNOWN Packet drop for unknown reasons.

OT_NAT64_DROP_REASON_ILLEGAL_PACKET Packet drop due to failed to parse the datagram.

OT_NAT64_DROP_REASON_UNSUPPORTED_PROTO Packet drop due to unsupported IP protocol.

OT_NAT64_DROP_REASON_NO_MAPPING Packet drop due to no mappings found or mapping pool exhausted.

OT_NAT64_DROP_REASON_COUNT

Definition at line 119 of file include/openthread/nat64.h

NAT64

205/962

otNat64State

otNat64State

States of NAT64.

Enumerator

OT_NAT64_STATE_DISABLED NAT64 is disabled.

OT_NAT64_STATE_NOT_RUNNING NAT64 is enabled, but one or more dependencies of NAT64 are not running.

OT_NAT64_STATE_IDLE NAT64 is enabled, but this BR is not an active NAT64 BR.

OT_NAT64_STATE_ACTIVE The BR is publishing a NAT64 prefix and/or translating packets.

Definition at line 233 of file include/openthread/nat64.h

Typedef Documentation

otIp4Address

typedef struct otIp4Address otIp4Address

Represents an IPv4 address.

Definition at line 77 of file include/openthread/nat64.h

otIp4Cidr

typedef struct otIp4Cidr otIp4Cidr

Definition at line 89 of file include/openthread/nat64.h

otNat64Counters

typedef struct otNat64Counters otNat64Counters

Represents the counters for NAT64.

Definition at line 101 of file include/openthread/nat64.h

otNat64ProtocolCounters

typedef struct otNat64ProtocolCounters otNat64ProtocolCounters

Represents the counters for the protocols supported by NAT64.

Definition at line 113 of file include/openthread/nat64.h

otNat64DropReason

typedef enum otNat64DropReason otNat64DropReason

NAT64

206/962

Packet drop reasons.

Definition at line 127 of file include/openthread/nat64.h

otNat64ErrorCounters

typedef struct otNat64ErrorCounters otNat64ErrorCounters

Represents the counters of dropped packets due to errors when handling NAT64 packets.

Definition at line 137 of file include/openthread/nat64.h

otNat64AddressMapping

typedef struct otNat64AddressMapping otNat64AddressMapping

Represents an address mapping record for NAT64.

Note

The counters will be reset for each mapping session even for the same address pair. Applications can use mId to identify

different sessions to calculate the packets correctly.

Definition at line 179 of file include/openthread/nat64.h

otNat64AddressMappingIterator

typedef struct otNat64AddressMappingIterator otNat64AddressMappingIterator

Used to iterate through NAT64 address mappings.

The fields in this type are opaque (intended for use by OpenThread core only) and therefore should not be accessed or

used by caller.

Before using an iterator, it MUST be initialized using otNat64AddressMappingIteratorInit() .

Definition at line 193 of file include/openthread/nat64.h

otNat64ReceiveIp4Callback

typedef void(* otNat64ReceiveIp4Callback) (otMessage *aMessage, void *aContext))(otMessage *aMessage, void
*aContext)

Pointer is called when an IPv4 datagram (translated by NAT64 translator) is received.

Parameters

[in] aMessage A pointer to the message buffer containing the received IPv6 datagram. This function transfers the

ownership of the aMessage to the receiver of the callback. The message should be freed by the

receiver of the callback after it is processed.

[in] aContext A pointer to application-specific context.

Definition at line 369 of file include/openthread/nat64.h

NAT64

207/962

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otIp4Address OT_TOOL_PACKED_END

Definition at line 71 of file include/openthread/nat64.h

Function Documentation

otNat64GetCounters

void otNat64GetCounters (otInstance *aInstance, otNat64ProtocolCounters *aCounters)

Gets NAT64 translator counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aCounters A pointer to an otNat64Counters where the counters of NAT64 translator will be placed.

The counter is counted since the instance initialized.

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Definition at line 150 of file include/openthread/nat64.h

otNat64GetErrorCounters

void otNat64GetErrorCounters (otInstance *aInstance, otNat64ErrorCounters *aCounters)

Gets the NAT64 translator error counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aCounters A pointer to an otNat64Counters where the counters of NAT64 translator will be placed.

The counters are initialized to zero when the OpenThread instance is initialized.

Definition at line 161 of file include/openthread/nat64.h

otNat64InitAddressMappingIterator

void otNat64InitAddressMappingIterator (otInstance *aInstance, otNat64AddressMappingIterator *aIterator)

Initializes an otNat64AddressMappingIterator .

Parameters

[in] aInstance The OpenThread instance.

[out] aIterator A pointer to the iterator to initialize.

NAT64

208/962

An iterator MUST be initialized before it is used.

An iterator can be initialized again to restart from the beginning of the mapping info.

Definition at line 206 of file include/openthread/nat64.h

otNat64GetNextAddressMapping

otError otNat64GetNextAddressMapping (otInstance *aInstance, otNat64AddressMappingIterator *aIterator,
otNat64AddressMapping *aMapping)

Gets the next AddressMapping info (using an iterator).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the iterator. On success the iterator will be updated to point to next NAT64 address

mapping record. To get the first entry the iterator should be set to

OT_NAT64_ADDRESS_MAPPING_ITERATOR_INIT.

[out] aMapping A pointer to an otNat64AddressMapping where information of next NAT64 address mapping record is

placed (on success).

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Definition at line 225 of file include/openthread/nat64.h

otNat64GetTranslatorState

otNat64State otNat64GetTranslatorState (otInstance *aInstance)

Gets the state of NAT64 translator.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Definition at line 254 of file include/openthread/nat64.h

otNat64GetPrefixManagerState

otNat64State otNat64GetPrefixManagerState (otInstance *aInstance)

Gets the state of NAT64 prefix manager.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_NAT64_BORDER_ROUTING_ENABLE is enabled.

Definition at line 273 of file include/openthread/nat64.h

otNat64SetEnabled

NAT64

209/962

void otNat64SetEnabled (otInstance *aInstance, bool aEnabled)

Enable or disable NAT64 functions.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled A boolean to enable/disable the NAT64 functions

Note: This includes the NAT64 Translator (when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled) and the

NAT64 Prefix Manager (when OPENTHREAD_CONFIG_NAT64_BORDER_ROUTING_ENABLE is enabled).

When OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled, setting disabled to true resets the mapping table in the

translator.

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE or OPENTHREAD_CONFIG_NAT64_BORDER_ROUTING_ENABLE is

enabled.

See Also

otNat64GetTranslatorState

otNat64GetPrefixManagerState

Definition at line 294 of file include/openthread/nat64.h

otIp4NewMessage

otMessage * otIp4NewMessage (otInstance *aInstance, const otMessageSettings *aSettings)

Allocate a new message buffer for sending an IPv4 message to the NAT64 translator.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSettings A pointer to the message settings or NULL to set default settings.

Message buffers allocated by this function will have 20 bytes (difference between the size of IPv6 headers and IPv4

header sizes) reserved.

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Note

If aSettings is NULL , the link layer security is enabled and the message priority is set to OT_MESSAGE_PRIORITY_NORMAL

by default.

Returns

A pointer to the message buffer or NULL if no message buffers are available or parameters are invalid.

See Also

otNat64Send

Definition at line 315 of file include/openthread/nat64.h

otNat64SetIp4Cidr

otError otNat64SetIp4Cidr (otInstance *aInstance, const otIp4Cidr *aCidr)

NAT64

210/962

Sets the CIDR used when setting the source address of the outgoing translated IPv4 packets.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCidr A pointer to an otIp4Cidr for the IPv4 CIDR block for NAT64.

Is available only when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Note

A valid CIDR must have a non-zero prefix length. The actual addresses pool is limited by the size of the mapping pool and

the number of addresses available in the CIDR block.

This function can be called at any time, but the NAT64 translator will be reset and all existing sessions will be expired when

updating the configured CIDR.

See Also

otBorderRouterSend

otBorderRouterSetReceiveCallback

Definition at line 338 of file include/openthread/nat64.h

otNat64Send

otError otNat64Send (otInstance *aInstance, otMessage *aMessage)

Translates an IPv4 datagram to an IPv6 datagram and sends via the Thread interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the message buffer containing the IPv4 datagram.

The caller transfers ownership of aMessage when making this call. OpenThread will free aMessage when processing is

complete, including when a value other than OT_ERROR_NONE is returned.

Definition at line 358 of file include/openthread/nat64.h

otNat64SetReceiveIp4Callback

void otNat64SetReceiveIp4Callback (otInstance *aInstance, otNat64ReceiveIp4Callback aCallback, void *aContext)

Registers a callback to provide received IPv4 datagrams.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called when an IPv4 datagram is received or NULL to disable the callback.

[in] aContext A pointer to application-specific context.

Definition at line 380 of file include/openthread/nat64.h

otNat64GetCidr

otError otNat64GetCidr (otInstance *aInstance, otIp4Cidr *aCidr)

NAT64

211/962

Gets the IPv4 CIDR configured in the NAT64 translator.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aCidr A pointer to an otIp4Cidr. Where the CIDR will be filled.

Available when OPENTHREAD_CONFIG_NAT64_TRANSLATOR_ENABLE is enabled.

Definition at line 391 of file include/openthread/nat64.h

otIp4IsAddressEqual

bool otIp4IsAddressEqual (const otIp4Address *aFirst, const otIp4Address *aSecond)

Test if two IPv4 addresses are the same.

Parameters

[in] aFirst A pointer to the first IPv4 address to compare.

[in] aSecond A pointer to the second IPv4 address to compare.

Definition at line 403 of file include/openthread/nat64.h

otIp4ExtractFromIp6Address

void otIp4ExtractFromIp6Address (uint8_t aPrefixLength, const otIp6Address *aIp6Address, otIp4Address *aIp4Address)

Set aIp4Address by performing NAT64 address translation from aIp6Address as specified in RFC 6052.

Parameters

[in] aPrefixLength The prefix length to use for IPv4/IPv6 translation.

[in] aIp6Address A pointer to an IPv6 address.

[out] aIp4Address A pointer to output the IPv4 address.

The NAT64 aPrefixLength MUST be one of the following values: 32, 40, 48, 56, 64, or 96, otherwise the behavior of this

method is undefined.

Definition at line 417 of file include/openthread/nat64.h

otIp4AddressToString

void otIp4AddressToString (const otIp4Address *aAddress, char *aBuffer, uint16_t aSize)

Converts the address to a string.

Parameters

[in] aAddress A pointer to an IPv4 address (MUST NOT be NULL).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be nullptr).

[in] aSize The size of aBuffer (in bytes).

The string format uses quad-dotted notation of four bytes in the address (e.g., "127.0.0.1").

NAT64

212/962

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 434 of file include/openthread/nat64.h

otIp4CidrFromString

otError otIp4CidrFromString (const char *aString, otIp4Cidr *aCidr)

Converts a human-readable IPv4 CIDR string into a binary representation.

Parameters

[in] aString A pointer to a NULL-terminated string.

[out] aCidr A pointer to an IPv4 CIDR.

Definition at line 448 of file include/openthread/nat64.h

otIp4CidrToString

void otIp4CidrToString (const otIp4Cidr *aCidr, char *aBuffer, uint16_t aSize)

Converts the IPv4 CIDR to a string.

Parameters

[in] aCidr A pointer to an IPv4 CIDR (MUST NOT be NULL).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be nullptr).

[in] aSize The size of aBuffer (in bytes).

The string format uses quad-dotted notation of four bytes in the address with the length of prefix (e.g., "127.0.0.1/32").

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 464 of file include/openthread/nat64.h

otIp4AddressFromString

otError otIp4AddressFromString (const char *aString, otIp4Address *aAddress)

Converts a human-readable IPv4 address string into a binary representation.

Parameters

[in] aString A pointer to a NULL-terminated string.

[out] aAddress A pointer to an IPv4 address.

Definition at line 476 of file include/openthread/nat64.h

otNat64SynthesizeIp6Address

NAT64

213/962

otError otNat64SynthesizeIp6Address (otInstance *aInstance, const otIp4Address *aIp4Address, otIp6Address
*aIp6Address)

Sets the IPv6 address by performing NAT64 address translation from the preferred NAT64 prefix and the given IPv4

address as specified in RFC 6052.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aIp4Address A pointer to the IPv4 address to translate to IPv6.

[out] aIp6Address A pointer to the synthesized IPv6 address.

Returns

OT_ERROR_NONE Successfully synthesized the IPv6 address from NAT64 prefix and IPv4 address.

OT_ERROR_INVALID_STATE No valid NAT64 prefix in the network data.

Definition at line 490 of file include/openthread/nat64.h

Macro Definition Documentation

OT_IP4_ADDRESS_SIZE

#define OT_IP4_ADDRESS_SIZE

Value:

4

S ize of an IPv4 address (bytes)

Definition at line 55 of file include/openthread/nat64.h

OT_IP4_ADDRESS_STRING_SIZE

#define OT_IP4_ADDRESS_STRING_SIZE

Value:

17

Length of 000.000.000.000 plus a suffix NUL.

Definition at line 419 of file include/openthread/nat64.h

OT_IP4_CIDR_STRING_SIZE

#define OT_IP4_CIDR_STRING_SIZE

Value:

20

Length of 000.000.000.000/00 plus a suffix NUL.

NAT64

214/962

Definition at line 436 of file include/openthread/nat64.h

otIp4Address

215/962

otIp4Address

Represents an IPv4 address.

Modules

otIp4Address::OT_TOOL_PACKED_FIELD

Public Attributes

union
otIp4Address::OT_
TOOL_PACKED_FI

ELD

mFields

Public Attribute Documentation

mFields

union otIp4Address::OT_TOOL_PACKED_FIELD otIp4Address::mFields

Definition at line 70 of file include/openthread/nat64.h

otIp4Address

216/962

otIp4Address

Public Attributes

uint8_t m8
8-bit fields

uint32_t m32
32-bit representation

Public Attribute Documentation

m8

uint8_t otIp4Address::OT_TOOL_PACKED_FIELD::m8�OT_IP4_ADDRESS_SIZE�

8-bit fields

Definition at line 68 of file include/openthread/nat64.h

m32

uint32_t otIp4Address::OT_TOOL_PACKED_FIELD::m32

32-bit representation

Definition at line 69 of file include/openthread/nat64.h

otIp4Cidr

217/962

otIp4Cidr

Represents an IPv4 CIDR block.

Public Attributes

otIp4Address mAddress

uint8_t mLength

Public Attribute Documentation

mAddress

otIp4Address otIp4Cidr::mAddress

Definition at line 87 of file include/openthread/nat64.h

mLength

uint8_t otIp4Cidr::mLength

Definition at line 88 of file include/openthread/nat64.h

otNat64Counters

218/962

otNat64Counters

Represents the counters for NAT64.

Public Attributes

uint64_t m4To6Packets
Number of packets translated from IPv4 to IPv6.

uint64_t m4To6Bytes
Sum of size of packets translated from IPv4 to IPv6.

uint64_t m6To4Packets
Number of packets translated from IPv6 to IPv4.

uint64_t m6To4Bytes
Sum of size of packets translated from IPv6 to IPv4.

Public Attribute Documentation

m4To6Packets

uint64_t otNat64Counters::m4To6Packets

Number of packets translated from IPv4 to IPv6.

Definition at line 97 of file include/openthread/nat64.h

m4To6Bytes

uint64_t otNat64Counters::m4To6Bytes

Sum of size of packets translated from IPv4 to IPv6.

Definition at line 98 of file include/openthread/nat64.h

m6To4Packets

uint64_t otNat64Counters::m6To4Packets

Number of packets translated from IPv6 to IPv4.

Definition at line 99 of file include/openthread/nat64.h

m6To4Bytes

uint64_t otNat64Counters::m6To4Bytes

Sum of size of packets translated from IPv6 to IPv4.

otNat64Counters

219/962

Definition at line 100 of file include/openthread/nat64.h

otNat64ProtocolCounters

220/962

otNat64ProtocolCounters

Represents the counters for the protocols supported by NAT64.

Public Attributes

otNat64Counters mTotal
Counters for sum of all protoco ls.

otNat64Counters mIcmp
Counters for ICMP and ICMPv6.

otNat64Counters mUdp
Counters for UDP.

otNat64Counters mTcp
Counters for TCP.

Public Attribute Documentation

mTotal

otNat64Counters otNat64ProtocolCounters::mTotal

Counters for sum of all protocols.

Definition at line 109 of file include/openthread/nat64.h

mIcmp

otNat64Counters otNat64ProtocolCounters::mIcmp

Counters for ICMP and ICMPv6.

Definition at line 110 of file include/openthread/nat64.h

mUdp

otNat64Counters otNat64ProtocolCounters::mUdp

Counters for UDP.

Definition at line 111 of file include/openthread/nat64.h

mTcp

otNat64Counters otNat64ProtocolCounters::mTcp

Counters for TCP.

otNat64ProtocolCounters

221/962

Definition at line 112 of file include/openthread/nat64.h

otNat64ErrorCounters

222/962

otNat64ErrorCounters

Represents the counters of dropped packets due to errors when handling NAT64 packets.

Public Attributes

uint64_t mCount4To6
Errors translating IPv4 packets.

uint64_t mCount6To4
Errors translating IPv6 packets.

Public Attribute Documentation

mCount4To6

uint64_t otNat64ErrorCounters::mCount4To6�OT_NAT64_DROP_REASON_COUNT�

Errors translating IPv4 packets.

Definition at line 135 of file include/openthread/nat64.h

mCount6To4

uint64_t otNat64ErrorCounters::mCount6To4�OT_NAT64_DROP_REASON_COUNT�

Errors translating IPv6 packets.

Definition at line 136 of file include/openthread/nat64.h

otNat64AddressMapping

223/962

otNat64AddressMapping

Represents an address mapping record for NAT64.

Note

The counters will be reset for each mapping session even for the same address pair. Applications can use mId to identify

different sessions to calculate the packets correctly.

Public Attributes

uint64_t mId
The unique id for a mapping session.

otIp4Address mIp4
The IPv4 address of the mapping.

otIp6Address mIp6
The IPv6 address of the mapping.

uint32_t mRemainingTimeMs
Remaining time before expiry in milliseconds.

otNat64Protocol
Counters

mCounters

Public Attribute Documentation

mId

uint64_t otNat64AddressMapping::mId

The unique id for a mapping session.

Definition at line 172 of file include/openthread/nat64.h

mIp4

otIp4Address otNat64AddressMapping::mIp4

The IPv4 address of the mapping.

Definition at line 174 of file include/openthread/nat64.h

mIp6

otIp6Address otNat64AddressMapping::mIp6

The IPv6 address of the mapping.

Definition at line 175 of file include/openthread/nat64.h

otNat64AddressMapping

224/962

mRemainingTimeMs

uint32_t otNat64AddressMapping::mRemainingTimeMs

Remaining time before expiry in milliseconds.

Definition at line 176 of file include/openthread/nat64.h

mCounters

otNat64ProtocolCounters otNat64AddressMapping::mCounters

Definition at line 178 of file include/openthread/nat64.h

otNat64AddressMappingIterator

225/962

otNat64AddressMappingIterator

Used to iterate through NAT64 address mappings.

The fields in this type are opaque (intended for use by OpenThread core only) and therefore should not be accessed or

used by caller.

Before using an iterator, it MUST be initialized using otNat64AddressMappingIteratorInit() .

Public Attributes

void * mPtr

Public Attribute Documentation

mPtr

void* otNat64AddressMappingIterator::mPtr

Definition at line 192 of file include/openthread/nat64.h

SRP

226/962

SRP

SRP
This module includes functions that control SRP client behavior.

This module includes functions of the Service Registration Protocol.

This module includes functions for SRP client buffers and service pool.

Functions in this module are only available when feature OPENTHREAD_CONFIG_SRP_CLIENT_BUFFERS_ENABLE is

enabled.

Modules

otSrpClientHostInfo

otSrpClientService

otSrpClientBuffersServiceEntry

otSrpServerTtlConfig

otSrpServerLeaseConfig

otSrpServerLeaseInfo

otSrpServerResponseCounters

Enumerations

enum otSrpClientItemState {

OT_SRP_CLIENT_ITEM_STATE_TO_ADD
OT_SRP_CLIENT_ITEM_STATE_ADDING
OT_SRP_CLIENT_ITEM_STATE_TO_REFRESH
OT_SRP_CLIENT_ITEM_STATE_REFRESHING
OT_SRP_CLIENT_ITEM_STATE_TO_REMOVE
OT_SRP_CLIENT_ITEM_STATE_REMOVING
OT_SRP_CLIENT_ITEM_STATE_REGISTERED
OT_SRP_CLIENT_ITEM_STATE_REMOVED

}
Specifies an SRP client item (service or host info) state .

enum otSrpServerState {

OT_SRP_SERVER_STATE_DISABLED = 0
OT_SRP_SERVER_STATE_RUNNING = 1
OT_SRP_SERVER_STATE_STOPPED = 2

}
Represents the state of the SRP server.

enum otSrpServerAddressMode {

OT_SRP_SERVER_ADDRESS_MODE_UNICAST = 0
OT_SRP_SERVER_ADDRESS_MODE_ANYCAST = 1

}
Represents the address mode used by the SRP server.

SRP

227/962

Typedefs

typedef struct
otSrpClientHostIn

fo

otSrpClientHostInfo
Represents an SRP client host info.

typedef struct
otSrpClientServic

e

otSrpClientService
Represents an SRP client service .

typedef void(* otSrpClientCallback)(otError aError, const otSrpClientHostInfo *aHostInfo, const otSrpClientService
*aServices, const otSrpClientService *aRemovedServices, void *aContext)
Po inter type defines the callback used by SRP client to notify user of changes/events/errors.

typedef void(* otSrpClientAutoStartCallback)(const otSockAddr *aServerSockAddr, void *aContext)
Po inter type defines the callback used by SRP client to notify user when it is auto-started or stopped.

typedef struct
otSrpClientBuffer
sServiceEntry

otSrpClientBuffersServiceEntry
Represents a SRP client service poo l entry.

typedef struct
otSrpServerHost

otSrpServerHost
This opaque type represents a SRP service host.

typedef struct
otSrpServerServi

ce

otSrpServerService
This opaque type represents a SRP service .

typedef uint32_t otSrpServerServiceUpdateId
The ID of a SRP service update transaction on the SRP Server.

typedef enum
otSrpServerAddre

ssMode

otSrpServerAddressMode
Represents the address mode used by the SRP server.

typedef struct
otSrpServerTtlCo

nfig

otSrpServerTtlConfig
Includes SRP server TTL configurations.

typedef struct
otSrpServerLeas

eConfig

otSrpServerLeaseConfig
Includes SRP server LEASE and KEY-LEASE configurations.

typedef struct
otSrpServerLeas

eInfo

otSrpServerLeaseInfo
Includes SRP server lease information of a host/service .

typedef struct
otSrpServerResp
onseCounters

otSrpServerResponseCounters
Includes the statistics of SRP server responses.

typedef void(* otSrpServerServiceUpdateHandler)(otSrpServerServiceUpdateId aId, const otSrpServerHost *aHost,
uint32_t aTimeout, void *aContext)
Handles SRP service updates.

Functions

otError otSrpClientStart(otInstance *aInstance, const otSockAddr *aServerSockAddr)
Starts the SRP client operation.

void otSrpClientStop(otInstance *aInstance)
Stops the SRP client operation.

SRP

228/962

bool otSrpClientIsRunning(otInstance *aInstance)
Indicates whether the SRP client is running or not.

const otSockAddr
*

otSrpClientGetServerAddress(otInstance *aInstance)
Gets the socket address (IPv6 address and port number) of the SRP server which is being used by SRP client.

void otSrpClientSetCallback(otInstance *aInstance, otSrpClientCallback aCallback, void *aContext)
Sets the callback to notify caller of events/changes from SRP client.

void otSrpClientEnableAutoStartMode(otInstance *aInstance, otSrpClientAutoStartCallback aCallback, void
*aContext)
Enables the auto-start mode .

void otSrpClientDisableAutoStartMode(otInstance *aInstance)
Disables the auto-start mode .

bool otSrpClientIsAutoStartModeEnabled(otInstance *aInstance)
Indicates the current state of auto-start mode (enabled or disabled).

uint32_t otSrpClientGetTtl(otInstance *aInstance)
Gets the TTL value in every record included in SRP update requests.

void otSrpClientSetTtl(otInstance *aInstance, uint32_t aTtl)
Sets the TTL value in every record included in SRP update requests.

uint32_t otSrpClientGetLeaseInterval(otInstance *aInstance)
Gets the default lease interval used in SRP update requests.

void otSrpClientSetLeaseInterval(otInstance *aInstance, uint32_t aInterval)
Sets the default lease interval used in SRP update requests.

uint32_t otSrpClientGetKeyLeaseInterval(otInstance *aInstance)
Gets the default key lease interval used in SRP update requests.

void otSrpClientSetKeyLeaseInterval(otInstance *aInstance, uint32_t aInterval)
Sets the default key lease interval used in SRP update requests.

const
otSrpClientHostIn

fo *

otSrpClientGetHostInfo(otInstance *aInstance)
Gets the host info.

otError otSrpClientSetHostName(otInstance *aInstance, const char *aName)
Sets the host name label.

otError otSrpClientEnableAutoHostAddress(otInstance *aInstance)
Enables auto host address mode .

otError otSrpClientSetHostAddresses(otInstance *aInstance, const otIp6Address *aIp6Addresses, uint8_t
aNumAddresses)
Sets/updates the list of host IPv6 address.

otError otSrpClientAddService(otInstance *aInstance, otSrpClientService *aService)
Adds a service to be registered with server.

otError otSrpClientRemoveService(otInstance *aInstance, otSrpClientService *aService)
Requests a service to be unregistered with server.

otError otSrpClientClearService(otInstance *aInstance, otSrpClientService *aService)
Clears a service , immediately removing it from the client service list.

const
otSrpClientServic

e *

otSrpClientGetServices(otInstance *aInstance)
Gets the list of services being managed by client.

SRP

229/962

otError otSrpClientRemoveHostAndServices(otInstance *aInstance, bool aRemoveKeyLease, bool
aSendUnregToServer)
Starts the remove process of the host info and all services.

void otSrpClientClearHostAndServices(otInstance *aInstance)
Clears all host info and all the services.

const char * otSrpClientGetDomainName(otInstance *aInstance)
Gets the domain name being used by SRP client.

otError otSrpClientSetDomainName(otInstance *aInstance, const char *aName)
Sets the domain name to be used by SRP client.

const char * otSrpClientItemStateToString(otSrpClientItemState aItemState)
Converts a otSrpClientItemState to a string.

void otSrpClientSetServiceKeyRecordEnabled(otInstance *aInstance, bool aEnabled)
Enables/disables "service key record inclusion" mode .

bool otSrpClientIsServiceKeyRecordEnabled(otInstance *aInstance)
Indicates whether the "service key record inclusion" mode is enabled or disabled.

char * otSrpClientBuffersGetHostNameString(otInstance *aInstance, uint16_t *aSize)
Gets the string buffer to use for SRP client host name .

otIp6Address * otSrpClientBuffersGetHostAddressesArray(otInstance *aInstance, uint8_t *aArrayLength)
Gets the array of IPv6 address entries to use as SRP client host address list.

otSrpClientBuffer
sServiceEntry *

otSrpClientBuffersAllocateService(otInstance *aInstance)
Allocates a new service entry from the poo l.

void otSrpClientBuffersFreeService(otInstance *aInstance, otSrpClientBuffersServiceEntry *aService)
Frees a previously allocated service entry.

void otSrpClientBuffersFreeAllServices(otInstance *aInstance)
Frees all previously allocated service entries.

char * otSrpClientBuffersGetServiceEntryServiceNameString(otSrpClientBuffersServiceEntry *aEntry, uint16_t
*aSize)
Gets the string buffer for service name from a service entry.

char * otSrpClientBuffersGetServiceEntryInstanceNameString(otSrpClientBuffersServiceEntry *aEntry, uint16_t
*aSize)
Gets the string buffer for service instance name from a service entry.

uint8_t * otSrpClientBuffersGetServiceEntryTxtBuffer(otSrpClientBuffersServiceEntry *aEntry, uint16_t *aSize)
Gets the buffer for TXT record from a service entry.

const char ** otSrpClientBuffersGetSubTypeLabelsArray(otSrpClientBuffersServiceEntry *aEntry, uint16_t *aArrayLength)
Gets the array for service subtype labels from the service entry.

const char * otSrpServerGetDomain(otInstance *aInstance)
Returns the domain authorized to the SRP server.

otError otSrpServerSetDomain(otInstance *aInstance, const char *aDomain)
Sets the domain on the SRP server.

otSrpServerState otSrpServerGetState(otInstance *aInstance)
Returns the state of the SRP server.

uint16_t otSrpServerGetPort(otInstance *aInstance)
Returns the port the SRP server is listening to.

SRP

230/962

otSrpServerAddre
ssMode

otSrpServerGetAddressMode(otInstance *aInstance)
Returns the address mode being used by the SRP server.

otError otSrpServerSetAddressMode(otInstance *aInstance, otSrpServerAddressMode aMode)
Sets the address mode to be used by the SRP server.

uint8_t otSrpServerGetAnycastModeSequenceNumber(otInstance *aInstance)
Returns the sequence number used with anycast address mode .

otError otSrpServerSetAnycastModeSequenceNumber(otInstance *aInstance, uint8_t aSequenceNumber)
Sets the sequence number used with anycast address mode .

void otSrpServerSetEnabled(otInstance *aInstance, bool aEnabled)
Enables/disables the SRP server.

void otSrpServerSetAutoEnableMode(otInstance *aInstance, bool aEnabled)
Enables/disables the auto-enable mode on SRP server.

bool otSrpServerIsAutoEnableMode(otInstance *aInstance)
Indicates whether the auto-enable mode is enabled or disabled.

void otSrpServerGetTtlConfig(otInstance *aInstance, otSrpServerTtlConfig *aTtlConfig)
Returns SRP server TTL configuration.

otError otSrpServerSetTtlConfig(otInstance *aInstance, const otSrpServerTtlConfig *aTtlConfig)
Sets SRP server TTL configuration.

void otSrpServerGetLeaseConfig(otInstance *aInstance, otSrpServerLeaseConfig *aLeaseConfig)
Returns SRP server LEASE and KEY-LEASE configurations.

otError otSrpServerSetLeaseConfig(otInstance *aInstance, const otSrpServerLeaseConfig *aLeaseConfig)
Sets SRP server LEASE and KEY-LEASE configurations.

void otSrpServerSetServiceUpdateHandler(otInstance *aInstance, otSrpServerServiceUpdateHandler
aServiceHandler, void *aContext)
Sets the SRP service updates handler on SRP server.

void otSrpServerHandleServiceUpdateResult(otInstance *aInstance, otSrpServerServiceUpdateId aId, otError
aError)
Reports the result of processing a SRP update to the SRP server.

const
otSrpServerHost

*

otSrpServerGetNextHost(otInstance *aInstance, const otSrpServerHost *aHost)
Returns the next registered host on the SRP server.

const
otSrpServerResp
onseCounters *

otSrpServerGetResponseCounters(otInstance *aInstance)
Returns the response counters of the SRP server.

bool otSrpServerHostIsDeleted(const otSrpServerHost *aHost)
Tells if the SRP service host has been deleted.

const char * otSrpServerHostGetFullName(const otSrpServerHost *aHost)
Returns the full name of the host.

bool otSrpServerHostMatchesFullName(const otSrpServerHost *aHost, const char *aFullName)
Indicates whether the host matches a given host name .

const
otIp6Address *

otSrpServerHostGetAddresses(const otSrpServerHost *aHost, uint8_t *aAddressesNum)
Returns the addresses of given host.

void otSrpServerHostGetLeaseInfo(const otSrpServerHost *aHost, otSrpServerLeaseInfo *aLeaseInfo)
Returns the LEASE and KEY-LEASE information of a given host.

SRP

231/962

const
otSrpServerServi

ce *

otSrpServerHostGetNextService(const otSrpServerHost *aHost, const otSrpServerService *aService)
Returns the next service of given host.

bool otSrpServerServiceIsDeleted(const otSrpServerService *aService)
Indicates whether or not the SRP service has been deleted.

const char * otSrpServerServiceGetInstanceName(const otSrpServerService *aService)
Returns the full service instance name of the service .

bool otSrpServerServiceMatchesInstanceName(const otSrpServerService *aService, const char
*aInstanceName)
Indicates whether this service matches a given service instance name .

const char * otSrpServerServiceGetInstanceLabel(const otSrpServerService *aService)
Returns the service instance label (first label in instance name) of the service .

const char * otSrpServerServiceGetServiceName(const otSrpServerService *aService)
Returns the full service name of the service .

bool otSrpServerServiceMatchesServiceName(const otSrpServerService *aService, const char *aServiceName)
Indicates whether this service matches a given service name .

uint16_t otSrpServerServiceGetNumberOfSubTypes(const otSrpServerService *aService)
Gets the number of sub-types of the service .

const char * otSrpServerServiceGetSubTypeServiceNameAt(const otSrpServerService *aService, uint16_t aIndex)
Gets the sub-type service name (full name) of the service at a given index.

bool otSrpServerServiceHasSubTypeServiceName(const otSrpServerService *aService, const char
*aSubTypeServiceName)
Indicates whether or not the service has a given sub-type .

otError otSrpServerParseSubTypeServiceName(const char *aSubTypeServiceName, char *aLabel, uint8_t
aLabelSize)
Parses a sub-type service name (full name) and extracts the sub-type label.

uint16_t otSrpServerServiceGetPort(const otSrpServerService *aService)
Returns the port of the service instance .

uint16_t otSrpServerServiceGetWeight(const otSrpServerService *aService)
Returns the weight of the service instance .

uint16_t otSrpServerServiceGetPriority(const otSrpServerService *aService)
Returns the priority of the service instance .

uint32_t otSrpServerServiceGetTtl(const otSrpServerService *aService)
Returns the TTL of the service instance .

const uint8_t * otSrpServerServiceGetTxtData(const otSrpServerService *aService, uint16_t *aDataLength)
Returns the TXT record data of the service instance .

const
otSrpServerHost

*

otSrpServerServiceGetHost(const otSrpServerService *aService)
Returns the host which the service instance reside on.

void otSrpServerServiceGetLeaseInfo(const otSrpServerService *aService, otSrpServerLeaseInfo *aLeaseInfo)
Returns the LEASE and KEY-LEASE information of a given service .

Enumeration Documentation

otSrpClientItemState

SRP

232/962

otSrpClientItemState

Specifies an SRP client item (service or host info) state.

Enumerator

OT_SRP_CLIENT_ITEM_STATE_TO_ADD Item to be added/registered.

OT_SRP_CLIENT_ITEM_STATE_ADDING Item is being added/registered.

OT_SRP_CLIENT_ITEM_STATE_TO_REFRESH Item to be refreshed (re-register to renew lease).

OT_SRP_CLIENT_ITEM_STATE_REFRESHING Item is being refreshed.

OT_SRP_CLIENT_ITEM_STATE_TO_REMOVE Item to be removed.

OT_SRP_CLIENT_ITEM_STATE_REMOVING Item is being removed.

OT_SRP_CLIENT_ITEM_STATE_REGISTERED Item is registered with server.

OT_SRP_CLIENT_ITEM_STATE_REMOVED Item is removed.

Definition at line 59 of file include/openthread/srp_client.h

otSrpServerState

otSrpServerState

Represents the state of the SRP server.

Enumerator

OT_SRP_SERVER_STATE_DISABLED The SRP server is disabled.

OT_SRP_SERVER_STATE_RUNNING The SRP server is enabled and running.

OT_SRP_SERVER_STATE_STOPPED The SRP server is enabled but stopped.

Definition at line 80 of file include/openthread/srp_server.h

otSrpServerAddressMode

otSrpServerAddressMode

Represents the address mode used by the SRP server.

Address mode specifies how the address and port number are determined by the SRP server and how this info is published

in the Thread Network Data.

Enumerator

OT_SRP_SERVER_ADDRESS_MODE_UNICAST Unicast address mode.

OT_SRP_SERVER_ADDRESS_MODE_ANYCAST Anycast address mode.

Definition at line 94 of file include/openthread/srp_server.h

Typedef Documentation

otSrpClientHostInfo

typedef struct otSrpClientHostInfo otSrpClientHostInfo

SRP

233/962

Represents an SRP client host info.

Definition at line 82 of file include/openthread/srp_client.h

otSrpClientService

typedef struct otSrpClientService otSrpClientService

Represents an SRP client service.

The values in this structure, including the string buffers for the names and the TXT record entries, MUST persist and stay

constant after an instance of this structure is passed to OpenThread from otSrpClientAddService() or

otSrpClientRemoveService() .

The mState , mData , mNext fields are used/managed by OT core only. Their value is ignored when an instance of

otSrpClientService is passed in otSrpClientAddService() or otSrpClientRemoveService() or other functions. The caller does not

need to set these fields.

The mLease and mKeyLease fields specify the desired lease and key lease intervals for this service. Zero value indicates

that the interval is unspecified and then the default lease or key lease intervals from otSrpClientGetLease Interval() and

otSrpClientGetKeyLease Interval() are used for this service. If the key lease interval (whether set explicitly or determined from

the default) is shorter than the lease interval for a service, SRP client will re-use the lease interval value for key lease

interval as well. For example, if in service mLease is explicitly set to 2 days and mKeyLease is set to zero and default key

lease is set to 1 day, then when registering this service, the requested key lease for this service is also set to 2 days.

Definition at line 119 of file include/openthread/srp_client.h

otSrpClientCallback

typedef void(* otSrpClientCallback) (otError aError, const otSrpClientHostInfo *aHostInfo, const otSrpClientService
*aServices, const otSrpClientService *aRemovedServices, void *aContext))(otError aError, const otSrpClientHostInfo
*aHostInfo, const otSrpClientService *aServices, const otSrpClientService *aRemovedServices, void *aContext)

Pointer type defines the callback used by SRP client to notify user of changes/events/errors.

Parameters

[in] aError The error (see above).

[in] aHostInfo A pointer to host info.

[in] aServices The head of linked-list containing all services (excluding the ones removed). NULL if the list is

empty.

[in] aRemovedServices The head of linked-list containing all removed services. NULL if the list is empty.

[in] aContext A pointer to an arbitrary context (provided when callback was registered).

This callback is invoked on a successful registration of an update (i.e., add/remove of host-info and/or some service(s))

with the SRP server, or if there is a failure or error (e.g., server rejects a update request or client times out waiting for

response, etc).

In case of a successful reregistration of an update, aError parameter would be OT_ERROR_NONE and the host info and the

full list of services is provided as input parameters to the callback. Note that host info and services each track its own state

in the corresponding mState member variable of the related data structure (the state indicating whether the host-

info/service is registered or removed or still being added/removed, etc).

The list of removed services is passed as its own linked-list aRemovedServices in the callback. Note that when the callback

is invoked, the SRP client (OpenThread implementation) is done with the removed service instances listed in

aRemovedServices and no longer tracks/stores them (i.e., if from the callback we call otSrpClientGetServices() the removed

SRP

234/962

services will not be present in the returned list). Providing a separate list of removed services in the callback helps indicate

to user which items are now removed and allow user to re-claim/reuse the instances.

If the server rejects an SRP update request, the DNS response code (RFC 2136) is mapped to the following errors:

(0) NOERROR Success (no error condition) -> OT_ERROR_NONE

(1) FORMERR Server unable to interpret due to format error -> OT_ERROR_PARSE

(2) SERVFAIL Server encountered an internal failure -> OT_ERROR_FAILED

(3) NXDOMAIN Name that ought to exist, does not exist -> OT_ERROR_NOT_FOUND

(4) NOTIMP Server does not support the query type (OpCode) -> OT_ERROR_NOT_IMPLEMENTED

(5) REFUSED Server refused for policy/security reasons -> OT_ERROR_SECURITY

(6) YXDOMAIN Some name that ought not to exist, does exist -> OT_ERROR_DUPLICATED

(7) YXRRSET Some RRset that ought not to exist, does exist -> OT_ERROR_DUPLICATED

(8) NXRRSET Some RRset that ought to exist, does not exist -> OT_ERROR_NOT_FOUND

(9) NOTAUTH Service is not authoritative for zone -> OT_ERROR_SECURITY

(10) NOTZONE A name is not in the zone -> OT_ERROR_PARSE

(20) BADNAME Bad name -> OT_ERROR_PARSE

(21) BADALG Bad algorithm -> OT_ERROR_SECURITY

(22) BADTRUN Bad truncation -> OT_ERROR_PARSE

Other response codes -> OT_ERROR_FAILED

The following errors are also possible:

OT_ERROR_RESPONSE_TIMEOUT : Timed out waiting for response from server (client would continue to retry).

OT_ERROR_INVALID_ARGS : The provided service structure is invalid (e.g., bad service name or otDnsTxtEntry).

OT_ERROR_NO_BUFS : Insufficient buffer to prepare or send the update message.

Note that in case of any failure, the client continues the operation, i.e. it prepares and (re)transmits the SRP update

message to the server, after some wait interval. The retry wait interval starts from the minimum value and is increased by

the growth factor every failure up to the max value (please see configuration parameter

OPENTHREAD_CONFIG_SRP_CLIENT_MIN_RETRY_WAIT_INTERVAL and the related ones for more details).

Definition at line 176 of file include/openthread/srp_client.h

otSrpClientAutoStartCallback

typedef void(* otSrpClientAutoStartCallback) (const otSockAddr *aServerSockAddr, void *aContext))(const otSockAddr
*aServerSockAddr, void *aContext)

Pointer type defines the callback used by SRP client to notify user when it is auto-started or stopped.

Parameters

[in] aServerSockAddr A non-NULL pointer indicates SRP server was started and pointer will give the selected server

socket address. A NULL pointer indicates SRP server was stopped.

[in] aContext A pointer to an arbitrary context (provided when callback was registered).

This is only used when auto-start feature OPENTHREAD_CONFIG_SRP_CLIENT_AUTO_START_API_ENABLE is enabled.

This callback is invoked when auto-start mode is enabled and the SRP client is either automatically started or stopped.

Definition at line 195 of file include/openthread/srp_client.h

otSrpClientBuffersServiceEntry

typedef struct otSrpClientBuffersServiceEntry otSrpClientBuffersServiceEntry

Represents a SRP client service pool entry.

SRP

235/962

Definition at line 65 of file include/openthread/srp_client_buffers.h

otSrpServerHost

typedef struct otSrpServerHost otSrpServerHost

This opaque type represents a SRP service host.

Definition at line 62 of file include/openthread/srp_server.h

otSrpServerService

typedef struct otSrpServerService otSrpServerService

This opaque type represents a SRP service.

Definition at line 68 of file include/openthread/srp_server.h

otSrpServerServiceUpdateId

typedef uint32_t otSrpServerServiceUpdateId

The ID of a SRP service update transaction on the SRP Server.

Definition at line 74 of file include/openthread/srp_server.h

otSrpServerAddressMode

typedef enum otSrpServerAddressMode otSrpServerAddressMode

Represents the address mode used by the SRP server.

Address mode specifies how the address and port number are determined by the SRP server and how this info is published

in the Thread Network Data.

Definition at line 98 of file include/openthread/srp_server.h

otSrpServerTtlConfig

typedef struct otSrpServerTtlConfig otSrpServerTtlConfig

Includes SRP server TTL configurations.

Definition at line 108 of file include/openthread/srp_server.h

otSrpServerLeaseConfig

typedef struct otSrpServerLeaseConfig otSrpServerLeaseConfig

SRP

236/962

Includes SRP server LEASE and KEY-LEASE configurations.

Definition at line 120 of file include/openthread/srp_server.h

otSrpServerLeaseInfo

typedef struct otSrpServerLeaseInfo otSrpServerLeaseInfo

Includes SRP server lease information of a host/service.

Definition at line 132 of file include/openthread/srp_server.h

otSrpServerResponseCounters

typedef struct otSrpServerResponseCounters otSrpServerResponseCounters

Includes the statistics of SRP server responses.

Definition at line 146 of file include/openthread/srp_server.h

otSrpServerServiceUpdateHandler

typedef void(* otSrpServerServiceUpdateHandler) (otSrpServerServiceUpdateId aId, const otSrpServerHost *aHost,
uint32_t aTimeout, void *aContext))(otSrpServerServiceUpdateId aId, const otSrpServerHost *aHost, uint32_t aTimeout,
void *aContext)

Handles SRP service updates.

Parameters

[in] aId The service update transaction ID. This ID must be passed back with

otSrpServerHandleServiceUpdateResult .

[in] aHost A pointer to the otSrpServerHost object which contains the SRP updates. The handler should publish/un-

publish the host and each service points to this host with below rules:

 If the host is not deleted (indicated by otSrpServerHostIsDeleted), then it should be published or

updated with mDNS. Otherwise, the host should be un-published (remove AAAA RRs).

 For each service points to this host, it must be un-published if the host is to be un-published.

Otherwise, the handler should publish or update the service when it is not deleted (indicated by

otSrpServerService IsDeleted) and un-publish it when deleted.

[in] aTimeout The maximum time in milliseconds for the handler to process the service event.

[in] aContext A pointer to application-specific context.

Is called by the SRP server to notify that a SRP host and possibly SRP services are being updated. It is important that the

SRP updates are not committed until the handler returns the result by calling otSrpServerHandleServiceUpdateResult or

times out after aTimeout .

A SRP service observer should always call otSrpServerHandleServiceUpdateResult with error code OT_ERROR_NONE

immediately after receiving the update events.

A more generic handler may perform validations on the SRP host/services and rejects the SRP updates if any validation

fails. For example, an Advertising Proxy should advertise (or remove) the host and services on a multicast-capable link and

returns specific error code if any failure occurs.

SRP

237/962

See Also

otSrpServerSetServiceUpdateHandler

otSrpServerHandleServiceUpdateResult

Definition at line 373 of file include/openthread/srp_server.h

Function Documentation

otSrpClientStart

otError otSrpClientStart (otInstance *aInstance, const otSockAddr *aServerSockAddr)

Starts the SRP client operation.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aServerSockAddr The socket address (IPv6 address and port number) of the SRP server.

SRP client will prepare and send "SRP Update" message to the SRP server once all the following conditions are met:

The SRP client is started - otSrpClientStart() is called.

Host name is set - otSrpClientSetHostName() is called.

At least one host IPv6 address is set - otSrpClientSetHostName() is called.

At least one service is added - otSrpClientAddService() is called.

It does not matter in which order these functions are called. When all conditions are met, the SRP client will wait for a short

delay before preparing an "SRP Update" message and sending it to server. This delay allows for user to add multiple

services and/or IPv6 addresses before the first SRP Update message is sent (ensuring a single SRP Update is sent

containing all the info). The config OPENTHREAD_CONFIG_SRP_CLIENT_UPDATE_TX_DELAY specifies the delay interval.

Definition at line 222 of file include/openthread/srp_client.h

otSrpClientStop

void otSrpClientStop (otInstance *aInstance)

Stops the SRP client operation.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Stops any further interactions with the SRP server. Note that it does not remove or clear host info and/or list of services. It

marks all services to be added/removed again once the client is (re)started.

Definition at line 233 of file include/openthread/srp_client.h

otSrpClientIsRunning

bool otSrpClientIsRunning (otInstance *aInstance)

Indicates whether the SRP client is running or not.

Parameters

SRP

238/962

[in] aInstance A pointer to the OpenThread instance.

Returns

TRUE if the SRP client is running, FALSE otherwise.

Definition at line 243 of file include/openthread/srp_client.h

otSrpClientGetServerAddress

const otSockAddr * otSrpClientGetServerAddress (otInstance *aInstance)

Gets the socket address (IPv6 address and port number) of the SRP server which is being used by SRP client.

Parameters

[in] aInstance A pointer to the OpenThread instance.

If the client is not running, the address is unspecified (all zero) with zero port number.

Returns

A pointer to the SRP server's socket address (is always non-NULL).

Definition at line 256 of file include/openthread/srp_client.h

otSrpClientSetCallback

void otSrpClientSetCallback (otInstance *aInstance, otSrpClientCallback aCallback, void *aContext)

Sets the callback to notify caller of events/changes from SRP client.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aCallback The callback to notify of events and changes. Can be NULL if not needed.

[in] aContext An arbitrary context used with aCallback .

The SRP client allows a single callback to be registered. So consecutive calls to this function will overwrite any previously

set callback functions.

Definition at line 269 of file include/openthread/srp_client.h

otSrpClientEnableAutoStartMode

void otSrpClientEnableAutoStartMode (otInstance *aInstance, otSrpClientAutoStartCallback aCallback, void *aContext)

Enables the auto-start mode.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aCallback A callback to notify when client is auto-started/stopped. Can be NULL if not needed.

[in] aContext A context to be passed when invoking aCallback .

SRP

239/962

This is only available when auto-start feature OPENTHREAD_CONFIG_SRP_CLIENT_AUTO_START_API_ENABLE is enabled.

Config option OPENTHREAD_CONFIG_SRP_CLIENT_AUTO_START_DEFAULT_MODE specifies the default auto-start mode (whether it

is enabled or disabled at the start of OT stack).

When auto-start is enabled, the SRP client will monitor the Thread Network Data to discover SRP servers and select the

preferred server and automatically start and stop the client when an SRP server is detected.

There are three categories of Network Data entries indicating presence of SRP sever. They are preferred in the following

order:

1) Preferred unicast entries where server address is included in the service data. If there are multiple options, the one with

numerically lowest IPv6 address is preferred.

2) Anycast entries each having a seq number. A larger sequence number in the sense specified by Serial Number Arithmetic

logic in RFC-1982 is considered more recent and therefore preferred. The largest seq number using serial number arithmetic

is preferred if it is well-defined (i.e., the seq number is larger than all other seq numbers). If it is not well-defined, then the

numerically largest seq number is preferred.

3) Unicast entries where the server address info is included in server data. If there are multiple options, the one with

numerically lowest IPv6 address is preferred.

When there is a change in the Network Data entries, client will check that the currently selected server is still present in the

Network Data and is still the preferred one. Otherwise the client will switch to the new preferred server or stop if there is

none.

When the SRP client is explicitly started through a successful call to otSrpClientStart() , the given SRP server address in

otSrpClientStart() will continue to be used regardless of the state of auto-start mode and whether the same SRP server

address is discovered or not in the Thread Network Data. In this case, only an explicit otSrpClientStop() call will stop the

client.

Definition at line 310 of file include/openthread/srp_client.h

otSrpClientDisableAutoStartMode

void otSrpClientDisableAutoStartMode (otInstance *aInstance)

Disables the auto-start mode.

Parameters

[in] aInstance A pointer to the OpenThread instance.

This is only available when auto-start feature OPENTHREAD_CONFIG_SRP_CLIENT_AUTO_START_API_ENABLE is enabled.

Disabling the auto-start mode will not stop the client if it is already running but the client stops monitoring the Thread

Network Data to verify that the selected SRP server is still present in it.

Note that a call to otSrpClientStop() will also disable the auto-start mode.

Definition at line 325 of file include/openthread/srp_client.h

otSrpClientIsAutoStartModeEnabled

bool otSrpClientIsAutoStartModeEnabled (otInstance *aInstance)

Indicates the current state of auto-start mode (enabled or disabled).

Parameters

SRP

240/962

[in] aInstance A pointer to the OpenThread instance.

This is only available when auto-start feature OPENTHREAD_CONFIG_SRP_CLIENT_AUTO_START_API_ENABLE is enabled.

Returns

TRUE if the auto-start mode is enabled, FALSE otherwise.

Definition at line 337 of file include/openthread/srp_client.h

otSrpClientGetTtl

uint32_t otSrpClientGetTtl (otInstance *aInstance)

Gets the TTL value in every record included in SRP update requests.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Note that this is the TTL requested by the SRP client. The server may choose to accept a different TTL.

By default, the TTL will equal the lease interval. Passing 0 or a value larger than the lease interval via otSrpClientSetTtl() will

also cause the TTL to equal the lease interval.

Returns

The TTL (in seconds).

Definition at line 352 of file include/openthread/srp_client.h

otSrpClientSetTtl

void otSrpClientSetTtl (otInstance *aInstance, uint32_t aTtl)

Sets the TTL value in every record included in SRP update requests.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aTtl The TTL (in seconds). If value is zero or greater than lease interval, the TTL is set to the lease interval.

Changing the TTL does not impact the TTL of already registered services/host-info. It only affects future SRP update

messages (i.e., adding new services and/or refreshes of the existing services).

Definition at line 365 of file include/openthread/srp_client.h

otSrpClientGetLeaseInterval

uint32_t otSrpClientGetLeaseInterval (otInstance *aInstance)

Gets the default lease interval used in SRP update requests.

Parameters

[in] aInstance A pointer to the OpenThread instance.

The default interval is used only for otSrpClientService instances with mLease set to zero.

SRP

241/962

Note that this is the lease duration requested by the SRP client. The server may choose to accept a different lease

interval.

Returns

The lease interval (in seconds).

Definition at line 380 of file include/openthread/srp_client.h

otSrpClientSetLeaseInterval

void otSrpClientSetLeaseInterval (otInstance *aInstance, uint32_t aInterval)

Sets the default lease interval used in SRP update requests.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aInterval The lease interval (in seconds). If zero, the default value specified by

OPENTHREAD_CONFIG_SRP_CLIENT_DEFAULT_LEASE would be used.

The default interval is used only for otSrpClientService instances with mLease set to zero.

Changing the lease interval does not impact the accepted lease interval of already registered services/host-info. It only

affects any future SRP update messages (i.e., adding new services and/or refreshes of the existing services).

Definition at line 395 of file include/openthread/srp_client.h

otSrpClientGetKeyLeaseInterval

uint32_t otSrpClientGetKeyLeaseInterval (otInstance *aInstance)

Gets the default key lease interval used in SRP update requests.

Parameters

[in] aInstance A pointer to the OpenThread instance.

The default interval is used only for otSrpClientService instances with mKeyLease set to zero.

Note that this is the lease duration requested by the SRP client. The server may choose to accept a different lease

interval.

Returns

The key lease interval (in seconds).

Definition at line 410 of file include/openthread/srp_client.h

otSrpClientSetKeyLeaseInterval

void otSrpClientSetKeyLeaseInterval (otInstance *aInstance, uint32_t aInterval)

Sets the default key lease interval used in SRP update requests.

Parameters

SRP

242/962

[in] aInstance A pointer to the OpenThread instance.

[in] aInterval The key lease interval (in seconds). If zero, the default value specified by

OPENTHREAD_CONFIG_SRP_CLIENT_DEFAULT_KEY_LEASE would be used.

The default interval is used only for otSrpClientService instances with mKeyLease set to zero.

Changing the lease interval does not impact the accepted lease interval of already registered services/host-info. It only

affects any future SRP update messages (i.e., adding new services and/or refreshes of existing services).

Definition at line 425 of file include/openthread/srp_client.h

otSrpClientGetHostInfo

const otSrpClientHostInfo * otSrpClientGetHostInfo (otInstance *aInstance)

Gets the host info.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Returns

A pointer to host info structure.

Definition at line 435 of file include/openthread/srp_client.h

otSrpClientSetHostName

otError otSrpClientSetHostName (otInstance *aInstance, const char *aName)

Sets the host name label.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aName A pointer to host name label string (MUST NOT be NULL). Pointer to the string buffer MUST persist and

remain valid and constant after return from this function.

After a successful call to this function, otSrpClientCallback will be called to report the status of host info registration with

SRP server.

The name string buffer pointed to by aName MUST persist and stay unchanged after returning from this function.

OpenThread will keep the pointer to the string.

The host name can be set before client is started or after start but before host info is registered with server (host info

should be in either STATE_TO_ADD or STATE_REMOVED).

Definition at line 458 of file include/openthread/srp_client.h

otSrpClientEnableAutoHostAddress

otError otSrpClientEnableAutoHostAddress (otInstance *aInstance)

Enables auto host address mode.

Parameters

SRP

243/962

N/A aInstance

When enabled host IPv6 addresses are automatically set by SRP client using all the unicast addresses on Thread netif

excluding all link-local and mesh-local addresses. If there is no valid address, then Mesh Local EID address is added. The

SRP client will automatically re-register when/if addresses on Thread netif are updated (new addresses are added or

existing addresses are removed).

The auto host address mode can be enabled before start or during operation of SRP client except when the host info is

being removed (client is busy handling a remove request from an call to otSrpClientRemoveHostAndServices() and host info

still being in either STATE_TO_REMOVE or STATE_REMOVING states).

After auto host address mode is enabled, it can be disabled by a call to otSrpClientSetHostAddresses() which then explicitly

sets the host addresses.

Definition at line 479 of file include/openthread/srp_client.h

otSrpClientSetHostAddresses

otError otSrpClientSetHostAddresses (otInstance *aInstance, const otIp6Address *aIp6Addresses, uint8_t
aNumAddresses)

Sets/updates the list of host IPv6 address.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aIp6Addresses A pointer to the an array containing the host IPv6 addresses.

[in] aNumAddresses The number of addresses in the aIp6Addresses array.

Host IPv6 addresses can be set/changed before start or during operation of SRP client (e.g. to add/remove or change a

previously registered host address), except when the host info is being removed (client is busy handling a remove request

from an earlier call to otSrpClientRemoveHostAndServices() and host info still being in either STATE_TO_REMOVE or

STATE_REMOVING states).

The host IPv6 address array pointed to by aIp6Addresses MUST persist and remain unchanged after returning from this

function (with OT_ERROR_NONE). OpenThread will save the pointer to the array.

After a successful call to this function, otSrpClientCallback will be called to report the status of the address registration with

SRP server.

Calling this function disables auto host address mode if it was previously enabled from a successful call to

otSrpClientEnableAutoHostAddress() .

Definition at line 508 of file include/openthread/srp_client.h

otSrpClientAddService

otError otSrpClientAddService (otInstance *aInstance, otSrpClientService *aService)

Adds a service to be registered with server.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aService A pointer to a otSrpClientService instance to add.

SRP

244/962

After a successful call to this function, otSrpClientCallback will be called to report the status of the service

addition/registration with SRP server.

The otSrpClientService instance being pointed to by aService MUST persist and remain unchanged after returning from this

function (with OT_ERROR_NONE). OpenThread will save the pointer to the service instance.

The otSrpClientService instance is not longer tracked by OpenThread and can be reclaimed only when

It is removed explicitly by a call to otSrpClientRemoveService() or removed along with other services by a call to

otSrpClientRemoveHostAndServices() and only after the otSrpClientCallback` is called indicating the service was removed. Or,

A call to otSrpClientClearHostAndServices() which removes the host and all related services immediately.

Definition at line 535 of file include/openthread/srp_client.h

otSrpClientRemoveService

otError otSrpClientRemoveService (otInstance *aInstance, otSrpClientService *aService)

Requests a service to be unregistered with server.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aService A pointer to a otSrpClientService instance to remove.

After a successful call to this function, otSrpClientCallback will be called to report the status of remove request with SRP

server.

The otSrpClientService instance being pointed to by aService MUST persist and remain unchanged after returning from this

function (with OT_ERROR_NONE). OpenThread will keep the service instance during the remove process. Only after the

otSrpClientCallback is called indicating the service instance is removed from SRP client service list and can be be

freed/reused.

Definition at line 556 of file include/openthread/srp_client.h

otSrpClientClearService

otError otSrpClientClearService (otInstance *aInstance, otSrpClientService *aService)

Clears a service, immediately removing it from the client service list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aService A pointer to a otSrpClientService instance to delete.

Unlike otSrpClientRemoveService() which sends an update message to the server to remove the service, this function clears

the service from the client's service list without any interaction with the server. On a successful call to this function, the

otSrpClientCallback will NOT be called and the aService entry can be reclaimed and re-used by the caller immediately.

Can be used along with a subsequent call to otSrpClientAddService() (potentially reusing the same aService entry with the

same service and instance names) to update some of the parameters in an existing service.

Definition at line 576 of file include/openthread/srp_client.h

otSrpClientGetServices

SRP

245/962

const otSrpClientService * otSrpClientGetServices (otInstance *aInstance)

Gets the list of services being managed by client.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Returns

A pointer to the head of linked-list of all services or NULL if the list is empty.

Definition at line 586 of file include/openthread/srp_client.h

otSrpClientRemoveHostAndServices

otError otSrpClientRemoveHostAndServices (otInstance *aInstance, bool aRemoveKeyLease, bool aSendUnregToServer)

Starts the remove process of the host info and all services.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aRemoveKeyLease A boolean indicating whether or not the host key lease should also be removed.

[in] aSendUnregToServer A boolean indicating whether to send update to server when host info is not registered.

After returning from this function, otSrpClientCallback will be called to report the status of remove request with SRP server.

If the host info is to be permanently removed from server, aRemoveKeyLease should be set to true which removes the key

lease associated with host on server. Otherwise, the key lease record is kept as before, which ensures that the server

holds the host name in reserve for when the client is once again able to provide and register its service(s).

The aSendUnregToServer determines the behavior when the host info is not yet registered with the server. If

aSendUnregToServer is set to false (which is the default/expected value) then the SRP client will immediately remove the

host info and services without sending an update message to server (no need to update the server if nothing is yet

registered with it). If aSendUnregToServer is set to true then the SRP client will send an update message to the server.

Note that if the host info is registered then the value of aSendUnregToServer does not matter and the SRP client will

always send an update message to server requesting removal of all info.

One situation where aSendUnregToServer can be useful is on a device reset/reboot, caller may want to remove any

previously registered services with the server. In this case, caller can otSrpClientSetHostName() and then request

otSrpClientRemoveHostAndServices() with aSendUnregToServer as true .

Definition at line 619 of file include/openthread/srp_client.h

otSrpClientClearHostAndServices

void otSrpClientClearHostAndServices (otInstance *aInstance)

Clears all host info and all the services.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Unlike otSrpClientRemoveHostAndServices() which sends an update message to the server to remove all the info, this

function clears all the info immediately without any interaction with the server.

SRP

246/962

Definition at line 630 of file include/openthread/srp_client.h

otSrpClientGetDomainName

const char * otSrpClientGetDomainName (otInstance *aInstance)

Gets the domain name being used by SRP client.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Requires OPENTHREAD_CONFIG_SRP_CLIENT_DOMAIN_NAME_API_ENABLE to be enabled.

If domain name is not set, "default.service.arpa" will be used.

Returns

The domain name string.

Definition at line 644 of file include/openthread/srp_client.h

otSrpClientSetDomainName

otError otSrpClientSetDomainName (otInstance *aInstance, const char *aName)

Sets the domain name to be used by SRP client.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aName A pointer to the domain name string. If NULL sets it to default "default.service.arpa".

Requires OPENTHREAD_CONFIG_SRP_CLIENT_DOMAIN_NAME_API_ENABLE to be enabled.

If not set "default.service.arpa" will be used.

The name string buffer pointed to by aName MUST persist and stay unchanged after returning from this function.

OpenThread will keep the pointer to the string.

The domain name can be set before client is started or after start but before host info is registered with server (host info

should be in either STATE_TO_ADD or STATE_TO_REMOVE).

Definition at line 666 of file include/openthread/srp_client.h

otSrpClientItemStateToString

const char * otSrpClientItemStateToString (otSrpClientItemState aItemState)

Converts a otSrpClientItemState to a string.

Parameters

[in] aItemState An item state.

Returns

A string representation of aItemState .

SRP

247/962

Definition at line 676 of file include/openthread/srp_client.h

otSrpClientSetServiceKeyRecordEnabled

void otSrpClientSetServiceKeyRecordEnabled (otInstance *aInstance, bool aEnabled)

Enables/disables "service key record inclusion" mode.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aEnabled TRUE to enable, FALSE to disable the "service key record inclusion" mode.

When enabled, SRP client will include KEY record in Service Description Instructions in the SRP update messages that it

sends.

Is available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE configuration is enabled.

Note

KEY record is optional in Service Description Instruction (it is required and always included in the Host Description

Instruction). The default behavior of SRP client is to not include it. This function is intended to override the default behavior

for testing only.

Definition at line 694 of file include/openthread/srp_client.h

otSrpClientIsServiceKeyRecordEnabled

bool otSrpClientIsServiceKeyRecordEnabled (otInstance *aInstance)

Indicates whether the "service key record inclusion" mode is enabled or disabled.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Is available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE configuration is enabled.

Returns

TRUE if "service key record inclusion" mode is enabled, FALSE otherwise.

Definition at line 706 of file include/openthread/srp_client.h

otSrpClientBuffersGetHostNameString

char * otSrpClientBuffersGetHostNameString (otInstance *aInstance, uint16_t *aSize)

Gets the string buffer to use for SRP client host name.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[out] aSize Pointer to a variable to return the size (number of bytes) of the string buffer (MUST NOT be NULL).

Returns

A pointer to char buffer to use for SRP client host name.

SRP

248/962

Definition at line 77 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersGetHostAddressesArray

otIp6Address * otSrpClientBuffersGetHostAddressesArray (otInstance *aInstance, uint8_t *aArrayLength)

Gets the array of IPv6 address entries to use as SRP client host address list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[out] aArrayLength Pointer to a variable to return the array length i.e., number of IPv6 address entries in the array

(MUST NOT be NULL).

Returns

A pointer to an array of otIp6Address entries (number of entries is returned in aArrayLength).

Definition at line 89 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersAllocateService

otSrpClientBuffersServiceEntry * otSrpClientBuffersAllocateService (otInstance *aInstance)

Allocates a new service entry from the pool.

Parameters

[in] aInstance A pointer to the OpenThread instance.

The returned service entry instance will be initialized as follows:

mService .mName will point to an allocated string buffer which can be retrieved using the function

otSrpClientBuffersGetServiceEntryServiceNameString() .

mService .mInstanceName will point to an allocated string buffer which can be retrieved using the function

otSrpClientBuffersGetServiceEntryInstanceNameString() .

mService .mSubTypeLabels points to an array that is returned from otSrpClientBuffersGetSubTypeLabelsArray() .

mService .mTxtEntries will point to mTxtEntry .

mService .mNumTxtEntries will be set to one.

Other mService fields (port, priority, weight) are set to zero.

mTxtEntry.mKey is set to NULL (value is treated as already encoded).

mTxtEntry.mValue will point to an allocated buffer which can be retrieved using the function

otSrpClientBuffersGetServiceEntryTxtBuffer() .

mTxtEntry.mValueLength is set to zero.

All related data/string buffers and arrays are cleared to all zero.

Returns

A pointer to the newly allocated service entry or NULL if not more entry available in the pool.

Definition at line 115 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersFreeService

void otSrpClientBuffersFreeService (otInstance *aInstance, otSrpClientBuffersServiceEntry *aService)

Frees a previously allocated service entry.

SRP

249/962

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aService A pointer to the service entry to free (MUST NOT be NULL).

The aService MUST be previously allocated using otSrpClientBuffersAllocateService() and not yet freed. Otherwise the

behavior of this function is undefined.

Definition at line 127 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersFreeAllServices

void otSrpClientBuffersFreeAllServices (otInstance *aInstance)

Frees all previously allocated service entries.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Definition at line 135 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersGetServiceEntryServiceNameString

char * otSrpClientBuffersGetServiceEntryServiceNameString (otSrpClientBuffersServiceEntry *aEntry, uint16_t *aSize)

Gets the string buffer for service name from a service entry.

Parameters

[in] aEntry A pointer to a previously allocated service entry (MUST NOT be NULL).

[out] aSize A pointer to a variable to return the size (number of bytes) of the string buffer (MUST NOT be NULL).

Returns

A pointer to the string buffer.

Definition at line 147 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersGetServiceEntryInstanceNameString

char * otSrpClientBuffersGetServiceEntryInstanceNameString (otSrpClientBuffersServiceEntry *aEntry, uint16_t *aSize)

Gets the string buffer for service instance name from a service entry.

Parameters

[in] aEntry A pointer to a previously allocated service entry (MUST NOT be NULL).

[out] aSize A pointer to a variable to return the size (number of bytes) of the string buffer (MUST NOT be NULL).

Returns

A pointer to the string buffer.

Definition at line 159 of file include/openthread/srp_client_buffers.h

SRP

250/962

otSrpClientBuffersGetServiceEntryTxtBuffer

uint8_t * otSrpClientBuffersGetServiceEntryTxtBuffer (otSrpClientBuffersServiceEntry *aEntry, uint16_t *aSize)

Gets the buffer for TXT record from a service entry.

Parameters

[in] aEntry A pointer to a previously allocated service entry (MUST NOT be NULL).

[out] aSize A pointer to a variable to return the size (number of bytes) of the buffer (MUST NOT be NULL).

Returns

A pointer to the buffer.

Definition at line 170 of file include/openthread/srp_client_buffers.h

otSrpClientBuffersGetSubTypeLabelsArray

const char ** otSrpClientBuffersGetSubTypeLabelsArray (otSrpClientBuffersServiceEntry *aEntry, uint16_t *aArrayLength)

Gets the array for service subtype labels from the service entry.

Parameters

[in] aEntry A pointer to a previously allocated service entry (MUST NOT be NULL).

[out] aArrayLength A pointer to a variable to return the array length (MUST NOT be NULL).

Returns

A pointer to the array.

Definition at line 181 of file include/openthread/srp_client_buffers.h

otSrpServerGetDomain

const char * otSrpServerGetDomain (otInstance *aInstance)

Returns the domain authorized to the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

If the domain if not set by SetDomain, "default.service.arpa." will be returned. A trailing dot is always appended even if the

domain is set without it.

Returns

A pointer to the dot-joined domain string.

Definition at line 159 of file include/openthread/srp_server.h

otSrpServerSetDomain

otError otSrpServerSetDomain (otInstance *aInstance, const char *aDomain)

SRP

251/962

Sets the domain on the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDomain The domain to be set. MUST NOT be NULL.

A trailing dot will be appended to aDomain if it is not already there. Should only be called before the SRP server is enabled.

Definition at line 176 of file include/openthread/srp_server.h

otSrpServerGetState

otSrpServerState otSrpServerGetState (otInstance *aInstance)

Returns the state of the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The current state of the SRP server.

Definition at line 186 of file include/openthread/srp_server.h

otSrpServerGetPort

uint16_t otSrpServerGetPort (otInstance *aInstance)

Returns the port the SRP server is listening to.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The port of the SRP server. It returns 0 if the server is not running.

Definition at line 196 of file include/openthread/srp_server.h

otSrpServerGetAddressMode

otSrpServerAddressMode otSrpServerGetAddressMode (otInstance *aInstance)

Returns the address mode being used by the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The SRP server's address mode.

SRP

252/962

Definition at line 206 of file include/openthread/srp_server.h

otSrpServerSetAddressMode

otError otSrpServerSetAddressMode (otInstance *aInstance, otSrpServerAddressMode aMode)

Sets the address mode to be used by the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMode The address mode to use.

Definition at line 218 of file include/openthread/srp_server.h

otSrpServerGetAnycastModeSequenceNumber

uint8_t otSrpServerGetAnycastModeSequenceNumber (otInstance *aInstance)

Returns the sequence number used with anycast address mode.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The sequence number is included in "DNS/SRP Service Anycast Address" entry published in the Network Data.

Returns

The anycast sequence number.

Definition at line 230 of file include/openthread/srp_server.h

otSrpServerSetAnycastModeSequenceNumber

otError otSrpServerSetAnycastModeSequenceNumber (otInstance *aInstance, uint8_t aSequenceNumber)

Sets the sequence number used with anycast address mode.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSequenceNumber The sequence number to use.

Definition at line 242 of file include/openthread/srp_server.h

otSrpServerSetEnabled

void otSrpServerSetEnabled (otInstance *aInstance, bool aEnabled)

Enables/disables the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

SRP

253/962

[in] aEnabled A boolean to enable/disable the SRP server.

On a Border Router, it is recommended to use otSrpServerSetAutoEnableMode() instead.

Definition at line 253 of file include/openthread/srp_server.h

otSrpServerSetAutoEnableMode

void otSrpServerSetAutoEnableMode (otInstance *aInstance, bool aEnabled)

Enables/disables the auto-enable mode on SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled A boolean to enable/disable the auto-enable mode.

Requires OPENTHREAD_CONFIG_BORDER_ROUTING_ENABLE feature.

When this mode is enabled, the Border Routing Manager controls if/when to enable or disable the SRP server. SRP sever is

auto-enabled if/when Border Routing is started and it is done with the initial prefix and route configurations (when the OMR

and on-link prefixes are determined, advertised in emitted Router Advertisement message on infrastructure side and

published in the Thread Network Data). The SRP server is auto-disabled if/when BR is stopped (e.g., if the infrastructure

network interface is brought down or if BR gets detached).

This mode can be disabled by a otSrpServerSetAutoEnableMode() call with aEnabled set to false or if the SRP server is

explicitly enabled or disabled by a call to otSrpServerSetEnabled() function. Disabling auto-enable mode using

otSrpServerSetAutoEnableMode(false) will not change the current state of SRP sever (e.g., if it is enabled it stays enabled).

Definition at line 275 of file include/openthread/srp_server.h

otSrpServerIsAutoEnableMode

bool otSrpServerIsAutoEnableMode (otInstance *aInstance)

Indicates whether the auto-enable mode is enabled or disabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires OPENTHREAD_CONFIG_BORDER_ROUTING_ENABLE feature.

Definition at line 288 of file include/openthread/srp_server.h

otSrpServerGetTtlConfig

void otSrpServerGetTtlConfig (otInstance *aInstance, otSrpServerTtlConfig *aTtlConfig)

Returns SRP server TTL configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aTtlConfig A pointer to an otSrpServerTtlConfig instance.

SRP

254/962

Definition at line 297 of file include/openthread/srp_server.h

otSrpServerSetTtlConfig

otError otSrpServerSetTtlConfig (otInstance *aInstance, const otSrpServerTtlConfig *aTtlConfig)

Sets SRP server TTL configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTtlConfig A pointer to an otSrpServerTtlConfig instance.

The granted TTL will always be no greater than the max lease interval configured via otSrpServerSetLeaseConfig() ,

regardless of the minimum and maximum TTL configuration.

Definition at line 312 of file include/openthread/srp_server.h

otSrpServerGetLeaseConfig

void otSrpServerGetLeaseConfig (otInstance *aInstance, otSrpServerLeaseConfig *aLeaseConfig)

Returns SRP server LEASE and KEY-LEASE configurations.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aLeaseConfig A pointer to an otSrpServerLeaseConfig instance.

Definition at line 321 of file include/openthread/srp_server.h

otSrpServerSetLeaseConfig

otError otSrpServerSetLeaseConfig (otInstance *aInstance, const otSrpServerLeaseConfig *aLeaseConfig)

Sets SRP server LEASE and KEY-LEASE configurations.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aLeaseConfig A pointer to an otSrpServerLeaseConfig instance.

When a non-zero LEASE time is requested from a client, the granted value will be limited in range [aMinLease, aMaxLease];

and a non-zero KEY-LEASE will be granted in range [aMinKeyLease, aMaxKeyLease]. For zero LEASE or KEY-LEASE time,

zero will be granted.

Definition at line 338 of file include/openthread/srp_server.h

otSrpServerSetServiceUpdateHandler

void otSrpServerSetServiceUpdateHandler (otInstance *aInstance, otSrpServerServiceUpdateHandler aServiceHandler,
void *aContext)

Sets the SRP service updates handler on SRP server.

SRP

255/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aServiceHandler A pointer to a service handler. Use NULL to remove the handler.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

Definition at line 387 of file include/openthread/srp_server.h

otSrpServerHandleServiceUpdateResult

void otSrpServerHandleServiceUpdateResult (otInstance *aInstance, otSrpServerServiceUpdateId aId, otError aError)

Reports the result of processing a SRP update to the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aId The service update transaction ID. This should be the same ID provided via

otSrpServerServiceUpdateHandler .

[in] aError An error to be returned to the SRP server. Use OT_ERROR_DUPLICATED to represent DNS name

conflicts.

The Service Update Handler should call this function to return the result of its processing of a SRP update.

Definition at line 404 of file include/openthread/srp_server.h

otSrpServerGetNextHost

const otSrpServerHost * otSrpServerGetNextHost (otInstance *aInstance, const otSrpServerHost *aHost)

Returns the next registered host on the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHost A pointer to current host; use NULL to get the first host.

Returns

A pointer to the registered host. NULL, if no more hosts can be found.

Definition at line 415 of file include/openthread/srp_server.h

otSrpServerGetResponseCounters

const otSrpServerResponseCounters * otSrpServerGetResponseCounters (otInstance *aInstance)

Returns the response counters of the SRP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the response counters of the SRP server.

SRP

256/962

Definition at line 425 of file include/openthread/srp_server.h

otSrpServerHostIsDeleted

bool otSrpServerHostIsDeleted (const otSrpServerHost *aHost)

Tells if the SRP service host has been deleted.

Parameters

[in] aHost A pointer to the SRP service host.

A SRP service host can be deleted but retains its name for future uses. In this case, the host instance is not removed from

the SRP server/registry.

Returns

TRUE if the host has been deleted, FALSE if not.

Definition at line 438 of file include/openthread/srp_server.h

otSrpServerHostGetFullName

const char * otSrpServerHostGetFullName (const otSrpServerHost *aHost)

Returns the full name of the host.

Parameters

[in] aHost A pointer to the SRP service host.

Returns

A pointer to the null-terminated host name string.

Definition at line 448 of file include/openthread/srp_server.h

otSrpServerHostMatchesFullName

bool otSrpServerHostMatchesFullName (const otSrpServerHost *aHost, const char *aFullName)

Indicates whether the host matches a given host name.

Parameters

[in] aHost A pointer to the SRP service host.

[in] aFullName A full host name.

DNS name matches are performed using a case-insensitive string comparison (i.e., "Abc" and "aBc" are considered to be

the same).

Definition at line 463 of file include/openthread/srp_server.h

otSrpServerHostGetAddresses

const otIp6Address * otSrpServerHostGetAddresses (const otSrpServerHost *aHost, uint8_t *aAddressesNum)

SRP

257/962

Returns the addresses of given host.

Parameters

[in] aHost A pointer to the SRP service host.

[out] aAddressesNum A pointer to where we should output the number of the addresses to.

Returns

A pointer to the array of IPv6 Address.

Definition at line 474 of file include/openthread/srp_server.h

otSrpServerHostGetLeaseInfo

void otSrpServerHostGetLeaseInfo (const otSrpServerHost *aHost, otSrpServerLeaseInfo *aLeaseInfo)

Returns the LEASE and KEY-LEASE information of a given host.

Parameters

[in] aHost A pointer to the SRP server host.

[out] aLeaseInfo A pointer to where to output the LEASE and KEY-LEASE information.

Definition at line 483 of file include/openthread/srp_server.h

otSrpServerHostGetNextService

const otSrpServerService * otSrpServerHostGetNextService (const otSrpServerHost *aHost, const otSrpServerService
*aService)

Returns the next service of given host.

Parameters

[in] aHost A pointer to the SRP service host.

[in] aService A pointer to current SRP service instance; use NULL to get the first service.

Returns

A pointer to the next service or NULL if there is no more services.

Definition at line 494 of file include/openthread/srp_server.h

otSrpServerServiceIsDeleted

bool otSrpServerServiceIsDeleted (const otSrpServerService *aService)

Indicates whether or not the SRP service has been deleted.

Parameters

[in] aService A pointer to the SRP service.

A SRP service can be deleted but retains its name for future uses. In this case, the service instance is not removed from

the SRP server/registry. It is guaranteed that all services are deleted if the host is deleted.

SRP

258/962

Returns

TRUE if the service has been deleted, FALSE if not.

Definition at line 509 of file include/openthread/srp_server.h

otSrpServerServiceGetInstanceName

const char * otSrpServerServiceGetInstanceName (const otSrpServerService *aService)

Returns the full service instance name of the service.

Parameters

[in] aService A pointer to the SRP service.

Returns

A pointer to the null-terminated service instance name string.

Definition at line 519 of file include/openthread/srp_server.h

otSrpServerServiceMatchesInstanceName

bool otSrpServerServiceMatchesInstanceName (const otSrpServerService *aService, const char *aInstanceName)

Indicates whether this service matches a given service instance name.

Parameters

[in] aService A pointer to the SRP service.

[in] aInstanceName The service instance name.

DNS name matches are performed using a case-insensitive string comparison (i.e., "Abc" and "aBc" are considered to be

the same).

Definition at line 534 of file include/openthread/srp_server.h

otSrpServerServiceGetInstanceLabel

const char * otSrpServerServiceGetInstanceLabel (const otSrpServerService *aService)

Returns the service instance label (first label in instance name) of the service.

Parameters

[in] aService A pointer to the SRP service.

Returns

A pointer to the null-terminated service instance label string..

Definition at line 544 of file include/openthread/srp_server.h

otSrpServerServiceGetServiceName

SRP

259/962

const char * otSrpServerServiceGetServiceName (const otSrpServerService *aService)

Returns the full service name of the service.

Parameters

[in] aService A pointer to the SRP service.

Returns

A pointer to the null-terminated service name string.

Definition at line 554 of file include/openthread/srp_server.h

otSrpServerServiceMatchesServiceName

bool otSrpServerServiceMatchesServiceName (const otSrpServerService *aService, const char *aServiceName)

Indicates whether this service matches a given service name.

Parameters

[in] aService A pointer to the SRP service.

[in] aServiceName The service name.

DNS name matches are performed using a case-insensitive string comparison (i.e., "Abc" and "aBc" are considered to be

the same).

Definition at line 569 of file include/openthread/srp_server.h

otSrpServerServiceGetNumberOfSubTypes

uint16_t otSrpServerServiceGetNumberOfSubTypes (const otSrpServerService *aService)

Gets the number of sub-types of the service.

Parameters

[in] aService A pointer to the SRP service.

Returns

The number of sub-types of aService .

Definition at line 579 of file include/openthread/srp_server.h

otSrpServerServiceGetSubTypeServiceNameAt

const char * otSrpServerServiceGetSubTypeServiceNameAt (const otSrpServerService *aService, uint16_t aIndex)

Gets the sub-type service name (full name) of the service at a given index.

Parameters

[in] aService A pointer to the SRP service.

[in] aIndex The index to get.

SRP

260/962

The full service name for a sub-type service follows "<sub-label>._sub.<service-labels>.<domain>.".

Returns

A pointer to sub-type service name at aIndex , or NULL if no sub-type at this index.

Definition at line 592 of file include/openthread/srp_server.h

otSrpServerServiceHasSubTypeServiceName

bool otSrpServerServiceHasSubTypeServiceName (const otSrpServerService *aService, const char
*aSubTypeServiceName)

Indicates whether or not the service has a given sub-type.

Parameters

[in] aService A pointer to the SRP service.

[in] aSubTypeServiceName The sub-type service name (full name) to check.

DNS name matches are performed using a case-insensitive string comparison (i.e., "Abc" and "aBc" are considered to be

the same).

Definition at line 607 of file include/openthread/srp_server.h

otSrpServerParseSubTypeServiceName

otError otSrpServerParseSubTypeServiceName (const char *aSubTypeServiceName, char *aLabel, uint8_t aLabelSize)

Parses a sub-type service name (full name) and extracts the sub-type label.

Parameters

[in] aSubTypeServiceName A sub-type service name (full name).

[out] aLabel A pointer to a buffer to copy the extracted sub-type label.

[in] aLabelSize Maximum size of aLabel buffer.

The full service name for a sub-type service follows "<sub-label>._sub.<service-labels>.<domain>.".

Definition at line 624 of file include/openthread/srp_server.h

otSrpServerServiceGetPort

uint16_t otSrpServerServiceGetPort (const otSrpServerService *aService)

Returns the port of the service instance.

Parameters

[in] aService A pointer to the SRP service.

Returns

The port of the service.

Definition at line 634 of file include/openthread/srp_server.h

SRP

261/962

otSrpServerServiceGetWeight

uint16_t otSrpServerServiceGetWeight (const otSrpServerService *aService)

Returns the weight of the service instance.

Parameters

[in] aService A pointer to the SRP service.

Returns

The weight of the service.

Definition at line 644 of file include/openthread/srp_server.h

otSrpServerServiceGetPriority

uint16_t otSrpServerServiceGetPriority (const otSrpServerService *aService)

Returns the priority of the service instance.

Parameters

[in] aService A pointer to the SRP service.

Returns

The priority of the service.

Definition at line 654 of file include/openthread/srp_server.h

otSrpServerServiceGetTtl

uint32_t otSrpServerServiceGetTtl (const otSrpServerService *aService)

Returns the TTL of the service instance.

Parameters

[in] aService A pointer to the SRP service.

Returns

The TTL of the service instance..

Definition at line 664 of file include/openthread/srp_server.h

otSrpServerServiceGetTxtData

const uint8_t * otSrpServerServiceGetTxtData (const otSrpServerService *aService, uint16_t *aDataLength)

Returns the TXT record data of the service instance.

Parameters

[in] aService A pointer to the SRP service.

SRP

262/962

[out] aDataLength A pointer to return the TXT record data length. MUST NOT be NULL.

Returns

A pointer to the buffer containing the TXT record data (the TXT data length is returned in aDataLength).

Definition at line 675 of file include/openthread/srp_server.h

otSrpServerServiceGetHost

const otSrpServerHost * otSrpServerServiceGetHost (const otSrpServerService *aService)

Returns the host which the service instance reside on.

Parameters

[in] aService A pointer to the SRP service.

Returns

A pointer to the host instance.

Definition at line 685 of file include/openthread/srp_server.h

otSrpServerServiceGetLeaseInfo

void otSrpServerServiceGetLeaseInfo (const otSrpServerService *aService, otSrpServerLeaseInfo *aLeaseInfo)

Returns the LEASE and KEY-LEASE information of a given service.

Parameters

[in] aService A pointer to the SRP server service.

[out] aLeaseInfo A pointer to where to output the LEASE and KEY-LEASE information.

Definition at line 694 of file include/openthread/srp_server.h

otSrpClientHostInfo

263/962

otSrpClientHostInfo

Represents an SRP client host info.

Public Attributes

const char * mName
Host name (label) string (NULL if not yet set).

const
otIp6Address *

mAddresses
Array of host IPv6 addresses (NULL if not set or auto address is enabled).

uint8_t mNumAddresses
Number of IPv6 addresses in mAddresses array.

bool mAutoAddress
Indicates whether auto address mode is enabled or not.

otSrpClientItemSt
ate

mState
Host info state .

Public Attribute Documentation

mName

const char* otSrpClientHostInfo::mName

Host name (label) string (NULL if not yet set).

Definition at line 77 of file include/openthread/srp_client.h

mAddresses

const otIp6Address* otSrpClientHostInfo::mAddresses

Array of host IPv6 addresses (NULL if not set or auto address is enabled).

Definition at line 78 of file include/openthread/srp_client.h

mNumAddresses

uint8_t otSrpClientHostInfo::mNumAddresses

Number of IPv6 addresses in mAddresses array.

Definition at line 79 of file include/openthread/srp_client.h

mAutoAddress

otSrpClientHostInfo

264/962

bool otSrpClientHostInfo::mAutoAddress

Indicates whether auto address mode is enabled or not.

Definition at line 80 of file include/openthread/srp_client.h

mState

otSrpClientItemState otSrpClientHostInfo::mState

Host info state.

Definition at line 81 of file include/openthread/srp_client.h

otSrpClientService

265/962

otSrpClientService

Represents an SRP client service.

The values in this structure, including the string buffers for the names and the TXT record entries, MUST persist and stay

constant after an instance of this structure is passed to OpenThread from otSrpClientAddService() or

otSrpClientRemoveService() .

The mState , mData , mNext fields are used/managed by OT core only. Their value is ignored when an instance of

otSrpClientService is passed in otSrpClientAddService() or otSrpClientRemoveService() or other functions. The caller does not

need to set these fields.

The mLease and mKeyLease fields specify the desired lease and key lease intervals for this service. Zero value indicates

that the interval is unspecified and then the default lease or key lease intervals from otSrpClientGetLease Interval() and

otSrpClientGetKeyLease Interval() are used for this service. If the key lease interval (whether set explicitly or determined from

the default) is shorter than the lease interval for a service, SRP client will re-use the lease interval value for key lease

interval as well. For example, if in service mLease is explicitly set to 2 days and mKeyLease is set to zero and default key

lease is set to 1 day, then when registering this service, the requested key lease for this service is also set to 2 days.

Public Attributes

const char * mName
The service labels (e .g., "_mt._udp", not the full domain name).

const char * mInstanceName
The service instance name label (not the full name).

const char *const
*

mSubTypeLabels
Array of sub-type labels (must end with NULL or can be NULL).

const
otDnsTxtEntry *

mTxtEntries
Array of TXT entries (mNumTxtEntries gives num of entries).

uint16_t mPort
The service port number.

uint16_t mPriority
The service priority.

uint16_t mWeight
The service weight.

uint8_t mNumTxtEntries
Number of entries in the mTxtEntries array.

otSrpClientItemSt
ate

mState
Service state (managed by OT core).

uint32_t mData
Internal data (used by OT core).

struct
otSrpClientServic

e *

mNext
Po inter to next entry in a linked-list (managed by OT core).

otSrpClientService

266/962

uint32_t mLease
Desired lease interval in sec - zero to use default.

uint32_t mKeyLease
Desired key lease interval in sec - zero to use default.

Public Attribute Documentation

mName

const char* otSrpClientService::mName

The service labels (e.g., "_mt._udp", not the full domain name).

Definition at line 106 of file include/openthread/srp_client.h

mInstanceName

const char* otSrpClientService::mInstanceName

The service instance name label (not the full name).

Definition at line 107 of file include/openthread/srp_client.h

mSubTypeLabels

const char* const* otSrpClientService::mSubTypeLabels

Array of sub-type labels (must end with NULL or can be NULL).

Definition at line 108 of file include/openthread/srp_client.h

mTxtEntries

const otDnsTxtEntry* otSrpClientService::mTxtEntries

Array of TXT entries (mNumTxtEntries gives num of entries).

Definition at line 109 of file include/openthread/srp_client.h

mPort

uint16_t otSrpClientService::mPort

The service port number.

Definition at line 110 of file include/openthread/srp_client.h

mPriority

otSrpClientService

267/962

uint16_t otSrpClientService::mPriority

The service priority.

Definition at line 111 of file include/openthread/srp_client.h

mWeight

uint16_t otSrpClientService::mWeight

The service weight.

Definition at line 112 of file include/openthread/srp_client.h

mNumTxtEntries

uint8_t otSrpClientService::mNumTxtEntries

Number of entries in the mTxtEntries array.

Definition at line 113 of file include/openthread/srp_client.h

mState

otSrpClientItemState otSrpClientService::mState

Service state (managed by OT core).

Definition at line 114 of file include/openthread/srp_client.h

mData

uint32_t otSrpClientService::mData

Internal data (used by OT core).

Definition at line 115 of file include/openthread/srp_client.h

mNext

struct otSrpClientService* otSrpClientService::mNext

Pointer to next entry in a linked-list (managed by OT core).

Definition at line 116 of file include/openthread/srp_client.h

mLease

otSrpClientService

268/962

uint32_t otSrpClientService::mLease

Desired lease interval in sec - zero to use default.

Definition at line 117 of file include/openthread/srp_client.h

mKeyLease

uint32_t otSrpClientService::mKeyLease

Desired key lease interval in sec - zero to use default.

Definition at line 118 of file include/openthread/srp_client.h

otSrpClientBuffersServiceEntry

269/962

otSrpClientBuffersServiceEntry

Represents a SRP client service pool entry.

Public Attributes

otSrpClientServic
e

mService
The SRP client service structure .

otDnsTxtEntry mTxtEntry
The SRP client TXT entry.

Public Attribute Documentation

mService

otSrpClientService otSrpClientBuffersServiceEntry::mService

The SRP client service structure.

Definition at line 63 of file include/openthread/srp_client_buffers.h

mTxtEntry

otDnsTxtEntry otSrpClientBuffersServiceEntry::mTxtEntry

The SRP client TXT entry.

Definition at line 64 of file include/openthread/srp_client_buffers.h

otSrpServerTtlConfig

270/962

otSrpServerTtlConfig

Includes SRP server TTL configurations.

Public Attributes

uint32_t mMinTtl
The minimum TTL in seconds.

uint32_t mMaxTtl
The maximum TTL in seconds.

Public Attribute Documentation

mMinTtl

uint32_t otSrpServerTtlConfig::mMinTtl

The minimum TTL in seconds.

Definition at line 106 of file include/openthread/srp_server.h

mMaxTtl

uint32_t otSrpServerTtlConfig::mMaxTtl

The maximum TTL in seconds.

Definition at line 107 of file include/openthread/srp_server.h

otSrpServerLeaseConfig

271/962

otSrpServerLeaseConfig

Includes SRP server LEASE and KEY-LEASE configurations.

Public Attributes

uint32_t mMinLease
The minimum LEASE interval in seconds.

uint32_t mMaxLease
The maximum LEASE interval in seconds.

uint32_t mMinKeyLease
The minimum KEY-LEASE interval in seconds.

uint32_t mMaxKeyLease
The maximum KEY-LEASE interval in seconds.

Public Attribute Documentation

mMinLease

uint32_t otSrpServerLeaseConfig::mMinLease

The minimum LEASE interval in seconds.

Definition at line 116 of file include/openthread/srp_server.h

mMaxLease

uint32_t otSrpServerLeaseConfig::mMaxLease

The maximum LEASE interval in seconds.

Definition at line 117 of file include/openthread/srp_server.h

mMinKeyLease

uint32_t otSrpServerLeaseConfig::mMinKeyLease

The minimum KEY-LEASE interval in seconds.

Definition at line 118 of file include/openthread/srp_server.h

mMaxKeyLease

uint32_t otSrpServerLeaseConfig::mMaxKeyLease

The maximum KEY-LEASE interval in seconds.

otSrpServerLeaseConfig

272/962

Definition at line 119 of file include/openthread/srp_server.h

otSrpServerLeaseInfo

273/962

otSrpServerLeaseInfo

Includes SRP server lease information of a host/service.

Public Attributes

uint32_t mLease
The lease time of a host/service in milliseconds.

uint32_t mKeyLease
The key lease time of a host/service in milliseconds.

uint32_t mRemainingLease
The remaining lease time of the host/service in milliseconds.

uint32_t mRemainingKeyLease
The remaining key lease time of a host/service in milliseconds.

Public Attribute Documentation

mLease

uint32_t otSrpServerLeaseInfo::mLease

The lease time of a host/service in milliseconds.

Definition at line 128 of file include/openthread/srp_server.h

mKeyLease

uint32_t otSrpServerLeaseInfo::mKeyLease

The key lease time of a host/service in milliseconds.

Definition at line 129 of file include/openthread/srp_server.h

mRemainingLease

uint32_t otSrpServerLeaseInfo::mRemainingLease

The remaining lease time of the host/service in milliseconds.

Definition at line 130 of file include/openthread/srp_server.h

mRemainingKeyLease

uint32_t otSrpServerLeaseInfo::mRemainingKeyLease

The remaining key lease time of a host/service in milliseconds.

otSrpServerLeaseInfo

274/962

Definition at line 131 of file include/openthread/srp_server.h

otSrpServerResponseCounters

275/962

otSrpServerResponseCounters

Includes the statistics of SRP server responses.

Public Attributes

uint32_t mSuccess
The number of successful responses.

uint32_t mServerFailure
The number of server failure responses.

uint32_t mFormatError
The number of format error responses.

uint32_t mNameExists
The number of 'name exists' responses.

uint32_t mRefused
The number of refused responses.

uint32_t mOther
The number of other responses.

Public Attribute Documentation

mSuccess

uint32_t otSrpServerResponseCounters::mSuccess

The number of successful responses.

Definition at line 140 of file include/openthread/srp_server.h

mServerFailure

uint32_t otSrpServerResponseCounters::mServerFailure

The number of server failure responses.

Definition at line 141 of file include/openthread/srp_server.h

mFormatError

uint32_t otSrpServerResponseCounters::mFormatError

The number of format error responses.

Definition at line 142 of file include/openthread/srp_server.h

otSrpServerResponseCounters

276/962

uint32_t otSrpServerResponseCounters::mNameExists

The number of 'name exists' responses.

Definition at line 143 of file include/openthread/srp_server.h

mRefused

uint32_t otSrpServerResponseCounters::mRefused

The number of refused responses.

Definition at line 144 of file include/openthread/srp_server.h

mOther

uint32_t otSrpServerResponseCounters::mOther

The number of other responses.

Definition at line 145 of file include/openthread/srp_server.h

Ping Sender

277/962

Ping Sender

Ping Sender
This file includes the OpenThread API for the ping sender module.

Modules

otPingSenderReply

otPingSenderStatistics

otPingSenderConfig

Typedefs

typedef struct
otPingSenderRepl

y

otPingSenderReply
Represents a ping reply.

typedef struct
otPingSenderStati

stics

otPingSenderStatistics
Represents statistics of a ping request.

typedef void(* otPingSenderReplyCallback)(const otPingSenderReply *aReply, void *aContext)
Po inter type specifies the callback to notify receipt of a ping reply.

typedef void(* otPingSenderStatisticsCallback)(const otPingSenderStatistics *aStatistics, void *aContext)
Po inter type specifies the callback to report the ping statistics.

typedef struct
otPingSenderCon

fig

otPingSenderConfig
Represents a ping request configuration.

Functions

otError otPingSenderPing(otInstance *aInstance, const otPingSenderConfig *aConfig)
Starts a ping.

void otPingSenderStop(otInstance *aInstance)
Stops an ongo ing ping.

Typedef Documentation

otPingSenderReply

typedef struct otPingSenderReply otPingSenderReply

Represents a ping reply.

Definition at line 69 of file include/openthread/ping_sender.h

otPingSenderStatistics

Ping Sender

278/962

typedef struct otPingSenderStatistics otPingSenderStatistics

Represents statistics of a ping request.

Definition at line 83 of file include/openthread/ping_sender.h

otPingSenderReplyCallback

typedef void(* otPingSenderReplyCallback) (const otPingSenderReply *aReply, void *aContext))(const
otPingSenderReply *aReply, void *aContext)

Pointer type specifies the callback to notify receipt of a ping reply.

Parameters

[in] aReply A pointer to a otPingSenderReply containing info about the received ping reply.

[in] aContext A pointer to application-specific context.

Definition at line 92 of file include/openthread/ping_sender.h

otPingSenderStatisticsCallback

typedef void(* otPingSenderStatisticsCallback) (const otPingSenderStatistics *aStatistics, void *aContext))(const
otPingSenderStatistics *aStatistics, void *aContext)

Pointer type specifies the callback to report the ping statistics.

Parameters

[in] aStatistics A pointer to a otPingSenderStatistics containing info about the received ping statistics.

[in] aContext A pointer to application-specific context.

Definition at line 102 of file include/openthread/ping_sender.h

otPingSenderConfig

typedef struct otPingSenderConfig otPingSenderConfig

Represents a ping request configuration.

Definition at line 124 of file include/openthread/ping_sender.h

Function Documentation

otPingSenderPing

otError otPingSenderPing (otInstance *aInstance, const otPingSenderConfig *aConfig)

Starts a ping.

Parameters

Ping Sender

279/962

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig The ping config to use.

Definition at line 138 of file include/openthread/ping_sender.h

otPingSenderStop

void otPingSenderStop (otInstance *aInstance)

Stops an ongoing ping.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 146 of file include/openthread/ping_sender.h

otPingSenderReply

280/962

otPingSenderReply

Represents a ping reply.

Public Attributes

otIp6Address mSenderAddress
Sender IPv6 address (address from which ping reply was received).

uint16_t mRoundTripTime
Round trip time in msec.

uint16_t mSize
Data size (number of bytes) in reply (excluding IPv6 and ICMP6 headers).

uint16_t mSequenceNumber
Sequence number.

uint8_t mHopLimit
Hop limit.

Public Attribute Documentation

mSenderAddress

otIp6Address otPingSenderReply::mSenderAddress

Sender IPv6 address (address from which ping reply was received).

Definition at line 64 of file include/openthread/ping_sender.h

mRoundTripTime

uint16_t otPingSenderReply::mRoundTripTime

Round trip time in msec.

Definition at line 65 of file include/openthread/ping_sender.h

mSize

uint16_t otPingSenderReply::mSize

Data size (number of bytes) in reply (excluding IPv6 and ICMP6 headers).

Definition at line 66 of file include/openthread/ping_sender.h

mSequenceNumber

otPingSenderReply

281/962

uint16_t otPingSenderReply::mSequenceNumber

Sequence number.

Definition at line 67 of file include/openthread/ping_sender.h

mHopLimit

uint8_t otPingSenderReply::mHopLimit

Hop limit.

Definition at line 68 of file include/openthread/ping_sender.h

otPingSenderStatistics

282/962

otPingSenderStatistics

Represents statistics of a ping request.

Public Attributes

uint16_t mSentCount
The number of ping requests already sent.

uint16_t mReceivedCount
The number of ping replies received.

uint32_t mTotalRoundTripTime
The total round trip time of ping requests.

uint16_t mMinRoundTripTime
The min round trip time among ping requests.

uint16_t mMaxRoundTripTime
The max round trip time among ping requests.

bool mIsMulticast
Whether this is a multicast ping request.

Public Attribute Documentation

mSentCount

uint16_t otPingSenderStatistics::mSentCount

The number of ping requests already sent.

Definition at line 77 of file include/openthread/ping_sender.h

mReceivedCount

uint16_t otPingSenderStatistics::mReceivedCount

The number of ping replies received.

Definition at line 78 of file include/openthread/ping_sender.h

mTotalRoundTripTime

uint32_t otPingSenderStatistics::mTotalRoundTripTime

The total round trip time of ping requests.

Definition at line 79 of file include/openthread/ping_sender.h

otPingSenderStatistics

283/962

uint16_t otPingSenderStatistics::mMinRoundTripTime

The min round trip time among ping requests.

Definition at line 80 of file include/openthread/ping_sender.h

mMaxRoundTripTime

uint16_t otPingSenderStatistics::mMaxRoundTripTime

The max round trip time among ping requests.

Definition at line 81 of file include/openthread/ping_sender.h

mIsMulticast

bool otPingSenderStatistics::mIsMulticast

Whether this is a multicast ping request.

Definition at line 82 of file include/openthread/ping_sender.h

otPingSenderConfig

284/962

otPingSenderConfig

Represents a ping request configuration.

Public Attributes

otIp6Address mSource
Source address of the ping.

otIp6Address mDestination
Destination address to ping.

otPingSenderRepl
yCallback

mReplyCallback
Callback function to report replies (can be NULL if not needed).

otPingSenderStati
sticsCallback

mStatisticsCallback
Callback function to report statistics (can be NULL if not needed).

void * mCallbackContext
A po inter to the callback application-specific context.

uint16_t mSize
Data size (# of bytes) excludes IPv6/ICMPv6 header. Zero for default.

uint16_t mCount
Number of ping messages to send. Zero to use default.

uint32_t mInterval
Ping tx interval in milliseconds. Zero to use default.

uint16_t mTimeout
Time in milliseconds to wait for final reply after sending final request.

uint8_t mHopLimit
Hop limit (used if mAllowZeroHopLimit is false). Zero for default.

bool mAllowZeroHopLimit
Indicates whether hop limit is zero.

bool mMulticastLoop
Allow looping back pings to multicast address that device is subscribed to.

Public Attribute Documentation

mSource

otIp6Address otPingSenderConfig::mSource

Source address of the ping.

Definition at line 110 of file include/openthread/ping_sender.h

mDestination

otPingSenderConfig

285/962

otIp6Address otPingSenderConfig::mDestination

Destination address to ping.

Definition at line 111 of file include/openthread/ping_sender.h

mReplyCallback

otPingSenderReplyCallback otPingSenderConfig::mReplyCallback

Callback function to report replies (can be NULL if not needed).

Definition at line 112 of file include/openthread/ping_sender.h

mStatisticsCallback

otPingSenderStatisticsCallback otPingSenderConfig::mStatisticsCallback

Callback function to report statistics (can be NULL if not needed).

Definition at line 114 of file include/openthread/ping_sender.h

mCallbackContext

void* otPingSenderConfig::mCallbackContext

A pointer to the callback application-specific context.

Definition at line 115 of file include/openthread/ping_sender.h

mSize

uint16_t otPingSenderConfig::mSize

Data size (# of bytes) excludes IPv6/ICMPv6 header. Zero for default.

Definition at line 116 of file include/openthread/ping_sender.h

mCount

uint16_t otPingSenderConfig::mCount

Number of ping messages to send. Zero to use default.

Definition at line 117 of file include/openthread/ping_sender.h

mInterval

otPingSenderConfig

286/962

uint32_t otPingSenderConfig::mInterval

Ping tx interval in milliseconds. Zero to use default.

Definition at line 118 of file include/openthread/ping_sender.h

mTimeout

uint16_t otPingSenderConfig::mTimeout

Time in milliseconds to wait for final reply after sending final request.

Zero to use default.

Definition at line 119 of file include/openthread/ping_sender.h

mHopLimit

uint8_t otPingSenderConfig::mHopLimit

Hop limit (used if mAllowZeroHopLimit is false). Zero for default.

Definition at line 121 of file include/openthread/ping_sender.h

mAllowZeroHopLimit

bool otPingSenderConfig::mAllowZeroHopLimit

Indicates whether hop limit is zero.

Definition at line 122 of file include/openthread/ping_sender.h

mMulticastLoop

bool otPingSenderConfig::mMulticastLoop

Allow looping back pings to multicast address that device is subscribed to.

Definition at line 123 of file include/openthread/ping_sender.h

TCP

287/962

TCP

TCP

Modules

TCP

TCP Abstractions

TCP

288/962

TCP

TCP
This module includes functions that control TCP communication.

Modules

otLinkedBuffer

otTcpEndpoint

otTcpEndpointInitializeArgs

otTcpListener

otTcpListenerInitializeArgs

Enumerations

enum otTcpDisconnectedReason {

OT_TCP_DISCONNECTED_REASON_NORMAL
OT_TCP_DISCONNECTED_REASON_REFUSED
OT_TCP_DISCONNECTED_REASON_RESET
OT_TCP_DISCONNECTED_REASON_TIME_WAIT
OT_TCP_DISCONNECTED_REASON_TIMED_OUT

}

enum �22 {

OT_TCP_CONNECT_NO_FAST_OPEN = 1 << 0

}
Defines flags passed to otTcpConnect().

enum �23 {

OT_TCP_SEND_MORE_TO_COME = 1 << 0

}
Defines flags passed to otTcpSendByReference .

enum otTcpIncomingConnectionAction {

OT_TCP_INCOMING_CONNECTION_ACTION_ACCEPT
OT_TCP_INCOMING_CONNECTION_ACTION_DEFER
OT_TCP_INCOMING_CONNECTION_ACTION_REFUSE

}
Defines incoming connection actions.

Typedefs

typedef struct
otLinkedBuffer

otLinkedBuffer
A linked buffer structure for use with TCP.

typedef struct
otTcpEndpoint

otTcpEndpoint

TCP

289/962

typedef void(* otTcpEstablished)(otTcpEndpoint *aEndpoint)
This callback informs the application that the TCP 3-way handshake is complete and that the connection is now

established.

typedef void(* otTcpSendDone)(otTcpEndpoint *aEndpoint, otLinkedBuffer *aData)
This callback informs the application that data in the provided aData have been acknowledged by the connection

peer and that aData and the data it contains can be reclaimed by the application.

typedef void(* otTcpForwardProgress)(otTcpEndpoint *aEndpoint, size_t aInSendBuffer, size_t aBacklog)
This callback informs the application if forward progress has been made in transferring data from the send buffer to the

recipient.

typedef void(* otTcpReceiveAvailable)(otTcpEndpoint *aEndpoint, size_t aBytesAvailable, bool aEndOfStream, size_t
aBytesRemaining)
This callback indicates the number of bytes available for consumption from the receive buffer.

typedef enum
otTcpDisconnect

edReason

otTcpDisconnectedReason

typedef void(* otTcpDisconnected)(otTcpEndpoint *aEndpoint, otTcpDisconnectedReason aReason)
This callback indicates that the connection was broken and should no longer be used, or that a connection has entered

the TIME-WAIT state .

typedef struct
otTcpEndpointIniti

alizeArgs

otTcpEndpointInitializeArgs
Contains arguments to the otTcpEndpo intInitialize() function.

typedef struct
otTcpListener

otTcpListener

typedef enum
otTcpIncomingCo
nnectionAction

otTcpIncomingConnectionAction
Defines incoming connection actions.

typedef
otTcpIncomingCo
nnectionAction(*

otTcpAcceptReady)(otTcpListener *aListener, const otSockAddr *aPeer, otTcpEndpoint **aAcceptInto)
This callback indicates that an incoming connection that matches this TCP listener has arrived.

typedef void(* otTcpAcceptDone)(otTcpListener *aListener, otTcpEndpoint *aEndpoint, const otSockAddr *aPeer)
This callback indicates that the TCP connection is now ready for two-way communication.

typedef struct
otTcpListenerInitia

lizeArgs

otTcpListenerInitializeArgs
Contains arguments to the otTcpListenerInitialize() function.

Functions

otError otTcpEndpointInitialize(otInstance *aInstance, otTcpEndpoint *aEndpoint, const otTcpEndpointInitializeArgs
*aArgs)
Initializes a TCP endpo int.

otInstance * otTcpEndpointGetInstance(otTcpEndpoint *aEndpoint)
Obtains the otInstance that was associated with aEndpo int upon initialization.

void * otTcpEndpointGetContext(otTcpEndpoint *aEndpoint)
Obtains the context po inter that was associated with aEndpo int upon initialization.

const otSockAddr
*

otTcpGetLocalAddress(const otTcpEndpoint *aEndpoint)
Obtains a po inter to a TCP endpo int's local host and port.

TCP

290/962

const otSockAddr
*

otTcpGetPeerAddress(const otTcpEndpoint *aEndpoint)
Obtains a po inter to a TCP endpo int's peer's host and port.

otError otTcpBind(otTcpEndpoint *aEndpoint, const otSockAddr *aSockName)
Binds the TCP endpo int to an IP address and port.

otError otTcpConnect(otTcpEndpoint *aEndpoint, const otSockAddr *aSockName, uint32_t aFlags)
Records the remote host and port for this connection.

otError otTcpSendByReference(otTcpEndpoint *aEndpoint, otLinkedBuffer *aBuffer, uint32_t aFlags)
Adds data referenced by the linked buffer po inted to by aBuffer to the send buffer.

otError otTcpSendByExtension(otTcpEndpoint *aEndpoint, size_t aNumBytes, uint32_t aFlags)
Adds data to the send buffer by extending the length of the final otLinkedBuffer in the send buffer by the specified

amount.

otError otTcpReceiveByReference(otTcpEndpoint *aEndpoint, const otLinkedBuffer **aBuffer)
Provides the application with a linked buffer chain referencing data currently in the TCP receive buffer.

otError otTcpReceiveContiguify(otTcpEndpoint *aEndpoint)
Reorganizes the receive buffer to be entirely contiguous in memory.

otError otTcpCommitReceive(otTcpEndpoint *aEndpoint, size_t aNumBytes, uint32_t aFlags)
Informs the TCP stack that the application has finished processing aNumBytes bytes of data at the start of the

receive buffer and that the TCP stack need not continue maintaining those bytes in the receive buffer.

otError otTcpSendEndOfStream(otTcpEndpoint *aEndpoint)
Informs the connection peer that this TCP endpo int will not send more data.

otError otTcpAbort(otTcpEndpoint *aEndpoint)
Forcibly ends the TCP connection associated with this TCP endpo int.

otError otTcpEndpointDeinitialize(otTcpEndpoint *aEndpoint)
Deinitializes this TCP endpo int.

otError otTcpListenerInitialize(otInstance *aInstance, otTcpListener *aListener, const otTcpListenerInitializeArgs
*aArgs)
Initializes a TCP listener.

otInstance * otTcpListenerGetInstance(otTcpListener *aListener)
Obtains the otInstance that was associated with aListener upon initialization.

void * otTcpListenerGetContext(otTcpListener *aListener)
Obtains the context po inter that was associated with aListener upon initialization.

otError otTcpListen(otTcpListener *aListener, const otSockAddr *aSockName)
Causes incoming TCP connections that match the specified IP address and port to trigger this TCP listener's callbacks.

otError otTcpStopListening(otTcpListener *aListener)
Causes this TCP listener to stop listening for incoming connections.

otError otTcpListenerDeinitialize(otTcpListener *aListener)
Deinitializes this TCP listener.

Macros

#define OT_TCP_ENDPOINT_TCB_SIZE_BASE 392
OT_TCP_ENDPOINT_TCB_SIZE_BASE and OT_TCP_ENDPOINT_TCB_NUM_POINTERS are chosen such that the mTcb field of

otTcpEndpo int has the same size as struct tcpcb in TCPlp.

#define OT_TCP_ENDPOINT_TCB_NUM_PTR 36

TCP

291/962

#define OT_TCP_RECEIVE_BUFFER_SIZE_FEW_HOPS 2598
Recommended buffer size for TCP connections that traverse about 3 wireless hops or fewer.

#define OT_TCP_RECEIVE_BUFFER_SIZE_MANY_HOPS 4157
Recommended buffer size for TCP connections that traverse many wireless hops.

#define OT_TCP_LISTENER_TCB_SIZE_BASE 16
OT_TCP_LISTENER_TCB_SIZE_BASE and OT_TCP_LISTENER_TCB_NUM_POINTERS are chosen such that the mTcbListener

field of otTcpListener has the same size as struct tcpcb_listen in TCPlp.

#define OT_TCP_LISTENER_TCB_NUM_PTR 3

Enumeration Documentation

otTcpDisconnectedReason

otTcpDisconnectedReason

Enumerator

OT_TCP_DISCONNECTED_REASON_NORMAL

OT_TCP_DISCONNECTED_REASON_REFUSED

OT_TCP_DISCONNECTED_REASON_RESET

OT_TCP_DISCONNECTED_REASON_TIME_WAIT

OT_TCP_DISCONNECTED_REASON_TIMED_OUT

Definition at line 191 of file include/openthread/tcp.h

�22

�22

Defines flags passed to otTcpConnect().

Enumerator

OT_TCP_CONNECT_NO_FAST_OPEN

Definition at line 396 of file include/openthread/tcp.h

�23

�23

Defines flags passed to otTcpSendByReference .

Enumerator

OT_TCP_SEND_MORE_TO_COME

Definition at line 429 of file include/openthread/tcp.h

otTcpIncomingConnectionAction

otTcpIncomingConnectionAction

Defines incoming connection actions.

TCP

292/962

This is used in otTcpAcceptReady() callback.

Enumerator

OT_TCP_INCOMING_CONNECTION_ACTION_ACCEPT Accept the incoming connection.

OT_TCP_INCOMING_CONNECTION_ACTION_DEFER Defer (silently ignore) the incoming connection.

OT_TCP_INCOMING_CONNECTION_ACTION_REFUSE Refuse the incoming connection.

Definition at line 595 of file include/openthread/tcp.h

Typedef Documentation

otLinkedBuffer

typedef struct otLinkedBuffer otLinkedBuffer

A linked buffer structure for use with TCP.

A single otLinkedBuffer structure references an array of bytes in memory, via mData and mLength. The mNext field is used

to form a chain of otLinkedBuffer structures.

Definition at line 68 of file include/openthread/tcp.h

otTcpEndpoint

typedef struct otTcpEndpoint otTcpEndpoint

Definition at line 71 of file include/openthread/tcp.h

otTcpEstablished

typedef void(* otTcpEstablished) (otTcpEndpoint *aEndpoint))(otTcpEndpoint *aEndpoint)

This callback informs the application that the TCP 3-way handshake is complete and that the connection is now

established.

Parameters

[in] aEndpoint The TCP endpoint whose connection is now established.

Definition at line 80 of file include/openthread/tcp.h

otTcpSendDone

typedef void(* otTcpSendDone) (otTcpEndpoint *aEndpoint, otLinkedBuffer *aData))(otTcpEndpoint *aEndpoint,
otLinkedBuffer *aData)

This callback informs the application that data in the provided aData have been acknowledged by the connection peer and

that aData and the data it contains can be reclaimed by the application.

Parameters

[in] aEndpoint The TCP endpoint for the connection.

TCP

293/962

[in] aData A pointer to the otLinkedBuffer that can be reclaimed.

The aData are guaranteed to be identical to those passed in to TCP via otTcpSendByReference(), including any extensions

effected via otTcpSendByExtension().

Definition at line 95 of file include/openthread/tcp.h

otTcpForwardProgress

typedef void(* otTcpForwardProgress) (otTcpEndpoint *aEndpoint, size_t aInSendBuffer, size_t aBacklog))(otTcpEndpoint
*aEndpoint, size_t aInSendBuffer, size_t aBacklog)

This callback informs the application if forward progress has been made in transferring data from the send buffer to the

recipient.

Parameters

[in] aEndpoint The TCP endpoint for the connection.

[in] aInSendBuffer The number of bytes in the send buffer (sum of "in-flight" and "backlog" regions).

[in] aBacklog The number of bytes that are queued for sending but have not yet been sent (the "backlog"

region).

This callback is not necessary for correct TCP operation. Most applications can just rely on the otTcpSendDone() callback

to reclaim linked buffers once the TCP stack is done using them. The purpose of this callback is to support advanced

applications that benefit from finer-grained information about how the the connection is making forward progress in

transferring data to the connection peer.

This callback's operation is closely tied to TCP's send buffer. The send buffer can be understood as having two regions.

First, there is the "in-flight" region at the head (front) of the send buffer. It corresponds to data which has been sent to the

recipient, but is not yet acknowledged. Second, there is the "backlog" region, which consists of all data in the send buffer

that is not in the "in-flight" region. The "backlog" region corresponds to data that is queued for sending, but has not yet

been sent.

The callback is invoked in response to two types of events. First, the "in-flight" region of the send buffer may shrink (e.g.,

when the recipient acknowledges data that we sent earlier). Second, the "backlog" region of the send buffer may shrink

(e.g., new data was sent out). These two conditions often occur at the same time, in response to an ACK segment from the

connection peer, which is why they are combined in a single callback.

The TCP stack only uses the aInSendBuffer bytes at the tail of the send buffer; when aInSendBuffer decreases by an

amount x, it means that x additional bytes that were formerly at the head of the send buffer are no longer part of the send

buffer and can now be reclaimed (i.e., overwritten) by the application. Note that the otLinkedBuffer structure itself can only

be reclaimed once all bytes that it references are no longer part of the send buffer.

This callback subsumes otTcpSendDone(), in the following sense: applications can determine when linked buffers can be

reclaimed by comparing aInSendBuffer with how many bytes are in each linked buffer. However, we expect

otTcpSendDone(), which directly conveys which otLinkedBuffers can be reclaimed, to be much simpler to use. If both

callbacks are registered and are triggered by the same event (e.g., the same ACK segment received), then the

otTcpSendDone() callback will be triggered first, followed by this callback.

Additionally, this callback provides aBacklog , which indicates how many bytes of data in the send buffer are not yet in

flight. For applications that only want to add data to the send buffer when there is an assurance that it will be sent out

soon, it may be desirable to only send out data when aBacklog is suitably small (0 or close to 0). For example, an

application may use aBacklog so that it can react to queue buildup by dropping or aggregating data to avoid creating a

backlog of data.

After a call to otTcpSendByReference() or otTcpSendByExtension() with a positive number of bytes, the

otTcpForwardProgress() callback is guaranteed to be called, to indicate when the bytes that were added to the send buffer

are sent out. The call to otTcpForwardProgress() may be made immediately after the bytes are added to the send buffer (if

some of those bytes are immediately sent out, reducing the backlog), or sometime in the future (once the connection

sends out some or all of the data, reducing the backlog). By "immediately," we mean that the callback is immediately

TCP

294/962

scheduled for execution in a tasklet; to avoid reentrancy-related complexity, the otTcpForwardProgress() callback is never

directly called from the otTcpSendByReference() or otTcpSendByExtension() functions.

Definition at line 165 of file include/openthread/tcp.h

otTcpReceiveAvailable

typedef void(* otTcpReceiveAvailable) (otTcpEndpoint *aEndpoint, size_t aBytesAvailable, bool aEndOfStream, size_t
aBytesRemaining))(otTcpEndpoint *aEndpoint, size_t aBytesAvailable, bool aEndOfStream, size_t aBytesRemaining)

This callback indicates the number of bytes available for consumption from the receive buffer.

Parameters

[in] aEndpoint The TCP endpoint for the connection.

[in] aBytesAvailable The number of bytes in the connection's receive buffer.

[in] aEndOfStream Indicates if additional data, beyond what is already in the connection's receive buffer, can be

received.

[in] aBytesRemaining The number of additional bytes that can be received before the receive buffer becomes full.

It is called whenever bytes are added to the receive buffer and when the end of stream is reached. If the end of the

stream has been reached (i.e., if no more data will become available to read because the connection peer has closed their

end of the connection for writing), then aEndOfStream is true. Finally, aBytesRemaining indicates how much capacity is left

in the receive buffer to hold additional data that arrives.

Definition at line 186 of file include/openthread/tcp.h

otTcpDisconnectedReason

typedef enum otTcpDisconnectedReason otTcpDisconnectedReason

Definition at line 198 of file include/openthread/tcp.h

otTcpDisconnected

typedef void(* otTcpDisconnected) (otTcpEndpoint *aEndpoint, otTcpDisconnectedReason aReason))(otTcpEndpoint
*aEndpoint, otTcpDisconnectedReason aReason)

This callback indicates that the connection was broken and should no longer be used, or that a connection has entered the

TIME-WAIT state.

Parameters

[in] aEndpoint The TCP endpoint whose connection has been lost.

[in] aReason The reason why the connection was lost.

It can occur if a connection establishment attempt (initiated by calling otTcpConnect()) fails, or any point thereafter (e.g., if

the connection times out or an RST segment is received from the connection peer). Once this callback fires, all resources

that the application provided for this connection (i.e., any otLinkedBuffers and memory they reference, but not the TCP

endpoint itself or space for the receive buffers) can be reclaimed. In the case of a connection entering the TIME-WAIT

state, this callback is called twice, once upon entry into the TIME-WAIT state (with

OT_TCP_DISCONNECTED_REASON_TIME_WAIT, and again when the TIME-WAIT state expires (with

OT_TCP_DISCONNECTED_REASON_NORMAL).

TCP

295/962

Definition at line 219 of file include/openthread/tcp.h

otTcpEndpointInitializeArgs

typedef struct otTcpEndpointInitializeArgs otTcpEndpointInitializeArgs

Contains arguments to the otTcpEndpointInitialize() function.

Definition at line 284 of file include/openthread/tcp.h

otTcpListener

typedef struct otTcpListener otTcpListener

Definition at line 587 of file include/openthread/tcp.h

otTcpIncomingConnectionAction

typedef enum otTcpIncomingConnectionAction otTcpIncomingConnectionAction

Defines incoming connection actions.

This is used in otTcpAcceptReady() callback.

Definition at line 600 of file include/openthread/tcp.h

otTcpAcceptReady

typedef otTcpIncomingConnectionAction(* otTcpAcceptReady) (otTcpListener *aListener, const otSockAddr *aPeer,
otTcpEndpoint **aAcceptInto))(otTcpListener *aListener, const otSockAddr *aPeer, otTcpEndpoint **aAcceptInto)

This callback indicates that an incoming connection that matches this TCP listener has arrived.

Parameters

[in] aListener The TCP listener that matches the incoming connection.

[in] aPeer The host and port from which the incoming connection originates.

[out] aAcceptInto The TCP endpoint into which to accept the incoming connection.

The typical response is for the application to accept the incoming connection. It does so by populating aAcceptInto with a

pointer to the otTcpEndpoint into which to accept the incoming connection. This otTcpEndpoint must already be initialized

using otTcpEndpointInitialize(). Then, the application returns OT_TCP_INCOMING_CONNECTION_ACTION_ACCEPT.

Alternatively, the application can decline to accept the incoming connection. There are two ways for the application to do

this. First, if the application returns OT_TCP_INCOMING_CONNECTION_ACTION_DEFER, then OpenThread silently ignores the

connection establishment request; the connection peer will likely retransmit the request, at which point the callback will be

called again. This is valuable if resources are not presently available to accept the connection, but they may be available

when the connection peer retransmits its connection establishment attempt. Second, if the application returns

OT_TCP_INCOMING_CONNECTION_ACTION_REFUSE, then OpenThread sends a "connection refused" message to the host

that attempted to establish a connection. If the application declines the incoming connection, it is not required to populate

aAcceptInto .

Returns

Description of how to handle the incoming connection.

TCP

296/962

Definition at line 632 of file include/openthread/tcp.h

otTcpAcceptDone

typedef void(* otTcpAcceptDone) (otTcpListener *aListener, otTcpEndpoint *aEndpoint, const otSockAddr *aPeer))
(otTcpListener *aListener, otTcpEndpoint *aEndpoint, const otSockAddr *aPeer)

This callback indicates that the TCP connection is now ready for two-way communication.

Parameters

[in] aListener The TCP listener that matches the incoming connection.

[in] aEndpoint The TCP endpoint into which the incoming connection was accepted.

[in] aPeer the host and port from which the incoming connection originated.

In the case of TCP Fast Open, this may be before the TCP connection handshake has actually completed. The application

is provided with the context pointers both for the TCP listener that accepted the connection and the TCP endpoint into

which it was accepted. The provided context is the one associated with the TCP listener.

Definition at line 651 of file include/openthread/tcp.h

otTcpListenerInitializeArgs

typedef struct otTcpListenerInitializeArgs otTcpListenerInitializeArgs

Contains arguments to the otTcpListenerInitialize() function.

Definition at line 698 of file include/openthread/tcp.h

Function Documentation

otTcpEndpointInitialize

otError otTcpEndpointInitialize (otInstance *aInstance, otTcpEndpoint *aEndpoint, const otTcpEndpointInitializeArgs
*aArgs)

Initializes a TCP endpoint.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEndpoint A pointer to a TCP endpoint structure.

[in] aArgs A pointer to a structure of arguments.

Calling this function causes OpenThread to keep track of the TCP endpoint and store and retrieve TCP data inside the

aEndpo int . The application should refrain from directly accessing or modifying the fields in aEndpo int . If the application

needs to reclaim the memory backing aEndpo int , it should call otTcpEndpointDeinitialize().

Definition at line 328 of file include/openthread/tcp.h

otTcpEndpointGetInstance

otInstance * otTcpEndpointGetInstance (otTcpEndpoint *aEndpoint)

TCP

297/962

Obtains the otInstance that was associated with aEndpo int upon initialization.

Parameters

[in] aEndpoint The TCP endpoint whose instance to obtain.

Returns

The otInstance pointer associated with aEndpo int .

Definition at line 341 of file include/openthread/tcp.h

otTcpEndpointGetContext

void * otTcpEndpointGetContext (otTcpEndpoint *aEndpoint)

Obtains the context pointer that was associated with aEndpo int upon initialization.

Parameters

[in] aEndpoint The TCP endpoint whose context to obtain.

Returns

The context pointer associated with aEndpo int .

Definition at line 352 of file include/openthread/tcp.h

otTcpGetLocalAddress

const otSockAddr * otTcpGetLocalAddress (const otTcpEndpoint *aEndpoint)

Obtains a pointer to a TCP endpoint's local host and port.

Parameters

[in] aEndpoint The TCP endpoint whose local host and port to obtain.

The contents of the host and port may be stale if this socket is not in a connected state and has not been bound after it

was last disconnected.

Returns

The local host and port of aEndpo int .

Definition at line 365 of file include/openthread/tcp.h

otTcpGetPeerAddress

const otSockAddr * otTcpGetPeerAddress (const otTcpEndpoint *aEndpoint)

Obtains a pointer to a TCP endpoint's peer's host and port.

Parameters

[in] aEndpoint The TCP endpoint whose peer's host and port to obtain.

The contents of the host and port may be stale if this socket is not in a connected state.

TCP

298/962

Returns

The host and port of the connection peer of aEndpo int .

Definition at line 378 of file include/openthread/tcp.h

otTcpBind

otError otTcpBind (otTcpEndpoint *aEndpoint, const otSockAddr *aSockName)

Binds the TCP endpoint to an IP address and port.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure to bind.

[in] aSockName The address and port to which to bind this TCP endpoint.

Definition at line 390 of file include/openthread/tcp.h

otTcpConnect

otError otTcpConnect (otTcpEndpoint *aEndpoint, const otSockAddr *aSockName, uint32_t aFlags)

Records the remote host and port for this connection.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure to connect.

[in] aSockName The IP address and port of the host to which to connect.

[in] aFlags Flags specifying options for this operation (see enumeration above).

TCP Fast Open must be enabled or disabled using aFlags . If it is disabled, then the TCP connection establishment

handshake is initiated immediately. If it is enabled, then this function merely records the the remote host and port, and the

TCP connection establishment handshake only happens on the first call to otTcpSendByReference() .

If TCP Fast Open is disabled, then the caller must wait for the otTcpEstablished callback indicating that TCP connection

establishment handshake is done before it can start sending data e.g., by calling otTcpSendByReference() .

Definition at line 423 of file include/openthread/tcp.h

otTcpSendByReference

otError otTcpSendByReference (otTcpEndpoint *aEndpoint, otLinkedBuffer *aBuffer, uint32_t aFlags)

Adds data referenced by the linked buffer pointed to by aBuffer to the send buffer.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint on which to send data.

[in] aBuffer A pointer to the linked buffer chain referencing data to add to the send buffer.

[in] aFlags Flags specifying options for this operation (see enumeration above).

Upon a successful call to this function, the linked buffer and data it references are owned by the TCP stack; they should

not be modified by the application until a "send done" callback returns ownership of those objects to the application. It is

TCP

299/962

acceptable to call this function to add another linked buffer to the send queue, even if the "send done" callback for a

previous invocation of this function has not yet fired.

Note that aBuffer should not be chained; its mNext field should be NULL. If additional data will be added right after this call,

then the OT_TCP_SEND_MORE_TO_COME flag should be used as a hint to the TCP implementation.

Definition at line 458 of file include/openthread/tcp.h

otTcpSendByExtension

otError otTcpSendByExtension (otTcpEndpoint *aEndpoint, size_t aNumBytes, uint32_t aFlags)

Adds data to the send buffer by extending the length of the final otLinkedBuffer in the send buffer by the specified

amount.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint on which to send data.

[in] aNumBytes The number of bytes by which to extend the length of the final linked buffer.

[in] aFlags Flags specifying options for this operation (see enumeration above).

If the send buffer is empty, then the operation fails.

Definition at line 474 of file include/openthread/tcp.h

otTcpReceiveByReference

otError otTcpReceiveByReference (otTcpEndpoint *aEndpoint, const otLinkedBuffer **aBuffer)

Provides the application with a linked buffer chain referencing data currently in the TCP receive buffer.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint on which to receive data.

[out] aBuffer A pointer to the linked buffer chain referencing data currently in the receive buffer.

The linked buffer chain is valid until the "receive ready" callback is next invoked, or until the next call to

otTcpReceiveContiguify() or otTcpCommitReceive().

Definition at line 492 of file include/openthread/tcp.h

otTcpReceiveContiguify

otError otTcpReceiveContiguify (otTcpEndpoint *aEndpoint)

Reorganizes the receive buffer to be entirely contiguous in memory.

Parameters

[in] aEndpoint A pointer to the TCP endpoint whose receive buffer to reorganize.

This is optional; an application can simply traverse the linked buffer chain obtained by calling otTcpReceiveByReference .

Some applications may wish to call this function to make the receive buffer contiguous to simplify their data processing, but

this comes at the expense of CPU time to reorganize the data in the receive buffer.

Definition at line 509 of file include/openthread/tcp.h

TCP

300/962

otTcpCommitReceive

otError otTcpCommitReceive (otTcpEndpoint *aEndpoint, size_t aNumBytes, uint32_t aFlags)

Informs the TCP stack that the application has finished processing aNumBytes bytes of data at the start of the receive

buffer and that the TCP stack need not continue maintaining those bytes in the receive buffer.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint on which to receive data.

[in] aNumBytes The number of bytes consumed.

[in] aFlags Flags specifying options for this operation (none yet).

Definition at line 525 of file include/openthread/tcp.h

otTcpSendEndOfStream

otError otTcpSendEndOfStream (otTcpEndpoint *aEndpoint)

Informs the connection peer that this TCP endpoint will not send more data.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint to shut down.

This should be used when the application has no more data to send to the connection peer. For this connection, future

reads on the connection peer will result in the "end of stream" condition, and future writes on this connection endpoint will

fail.

The "end of stream" condition only applies after any data previously provided to the TCP stack to send out has been

received by the connection peer.

Definition at line 545 of file include/openthread/tcp.h

otTcpAbort

otError otTcpAbort (otTcpEndpoint *aEndpoint)

Forcibly ends the TCP connection associated with this TCP endpoint.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure representing the TCP endpoint to abort.

This immediately makes the TCP endpoint free for use for another connection and empties the send and receive buffers,

transferring ownership of any data provided by the application in otTcpSendByReference() and otTcpSendByExtension()

calls back to the application. The TCP endpoint's callbacks and memory for the receive buffer remain associated with the

TCP endpoint.

Definition at line 563 of file include/openthread/tcp.h

otTcpEndpointDeinitialize

otError otTcpEndpointDeinitialize (otTcpEndpoint *aEndpoint)

TCP

301/962

Deinitializes this TCP endpoint.

Parameters

[in] aEndpoint A pointer to the TCP endpoint structure to deinitialize.

This means that OpenThread no longer keeps track of this TCP endpoint and deallocates all resources it has internally

allocated for this TCP endpoint. The application can reuse the memory backing the TCP endpoint as it sees fit.

If it corresponds to a live TCP connection, the connection is terminated unceremoniously (as in otTcpAbort()). All resources

the application has provided for this TCP endpoint (linked buffers for the send buffer, memory for the receive buffer, the

aEndpo int structure itself, etc.) are immediately returned to the application.

Definition at line 584 of file include/openthread/tcp.h

otTcpListenerInitialize

otError otTcpListenerInitialize (otInstance *aInstance, otTcpListener *aListener, const otTcpListenerInitializeArgs *aArgs)

Initializes a TCP listener.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aListener A pointer to a TCP listener structure.

[in] aArgs A pointer to a structure of arguments.

Calling this function causes OpenThread to keep track of the TCP listener and store and retrieve TCP data inside aListener .

The application should refrain from directly accessing or modifying the fields in aListener . If the application needs to reclaim

the memory backing aListener , it should call otTcpListenerDeinitialize().

Definition at line 717 of file include/openthread/tcp.h

otTcpListenerGetInstance

otInstance * otTcpListenerGetInstance (otTcpListener *aListener)

Obtains the otInstance that was associated with aListener upon initialization.

Parameters

[in] aListener The TCP listener whose instance to obtain.

Returns

The otInstance pointer associated with aListener .

Definition at line 730 of file include/openthread/tcp.h

otTcpListenerGetContext

void * otTcpListenerGetContext (otTcpListener *aListener)

Obtains the context pointer that was associated with aListener upon initialization.

Parameters

TCP

302/962

[in] aListener The TCP listener whose context to obtain.

Returns

The context pointer associated with aListener .

Definition at line 741 of file include/openthread/tcp.h

otTcpListen

otError otTcpListen (otTcpListener *aListener, const otSockAddr *aSockName)

Causes incoming TCP connections that match the specified IP address and port to trigger this TCP listener's callbacks.

Parameters

[in] aListener A pointer to the TCP listener structure that should begin listening.

[in] aSockName The address and port on which to listen for incoming connections.

Definition at line 754 of file include/openthread/tcp.h

otTcpStopListening

otError otTcpStopListening (otTcpListener *aListener)

Causes this TCP listener to stop listening for incoming connections.

Parameters

[in] aListener A pointer to the TCP listener structure that should stop listening.

Definition at line 765 of file include/openthread/tcp.h

otTcpListenerDeinitialize

otError otTcpListenerDeinitialize (otTcpListener *aListener)

Deinitializes this TCP listener.

Parameters

[in] aListener A pointer to the TCP listener structure to deinitialize.

This means that OpenThread no longer keeps track of this TCP listener and deallocates all resources it has internally

allocated for this TCP listener. The application can reuse the memory backing the TCP listener as it sees fit.

If the TCP listener is currently listening, it stops listening.

Definition at line 783 of file include/openthread/tcp.h

Macro Definition Documentation

OT_TCP_ENDPOINT_TCB_SIZE_BASE

#define OT_TCP_ENDPOINT_TCB_SIZE_BASE

TCP

303/962

Value:

392

OT_TCP_ENDPOINT_TCB_SIZE_BASE and OT_TCP_ENDPOINT_TCB_NUM_POINTERS are chosen such that the mTcb field of

otTcpEndpoint has the same size as struct tcpcb in TCPlp.

This is necessary because the mTcb field, although opaque in its declaration, is treated as struct tcpcb in the TCP

implementation.

Definition at line 228 of file include/openthread/tcp.h

OT_TCP_ENDPOINT_TCB_NUM_PTR

#define OT_TCP_ENDPOINT_TCB_NUM_PTR

Value:

36

Definition at line 229 of file include/openthread/tcp.h

OT_TCP_RECEIVE_BUFFER_SIZE_FEW_HOPS

#define OT_TCP_RECEIVE_BUFFER_SIZE_FEW_HOPS

Value:

2598

Recommended buffer size for TCP connections that traverse about 3 wireless hops or fewer.

On platforms where memory is particularly constrained and in situations where high bandwidth is not necessary, it may be

desirable to manually select a smaller buffer size.

Definition at line 297 of file include/openthread/tcp.h

OT_TCP_RECEIVE_BUFFER_SIZE_MANY_HOPS

#define OT_TCP_RECEIVE_BUFFER_SIZE_MANY_HOPS

Value:

4157

Recommended buffer size for TCP connections that traverse many wireless hops.

If the TCP connection traverses a very large number of hops (more than 6 or so), then it may be advisable to select a large

buffer size manually.

Definition at line 309 of file include/openthread/tcp.h

OT_TCP_LISTENER_TCB_SIZE_BASE

TCP

304/962

#define OT_TCP_LISTENER_TCB_SIZE_BASE

Value:

16

OT_TCP_LISTENER_TCB_SIZE_BASE and OT_TCP_LISTENER_TCB_NUM_POINTERS are chosen such that the mTcbListener

field of otTcpListener has the same size as struct tcpcb_listen in TCPlp.

This is necessary because the mTcbListen field, though opaque in its declaration, is treated as struct tcpcb in the TCP

implementation.

Definition at line 660 of file include/openthread/tcp.h

OT_TCP_LISTENER_TCB_NUM_PTR

#define OT_TCP_LISTENER_TCB_NUM_PTR

Value:

3

Definition at line 661 of file include/openthread/tcp.h

otLinkedBuffer

305/962

otLinkedBuffer

A linked buffer structure for use with TCP.

A single otLinkedBuffer structure references an array of bytes in memory, via mData and mLength. The mNext field is used

to form a chain of otLinkedBuffer structures.

Public Attributes

struct
otLinkedBuffer *

mNext
Po inter to the next linked buffer in the chain, or NULL if it is the end.

const uint8_t * mData
Po inter to data referenced by this linked buffer.

size_t mLength
Length of this linked buffer (number of bytes).

Public Attribute Documentation

mNext

struct otLinkedBuffer* otLinkedBuffer::mNext

Pointer to the next linked buffer in the chain, or NULL if it is the end.

Definition at line 65 of file include/openthread/tcp.h

mData

const uint8_t* otLinkedBuffer::mData

Pointer to data referenced by this linked buffer.

Definition at line 66 of file include/openthread/tcp.h

mLength

size_t otLinkedBuffer::mLength

Length of this linked buffer (number of bytes).

Definition at line 67 of file include/openthread/tcp.h

otTcpEndpoint

306/962

otTcpEndpoint

Represents a TCP endpoint.

An TCP endpoint acts an endpoint of TCP connection. It can be used to initiate TCP connections, and, once a TCP

connection is established, send data to and receive data from the connection peer.

The application should not inspect the fields of this structure directly; it should only interact with it via the TCP API

functions whose signatures are provided in this file.

Public Attributes

uint8_t mSize

uint64_t mAlign

union
otTcpEndpoint::@

24

mTcb

struct
otTcpEndpoint *

mNext
A po inter to the next TCP endpo int (internal use only)

void * mContext
A po inter to application-specific context.

otTcpEstablished mEstablishedCallback
"Established" callback function

otTcpSendDone mSendDoneCallback
"Send done" callback function

otTcpForwardProg
ress

mForwardProgressCallback
"Forward progress" callback function

otTcpReceiveAvai
lable

mReceiveAvailableCallback
"Receive available" callback function

otTcpDisconnect
ed

mDisconnectedCallback
"Disconnected" callback function

uint32_t mTimers

otLinkedBuffer mReceiveLinks

otSockAddr mSockAddr

uint8_t mPendingCallbacks

Public Attribute Documentation

mSize

uint8_t otTcpEndpoint::mSize[OT_TCP_ENDPOINT_TCB_SIZE_BASE�OT_TCP_ENDPOINT_TCB_NUM_PTR *sizeof(void *)]

otTcpEndpoint

307/962

Definition at line 247 of file include/openthread/tcp.h

mAlign

uint64_t otTcpEndpoint::mAlign

Definition at line 248 of file include/openthread/tcp.h

mTcb

union otTcpEndpoint::@24 otTcpEndpoint::mTcb

Definition at line 249 of file include/openthread/tcp.h

mNext

struct otTcpEndpoint* otTcpEndpoint::mNext

A pointer to the next TCP endpoint (internal use only)

Definition at line 251 of file include/openthread/tcp.h

mContext

void* otTcpEndpoint::mContext

A pointer to application-specific context.

Definition at line 252 of file include/openthread/tcp.h

mEstablishedCallback

otTcpEstablished otTcpEndpoint::mEstablishedCallback

"Established" callback function

Definition at line 254 of file include/openthread/tcp.h

mSendDoneCallback

otTcpSendDone otTcpEndpoint::mSendDoneCallback

"Send done" callback function

Definition at line 255 of file include/openthread/tcp.h

mForwardProgressCallback

otTcpEndpoint

308/962

otTcpForwardProgress otTcpEndpoint::mForwardProgressCallback

"Forward progress" callback function

Definition at line 256 of file include/openthread/tcp.h

mReceiveAvailableCallback

otTcpReceiveAvailable otTcpEndpoint::mReceiveAvailableCallback

"Receive available" callback function

Definition at line 257 of file include/openthread/tcp.h

mDisconnectedCallback

otTcpDisconnected otTcpEndpoint::mDisconnectedCallback

"Disconnected" callback function

Definition at line 258 of file include/openthread/tcp.h

mTimers

uint32_t otTcpEndpoint::mTimers[4]

Definition at line 260 of file include/openthread/tcp.h

mReceiveLinks

otLinkedBuffer otTcpEndpoint::mReceiveLinks[2]

Definition at line 262 of file include/openthread/tcp.h

mSockAddr

otSockAddr otTcpEndpoint::mSockAddr

Definition at line 263 of file include/openthread/tcp.h

mPendingCallbacks

uint8_t otTcpEndpoint::mPendingCallbacks

Definition at line 265 of file include/openthread/tcp.h

otTcpEndpointInitializeArgs

309/962

otTcpEndpointInitializeArgs

Contains arguments to the otTcpEndpointInitialize() function.

Public Attributes

void * mContext
Po inter to application-specific context.

otTcpEstablished mEstablishedCallback
"Established" callback function

otTcpSendDone mSendDoneCallback
"Send done" callback function

otTcpForwardProg
ress

mForwardProgressCallback
"Forward progress" callback function

otTcpReceiveAvai
lable

mReceiveAvailableCallback
"Receive available" callback function

otTcpDisconnect
ed

mDisconnectedCallback
"Disconnected" callback function

void * mReceiveBuffer
Po inter to memory provided to the system for the TCP receive buffer.

size_t mReceiveBufferSize
Size of memory provided to the system for the TCP receive buffer.

Public Attribute Documentation

mContext

void* otTcpEndpointInitializeArgs::mContext

Pointer to application-specific context.

Definition at line 274 of file include/openthread/tcp.h

mEstablishedCallback

otTcpEstablished otTcpEndpointInitializeArgs::mEstablishedCallback

"Established" callback function

Definition at line 276 of file include/openthread/tcp.h

mSendDoneCallback

otTcpSendDone otTcpEndpointInitializeArgs::mSendDoneCallback

otTcpEndpointInitializeArgs

310/962

"Send done" callback function

Definition at line 277 of file include/openthread/tcp.h

mForwardProgressCallback

otTcpForwardProgress otTcpEndpointInitializeArgs::mForwardProgressCallback

"Forward progress" callback function

Definition at line 278 of file include/openthread/tcp.h

mReceiveAvailableCallback

otTcpReceiveAvailable otTcpEndpointInitializeArgs::mReceiveAvailableCallback

"Receive available" callback function

Definition at line 279 of file include/openthread/tcp.h

mDisconnectedCallback

otTcpDisconnected otTcpEndpointInitializeArgs::mDisconnectedCallback

"Disconnected" callback function

Definition at line 280 of file include/openthread/tcp.h

mReceiveBuffer

void* otTcpEndpointInitializeArgs::mReceiveBuffer

Pointer to memory provided to the system for the TCP receive buffer.

Definition at line 282 of file include/openthread/tcp.h

mReceiveBufferSize

size_t otTcpEndpointInitializeArgs::mReceiveBufferSize

S ize of memory provided to the system for the TCP receive buffer.

Definition at line 283 of file include/openthread/tcp.h

otTcpListener

311/962

otTcpListener

Represents a TCP listener.

A TCP listener is used to listen for and accept incoming TCP connections.

The application should not inspect the fields of this structure directly; it should only interact with it via the TCP API

functions whose signatures are provided in this file.

Public Attributes

uint8_t mSize

void * mAlign

union
otTcpListener::@2

5

mTcbListen

struct
otTcpListener *

mNext
A po inter to the next TCP listener (internal use only)

void * mContext
A po inter to application-specific context.

otTcpAcceptRead
y

mAcceptReadyCallback
"Accept ready" callback function

otTcpAcceptDone mAcceptDoneCallback
"Accept done" callback function

Public Attribute Documentation

mSize

uint8_t otTcpListener::mSize[OT_TCP_LISTENER_TCB_SIZE_BASE�OT_TCP_LISTENER_TCB_NUM_PTR *sizeof(void *)]

Definition at line 677 of file include/openthread/tcp.h

mAlign

void* otTcpListener::mAlign

Definition at line 678 of file include/openthread/tcp.h

mTcbListen

union otTcpListener::@25 otTcpListener::mTcbListen

Definition at line 679 of file include/openthread/tcp.h

otTcpListener

312/962

mNext

struct otTcpListener* otTcpListener::mNext

A pointer to the next TCP listener (internal use only)

Definition at line 681 of file include/openthread/tcp.h

mContext

void* otTcpListener::mContext

A pointer to application-specific context.

Definition at line 682 of file include/openthread/tcp.h

mAcceptReadyCallback

otTcpAcceptReady otTcpListener::mAcceptReadyCallback

"Accept ready" callback function

Definition at line 684 of file include/openthread/tcp.h

mAcceptDoneCallback

otTcpAcceptDone otTcpListener::mAcceptDoneCallback

"Accept done" callback function

Definition at line 685 of file include/openthread/tcp.h

otTcpListenerInitializeArgs

313/962

otTcpListenerInitializeArgs

Contains arguments to the otTcpListenerInitialize() function.

Public Attributes

void * mContext
Po inter to application-specific context.

otTcpAcceptRead
y

mAcceptReadyCallback
"Accept ready" callback function

otTcpAcceptDone mAcceptDoneCallback
"Accept done" callback function

Public Attribute Documentation

mContext

void* otTcpListenerInitializeArgs::mContext

Pointer to application-specific context.

Definition at line 694 of file include/openthread/tcp.h

mAcceptReadyCallback

otTcpAcceptReady otTcpListenerInitializeArgs::mAcceptReadyCallback

"Accept ready" callback function

Definition at line 696 of file include/openthread/tcp.h

mAcceptDoneCallback

otTcpAcceptDone otTcpListenerInitializeArgs::mAcceptDoneCallback

"Accept done" callback function

Definition at line 697 of file include/openthread/tcp.h

TCP Abstractions

314/962

TCP Abstractions

TCP Abstractions
This module includes easy-to-use abstractions on top of the base TCP API.

Modules

otTcpCircularSendBuffer

otTcpEndpointAndCircularSendBuffer

Enumerations

enum �26 {

OT_TCP_CIRCULAR_SEND_BUFFER_WRITE_MORE_TO_COME = 1 << 0

}
Defines flags passed to otTcpCircularSendBufferWrite .

Typedefs

typedef struct
otTcpCircularSend

Buffer

otTcpCircularSendBuffer
Represents a circular send buffer for use with a TCP endpo int.

typedef struct
otTcpEndpointAnd
CircularSendBuffe

r

otTcpEndpointAndCircularSendBuffer
Context structure to use with mbedtls_ssl_set_bio.

Functions

void otTcpCircularSendBufferInitialize(otTcpCircularSendBuffer *aSendBuffer, void *aDataBuffer, size_t aCapacity)
Initializes a TCP circular send buffer.

otError otTcpCircularSendBufferWrite(otTcpEndpoint *aEndpoint, otTcpCircularSendBuffer *aSendBuffer, const void
*aData, size_t aLength, size_t *aWritten, uint32_t aFlags)
Sends out data on a TCP endpo int, using the provided TCP circular send buffer to manage buffering.

void otTcpCircularSendBufferHandleForwardProgress(otTcpCircularSendBuffer *aSendBuffer, size_t
aInSendBuffer)
Performs circular-send-buffer-specific handling in the otTcpForwardProgress callback.

size_t otTcpCircularSendBufferGetFreeSpace(const otTcpCircularSendBuffer *aSendBuffer)
Returns the amount of free space in the TCP circular send buffer.

void otTcpCircularSendBufferForceDiscardAll(otTcpCircularSendBuffer *aSendBuffer)
Forcibly discards all data in the circular send buffer.

otError otTcpCircularSendBufferDeinitialize(otTcpCircularSendBuffer *aSendBuffer)
Deinitializes a TCP circular send buffer, detaching it if attached.

TCP Abstractions

315/962

int otTcpMbedTlsSslSendCallback(void *aCtx, const unsigned char *aBuf, size_t aLen)
Non-blocking send callback to pass to mbedtls_ssl_set_bio.

int otTcpMbedTlsSslRecvCallback(void *aCtx, unsigned char *aBuf, size_t aLen)
Non-blocking receive callback to pass to mbedtls_ssl_set_bio.

Enumeration Documentation

�26

�26

Defines flags passed to otTcpCircularSendBufferWrite .

Enumerator

OT_TCP_CIRCULAR_SEND_BUFFER_WRITE_MORE_TO_COME

Definition at line 114 of file include/openthread/tcp_ext.h

Typedef Documentation

otTcpCircularSendBuffer

typedef struct otTcpCircularSendBuffer otTcpCircularSendBuffer

Represents a circular send buffer for use with a TCP endpoint.

Using a circular send buffer is optional. Applications can use a TCP endpoint to send data by managing otLinkedBuffers

directly. However, some applications may find it more convenient to have a circular send buffer; such applications can call

otTcpCircularSendBufferWrite() to "attach" a circular send buffer to a TCP endpoint and send out data on that TCP

endpoint, relying on the circular send buffer to manage the underlying otLinkedBuffers.

otTcpCircularSendBuffer is implemented on top of the otLinkedBuffer-based API provided by an otTcpEndpoint. Once

attached to an otTcpEndpoint, an otTcpCircularSendBuffer performs all the work of managing otLinkedBuffers for the

connection. This means that, once an otTcpCircularSendBuffer is attached to an otTcpEndpoint, the application should not

call otTcpSendByReference() or otTcpSendByExtension() on that otTcpEndpoint. Instead, the application should use

otTcpCircularSendBufferWrite() to add data to the send buffer.

The otTcpForwardProgress() callback is the intended way for users to learn when space becomes available in the circular

send buffer. On an otTcpEndpoint to which an otTcpCircularSendBuffer is attached, the application MUST install an

otTcpForwardProgress() callback and call otTcpCircularSendBufferHandleForwardProgress() on the attached

otTcpCircularSendBuffer at the start of the callback function. It is recommended that the user NOT install an

otTcpSendDone() callback, as all management of otLinkedBuffers is handled by the circular send buffer.

The application should not inspect the fields of this structure directly; it should only interact with it via the TCP Circular

Send Buffer API functions whose signature are provided in this file.

Definition at line 98 of file include/openthread/tcp_ext.h

otTcpEndpointAndCircularSendBuffer

typedef struct otTcpEndpointAndCircularSendBuffer otTcpEndpointAndCircularSendBuffer

Context structure to use with mbedtls_ssl_set_bio.

Definition at line 225 of file include/openthread/tcp_ext.h

TCP Abstractions

316/962

Function Documentation

otTcpCircularSendBufferInitialize

void otTcpCircularSendBufferInitialize (otTcpCircularSendBuffer *aSendBuffer, void *aDataBuffer, size_t aCapacity)

Initializes a TCP circular send buffer.

Parameters

[in] aSendBuffer A pointer to the TCP circular send buffer to initialize.

[in] aDataBuffer A pointer to memory to use to store data in the TCP circular send buffer.

[in] aCapacity The capacity, in bytes, of the TCP circular send buffer, which must equal the size of the memory

pointed to by aDataBuffer .

Definition at line 108 of file include/openthread/tcp_ext.h

otTcpCircularSendBufferWrite

otError otTcpCircularSendBufferWrite (otTcpEndpoint *aEndpoint, otTcpCircularSendBuffer *aSendBuffer, const void
*aData, size_t aLength, size_t *aWritten, uint32_t aFlags)

Sends out data on a TCP endpoint, using the provided TCP circular send buffer to manage buffering.

Parameters

[in] aEndpoint The TCP endpoint on which to send out data.

[in] aSendBuffer The TCP circular send buffer into which to copy data.

[in] aData A pointer to data to copy into the TCP circular send buffer.

[in] aLength The length of the data pointed to by aData to copy into the TCP circular send buffer.

[out] aWritten Populated with the amount of data copied into the send buffer, which might be less than aLength if

the send buffer reaches capacity.

[in] aFlags Flags specifying options for this operation (see enumeration above).

Once this function is called, aSendBuffer and aEndpo int are considered "attached" to each other. While they are attached,

ALL send operations for aEndpo int must be made using aSendBuffer and ALL operations on aSendBuffer must be

associated with aEndpo int .

The only way to "detach" a TCP circular send buffer and a TCP endpoint is to wait for the send buffer to become

completely empty. This can happen in two ways: (1) all data in the send buffer is sent and acknowledged in the normal

course of TCP protocol operation, or (2) the connection is terminated.

The recommended usage pattern is to use a single TCP circular send buffer with a TCP endpoint, and to send data on that

TCP endpoint only via its associated TCP circular buffer. This recommended usage pattern sidesteps the issues described

above by always using a TCP endpoint and TCP circular send buffer together.

If the circular send buffer reaches capacity, only a prefix of the provided data is copied into the circular send buffer.

Definition at line 153 of file include/openthread/tcp_ext.h

otTcpCircularSendBufferHandleForwardProgress

void otTcpCircularSendBufferHandleForwardProgress (otTcpCircularSendBuffer *aSendBuffer, size_t aInSendBuffer)

TCP Abstractions

317/962

Performs circular-send-buffer-specific handling in the otTcpForwardProgress callback.

Parameters

[in] aSendBuffer A pointer to the TCP circular send buffer for the endpoint for which otTcpForwardProgress() was

invoked.

[in] aInSendBuffer Value of aInSendBuffer passed to the otTcpForwardProgress() callback.

The application is expected to install an otTcpForwardProgress() callback on the otTcpEndpoint, and call this function at the

start of the callback function for circular-send-buffer-specific processing.

In the callback function, the application can determine the amount of free space in the circular send buffer by calling

otTcpCircularSendBufferFreeSpace(), or by comparing aInSendBuffer with the send buffer's capacity, chosen by the user

when calling otTcpCircularSendBufferInitialize().

Definition at line 178 of file include/openthread/tcp_ext.h

otTcpCircularSendBufferGetFreeSpace

size_t otTcpCircularSendBufferGetFreeSpace (const otTcpCircularSendBuffer *aSendBuffer)

Returns the amount of free space in the TCP circular send buffer.

Parameters

[in] aSendBuffer A pointer to the TCP circular send buffer whose amount of free space to return.

This operation will always succeed.

Returns

The amount of free space in the send buffer.

Definition at line 189 of file include/openthread/tcp_ext.h

otTcpCircularSendBufferForceDiscardAll

void otTcpCircularSendBufferForceDiscardAll (otTcpCircularSendBuffer *aSendBuffer)

Forcibly discards all data in the circular send buffer.

Parameters

[in] aSendBuffer The TCP circular send buffer whose data to discard.

The application is expected to call this function when a TCP connection is terminated unceremoniously (e.g., if the

application calls otTcpEndpointAbort() or is informed of a reset connection via the otTcpConnectionLost() callback).

Calling this function on a nonempty TCP circular send buffer attached to a TCP endpoint results in undefined behavior.

Definition at line 204 of file include/openthread/tcp_ext.h

otTcpCircularSendBufferDeinitialize

otError otTcpCircularSendBufferDeinitialize (otTcpCircularSendBuffer *aSendBuffer)

Deinitializes a TCP circular send buffer, detaching it if attached.

TCP Abstractions

318/962

Parameters

[in] aSendBuffer The TCP circular send buffer to deinitialize.

If the TCP circular send buffer is not empty, then this operation will fail.

Definition at line 216 of file include/openthread/tcp_ext.h

otTcpMbedTlsSslSendCallback

int otTcpMbedTlsSslSendCallback (void *aCtx, const unsigned char *aBuf, size_t aLen)

Non-blocking send callback to pass to mbedtls_ssl_set_bio.

Parameters

[in] aCtx A pointer to an otTcpEndpointAndCircularSendBuffer.

[in] aBuf The data to add to the send buffer.

[in] aLen The amount of data to add to the send buffer.

Returns

The number of bytes sent, or an mbedtls error code.

Definition at line 236 of file include/openthread/tcp_ext.h

otTcpMbedTlsSslRecvCallback

int otTcpMbedTlsSslRecvCallback (void *aCtx, unsigned char *aBuf, size_t aLen)

Non-blocking receive callback to pass to mbedtls_ssl_set_bio.

Parameters

[in] aCtx A pointer to an otTcpEndpointAndCircularSendBuffer.

[out] aBuf The buffer into which to receive data.

[in] aLen The maximum amount of data that can be received.

Returns

The number of bytes received, or an mbedtls error code.

Definition at line 247 of file include/openthread/tcp_ext.h

otTcpCircularSendBuffer

319/962

otTcpCircularSendBuffer

Represents a circular send buffer for use with a TCP endpoint.

Using a circular send buffer is optional. Applications can use a TCP endpoint to send data by managing otLinkedBuffers

directly. However, some applications may find it more convenient to have a circular send buffer; such applications can call

otTcpCircularSendBufferWrite() to "attach" a circular send buffer to a TCP endpoint and send out data on that TCP

endpoint, relying on the circular send buffer to manage the underlying otLinkedBuffers.

otTcpCircularSendBuffer is implemented on top of the otLinkedBuffer-based API provided by an otTcpEndpoint. Once

attached to an otTcpEndpoint, an otTcpCircularSendBuffer performs all the work of managing otLinkedBuffers for the

connection. This means that, once an otTcpCircularSendBuffer is attached to an otTcpEndpoint, the application should not

call otTcpSendByReference() or otTcpSendByExtension() on that otTcpEndpoint. Instead, the application should use

otTcpCircularSendBufferWrite() to add data to the send buffer.

The otTcpForwardProgress() callback is the intended way for users to learn when space becomes available in the circular

send buffer. On an otTcpEndpoint to which an otTcpCircularSendBuffer is attached, the application MUST install an

otTcpForwardProgress() callback and call otTcpCircularSendBufferHandleForwardProgress() on the attached

otTcpCircularSendBuffer at the start of the callback function. It is recommended that the user NOT install an

otTcpSendDone() callback, as all management of otLinkedBuffers is handled by the circular send buffer.

The application should not inspect the fields of this structure directly; it should only interact with it via the TCP Circular

Send Buffer API functions whose signature are provided in this file.

Public Attributes

uint8_t * mDataBuffer
Po inter to data in the circular send buffer.

size_t mCapacity
Length of the circular send buffer.

size_t mStartIndex
Index of the first valid byte in the send buffer.

size_t mCapacityUsed
Number of bytes stored in the send buffer.

otLinkedBuffer mSendLinks

uint8_t mFirstSendLinkIndex

Public Attribute Documentation

mDataBuffer

uint8_t* otTcpCircularSendBuffer::mDataBuffer

Pointer to data in the circular send buffer.

Definition at line 91 of file include/openthread/tcp_ext.h

otTcpCircularSendBuffer

320/962

mCapacity

size_t otTcpCircularSendBuffer::mCapacity

Length of the circular send buffer.

Definition at line 92 of file include/openthread/tcp_ext.h

mStartIndex

size_t otTcpCircularSendBuffer::mStartIndex

Index of the first valid byte in the send buffer.

Definition at line 93 of file include/openthread/tcp_ext.h

mCapacityUsed

size_t otTcpCircularSendBuffer::mCapacityUsed

Number of bytes stored in the send buffer.

Definition at line 94 of file include/openthread/tcp_ext.h

mSendLinks

otLinkedBuffer otTcpCircularSendBuffer::mSendLinks[2]

Definition at line 96 of file include/openthread/tcp_ext.h

mFirstSendLinkIndex

uint8_t otTcpCircularSendBuffer::mFirstSendLinkIndex

Definition at line 97 of file include/openthread/tcp_ext.h

otTcpEndpointAndCircularSendBuffer

321/962

otTcpEndpointAndCircularSendBuffer

Context structure to use with mbedtls_ssl_set_bio.

Public Attributes

otTcpEndpoint * mEndpoint

otTcpCircularSend
Buffer *

mSendBuffer

Public Attribute Documentation

mEndpoint

otTcpEndpoint* otTcpEndpointAndCircularSendBuffer::mEndpoint

Definition at line 223 of file include/openthread/tcp_ext.h

mSendBuffer

otTcpCircularSendBuffer* otTcpEndpointAndCircularSendBuffer::mSendBuffer

Definition at line 224 of file include/openthread/tcp_ext.h

UDP

322/962

UDP

UDP

Modules

UDP

UDP Forward

UDP

323/962

UDP

UDP
This module includes functions that control UDP communication.

Modules

otUdpReceiver

otUdpSocket

Enumerations

enum otNetifIdentifier {

OT_NETIF_UNSPECIFIED = 0
OT_NETIF_THREAD
OT_NETIF_BACKBONE

}
Defines the OpenThread network interface identifiers.

Typedefs

typedef bool(* otUdpHandler)(void *aContext, const otMessage *aMessage, const otMessageInfo *aMessageInfo)
This callback allows OpenThread to provide specific handlers for certain UDP messages.

typedef struct
otUdpReceiver

otUdpReceiver
Represents a UDP receiver.

typedef void(* otUdpReceive)(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo)
This callback allows OpenThread to inform the application of a received UDP message .

typedef struct
otUdpSocket

otUdpSocket
Represents a UDP socket.

typedef enum
otNetifIdentifier

otNetifIdentifier
Defines the OpenThread network interface identifiers.

Functions

otError otUdpAddReceiver(otInstance *aInstance, otUdpReceiver *aUdpReceiver)
Adds a UDP receiver.

otError otUdpRemoveReceiver(otInstance *aInstance, otUdpReceiver *aUdpReceiver)
Removes a UDP receiver.

otError otUdpSendDatagram(otInstance *aInstance, otMessage *aMessage, otMessageInfo *aMessageInfo)
Sends a UDP message without socket.

otMessage * otUdpNewMessage(otInstance *aInstance, const otMessageSettings *aSettings)
Allocate a new message buffer for sending a UDP message .

UDP

324/962

otError otUdpOpen(otInstance *aInstance, otUdpSocket *aSocket, otUdpReceive aCallback, void *aContext)
Open a UDP/IPv6 socket.

bool otUdpIsOpen(otInstance *aInstance, const otUdpSocket *aSocket)
Check if a UDP socket is open.

otError otUdpClose(otInstance *aInstance, otUdpSocket *aSocket)
Close a UDP/IPv6 socket.

otError otUdpBind(otInstance *aInstance, otUdpSocket *aSocket, const otSockAddr *aSockName, otNetifIdentifier
aNetif)
Bind a UDP/IPv6 socket.

otError otUdpConnect(otInstance *aInstance, otUdpSocket *aSocket, const otSockAddr *aSockName)
Connect a UDP/IPv6 socket.

otError otUdpSend(otInstance *aInstance, otUdpSocket *aSocket, otMessage *aMessage, const otMessageInfo
*aMessageInfo)
Send a UDP/IPv6 message .

otUdpSocket * otUdpGetSockets(otInstance *aInstance)
Gets the head of linked list of UDP Sockets.

Enumeration Documentation

otNetifIdentifier

otNetifIdentifier

Defines the OpenThread network interface identifiers.

Enumerator

OT_NETIF_UNSPECIFIED Unspecified network interface.

OT_NETIF_THREAD The Thread interface.

OT_NETIF_BACKBONE The Backbone interface.

Definition at line 138 of file include/openthread/udp.h

Typedef Documentation

otUdpHandler

typedef bool(* otUdpHandler) (void *aContext, const otMessage *aMessage, const otMessageInfo *aMessageInfo))
(void *aContext, const otMessage *aMessage, const otMessageInfo *aMessageInfo)

This callback allows OpenThread to provide specific handlers for certain UDP messages.

Definition at line 63 of file include/openthread/udp.h

otUdpReceiver

typedef struct otUdpReceiver otUdpReceiver

Represents a UDP receiver.

Definition at line 74 of file include/openthread/udp.h

UDP

325/962

otUdpReceive

typedef void(* otUdpReceive) (void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo))(void
*aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo)

This callback allows OpenThread to inform the application of a received UDP message.

Definition at line 118 of file include/openthread/udp.h

otUdpSocket

typedef struct otUdpSocket otUdpSocket

Represents a UDP socket.

Definition at line 132 of file include/openthread/udp.h

otNetifIdentifier

typedef enum otNetifIdentifier otNetifIdentifier

Defines the OpenThread network interface identifiers.

Definition at line 143 of file include/openthread/udp.h

Function Documentation

otUdpAddReceiver

otError otUdpAddReceiver (otInstance *aInstance, otUdpReceiver *aUdpReceiver)

Adds a UDP receiver.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aUdpReceiver A pointer to the UDP receiver.

Definition at line 86 of file include/openthread/udp.h

otUdpRemoveReceiver

otError otUdpRemoveReceiver (otInstance *aInstance, otUdpReceiver *aUdpReceiver)

Removes a UDP receiver.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aUdpReceiver A pointer to the UDP receiver.

UDP

326/962

Definition at line 98 of file include/openthread/udp.h

otUdpSendDatagram

otError otUdpSendDatagram (otInstance *aInstance, otMessage *aMessage, otMessageInfo *aMessageInfo)

Sends a UDP message without socket.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to a message without UDP header.

[in] aMessageInfo A pointer to a message info associated with aMessage .

Definition at line 112 of file include/openthread/udp.h

otUdpNewMessage

otMessage * otUdpNewMessage (otInstance *aInstance, const otMessageSettings *aSettings)

Allocate a new message buffer for sending a UDP message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSettings A pointer to the message settings or NULL to use default settings.

Note

If aSettings is 'NULL', the link layer security is enabled and the message priority is set to OT_MESSAGE_PRIORITY_NORMAL

by default.

Returns

A pointer to the message buffer or NULL if no message buffers are available or parameters are invalid.

See Also

otMessageFree

Definition at line 159 of file include/openthread/udp.h

otUdpOpen

otError otUdpOpen (otInstance *aInstance, otUdpSocket *aSocket, otUdpReceive aCallback, void *aContext)

Open a UDP/IPv6 socket.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

[in] aCallback A pointer to the application callback function.

[in] aContext A pointer to application-specific context.

Definition at line 173 of file include/openthread/udp.h

UDP

327/962

otUdpIsOpen

bool otUdpIsOpen (otInstance *aInstance, const otUdpSocket *aSocket)

Check if a UDP socket is open.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

Returns

Whether the UDP socket is open.

Definition at line 184 of file include/openthread/udp.h

otUdpClose

otError otUdpClose (otInstance *aInstance, otUdpSocket *aSocket)

Close a UDP/IPv6 socket.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

Definition at line 196 of file include/openthread/udp.h

otUdpBind

otError otUdpBind (otInstance *aInstance, otUdpSocket *aSocket, const otSockAddr *aSockName, otNetifIdentifier
aNetif)

Bind a UDP/IPv6 socket.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

[in] aSockName A pointer to an IPv6 socket address structure.

[in] aNetif The network interface to bind.

Definition at line 210 of file include/openthread/udp.h

otUdpConnect

otError otUdpConnect (otInstance *aInstance, otUdpSocket *aSocket, const otSockAddr *aSockName)

Connect a UDP/IPv6 socket.

Parameters

UDP

328/962

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

[in] aSockName A pointer to an IPv6 socket address structure.

Definition at line 223 of file include/openthread/udp.h

otUdpSend

otError otUdpSend (otInstance *aInstance, otUdpSocket *aSocket, otMessage *aMessage, const otMessageInfo
*aMessageInfo)

Send a UDP/IPv6 message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSocket A pointer to a UDP socket structure.

[in] aMessage A pointer to a message buffer.

[in] aMessageInfo A pointer to a message info structure.

If the return value is OT_ERROR_NONE, OpenThread takes ownership of aMessage , and the caller should no longer

reference aMessage . If the return value is not OT_ERROR_NONE, the caller retains ownership of aMessage , including

freeing aMessage if the message buffer is no longer needed.

Definition at line 242 of file include/openthread/udp.h

otUdpGetSockets

otUdpSocket * otUdpGetSockets (otInstance *aInstance)

Gets the head of linked list of UDP Sockets.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the head of UDP Socket linked list.

Definition at line 252 of file include/openthread/udp.h

otUdpReceiver

329/962

otUdpReceiver

Represents a UDP receiver.

Public Attributes

struct
otUdpReceiver *

mNext
A po inter to the next UDP receiver (internal use only).

otUdpHandler mHandler
A function po inter to the receiver callback.

void * mContext
A po inter to application-specific context.

Public Attribute Documentation

mNext

struct otUdpReceiver* otUdpReceiver::mNext

A pointer to the next UDP receiver (internal use only).

Definition at line 71 of file include/openthread/udp.h

mHandler

otUdpHandler otUdpReceiver::mHandler

A function pointer to the receiver callback.

Definition at line 72 of file include/openthread/udp.h

mContext

void* otUdpReceiver::mContext

A pointer to application-specific context.

Definition at line 73 of file include/openthread/udp.h

otUdpSocket

330/962

otUdpSocket

Represents a UDP socket.

Public Attributes

otSockAddr mSockName
The local IPv6 socket address.

otSockAddr mPeerName
The peer IPv6 socket address.

otUdpReceive mHandler
A function po inter to the application callback.

void * mContext
A po inter to application-specific context.

void * mHandle
A handle to platform's UDP.

struct
otUdpSocket *

mNext
A po inter to the next UDP socket (internal use only).

Public Attribute Documentation

mSockName

otSockAddr otUdpSocket::mSockName

The local IPv6 socket address.

Definition at line 126 of file include/openthread/udp.h

mPeerName

otSockAddr otUdpSocket::mPeerName

The peer IPv6 socket address.

Definition at line 127 of file include/openthread/udp.h

mHandler

otUdpReceive otUdpSocket::mHandler

A function pointer to the application callback.

Definition at line 128 of file include/openthread/udp.h

otUdpSocket

331/962

void* otUdpSocket::mContext

A pointer to application-specific context.

Definition at line 129 of file include/openthread/udp.h

mHandle

void* otUdpSocket::mHandle

A handle to platform's UDP.

Definition at line 130 of file include/openthread/udp.h

mNext

struct otUdpSocket* otUdpSocket::mNext

A pointer to the next UDP socket (internal use only).

Definition at line 131 of file include/openthread/udp.h

UDP Forward

332/962

UDP Forward

UDP Forward
This module includes functions for UDP forward feature.

The functions in this module are available when udp-forward feature (OPENTHREAD_CONFIG_UDP_FORWARD_ENABLE) is

enabled.

Typedefs

typedef void(* otUdpForwarder)(otMessage *aMessage, uint16_t aPeerPort, otIp6Address *aPeerAddr, uint16_t aSockPort,
void *aContext)
Po inter delivers the UDP packet to host and host should send the packet through its own network stack.

Functions

void otUdpForwardSetForwarder(otInstance *aInstance, otUdpForwarder aForwarder, void *aContext)
Set UDP forward callback to deliver UDP packets to host.

void otUdpForwardReceive(otInstance *aInstance, otMessage *aMessage, uint16_t aPeerPort, const
otIp6Address *aPeerAddr, uint16_t aSockPort)
Handle a UDP packet received from host.

bool otUdpIsPortInUse(otInstance *aInstance, uint16_t port)
Determines if the given UDP port is exclusively opened by OpenThread API.

Typedef Documentation

otUdpForwarder

typedef void(* otUdpForwarder) (otMessage *aMessage, uint16_t aPeerPort, otIp6Address *aPeerAddr, uint16_t
aSockPort, void *aContext))(otMessage *aMessage, uint16_t aPeerPort, otIp6Address *aPeerAddr, uint16_t aSockPort,
void *aContext)

Pointer delivers the UDP packet to host and host should send the packet through its own network stack.

Parameters

[in] aMessage A pointer to the UDP Message.

[in] aPeerPort The destination UDP port.

[in] aPeerAddr A pointer to the destination IPv6 address.

[in] aSockPort The source UDP port.

[in] aContext A pointer to application-specific context.

Definition at line 282 of file include/openthread/udp.h

Function Documentation

otUdpForwardSetForwarder

UDP Forward

333/962

void otUdpForwardSetForwarder (otInstance *aInstance, otUdpForwarder aForwarder, void *aContext)

Set UDP forward callback to deliver UDP packets to host.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aForwarder A pointer to a function called to forward UDP packet to host.

[in] aContext A pointer to application-specific context.

Definition at line 296 of file include/openthread/udp.h

otUdpForwardReceive

void otUdpForwardReceive (otInstance *aInstance, otMessage *aMessage, uint16_t aPeerPort, const otIp6Address
*aPeerAddr, uint16_t aSockPort)

Handle a UDP packet received from host.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the UDP Message.

[in] aPeerPort The source UDP port.

[in] aPeerAddr A pointer to the source address.

[in] aSockPort The destination UDP port.

Warnings

No matter the call success or fail, the message is freed.

Definition at line 310 of file include/openthread/udp.h

otUdpIsPortInUse

bool otUdpIsPortInUse (otInstance *aInstance, uint16_t port)

Determines if the given UDP port is exclusively opened by OpenThread API.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] port UDP port number to verify.

Definition at line 326 of file include/openthread/udp.h

Link

334/962

Link

Link

Modules

Link

Link Metrics

Raw Link

Link

335/962

Link

Link
This module includes functions that control link-layer configuration.

Modules

otThreadLinkInfo

otMacFilterEntry

otMacCounters

otActiveScanResult

otEnergyScanResult

Enumerations

enum otMacFilterAddressMode {

OT_MAC_FILTER_ADDRESS_MODE_DISABLED
OT_MAC_FILTER_ADDRESS_MODE_ALLOWLIST
OT_MAC_FILTER_ADDRESS_MODE_DENYLIST

}
Defines address mode of the mac filter.

Typedefs

typedef struct
otThreadLinkInfo

otThreadLinkInfo
Represents link-specific information for messages received from the Thread radio.

typedef uint8_t otMacFilterIterator
Used to iterate through mac filter entries.

typedef enum
otMacFilterAddres

sMode

otMacFilterAddressMode
Defines address mode of the mac filter.

typedef struct
otMacFilterEntry

otMacFilterEntry
Represents a Mac Filter entry.

typedef struct
otMacCounters

otMacCounters
Represents the MAC layer counters.

typedef struct
otActiveScanRes

ult

otActiveScanResult
Represents a received IEEE 802.15.4 Beacon.

typedef struct
otEnergyScanRes

ult

otEnergyScanResult
Represents an energy scan result.

typedef void(* otHandleActiveScanResult)(otActiveScanResult *aResult, void *aContext)
Po inter is called during an IEEE 802.15.4 Active Scan when an IEEE 802.15.4 Beacon is received or the scan completes.

Link

336/962

typedef void(* otHandleEnergyScanResult)(otEnergyScanResult *aResult, void *aContext)
Po inter is called during an IEEE 802.15.4 Energy Scan when the result for a channel is ready or the scan completes.

typedef void(* otLinkPcapCallback)(const otRadioFrame *aFrame, bool aIsTx, void *aContext)
Po inter is called when an IEEE 802.15.4 frame is received.

Functions

otError otLinkActiveScan(otInstance *aInstance, uint32_t aScanChannels, uint16_t aScanDuration,
otHandleActiveScanResult aCallback, void *aCallbackContext)
Starts an IEEE 802.15.4 Active Scan.

bool otLinkIsActiveScanInProgress(otInstance *aInstance)
Indicates whether or not an IEEE 802.15.4 Active Scan is currently in progress.

otError otLinkEnergyScan(otInstance *aInstance, uint32_t aScanChannels, uint16_t aScanDuration,
otHandleEnergyScanResult aCallback, void *aCallbackContext)
Starts an IEEE 802.15.4 Energy Scan.

bool otLinkIsEnergyScanInProgress(otInstance *aInstance)
Indicates whether or not an IEEE 802.15.4 Energy Scan is currently in progress.

otError otLinkSendDataRequest(otInstance *aInstance)
Enqueues an IEEE 802.15.4 Data Request message for transmission.

bool otLinkIsInTransmitState(otInstance *aInstance)
Indicates whether or not an IEEE 802.15.4 MAC is in the transmit state .

uint8_t otLinkGetChannel(otInstance *aInstance)
Get the IEEE 802.15.4 channel.

otError otLinkSetChannel(otInstance *aInstance, uint8_t aChannel)
Set the IEEE 802.15.4 channel.

uint32_t otLinkGetSupportedChannelMask(otInstance *aInstance)
Get the supported channel mask of MAC layer.

otError otLinkSetSupportedChannelMask(otInstance *aInstance, uint32_t aChannelMask)
Set the supported channel mask of MAC layer.

const
otExtAddress *

otLinkGetExtendedAddress(otInstance *aInstance)
Gets the IEEE 802.15.4 Extended Address.

otError otLinkSetExtendedAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
Sets the IEEE 802.15.4 Extended Address.

void otLinkGetFactoryAssignedIeeeEui64(otInstance *aInstance, otExtAddress *aEui64�
Get the factory-assigned IEEE EUI-64.

otPanId otLinkGetPanId(otInstance *aInstance)
Get the IEEE 802.15.4 PAN ID.

otError otLinkSetPanId(otInstance *aInstance, otPanId aPanId)
Set the IEEE 802.15.4 PAN ID.

uint32_t otLinkGetPollPeriod(otInstance *aInstance)
Get the data po ll period of sleepy end device .

otError otLinkSetPollPeriod(otInstance *aInstance, uint32_t aPollPeriod)
Set/clear user-specified/external data po ll period for sleepy end device .

Link

337/962

otShortAddress otLinkGetShortAddress(otInstance *aInstance)
Get the IEEE 802.15.4 Short Address.

uint8_t otLinkGetMaxFrameRetriesDirect(otInstance *aInstance)
Returns the maximum number of frame retries during direct transmission.

void otLinkSetMaxFrameRetriesDirect(otInstance *aInstance, uint8_t aMaxFrameRetriesDirect)
Sets the maximum number of frame retries during direct transmission.

uint8_t otLinkGetMaxFrameRetriesIndirect(otInstance *aInstance)
Returns the maximum number of frame retries during indirect transmission.

void otLinkSetMaxFrameRetriesIndirect(otInstance *aInstance, uint8_t aMaxFrameRetriesIndirect)
Sets the maximum number of frame retries during indirect transmission.

otMacFilterAddres
sMode

otLinkFilterGetAddressMode(otInstance *aInstance)
Gets the address mode of MAC filter.

void otLinkFilterSetAddressMode(otInstance *aInstance, otMacFilterAddressMode aMode)
Sets the address mode of MAC filter.

otError otLinkFilterAddAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
Adds an Extended Address to MAC filter.

void otLinkFilterRemoveAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
Removes an Extended Address from MAC filter.

void otLinkFilterClearAddresses(otInstance *aInstance)
Clears all the Extended Addresses from MAC filter.

otError otLinkFilterGetNextAddress(otInstance *aInstance, otMacFilterIterator *aIterator, otMacFilterEntry *aEntry)
Gets an in-use address filter entry.

otError otLinkFilterAddRssIn(otInstance *aInstance, const otExtAddress *aExtAddress, int8_t aRss)
Adds the specified Extended Address to the RssIn list (or modifies an existing address in the RssIn list) and sets the

received signal strength (in dBm) entry for messages from that address.

void otLinkFilterRemoveRssIn(otInstance *aInstance, const otExtAddress *aExtAddress)
Removes the specified Extended Address from the RssIn list.

void otLinkFilterSetDefaultRssIn(otInstance *aInstance, int8_t aRss)
Sets the default received signal strength (in dBm) on MAC Filter.

void otLinkFilterClearDefaultRssIn(otInstance *aInstance)
Clears any previously set default received signal strength (in dBm) on MAC Filter.

void otLinkFilterClearAllRssIn(otInstance *aInstance)
Clears all the received signal strength (rss) and link quality indicator (lqi) entries (including defaults) from the RssIn

list.

otError otLinkFilterGetNextRssIn(otInstance *aInstance, otMacFilterIterator *aIterator, otMacFilterEntry *aEntry)
Gets an in-use RssIn filter entry.

void otLinkSetRadioFilterEnabled(otInstance *aInstance, bool aFilterEnabled)
Enables/disables IEEE 802.15.4 radio filter mode .

bool otLinkIsRadioFilterEnabled(otInstance *aInstance)
Indicates whether the IEEE 802.15.4 radio filter is enabled or not.

uint8_t otLinkConvertRssToLinkQuality(otInstance *aInstance, int8_t aRss)
Converts received signal strength to link quality.

Link

338/962

int8_t otLinkConvertLinkQualityToRss(otInstance *aInstance, uint8_t aLinkQuality)
Converts link quality to typical received signal strength.

const uint32_t * otLinkGetTxDirectRetrySuccessHistogram(otInstance *aInstance, uint8_t *aNumberOfEntries)
Gets histogram of retries for a single direct packet until success.

const uint32_t * otLinkGetTxIndirectRetrySuccessHistogram(otInstance *aInstance, uint8_t *aNumberOfEntries)
Gets histogram of retries for a single indirect packet until success.

void otLinkResetTxRetrySuccessHistogram(otInstance *aInstance)
Clears histogram statistics for direct and indirect transmissions.

const
otMacCounters *

otLinkGetCounters(otInstance *aInstance)
Get the MAC layer counters.

void otLinkResetCounters(otInstance *aInstance)
Resets the MAC layer counters.

void otLinkSetPcapCallback(otInstance *aInstance, otLinkPcapCallback aPcapCallback, void *aCallbackContext)
Registers a callback to provide received raw IEEE 802.15.4 frames.

bool otLinkIsPromiscuous(otInstance *aInstance)
Indicates whether or not promiscuous mode is enabled at the link layer.

otError otLinkSetPromiscuous(otInstance *aInstance, bool aPromiscuous)
Enables or disables the link layer promiscuous mode .

uint8_t otLinkGetCslChannel(otInstance *aInstance)
Gets the CSL channel.

otError otLinkSetCslChannel(otInstance *aInstance, uint8_t aChannel)
Sets the CSL channel.

uint32_t otLinkGetCslPeriod(otInstance *aInstance)
Gets the CSL period in microseconds.

otError otLinkSetCslPeriod(otInstance *aInstance, uint32_t aPeriod)
Sets the CSL period in microseconds.

uint32_t otLinkGetCslTimeout(otInstance *aInstance)
Gets the CSL timeout.

otError otLinkSetCslTimeout(otInstance *aInstance, uint32_t aTimeout)
Sets the CSL timeout in seconds.

uint16_t otLinkGetCcaFailureRate(otInstance *aInstance)
Returns the current CCA (Clear Channel Assessment) failure rate .

otError otLinkSetEnabled(otInstance *aInstance, bool aEnable)
Enables or disables the link layer.

bool otLinkIsEnabled(otInstance *aInstance)
Indicates whether or not the link layer is enabled.

bool otLinkIsCslEnabled(otInstance *aInstance)
Indicates whether or not CSL is enabled.

bool otLinkIsCslSupported(otInstance *aInstance)
Indicates whether the device is connected to a parent which supports CSL.

otError otLinkSendEmptyData(otInstance *aInstance)
Instructs the device to send an empty IEEE 802.15.4 data frame .

Link

339/962

otError otLinkSetRegion(otInstance *aInstance, uint16_t aRegionCode)
Sets the region code .

otError otLinkGetRegion(otInstance *aInstance, uint16_t *aRegionCode)
Get the region code .

Macros

#define OT_US_PER_TEN_SYMBOLS OT_RADIO_TEN_SYMBOLS_TIME
Time for 10 symbo ls in units of microseconds.

#define OT_MAC_FILTER_FIXED_RSS_DISABLED 127
Used to indicate no fixed received signal strength was set.

#define OT_MAC_FILTER_ITERATOR_INIT 0
Initializer for otMacFilterIterator.

#define OT_LINK_CSL_PERIOD_TEN_SYMBOLS_UNIT_IN_USEC �160�
Represents CSL period ten symbo ls unit in microseconds.

Enumeration Documentation

otMacFilterAddressMode

otMacFilterAddressMode

Defines address mode of the mac filter.

Enumerator

OT_MAC_FILTER_ADDRESS_MODE_DISABLED Address filter is disabled.

OT_MAC_FILTER_ADDRESS_MODE_ALLOWLIST Allowlist address filter mode is enabled.

OT_MAC_FILTER_ADDRESS_MODE_DENYLIST Denylist address filter mode is enabled.

Definition at line 92 of file include/openthread/link.h

Typedef Documentation

otThreadLinkInfo

typedef struct otThreadLinkInfo otThreadLinkInfo

Represents link-specific information for messages received from the Thread radio.

Definition at line 76 of file include/openthread/link.h

otMacFilterIterator

typedef uint8_t otMacFilterIterator

Used to iterate through mac filter entries.

Definition at line 86 of file include/openthread/link.h

Link

340/962

otMacFilterAddressMode

typedef enum otMacFilterAddressMode otMacFilterAddressMode

Defines address mode of the mac filter.

Definition at line 97 of file include/openthread/link.h

otMacFilterEntry

typedef struct otMacFilterEntry otMacFilterEntry

Represents a Mac Filter entry.

Definition at line 107 of file include/openthread/link.h

otMacCounters

typedef struct otMacCounters otMacCounters

Represents the MAC layer counters.

Definition at line 374 of file include/openthread/link.h

otActiveScanResult

typedef struct otActiveScanResult otActiveScanResult

Represents a received IEEE 802.15.4 Beacon.

Definition at line 398 of file include/openthread/link.h

otEnergyScanResult

typedef struct otEnergyScanResult otEnergyScanResult

Represents an energy scan result.

Definition at line 408 of file include/openthread/link.h

otHandleActiveScanResult

typedef void(* otHandleActiveScanResult) (otActiveScanResult *aResult, void *aContext))(otActiveScanResult *aResult,
void *aContext)

Pointer is called during an IEEE 802.15.4 Active Scan when an IEEE 802.15.4 Beacon is received or the scan completes.

Parameters

[in] aResult A valid pointer to the beacon information or NULL when the active scan completes.

Link

341/962

[in] aContext A pointer to application-specific context.

Definition at line 418 of file include/openthread/link.h

otHandleEnergyScanResult

typedef void(* otHandleEnergyScanResult) (otEnergyScanResult *aResult, void *aContext))(otEnergyScanResult
*aResult, void *aContext)

Pointer is called during an IEEE 802.15.4 Energy Scan when the result for a channel is ready or the scan completes.

Parameters

[in] aResult A valid pointer to the energy scan result information or NULL when the energy scan completes.

[in] aContext A pointer to application-specific context.

Definition at line 456 of file include/openthread/link.h

otLinkPcapCallback

typedef void(* otLinkPcapCallback) (const otRadioFrame *aFrame, bool aIsTx, void *aContext))(const otRadioFrame
*aFrame, bool aIsTx, void *aContext)

Pointer is called when an IEEE 802.15.4 frame is received.

Parameters

[in] aFrame A pointer to the received IEEE 802.15.4 frame.

[in] aIsTx Whether this frame is transmitted, not received.

[in] aContext A pointer to application-specific context.

Note

This callback is called after FCS processing and aFrame may not contain the actual FCS that was received.

This callback is called before IEEE 802.15.4 security processing.

Definition at line 996 of file include/openthread/link.h

Function Documentation

otLinkActiveScan

otError otLinkActiveScan (otInstance *aInstance, uint32_t aScanChannels, uint16_t aScanDuration,
otHandleActiveScanResult aCallback, void *aCallbackContext)

Starts an IEEE 802.15.4 Active Scan.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aScanChannels A bit vector indicating which channels to scan (e.g. OT_CHANNEL_11_MASK).

[in] aScanDuration The time in milliseconds to spend scanning each channel.

[in] aCallback A pointer to a function called on receiving a beacon or scan completes.

[in] aCallbackContext A pointer to application-specific context.

Link

342/962

Definition at line 433 of file include/openthread/link.h

otLinkIsActiveScanInProgress

bool otLinkIsActiveScanInProgress (otInstance *aInstance)

Indicates whether or not an IEEE 802.15.4 Active Scan is currently in progress.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

true if an IEEE 802.15.4 Active Scan is in progress, false otherwise.

Definition at line 446 of file include/openthread/link.h

otLinkEnergyScan

otError otLinkEnergyScan (otInstance *aInstance, uint32_t aScanChannels, uint16_t aScanDuration,
otHandleEnergyScanResult aCallback, void *aCallbackContext)

Starts an IEEE 802.15.4 Energy Scan.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aScanChannels A bit vector indicating on which channels to perform energy scan.

[in] aScanDuration The time in milliseconds to spend scanning each channel.

[in] aCallback A pointer to a function called to pass on scan result on indicate scan completion.

[in] aCallbackContext A pointer to application-specific context.

Definition at line 471 of file include/openthread/link.h

otLinkIsEnergyScanInProgress

bool otLinkIsEnergyScanInProgress (otInstance *aInstance)

Indicates whether or not an IEEE 802.15.4 Energy Scan is currently in progress.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

true if an IEEE 802.15.4 Energy Scan is in progress, false otherwise.

Definition at line 485 of file include/openthread/link.h

otLinkSendDataRequest

otError otLinkSendDataRequest (otInstance *aInstance)

Link

343/962

Enqueues an IEEE 802.15.4 Data Request message for transmission.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 497 of file include/openthread/link.h

otLinkIsInTransmitState

bool otLinkIsInTransmitState (otInstance *aInstance)

Indicates whether or not an IEEE 802.15.4 MAC is in the transmit state.

Parameters

[in] aInstance A pointer to an OpenThread instance.

MAC module is in the transmit state during CSMA/CA procedure, CCA, Data, Beacon or Data Request frame transmission

and receiving an ACK of a transmitted frame. MAC module is not in the transmit state during transmission of an ACK frame or

a Beacon Request frame.

Returns

true if an IEEE 802.15.4 MAC is in the transmit state, false otherwise.

Definition at line 511 of file include/openthread/link.h

otLinkGetChannel

uint8_t otLinkGetChannel (otInstance *aInstance)

Get the IEEE 802.15.4 channel.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The IEEE 802.15.4 channel.

See Also

otLinkSetChannel

Definition at line 523 of file include/openthread/link.h

otLinkSetChannel

otError otLinkSetChannel (otInstance *aInstance, uint8_t aChannel)

Set the IEEE 802.15.4 channel.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannel The IEEE 802.15.4 channel.

Link

344/962

Succeeds only when Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

See Also

otLinkGetChannel

Definition at line 541 of file include/openthread/link.h

otLinkGetSupportedChannelMask

uint32_t otLinkGetSupportedChannelMask (otInstance *aInstance)

Get the supported channel mask of MAC layer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The supported channel mask as uint32_t with bit 0 (lsb) mapping to channel 0, bit 1 to channel 1, so on.

Definition at line 551 of file include/openthread/link.h

otLinkSetSupportedChannelMask

otError otLinkSetSupportedChannelMask (otInstance *aInstance, uint32_t aChannelMask)

Set the supported channel mask of MAC layer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannelMask The supported channel mask (bit 0 or lsb mapping to channel 0, and so on).

Succeeds only when Thread protocols are disabled.

Definition at line 565 of file include/openthread/link.h

otLinkGetExtendedAddress

const otExtAddress * otLinkGetExtendedAddress (otInstance *aInstance)

Gets the IEEE 802.15.4 Extended Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the IEEE 802.15.4 Extended Address.

Definition at line 575 of file include/openthread/link.h

otLinkSetExtendedAddress

Link

345/962

otError otLinkSetExtendedAddress (otInstance *aInstance, const otExtAddress *aExtAddress)

Sets the IEEE 802.15.4 Extended Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the IEEE 802.15.4 Extended Address.

Note

Only succeeds when Thread protocols are disabled.

Definition at line 590 of file include/openthread/link.h

otLinkGetFactoryAssignedIeeeEui64

void otLinkGetFactoryAssignedIeeeEui64 (otInstance *aInstance, otExtAddress *aEui64�

Get the factory-assigned IEEE EUI-64.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[out] aEui64 A pointer to where the factory-assigned IEEE EUI-64 is placed.

Definition at line 599 of file include/openthread/link.h

otLinkGetPanId

otPanId otLinkGetPanId (otInstance *aInstance)

Get the IEEE 802.15.4 PAN ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The IEEE 802.15.4 PAN ID.

See Also

otLinkSetPanId

Definition at line 611 of file include/openthread/link.h

otLinkSetPanId

otError otLinkSetPanId (otInstance *aInstance, otPanId aPanId)

Set the IEEE 802.15.4 PAN ID.

Parameters

Link

346/962

[in] aInstance A pointer to an OpenThread instance.

[in] aPanId The IEEE 802.15.4 PAN ID.

Succeeds only when Thread protocols are disabled. A successful call to this function also invalidates the Active and

Pending Operational Datasets in non-volatile memory.

See Also

otLinkGetPanId

Definition at line 629 of file include/openthread/link.h

otLinkGetPollPeriod

uint32_t otLinkGetPollPeriod (otInstance *aInstance)

Get the data poll period of sleepy end device.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The data poll period of sleepy end device in milliseconds.

See Also

otLinkSetPollPeriod

Definition at line 641 of file include/openthread/link.h

otLinkSetPollPeriod

otError otLinkSetPollPeriod (otInstance *aInstance, uint32_t aPollPeriod)

Set/clear user-specified/external data poll period for sleepy end device.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPollPeriod data poll period in milliseconds.

Note

This function updates only poll period of sleepy end device. To update child timeout the function otThreadSetChildTimeout()

shall be called.

Minimal non-zero value should be OPENTHREAD_CONFIG_MAC_MINIMUM_POLL_PERIOD (10ms). Or zero to clear user-specified

poll period.

User-specified value should be no more than the maximal value 0x3FFFFFF ((1 << 26) - 1) allowed, otherwise it would be

clipped by the maximal value.

See Also

otLinkGetPollPeriod

Definition at line 664 of file include/openthread/link.h

otLinkGetShortAddress

Link

347/962

otShortAddress otLinkGetShortAddress (otInstance *aInstance)

Get the IEEE 802.15.4 Short Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the IEEE 802.15.4 Short Address.

Definition at line 674 of file include/openthread/link.h

otLinkGetMaxFrameRetriesDirect

uint8_t otLinkGetMaxFrameRetriesDirect (otInstance *aInstance)

Returns the maximum number of frame retries during direct transmission.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum number of retries during direct transmission.

Definition at line 684 of file include/openthread/link.h

otLinkSetMaxFrameRetriesDirect

void otLinkSetMaxFrameRetriesDirect (otInstance *aInstance, uint8_t aMaxFrameRetriesDirect)

Sets the maximum number of frame retries during direct transmission.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMaxFrameRetriesDirect The maximum number of retries during direct transmission.

Definition at line 693 of file include/openthread/link.h

otLinkGetMaxFrameRetriesIndirect

uint8_t otLinkGetMaxFrameRetriesIndirect (otInstance *aInstance)

Returns the maximum number of frame retries during indirect transmission.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum number of retries during indirect transmission.

Link

348/962

Definition at line 703 of file include/openthread/link.h

otLinkSetMaxFrameRetriesIndirect

void otLinkSetMaxFrameRetriesIndirect (otInstance *aInstance, uint8_t aMaxFrameRetriesIndirect)

Sets the maximum number of frame retries during indirect transmission.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMaxFrameRetriesIndirect The maximum number of retries during indirect transmission.

Definition at line 712 of file include/openthread/link.h

otLinkFilterGetAddressMode

otMacFilterAddressMode otLinkFilterGetAddressMode (otInstance *aInstance)

Gets the address mode of MAC filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Returns

the address mode.

Definition at line 724 of file include/openthread/link.h

otLinkFilterSetAddressMode

void otLinkFilterSetAddressMode (otInstance *aInstance, otMacFilterAddressMode aMode)

Sets the address mode of MAC filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMode The address mode to set.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 735 of file include/openthread/link.h

otLinkFilterAddAddress

otError otLinkFilterAddAddress (otInstance *aInstance, const otExtAddress *aExtAddress)

Adds an Extended Address to MAC filter.

Parameters

Link

349/962

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the Extended Address (MUST NOT be NULL).

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 749 of file include/openthread/link.h

otLinkFilterRemoveAddress

void otLinkFilterRemoveAddress (otInstance *aInstance, const otExtAddress *aExtAddress)

Removes an Extended Address from MAC filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the Extended Address (MUST NOT be NULL).

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

No action is performed if there is no existing entry in Filter matching the given Extended Address.

Definition at line 762 of file include/openthread/link.h

otLinkFilterClearAddresses

void otLinkFilterClearAddresses (otInstance *aInstance)

Clears all the Extended Addresses from MAC filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 772 of file include/openthread/link.h

otLinkFilterGetNextAddress

otError otLinkFilterGetNextAddress (otInstance *aInstance, otMacFilterIterator *aIterator, otMacFilterEntry *aEntry)

Gets an in-use address filter entry.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the MAC filter iterator context. To get the first in-use address filter entry, it should be

set to OT_MAC_FILTER_ITERATOR_INIT. MUST NOT be NULL.

[out] aEntry A pointer to where the information is placed. MUST NOT be NULL.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 788 of file include/openthread/link.h

Link

350/962

otLinkFilterAddRssIn

otError otLinkFilterAddRssIn (otInstance *aInstance, const otExtAddress *aExtAddress, int8_t aRss)

Adds the specified Extended Address to the RssIn list (or modifies an existing address in the RssIn list) and sets the

received signal strength (in dBm) entry for messages from that address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the IEEE 802.15.4 Extended Address. MUST NOT be NULL.

[in] aRss A received signal strength (in dBm).

The Extended Address does not necessarily have to be in the address allowlist/denylist filter to set the rss . Note

The RssIn list contains Extended Addresses whose rss or link quality indicator (lqi) values have been set to be different

from the defaults.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 808 of file include/openthread/link.h

otLinkFilterRemoveRssIn

void otLinkFilterRemoveRssIn (otInstance *aInstance, const otExtAddress *aExtAddress)

Removes the specified Extended Address from the RssIn list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the IEEE 802.15.4 Extended Address. MUST NOT be NULL.

Once removed from the RssIn list, this MAC address will instead use the default rss and lqi settings, assuming defaults

have been set. (If no defaults have been set, the over-air signal is used.)

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

No action is performed if there is no existing entry in the RssIn list matching the specified Extended Address.

Definition at line 824 of file include/openthread/link.h

otLinkFilterSetDefaultRssIn

void otLinkFilterSetDefaultRssIn (otInstance *aInstance, int8_t aRss)

Sets the default received signal strength (in dBm) on MAC Filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRss The default received signal strength (in dBm) to set.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

The default RSS value is used for all received frames from addresses for which there is no explicit RSS-IN entry in the Filter

list (added using otLinkFilterAddRssIn()).

Link

351/962

Definition at line 838 of file include/openthread/link.h

otLinkFilterClearDefaultRssIn

void otLinkFilterClearDefaultRssIn (otInstance *aInstance)

Clears any previously set default received signal strength (in dBm) on MAC Filter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 848 of file include/openthread/link.h

otLinkFilterClearAllRssIn

void otLinkFilterClearAllRssIn (otInstance *aInstance)

Clears all the received signal strength (rss) and link quality indicator (lqi) entries (including defaults) from the RssIn list.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Performing this action means that all Extended Addresses will use the on-air signal.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 860 of file include/openthread/link.h

otLinkFilterGetNextRssIn

otError otLinkFilterGetNextRssIn (otInstance *aInstance, otMacFilterIterator *aIterator, otMacFilterEntry *aEntry)

Gets an in-use RssIn filter entry.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the MAC filter iterator context. MUST NOT be NULL. To get the first entry, it should be

set to OT_MAC_FILTER_ITERATOR_INIT.

[out] aEntry A pointer to where the information is placed. The last entry would have the extended address as all

0xff to indicate the default received signal strength if it was set. aEntry MUST NOT be NULL.

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 878 of file include/openthread/link.h

otLinkSetRadioFilterEnabled

void otLinkSetRadioFilterEnabled (otInstance *aInstance, bool aFilterEnabled)

Enables/disables IEEE 802.15.4 radio filter mode.

Link

352/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aFilterEnabled TRUE to enable radio filter, FALSE to disable

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

The radio filter is mainly intended for testing. It can be used to temporarily block all tx/rx on the 802.15.4 radio. When radio

filter is enabled, radio is put to sleep instead of receive (to ensure device does not receive any frame and/or potentially

send ack). Also the frame transmission requests return immediately without sending the frame over the air (return "no ack"

error if ack is requested, otherwise return success).

Definition at line 894 of file include/openthread/link.h

otLinkIsRadioFilterEnabled

bool otLinkIsRadioFilterEnabled (otInstance *aInstance)

Indicates whether the IEEE 802.15.4 radio filter is enabled or not.

Parameters

N/A aInstance

Is available when OPENTHREAD_CONFIG_MAC_FILTER_ENABLE configuration is enabled.

Definition at line 905 of file include/openthread/link.h

otLinkConvertRssToLinkQuality

uint8_t otLinkConvertRssToLinkQuality (otInstance *aInstance, int8_t aRss)

Converts received signal strength to link quality.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRss The received signal strength value to be converted.

Returns

Link quality value mapping to aRss .

Definition at line 916 of file include/openthread/link.h

otLinkConvertLinkQualityToRss

int8_t otLinkConvertLinkQualityToRss (otInstance *aInstance, uint8_t aLinkQuality)

Converts link quality to typical received signal strength.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aLinkQuality LinkQuality value, should be in range [0,3].

Returns

Link

353/962

Typical platform received signal strength mapping to aLinkQuality .

Definition at line 927 of file include/openthread/link.h

otLinkGetTxDirectRetrySuccessHistogram

const uint32_t * otLinkGetTxDirectRetrySuccessHistogram (otInstance *aInstance, uint8_t *aNumberOfEntries)

Gets histogram of retries for a single direct packet until success.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aNumberOfEntries A pointer to where the size of returned histogram array is placed.

Is valid when OPENTHREAD_CONFIG_MAC_RETRY_SUCCESS_HISTOGRAM_ENABLE configuration is enabled.

Returns

A pointer to the histogram of retries (in a form of an array). The n-th element indicates that the packet has been sent with

n-th retry.

Definition at line 940 of file include/openthread/link.h

otLinkGetTxIndirectRetrySuccessHistogram

const uint32_t * otLinkGetTxIndirectRetrySuccessHistogram (otInstance *aInstance, uint8_t *aNumberOfEntries)

Gets histogram of retries for a single indirect packet until success.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aNumberOfEntries A pointer to where the size of returned histogram array is placed.

Is valid when OPENTHREAD_CONFIG_MAC_RETRY_SUCCESS_HISTOGRAM_ENABLE configuration is enabled.

Returns

A pointer to the histogram of retries (in a form of an array). The n-th element indicates that the packet has been sent with

n-th retry.

Definition at line 954 of file include/openthread/link.h

otLinkResetTxRetrySuccessHistogram

void otLinkResetTxRetrySuccessHistogram (otInstance *aInstance)

Clears histogram statistics for direct and indirect transmissions.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is valid when OPENTHREAD_CONFIG_MAC_RETRY_SUCCESS_HISTOGRAM_ENABLE configuration is enabled.

Definition at line 964 of file include/openthread/link.h

Link

354/962

otLinkGetCounters

const otMacCounters * otLinkGetCounters (otInstance *aInstance)

Get the MAC layer counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the MAC layer counters.

Definition at line 974 of file include/openthread/link.h

otLinkResetCounters

void otLinkResetCounters (otInstance *aInstance)

Resets the MAC layer counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 982 of file include/openthread/link.h

otLinkSetPcapCallback

void otLinkSetPcapCallback (otInstance *aInstance, otLinkPcapCallback aPcapCallback, void *aCallbackContext)

Registers a callback to provide received raw IEEE 802.15.4 frames.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPcapCallback A pointer to a function that is called when receiving an IEEE 802.15.4 link frame or NULL to

disable the callback.

[in] aCallbackContext A pointer to application-specific context.

Definition at line 1007 of file include/openthread/link.h

otLinkIsPromiscuous

bool otLinkIsPromiscuous (otInstance *aInstance)

Indicates whether or not promiscuous mode is enabled at the link layer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 1018 of file include/openthread/link.h

Link

355/962

otLinkSetPromiscuous

otError otLinkSetPromiscuous (otInstance *aInstance, bool aPromiscuous)

Enables or disables the link layer promiscuous mode.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPromiscuous true to enable promiscuous mode, or false otherwise.

Note

Promiscuous mode may only be enabled when the Thread interface is disabled.

Definition at line 1033 of file include/openthread/link.h

otLinkGetCslChannel

uint8_t otLinkGetCslChannel (otInstance *aInstance)

Gets the CSL channel.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The CSL channel.

Definition at line 1043 of file include/openthread/link.h

otLinkSetCslChannel

otError otLinkSetCslChannel (otInstance *aInstance, uint8_t aChannel)

Sets the CSL channel.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannel The CSL sample channel. Channel value should be 0 (Set CSL Channel unspecified) or within the range

[1, 10] (if 915-MHz supported) and [11, 26] (if 2.4 GHz supported).

Definition at line 1056 of file include/openthread/link.h

otLinkGetCslPeriod

uint32_t otLinkGetCslPeriod (otInstance *aInstance)

Gets the CSL period in microseconds.

Parameters

Link

356/962

[in] aInstance A pointer to an OpenThread instance.

Returns

The CSL period in microseconds.

Definition at line 1074 of file include/openthread/link.h

otLinkSetCslPeriod

otError otLinkSetCslPeriod (otInstance *aInstance, uint32_t aPeriod)

Sets the CSL period in microseconds.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPeriod The CSL period in microseconds.

Disable CSL by setting this parameter to 0 .

The CSL period MUST be a multiple of OT_LINK_CSL_PERIOD_TEN_SYMBOLS_UNIT_IN_USEC , otherwise OT_ERROR_INVALID_ARGS

is returned.

Definition at line 1089 of file include/openthread/link.h

otLinkGetCslTimeout

uint32_t otLinkGetCslTimeout (otInstance *aInstance)

Gets the CSL timeout.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The CSL timeout in seconds.

Definition at line 1099 of file include/openthread/link.h

otLinkSetCslTimeout

otError otLinkSetCslTimeout (otInstance *aInstance, uint32_t aTimeout)

Sets the CSL timeout in seconds.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTimeout The CSL timeout in seconds.

Definition at line 1111 of file include/openthread/link.h

otLinkGetCcaFailureRate

Link

357/962

uint16_t otLinkGetCcaFailureRate (otInstance *aInstance)

Returns the current CCA (Clear Channel Assessment) failure rate.

Parameters

N/A aInstance

The rate is maintained over a window of (roughly) last OPENTHREAD_CONFIG_CCA_FAILURE_RATE_AVERAGING_WINDOW frame

transmissions.

Returns

The CCA failure rate with maximum value 0xffff corresponding to 100% failure rate.

Definition at line 1122 of file include/openthread/link.h

otLinkSetEnabled

otError otLinkSetEnabled (otInstance *aInstance, bool aEnable)

Enables or disables the link layer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable true to enable the link layer, or false otherwise.

Note

The link layer may only be enabled / disabled when the Thread Interface is disabled.

Definition at line 1137 of file include/openthread/link.h

otLinkIsEnabled

bool otLinkIsEnabled (otInstance *aInstance)

Indicates whether or not the link layer is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 1148 of file include/openthread/link.h

otLinkIsCslEnabled

bool otLinkIsCslEnabled (otInstance *aInstance)

Indicates whether or not CSL is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Link

358/962

Definition at line 1159 of file include/openthread/link.h

otLinkIsCslSupported

bool otLinkIsCslSupported (otInstance *aInstance)

Indicates whether the device is connected to a parent which supports CSL.

Parameters

N/A aInstance

Definition at line 1168 of file include/openthread/link.h

otLinkSendEmptyData

otError otLinkSendEmptyData (otInstance *aInstance)

Instructs the device to send an empty IEEE 802.15.4 data frame.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is only supported on an Rx-Off-When-Idle device to send an empty data frame to its parent. Note: available only when

OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE is enabled.

Definition at line 1183 of file include/openthread/link.h

otLinkSetRegion

otError otLinkSetRegion (otInstance *aInstance, uint16_t aRegionCode)

Sets the region code.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aRegionCode The radio region code. The aRegionCode >> 8 is first ascii char and the aRegionCode & 0xff is the

second ascii char.

The radio region format is the 2-bytes ascii representation of the ISO 3166 alpha-2 code.

Definition at line 1199 of file include/openthread/link.h

otLinkGetRegion

otError otLinkGetRegion (otInstance *aInstance, uint16_t *aRegionCode)

Get the region code.

Parameters

[in] aInstance The OpenThread instance structure.

Link

359/962

[out] aRegionCode The radio region code. The aRegionCode >> 8 is first ascii char and the aRegionCode & 0xff is the

second ascii char.

The radio region format is the 2-bytes ascii representation of the ISO 3166 alpha-2 code.

Definition at line 1216 of file include/openthread/link.h

Macro Definition Documentation

OT_US_PER_TEN_SYMBOLS

#define OT_US_PER_TEN_SYMBOLS

Value:

OT_RADIO_TEN_SYMBOLS_TIME

Time for 10 symbols in units of microseconds.

Definition at line 55 of file include/openthread/link.h

OT_MAC_FILTER_FIXED_RSS_DISABLED

#define OT_MAC_FILTER_FIXED_RSS_DISABLED

Value:

127

Used to indicate no fixed received signal strength was set.

Definition at line 82 of file include/openthread/link.h

OT_MAC_FILTER_ITERATOR_INIT

#define OT_MAC_FILTER_ITERATOR_INIT

Value:

0

Initializer for otMacFilterIterator.

Definition at line 84 of file include/openthread/link.h

OT_LINK_CSL_PERIOD_TEN_SYMBOLS_UNIT_IN_USEC

#define OT_LINK_CSL_PERIOD_TEN_SYMBOLS_UNIT_IN_USEC

Value:

�160�

Represents CSL period ten symbols unit in microseconds.

Link

360/962

The CSL period (in micro seconds) MUST be a multiple of this value.

Definition at line 1064 of file include/openthread/link.h

otThreadLinkInfo

361/962

otThreadLinkInfo

Represents link-specific information for messages received from the Thread radio.

Public Attributes

uint16_t mPanId
Source PAN ID.

uint8_t mChannel
802.15.4 Channel

int8_t mRss
Received Signal Strength in dBm.

uint8_t mLqi
Link Quality Indicator for a received message .

bool mLinkSecurity
Indicates whether or not link security is enabled.

bool mIsDstPanIdBroadcast
Indicates whether or not destination PAN ID is broadcast.

uint8_t mTimeSyncSeq
The time sync sequence .

int64_t mNetworkTimeOffset
The time offset to the Thread network time , in microseconds.

uint8_t mRadioType
Radio link type .

Public Attribute Documentation

mPanId

uint16_t otThreadLinkInfo::mPanId

Source PAN ID.

Definition at line 63 of file include/openthread/link.h

mChannel

uint8_t otThreadLinkInfo::mChannel

802.15.4 Channel

Definition at line 64 of file include/openthread/link.h

mRss

otThreadLinkInfo

362/962

int8_t otThreadLinkInfo::mRss

Received S ignal Strength in dBm.

Definition at line 65 of file include/openthread/link.h

mLqi

uint8_t otThreadLinkInfo::mLqi

Link Quality Indicator for a received message.

Definition at line 66 of file include/openthread/link.h

mLinkSecurity

bool otThreadLinkInfo::mLinkSecurity

Indicates whether or not link security is enabled.

Definition at line 67 of file include/openthread/link.h

mIsDstPanIdBroadcast

bool otThreadLinkInfo::mIsDstPanIdBroadcast

Indicates whether or not destination PAN ID is broadcast.

Definition at line 68 of file include/openthread/link.h

mTimeSyncSeq

uint8_t otThreadLinkInfo::mTimeSyncSeq

The time sync sequence.

Definition at line 71 of file include/openthread/link.h

mNetworkTimeOffset

int64_t otThreadLinkInfo::mNetworkTimeOffset

The time offset to the Thread network time, in microseconds.

Definition at line 72 of file include/openthread/link.h

mRadioType

otThreadLinkInfo

363/962

uint8_t otThreadLinkInfo::mRadioType

Radio link type.

Definition at line 75 of file include/openthread/link.h

otMacFilterEntry

364/962

otMacFilterEntry

Represents a Mac Filter entry.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address.

int8_t mRssIn
Received signal strength.

Public Attribute Documentation

mExtAddress

otExtAddress otMacFilterEntry::mExtAddress

IEEE 802.15.4 Extended Address.

Definition at line 105 of file include/openthread/link.h

mRssIn

int8_t otMacFilterEntry::mRssIn

Received signal strength.

Definition at line 106 of file include/openthread/link.h

otMacCounters

365/962

otMacCounters

Represents the MAC layer counters.

Public Attributes

uint32_t mTxTotal
The total number of unique MAC frame transmission requests.

uint32_t mTxUnicast
The total number of unique unicast MAC frame transmission requests.

uint32_t mTxBroadcast
The total number of unique broadcast MAC frame transmission requests.

uint32_t mTxAckRequested
The total number of unique MAC frame transmission requests with requested acknowledgment.

uint32_t mTxAcked
The total number of unique MAC frame transmission requests that were acked.

uint32_t mTxNoAckRequested
The total number of unique MAC frame transmission requests without requested acknowledgment.

uint32_t mTxData
The total number of unique MAC Data frame transmission requests.

uint32_t mTxDataPoll
The total number of unique MAC Data Po ll frame transmission requests.

uint32_t mTxBeacon
The total number of unique MAC Beacon frame transmission requests.

uint32_t mTxBeaconRequest
The total number of unique MAC Beacon Request frame transmission requests.

uint32_t mTxOther
The total number of unique other MAC frame transmission requests.

uint32_t mTxRetry
The total number of MAC retransmission attempts.

uint32_t mTxDirectMaxRetryExpiry
The total number of unique MAC transmission packets that meet maximal retry limit for direct packets.

uint32_t mTxIndirectMaxRetryExpiry
The total number of unique MAC transmission packets that meet maximal retry limit for indirect packets.

uint32_t mTxErrCca
The total number of CCA failures.

uint32_t mTxErrAbort
The total number of unique MAC transmission request failures cause by an abort error.

uint32_t mTxErrBusyChannel
The total number of unique MAC transmission requests failures caused by a busy channel (a CSMA/CA fail).

otMacCounters

366/962

uint32_t mRxTotal
The total number of received frames.

uint32_t mRxUnicast
The total number of unicast frames received.

uint32_t mRxBroadcast
The total number of broadcast frames received.

uint32_t mRxData
The total number of MAC Data frames received.

uint32_t mRxDataPoll
The total number of MAC Data Po ll frames received.

uint32_t mRxBeacon
The total number of MAC Beacon frames received.

uint32_t mRxBeaconRequest
The total number of MAC Beacon Request frames received.

uint32_t mRxOther
The total number of other types of frames received.

uint32_t mRxAddressFiltered
The total number of frames dropped by MAC Filter module , for example received from denylisted node .

uint32_t mRxDestAddrFiltered
The total number of frames dropped by destination address check, for example received frame for other node .

uint32_t mRxDuplicated
The total number of frames dropped due to duplication, that is when the frame has been already received.

uint32_t mRxErrNoFrame
The total number of frames dropped because of missing or malformed content.

uint32_t mRxErrUnknownNeighbor
The total number of frames dropped due to unknown neighbor.

uint32_t mRxErrInvalidSrcAddr
The total number of frames dropped due to invalid source address.

uint32_t mRxErrSec
The total number of frames dropped due to security error.

uint32_t mRxErrFcs
The total number of frames dropped due to invalid FCS.

uint32_t mRxErrOther
The total number of frames dropped due to other error.

Public Attribute Documentation

mTxTotal

uint32_t otMacCounters::mTxTotal

The total number of unique MAC frame transmission requests.

otMacCounters

367/962

Note that this counter is incremented for each MAC transmission request only by one, regardless of the amount of CCA

failures, CSMA-CA attempts, or retransmissions.

This increment rule applies to the following counters:

mTxUnicast

mTxBroadcast

mTxAckRequested

mTxNoAckRequested

mTxData

mTxDataPo ll

mTxBeacon

mTxBeaconRequest

mTxOther

mTxErrAbort

mTxErrBusyChannel

The following equations are valid:

mTxTotal = mTxUnicast + mTxBroadcast

mTxTotal = mTxAckRequested + mTxNoAckRequested

mTxTotal = mTxData + mTxDataPo ll + mTxBeacon + mTxBeaconRequest + mTxOther

Definition at line 140 of file include/openthread/link.h

mTxUnicast

uint32_t otMacCounters::mTxUnicast

The total number of unique unicast MAC frame transmission requests.

Definition at line 146 of file include/openthread/link.h

mTxBroadcast

uint32_t otMacCounters::mTxBroadcast

The total number of unique broadcast MAC frame transmission requests.

Definition at line 152 of file include/openthread/link.h

mTxAckRequested

uint32_t otMacCounters::mTxAckRequested

The total number of unique MAC frame transmission requests with requested acknowledgment.

Definition at line 158 of file include/openthread/link.h

mTxAcked

uint32_t otMacCounters::mTxAcked

otMacCounters

368/962

The total number of unique MAC frame transmission requests that were acked.

Definition at line 164 of file include/openthread/link.h

mTxNoAckRequested

uint32_t otMacCounters::mTxNoAckRequested

The total number of unique MAC frame transmission requests without requested acknowledgment.

Definition at line 170 of file include/openthread/link.h

mTxData

uint32_t otMacCounters::mTxData

The total number of unique MAC Data frame transmission requests.

Definition at line 176 of file include/openthread/link.h

mTxDataPoll

uint32_t otMacCounters::mTxDataPoll

The total number of unique MAC Data Poll frame transmission requests.

Definition at line 182 of file include/openthread/link.h

mTxBeacon

uint32_t otMacCounters::mTxBeacon

The total number of unique MAC Beacon frame transmission requests.

Definition at line 188 of file include/openthread/link.h

mTxBeaconRequest

uint32_t otMacCounters::mTxBeaconRequest

The total number of unique MAC Beacon Request frame transmission requests.

Definition at line 194 of file include/openthread/link.h

mTxOther

uint32_t otMacCounters::mTxOther

The total number of unique other MAC frame transmission requests.

otMacCounters

369/962

This counter is currently used for counting out-of-band frames.

Definition at line 202 of file include/openthread/link.h

mTxRetry

uint32_t otMacCounters::mTxRetry

The total number of MAC retransmission attempts.

Note that this counter is incremented by one for each retransmission attempt that may be triggered by lack of

acknowledgement, CSMA/CA failure, or other type of transmission error. The mTxRetry counter is incremented both for

unicast and broadcast MAC frames.

Modify the following configuration parameters to control the amount of retransmissions in the system:

OPENTHREAD_CONFIG_MAC_DEFAULT_MAX_FRAME_RETRIES_DIRECT

OPENTHREAD_CONFIG_MAC_DEFAULT_MAX_FRAME_RETRIES_INDIRECT

OPENTHREAD_CONFIG_MAC_TX_NUM_BCAST

OPENTHREAD_CONFIG_MAC_MAX_CSMA_BACKOFFS_DIRECT

OPENTHREAD_CONFIG_MAC_MAX_CSMA_BACKOFFS_INDIRECT

Currently, this counter is invalid if the platform's radio driver capability includes OT_RADIO_CAPS_TRANSMIT_RETRIES.

Definition at line 223 of file include/openthread/link.h

mTxDirectMaxRetryExpiry

uint32_t otMacCounters::mTxDirectMaxRetryExpiry

The total number of unique MAC transmission packets that meet maximal retry limit for direct packets.

Definition at line 229 of file include/openthread/link.h

mTxIndirectMaxRetryExpiry

uint32_t otMacCounters::mTxIndirectMaxRetryExpiry

The total number of unique MAC transmission packets that meet maximal retry limit for indirect packets.

Definition at line 235 of file include/openthread/link.h

mTxErrCca

uint32_t otMacCounters::mTxErrCca

The total number of CCA failures.

The meaning of this counter can be different and it depends on the platform's radio driver capabilities.

If OT_RADIO_CAPS_CSMA_BACKOFF is enabled, this counter represents the total number of full CSMA/CA failed attempts

and it is incremented by one also for each retransmission (in case of a CSMA/CA fail).

otMacCounters

370/962

If OT_RADIO_CAPS_TRANSMIT_RETRIES is enabled, this counter represents the total number of full CSMA/CA failed

attempts and it is incremented by one for each individual data frame request (regardless of the amount of retransmissions).

Definition at line 250 of file include/openthread/link.h

mTxErrAbort

uint32_t otMacCounters::mTxErrAbort

The total number of unique MAC transmission request failures cause by an abort error.

Definition at line 256 of file include/openthread/link.h

mTxErrBusyChannel

uint32_t otMacCounters::mTxErrBusyChannel

The total number of unique MAC transmission requests failures caused by a busy channel (a CSMA/CA fail).

Definition at line 262 of file include/openthread/link.h

mRxTotal

uint32_t otMacCounters::mRxTotal

The total number of received frames.

This counter counts all frames reported by the platform's radio driver, including frames that were dropped, for example

because of an FCS error.

Definition at line 271 of file include/openthread/link.h

mRxUnicast

uint32_t otMacCounters::mRxUnicast

The total number of unicast frames received.

Definition at line 277 of file include/openthread/link.h

mRxBroadcast

uint32_t otMacCounters::mRxBroadcast

The total number of broadcast frames received.

Definition at line 283 of file include/openthread/link.h

mRxData

otMacCounters

371/962

uint32_t otMacCounters::mRxData

The total number of MAC Data frames received.

Definition at line 289 of file include/openthread/link.h

mRxDataPoll

uint32_t otMacCounters::mRxDataPoll

The total number of MAC Data Poll frames received.

Definition at line 295 of file include/openthread/link.h

mRxBeacon

uint32_t otMacCounters::mRxBeacon

The total number of MAC Beacon frames received.

Definition at line 301 of file include/openthread/link.h

mRxBeaconRequest

uint32_t otMacCounters::mRxBeaconRequest

The total number of MAC Beacon Request frames received.

Definition at line 307 of file include/openthread/link.h

mRxOther

uint32_t otMacCounters::mRxOther

The total number of other types of frames received.

Definition at line 313 of file include/openthread/link.h

mRxAddressFiltered

uint32_t otMacCounters::mRxAddressFiltered

The total number of frames dropped by MAC Filter module, for example received from denylisted node.

Definition at line 319 of file include/openthread/link.h

mRxDestAddrFiltered

otMacCounters

372/962

uint32_t otMacCounters::mRxDestAddrFiltered

The total number of frames dropped by destination address check, for example received frame for other node.

Definition at line 325 of file include/openthread/link.h

mRxDuplicated

uint32_t otMacCounters::mRxDuplicated

The total number of frames dropped due to duplication, that is when the frame has been already received.

This counter may be incremented, for example when ACK frame generated by the receiver hasn't reached transmitter node

which performed retransmission.

Definition at line 334 of file include/openthread/link.h

mRxErrNoFrame

uint32_t otMacCounters::mRxErrNoFrame

The total number of frames dropped because of missing or malformed content.

Definition at line 340 of file include/openthread/link.h

mRxErrUnknownNeighbor

uint32_t otMacCounters::mRxErrUnknownNeighbor

The total number of frames dropped due to unknown neighbor.

Definition at line 346 of file include/openthread/link.h

mRxErrInvalidSrcAddr

uint32_t otMacCounters::mRxErrInvalidSrcAddr

The total number of frames dropped due to invalid source address.

Definition at line 352 of file include/openthread/link.h

mRxErrSec

uint32_t otMacCounters::mRxErrSec

The total number of frames dropped due to security error.

This counter may be incremented, for example when lower than expected Frame Counter is used to encrypt the frame.

otMacCounters

373/962

Definition at line 361 of file include/openthread/link.h

mRxErrFcs

uint32_t otMacCounters::mRxErrFcs

The total number of frames dropped due to invalid FCS.

Definition at line 367 of file include/openthread/link.h

mRxErrOther

uint32_t otMacCounters::mRxErrOther

The total number of frames dropped due to other error.

Definition at line 373 of file include/openthread/link.h

otActiveScanResult

374/962

otActiveScanResult

Represents a received IEEE 802.15.4 Beacon.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address.

otNetworkName mNetworkName
Thread Network Name .

otExtendedPanId mExtendedPanId
Thread Extended PAN ID.

otSteeringData mSteeringData
Steering Data.

uint16_t mPanId
IEEE 802.15.4 PAN ID.

uint16_t mJoinerUdpPort
Jo iner UDP Port.

uint8_t mChannel
IEEE 802.15.4 Channel.

int8_t mRssi
RSSI (dBm)

uint8_t mLqi
LQI.

unsigned int mVersion
Version.

bool mIsNative
Native Commissioner flag.

bool mDiscover
Result from MLE Discovery.

bool mIsJoinable
Jo ining Permitted flag.

Public Attribute Documentation

mExtAddress

otExtAddress otActiveScanResult::mExtAddress

IEEE 802.15.4 Extended Address.

Definition at line 382 of file include/openthread/link.h

mNetworkName

otActiveScanResult

375/962

otNetworkName otActiveScanResult::mNetworkName

Thread Network Name.

Definition at line 383 of file include/openthread/link.h

mExtendedPanId

otExtendedPanId otActiveScanResult::mExtendedPanId

Thread Extended PAN ID.

Definition at line 384 of file include/openthread/link.h

mSteeringData

otSteeringData otActiveScanResult::mSteeringData

Steering Data.

Definition at line 385 of file include/openthread/link.h

mPanId

uint16_t otActiveScanResult::mPanId

IEEE 802.15.4 PAN ID.

Definition at line 386 of file include/openthread/link.h

mJoinerUdpPort

uint16_t otActiveScanResult::mJoinerUdpPort

Joiner UDP Port.

Definition at line 387 of file include/openthread/link.h

mChannel

uint8_t otActiveScanResult::mChannel

IEEE 802.15.4 Channel.

Definition at line 388 of file include/openthread/link.h

mRssi

otActiveScanResult

376/962

int8_t otActiveScanResult::mRssi

RSSI (dBm)

Definition at line 389 of file include/openthread/link.h

mLqi

uint8_t otActiveScanResult::mLqi

LQI.

Definition at line 390 of file include/openthread/link.h

mVersion

unsigned int otActiveScanResult::mVersion

Version.

Definition at line 391 of file include/openthread/link.h

mIsNative

bool otActiveScanResult::mIsNative

Native Commissioner flag.

Definition at line 392 of file include/openthread/link.h

mDiscover

bool otActiveScanResult::mDiscover

Result from MLE Discovery.

Definition at line 393 of file include/openthread/link.h

mIsJoinable

bool otActiveScanResult::mIsJoinable

Joining Permitted flag.

Definition at line 397 of file include/openthread/link.h

otEnergyScanResult

377/962

otEnergyScanResult

Represents an energy scan result.

Public Attributes

uint8_t mChannel
IEEE 802.15.4 Channel.

int8_t mMaxRssi
The max RSSI (dBm)

Public Attribute Documentation

mChannel

uint8_t otEnergyScanResult::mChannel

IEEE 802.15.4 Channel.

Definition at line 406 of file include/openthread/link.h

mMaxRssi

int8_t otEnergyScanResult::mMaxRssi

The max RSSI (dBm)

Definition at line 407 of file include/openthread/link.h

Link Metrics

378/962

Link Metrics

Link Metrics
This module includes functions that control the Link Metrics protocol.

Modules

otLinkMetricsValues

otLinkMetricsSeriesFlags

Enumerations

enum otLinkMetricsEnhAckFlags {

OT_LINK_METRICS_ENH_ACK_CLEAR = 0
OT_LINK_METRICS_ENH_ACK_REGISTER = 1

}
Enhanced-ACK Flags.

enum otLinkMetricsStatus {

OT_LINK_METRICS_STATUS_SUCCESS = 0
OT_LINK_METRICS_STATUS_CANNOT_SUPPORT_NEW_SERIES = 1
OT_LINK_METRICS_STATUS_SERIESID_ALREADY_REGISTERED = 2
OT_LINK_METRICS_STATUS_SERIESID_NOT_RECOGNIZED = 3
OT_LINK_METRICS_STATUS_NO_MATCHING_FRAMES_RECEIVED = 4
OT_LINK_METRICS_STATUS_OTHER_ERROR = 254

}
Link Metrics Status values.

Typedefs

typedef struct
otLinkMetricsValu

es

otLinkMetricsValues
Represents the result (value) for a Link Metrics query.

typedef struct
otLinkMetricsSeri

esFlags

otLinkMetricsSeriesFlags
Represents which frames are accounted in a Forward Tracking Series.

typedef enum
otLinkMetricsEnh

AckFlags

otLinkMetricsEnhAckFlags
Enhanced-ACK Flags.

typedef enum
otLinkMetricsStat

us

otLinkMetricsStatus
Link Metrics Status values.

typedef void(* otLinkMetricsReportCallback)(const otIp6Address *aSource, const otLinkMetricsValues *aMetricsValues,
otLinkMetricsStatus aStatus, void *aContext)
Po inter is called when a Link Metrics report is received.

Link Metrics

379/962

typedef void(* otLinkMetricsMgmtResponseCallback)(const otIp6Address *aSource, otLinkMetricsStatus aStatus, void
*aContext)
Po inter is called when a Link Metrics Management Response is received.

typedef void(* otLinkMetricsEnhAckProbingIeReportCallback)(otShortAddress aShortAddress, const otExtAddress
*aExtAddress, const otLinkMetricsValues *aMetricsValues, void *aContext)
Po inter is called when Enh-ACK Probing IE is received.

Functions

otError otLinkMetricsQuery(otInstance *aInstance, const otIp6Address *aDestination, uint8_t aSeriesId, const
otLinkMetrics *aLinkMetricsFlags, otLinkMetricsReportCallback aCallback, void *aCallbackContext)
Sends an MLE Data Request to query Link Metrics.

otError otLinkMetricsConfigForwardTrackingSeries(otInstance *aInstance, const otIp6Address *aDestination, uint8_t
aSeriesId, otLinkMetricsSeriesFlags aSeriesFlags, const otLinkMetrics *aLinkMetricsFlags,
otLinkMetricsMgmtResponseCallback aCallback, void *aCallbackContext)
Sends an MLE Link Metrics Management Request to configure or clear a Forward Tracking Series.

otError otLinkMetricsConfigEnhAckProbing(otInstance *aInstance, const otIp6Address *aDestination,
otLinkMetricsEnhAckFlags aEnhAckFlags, const otLinkMetrics *aLinkMetricsFlags,
otLinkMetricsMgmtResponseCallback aCallback, void *aCallbackContext,
otLinkMetricsEnhAckProbingIeReportCallback aEnhAckCallback, void *aEnhAckCallbackContext)
Sends an MLE Link Metrics Management Request to configure/clear an Enhanced-ACK Based Probing.

otError otLinkMetricsSendLinkProbe(otInstance *aInstance, const otIp6Address *aDestination, uint8_t aSeriesId,
uint8_t aLength)
Sends an MLE Link Probe message .

void otLinkMetricsManagerSetEnabled(otInstance *aInstance, bool aEnable)
Enable or disable Link Metrics Manager.

otError otLinkMetricsManagerGetMetricsValueByExtAddr(otInstance *aInstance, const otExtAddress *aExtAddress,
otLinkMetricsValues *aLinkMetricsValues)
Get Link Metrics data of a neighbor by its extended address.

Enumeration Documentation

otLinkMetricsEnhAckFlags

otLinkMetricsEnhAckFlags

Enhanced-ACK Flags.

These are used in Enhanced-ACK Based Probing to indicate whether to register or clear the probing.

Enumerator

OT_LINK_METRICS_ENH_ACK_CLEAR Clear.

OT_LINK_METRICS_ENH_ACK_REGISTER Register.

Definition at line 88 of file include/openthread/link_metrics.h

otLinkMetricsStatus

otLinkMetricsStatus

Link Metrics Status values.

Link Metrics

380/962

Enumerator

OT_LINK_METRICS_STATUS_SUCCESS

OT_LINK_METRICS_STATUS_CANNOT_SUPPORT_NEW_SERIES

OT_LINK_METRICS_STATUS_SERIESID_ALREADY_REGISTERED

OT_LINK_METRICS_STATUS_SERIESID_NOT_RECOGNIZED

OT_LINK_METRICS_STATUS_NO_MATCHING_FRAMES_RECEIVED

OT_LINK_METRICS_STATUS_OTHER_ERROR

Definition at line 98 of file include/openthread/link_metrics.h

Typedef Documentation

otLinkMetricsValues

typedef struct otLinkMetricsValues otLinkMetricsValues

Represents the result (value) for a Link Metrics query.

Definition at line 68 of file include/openthread/link_metrics.h

otLinkMetricsSeriesFlags

typedef struct otLinkMetricsSeriesFlags otLinkMetricsSeriesFlags

Represents which frames are accounted in a Forward Tracking Series.

Definition at line 80 of file include/openthread/link_metrics.h

otLinkMetricsEnhAckFlags

typedef enum otLinkMetricsEnhAckFlags otLinkMetricsEnhAckFlags

Enhanced-ACK Flags.

These are used in Enhanced-ACK Based Probing to indicate whether to register or clear the probing.

Definition at line 92 of file include/openthread/link_metrics.h

otLinkMetricsStatus

typedef enum otLinkMetricsStatus otLinkMetricsStatus

Link Metrics Status values.

Definition at line 106 of file include/openthread/link_metrics.h

otLinkMetricsReportCallback

typedef void(* otLinkMetricsReportCallback) (const otIp6Address *aSource, const otLinkMetricsValues *aMetricsValues,
otLinkMetricsStatus aStatus, void *aContext))(const otIp6Address *aSource, const otLinkMetricsValues *aMetricsValues,
otLinkMetricsStatus aStatus, void *aContext)

Link Metrics

381/962

Pointer is called when a Link Metrics report is received.

Parameters

[in] aSource A pointer to the source address.

[in] aMetricsValues A pointer to the Link Metrics values (the query result).

[in] aStatus The status code in the report (only useful when aMetricsValues is NULL).

[in] aContext A pointer to application-specific context.

Definition at line 117 of file include/openthread/link_metrics.h

otLinkMetricsMgmtResponseCallback

typedef void(* otLinkMetricsMgmtResponseCallback) (const otIp6Address *aSource, otLinkMetricsStatus aStatus, void
*aContext))(const otIp6Address *aSource, otLinkMetricsStatus aStatus, void *aContext)

Pointer is called when a Link Metrics Management Response is received.

Parameters

[in] aSource A pointer to the source address.

[in] aStatus The status code in the response.

[in] aContext A pointer to application-specific context.

Definition at line 129 of file include/openthread/link_metrics.h

otLinkMetricsEnhAckProbingIeReportCallback

typedef void(* otLinkMetricsEnhAckProbingIeReportCallback) (otShortAddress aShortAddress, const otExtAddress
*aExtAddress, const otLinkMetricsValues *aMetricsValues, void *aContext))(otShortAddress aShortAddress, const
otExtAddress *aExtAddress, const otLinkMetricsValues *aMetricsValues, void *aContext)

Pointer is called when Enh-ACK Probing IE is received.

Parameters

[in] aShortAddress The Mac short address of the Probing Subject.

[in] aExtAddress A pointer to the Mac extended address of the Probing Subject.

[in] aMetricsValues A pointer to the Link Metrics values obtained from the IE.

[in] aContext A pointer to application-specific context.

Definition at line 142 of file include/openthread/link_metrics.h

Function Documentation

otLinkMetricsQuery

otError otLinkMetricsQuery (otInstance *aInstance, const otIp6Address *aDestination, uint8_t aSeriesId, const
otLinkMetrics *aLinkMetricsFlags, otLinkMetricsReportCallback aCallback, void *aCallbackContext)

Sends an MLE Data Request to query Link Metrics.

Parameters

Link Metrics

382/962

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to the destination address.

[in] aSeriesId The Series ID to query about, 0 for S ingle Probe.

[in] aLinkMetricsFlags A pointer to flags specifying what metrics to query.

[in] aCallback A pointer to a function that is called when Link Metrics report is received.

[in] aCallbackContext A pointer to application-specific context.

It could be either S ingle Probe or Forward Tracking Series.

Definition at line 165 of file include/openthread/link_metrics.h

otLinkMetricsConfigForwardTrackingSeries

otError otLinkMetricsConfigForwardTrackingSeries (otInstance *aInstance, const otIp6Address *aDestination, uint8_t
aSeriesId, otLinkMetricsSeriesFlags aSeriesFlags, const otLinkMetrics *aLinkMetricsFlags,
otLinkMetricsMgmtResponseCallback aCallback, void *aCallbackContext)

Sends an MLE Link Metrics Management Request to configure or clear a Forward Tracking Series.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to the destination address.

[in] aSeriesId The Series ID to operate with.

[in] aSeriesFlags The Series Flags that specifies which frames are to be accounted.

[in] aLinkMetricsFlags A pointer to flags specifying what metrics to query. Should be NULL when aSeriesFlags is 0 .

[in] aCallback A pointer to a function that is called when Link Metrics Management Response is received.

[in] aCallbackContext A pointer to application-specific context.

Definition at line 192 of file include/openthread/link_metrics.h

otLinkMetricsConfigEnhAckProbing

otError otLinkMetricsConfigEnhAckProbing (otInstance *aInstance, const otIp6Address *aDestination,
otLinkMetricsEnhAckFlags aEnhAckFlags, const otLinkMetrics *aLinkMetricsFlags, otLinkMetricsMgmtResponseCallback
aCallback, void *aCallbackContext, otLinkMetricsEnhAckProbingIeReportCallback aEnhAckCallback, void
*aEnhAckCallbackContext)

Sends an MLE Link Metrics Management Request to configure/clear an Enhanced-ACK Based Probing.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to the destination address.

[in] aEnhAckFlags Enh-ACK Flags to indicate whether to register or clear the probing. 0 to clear and 1 to register.

Other values are reserved.

[in] aLinkMetricsFlags A pointer to flags specifying what metrics to query. Should be NULL when aEnhAckFlags is 0 .

[in] aCallback A pointer to a function that is called when an Enhanced Ack with Link Metrics is received.

[in] aCallbackContext A pointer to application-specific context.

N/A aEnhAckCallback

Link Metrics

383/962

N/A aEnhAckCallbackContext

This functionality requires OT_LINK_METRICS_INITIATOR feature enabled.

Definition at line 221 of file include/openthread/link_metrics.h

otLinkMetricsSendLinkProbe

otError otLinkMetricsSendLinkProbe (otInstance *aInstance, const otIp6Address *aDestination, uint8_t aSeriesId, uint8_t
aLength)

Sends an MLE Link Probe message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to the destination address.

[in] aSeriesId The Series ID [1, 254] which the Probe message aims at.

[in] aLength The length of the data payload in Link Probe TLV, [0, 64] (per Thread 1.2 spec, 4.4.37).

Definition at line 245 of file include/openthread/link_metrics.h

otLinkMetricsManagerSetEnabled

void otLinkMetricsManagerSetEnabled (otInstance *aInstance, bool aEnable)

Enable or disable Link Metrics Manager.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable A boolean indicating to enable or disable.

Definition at line 257 of file include/openthread/link_metrics.h

otLinkMetricsManagerGetMetricsValueByExtAddr

otError otLinkMetricsManagerGetMetricsValueByExtAddr (otInstance *aInstance, const otExtAddress *aExtAddress,
otLinkMetricsValues *aLinkMetricsValues)

Get Link Metrics data of a neighbor by its extended address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress A pointer to the Mac extended address of the Probing Subject.

[out] aLinkMetricsValues A pointer to the Link Metrics values of the subject.

Definition at line 271 of file include/openthread/link_metrics.h

otLinkMetricsValues

384/962

otLinkMetricsValues

Represents the result (value) for a Link Metrics query.

Public Attributes

otLinkMetrics mMetrics
Specifies which metrics values are present/included.

uint32_t mPduCountValue
The value of Pdu Count.

uint8_t mLqiValue
The value LQI.

uint8_t mLinkMarginValue
The value of Link Margin.

int8_t mRssiValue
The value of Rssi.

Public Attribute Documentation

mMetrics

otLinkMetrics otLinkMetricsValues::mMetrics

Specifies which metrics values are present/included.

Definition at line 62 of file include/openthread/link_metrics.h

mPduCountValue

uint32_t otLinkMetricsValues::mPduCountValue

The value of Pdu Count.

Definition at line 64 of file include/openthread/link_metrics.h

mLqiValue

uint8_t otLinkMetricsValues::mLqiValue

The value LQI.

Definition at line 65 of file include/openthread/link_metrics.h

mLinkMarginValue

otLinkMetricsValues

385/962

uint8_t otLinkMetricsValues::mLinkMarginValue

The value of Link Margin.

Definition at line 66 of file include/openthread/link_metrics.h

mRssiValue

int8_t otLinkMetricsValues::mRssiValue

The value of Rssi.

Definition at line 67 of file include/openthread/link_metrics.h

otLinkMetricsSeriesFlags

386/962

otLinkMetricsSeriesFlags

Represents which frames are accounted in a Forward Tracking Series.

Public Attributes

bool mLinkProbe
MLE Link Probe .

bool mMacData
MAC Data frame .

bool mMacDataRequest
MAC Data Request.

bool mMacAck
MAC Ack.

Public Attribute Documentation

mLinkProbe

bool otLinkMetricsSeriesFlags::mLinkProbe

MLE Link Probe.

Definition at line 76 of file include/openthread/link_metrics.h

mMacData

bool otLinkMetricsSeriesFlags::mMacData

MAC Data frame.

Definition at line 77 of file include/openthread/link_metrics.h

mMacDataRequest

bool otLinkMetricsSeriesFlags::mMacDataRequest

MAC Data Request.

Definition at line 78 of file include/openthread/link_metrics.h

mMacAck

bool otLinkMetricsSeriesFlags::mMacAck

MAC Ack.

otLinkMetricsSeriesFlags

387/962

Definition at line 79 of file include/openthread/link_metrics.h

Raw Link

388/962

Raw Link

Raw Link
This module includes functions that control the raw link-layer configuration.

Typedefs

typedef void(* otLinkRawReceiveDone)(otInstance *aInstance, otRadioFrame *aFrame, otError aError)
Po inter on receipt of a IEEE 802.15.4 frame .

typedef void(* otLinkRawTransmitDone)(otInstance *aInstance, otRadioFrame *aFrame, otRadioFrame *aAckFrame, otError
aError)
Po inter on receipt of a IEEE 802.15.4 frame .

typedef void(* otLinkRawEnergyScanDone)(otInstance *aInstance, int8_t aEnergyScanMaxRssi)
Po inter on receipt of a IEEE 802.15.4 frame .

Functions

otError otLinkRawSetReceiveDone(otInstance *aInstance, otLinkRawReceiveDone aCallback)
Enables/disables the raw link-layer.

bool otLinkRawIsEnabled(otInstance *aInstance)
Indicates whether or not the raw link-layer is enabled.

bool otLinkRawGetPromiscuous(otInstance *aInstance)
Gets the status of promiscuous mode .

otError otLinkRawSetPromiscuous(otInstance *aInstance, bool aEnable)
Enables or disables promiscuous mode .

otError otLinkRawSetShortAddress(otInstance *aInstance, uint16_t aShortAddress)
Set the Short Address for address filtering.

otError otLinkRawSleep(otInstance *aInstance)
Transition the radio from Receive to Sleep.

otError otLinkRawReceive(otInstance *aInstance)
Transitioning the radio from Sleep to Receive .

bool otLinkRawIsTransmittingOrScanning(otInstance *aInstance)
This function indicates whether or not the raw link-layer is busy transmitting or scanning.

otRadioFrame * otLinkRawGetTransmitBuffer(otInstance *aInstance)
The radio transitions from Transmit to Receive .

otError otLinkRawTransmit(otInstance *aInstance, otLinkRawTransmitDone aCallback)
Begins the transmit sequence on the radio.

int8_t otLinkRawGetRssi(otInstance *aInstance)
Get the most recent RSSI measurement.

Raw Link

389/962

otRadioCaps otLinkRawGetCaps(otInstance *aInstance)
Get the radio capabilities.

otError otLinkRawEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration,
otLinkRawEnergyScanDone aCallback)
Begins the energy scan sequence on the radio.

otError otLinkRawSrcMatchEnable(otInstance *aInstance, bool aEnable)
Enable/Disable source match for frame pending.

otError otLinkRawSrcMatchAddShortEntry(otInstance *aInstance, uint16_t aShortAddress)
Adding short address to the source match table .

otError otLinkRawSrcMatchAddExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
Adding extended address to the source match table .

otError otLinkRawSrcMatchClearShortEntry(otInstance *aInstance, uint16_t aShortAddress)
Removing short address to the source match table .

otError otLinkRawSrcMatchClearExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
Removing extended address to the source match table of the radio.

otError otLinkRawSrcMatchClearShortEntries(otInstance *aInstance)
Removing all the short addresses from the source match table .

otError otLinkRawSrcMatchClearExtEntries(otInstance *aInstance)
Removing all the extended addresses from the source match table .

otError otLinkRawSetMacKey(otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId, const otMacKey
*aPrevKey, const otMacKey *aCurrKey, const otMacKey *aNextKey)
Update MAC keys and key index.

otError otLinkRawSetMacFrameCounter(otInstance *aInstance, uint32_t aMacFrameCounter)
Sets the current MAC frame counter value .

otError otLinkRawSetMacFrameCounterIfLarger(otInstance *aInstance, uint32_t aMacFrameCounter)
Sets the current MAC frame counter value only if the new value is larger than the current one .

uint64_t otLinkRawGetRadioTime(otInstance *aInstance)
Get current platform time (64bits width) of the radio chip.

Typedef Documentation

otLinkRawReceiveDone

typedef void(* otLinkRawReceiveDone) (otInstance *aInstance, otRadioFrame *aFrame, otError aError))(otInstance
*aInstance, otRadioFrame *aFrame, otError aError)

Pointer on receipt of a IEEE 802.15.4 frame.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aFrame A pointer to the received frame or NULL if the receive operation was aborted.

[in] aError OT_ERROR_NONE when successfully received a frame. OT_ERROR_ABORT when reception was aborted

and a frame was not received.

Definition at line 63 of file include/openthread/link_raw.h

otLinkRawTransmitDone

Raw Link

390/962

typedef void(* otLinkRawTransmitDone) (otInstance *aInstance, otRadioFrame *aFrame, otRadioFrame *aAckFrame,
otError aError))(otInstance *aInstance, otRadioFrame *aFrame, otRadioFrame *aAckFrame, otError aError)

Pointer on receipt of a IEEE 802.15.4 frame.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aFrame A pointer to the frame that was transmitted.

[in] aAckFrame A pointer to the ACK frame.

[in] aError OT_ERROR_NONE when the frame was transmitted. OT_ERROR_NO_ACK when the frame was

transmitted but no ACK was received OT_ERROR_CHANNEL_ACCESS_FAILURE when the transmission

could not take place due to activity on the channel. OT_ERROR_ABORT when transmission was aborted

for other reasons.

Definition at line 188 of file include/openthread/link_raw.h

otLinkRawEnergyScanDone

typedef void(* otLinkRawEnergyScanDone) (otInstance *aInstance, int8_t aEnergyScanMaxRssi))(otInstance *aInstance,
int8_t aEnergyScanMaxRssi)

Pointer on receipt of a IEEE 802.15.4 frame.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnergyScanMaxRssi The maximum RSSI encountered on the scanned channel.

Definition at line 239 of file include/openthread/link_raw.h

Function Documentation

otLinkRawSetReceiveDone

otError otLinkRawSetReceiveDone (otInstance *aInstance, otLinkRawReceiveDone aCallback)

Enables/disables the raw link-layer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function called on receipt of a IEEE 802.15.4 frame. NULL to disable the raw-link layer.

Definition at line 77 of file include/openthread/link_raw.h

otLinkRawIsEnabled

bool otLinkRawIsEnabled (otInstance *aInstance)

Indicates whether or not the raw link-layer is enabled.

Parameters

Raw Link

391/962

[in] aInstance A pointer to an OpenThread instance.

Definition at line 88 of file include/openthread/link_raw.h

otLinkRawGetPromiscuous

bool otLinkRawGetPromiscuous (otInstance *aInstance)

Gets the status of promiscuous mode.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 99 of file include/openthread/link_raw.h

otLinkRawSetPromiscuous

otError otLinkRawSetPromiscuous (otInstance *aInstance, bool aEnable)

Enables or disables promiscuous mode.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable A value to enable or disable promiscuous mode.

Definition at line 111 of file include/openthread/link_raw.h

otLinkRawSetShortAddress

otError otLinkRawSetShortAddress (otInstance *aInstance, uint16_t aShortAddress)

Set the Short Address for address filtering.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aShortAddress The IEEE 802.15.4 Short Address.

Definition at line 123 of file include/openthread/link_raw.h

otLinkRawSleep

otError otLinkRawSleep (otInstance *aInstance)

Transition the radio from Receive to S leep.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Turn off the radio.

Raw Link

392/962

Definition at line 136 of file include/openthread/link_raw.h

otLinkRawReceive

otError otLinkRawReceive (otInstance *aInstance)

Transitioning the radio from S leep to Receive.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Turn on the radio.

Definition at line 148 of file include/openthread/link_raw.h

otLinkRawIsTransmittingOrScanning

bool otLinkRawIsTransmittingOrScanning (otInstance *aInstance)

This function indicates whether or not the raw link-layer is busy transmitting or scanning.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 159 of file include/openthread/link_raw.h

otLinkRawGetTransmitBuffer

otRadioFrame * otLinkRawGetTransmitBuffer (otInstance *aInstance)

The radio transitions from Transmit to Receive.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns a pointer to the transmit buffer.

The caller forms the IEEE 802.15.4 frame in this buffer then calls otLinkRawTransmit() to request transmission.

Returns

A pointer to the transmit buffer or NULL if the raw link-layer isn't enabled.

Definition at line 173 of file include/openthread/link_raw.h

otLinkRawTransmit

otError otLinkRawTransmit (otInstance *aInstance, otLinkRawTransmitDone aCallback)

Begins the transmit sequence on the radio.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Raw Link

393/962

[in] aCallback A pointer to a function called on completion of the transmission.

The caller must form the IEEE 802.15.4 frame in the buffer provided by otLinkRawGetTransmitBuffer() before requesting

transmission. The channel and transmit power are also included in the otRadioFrame structure.

The transmit sequence consists of:

 Transitioning the radio to Transmit from Receive.

 Transmits the PSDU on the given channel and at the given transmit power.

Definition at line 210 of file include/openthread/link_raw.h

otLinkRawGetRssi

int8_t otLinkRawGetRssi (otInstance *aInstance)

Get the most recent RSSI measurement.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The RSSI in dBm when it is valid. 127 when RSSI is invalid.

Definition at line 220 of file include/openthread/link_raw.h

otLinkRawGetCaps

otRadioCaps otLinkRawGetCaps (otInstance *aInstance)

Get the radio capabilities.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The radio capability bit vector. The stack enables or disables some functions based on this value.

Definition at line 230 of file include/openthread/link_raw.h

otLinkRawEnergyScan

otError otLinkRawEnergyScan (otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration,
otLinkRawEnergyScanDone aCallback)

Begins the energy scan sequence on the radio.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aScanChannel The channel to perform the energy scan on.

[in] aScanDuration The duration, in milliseconds, for the channel to be scanned.

[in] aCallback A pointer to a function called on completion of a scanned channel.

Raw Link

394/962

Definition at line 255 of file include/openthread/link_raw.h

otLinkRawSrcMatchEnable

otError otLinkRawSrcMatchEnable (otInstance *aInstance, bool aEnable)

Enable/Disable source match for frame pending.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable Enable/disable source match for frame pending.

Definition at line 270 of file include/openthread/link_raw.h

otLinkRawSrcMatchAddShortEntry

otError otLinkRawSrcMatchAddShortEntry (otInstance *aInstance, uint16_t aShortAddress)

Adding short address to the source match table.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aShortAddress The short address to be added.

Definition at line 283 of file include/openthread/link_raw.h

otLinkRawSrcMatchAddExtEntry

otError otLinkRawSrcMatchAddExtEntry (otInstance *aInstance, const otExtAddress *aExtAddress)

Adding extended address to the source match table.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress The extended address to be added.

Definition at line 296 of file include/openthread/link_raw.h

otLinkRawSrcMatchClearShortEntry

otError otLinkRawSrcMatchClearShortEntry (otInstance *aInstance, uint16_t aShortAddress)

Removing short address to the source match table.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aShortAddress The short address to be removed.

Definition at line 309 of file include/openthread/link_raw.h

Raw Link

395/962

otLinkRawSrcMatchClearExtEntry

otError otLinkRawSrcMatchClearExtEntry (otInstance *aInstance, const otExtAddress *aExtAddress)

Removing extended address to the source match table of the radio.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress The extended address to be removed.

Definition at line 322 of file include/openthread/link_raw.h

otLinkRawSrcMatchClearShortEntries

otError otLinkRawSrcMatchClearShortEntries (otInstance *aInstance)

Removing all the short addresses from the source match table.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 333 of file include/openthread/link_raw.h

otLinkRawSrcMatchClearExtEntries

otError otLinkRawSrcMatchClearExtEntries (otInstance *aInstance)

Removing all the extended addresses from the source match table.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 344 of file include/openthread/link_raw.h

otLinkRawSetMacKey

otError otLinkRawSetMacKey (otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId, const otMacKey *aPrevKey,
const otMacKey *aCurrKey, const otMacKey *aNextKey)

Update MAC keys and key index.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKeyIdMode The key ID mode.

[in] aKeyId The key index.

[in] aPrevKey The previous MAC key.

[in] aCurrKey The current MAC key.

[in] aNextKey The next MAC key.

Raw Link

396/962

Definition at line 360 of file include/openthread/link_raw.h

otLinkRawSetMacFrameCounter

otError otLinkRawSetMacFrameCounter (otInstance *aInstance, uint32_t aMacFrameCounter)

Sets the current MAC frame counter value.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMacFrameCounter The MAC frame counter value.

Always sets the MAC counter to the new given value aMacFrameCounter independent of the current value.

Definition at line 380 of file include/openthread/link_raw.h

otLinkRawSetMacFrameCounterIfLarger

otError otLinkRawSetMacFrameCounterIfLarger (otInstance *aInstance, uint32_t aMacFrameCounter)

Sets the current MAC frame counter value only if the new value is larger than the current one.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMacFrameCounter The MAC frame counter value.

Definition at line 392 of file include/openthread/link_raw.h

otLinkRawGetRadioTime

uint64_t otLinkRawGetRadioTime (otInstance *aInstance)

Get current platform time (64bits width) of the radio chip.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The current radio time in microseconds.

Definition at line 402 of file include/openthread/link_raw.h

Message

397/962

Message

Message
This module includes functions that manipulate OpenThread message buffers.

Modules

otMessageSettings

otMessageQueue

otMessageQueueInfo

otBufferInfo

Enumerations

enum otMessagePriority {

OT_MESSAGE_PRIORITY_LOW = 0
OT_MESSAGE_PRIORITY_NORMAL = 1
OT_MESSAGE_PRIORITY_HIGH = 2

}
Defines the OpenThread message priority levels.

enum otMessageOrigin {

OT_MESSAGE_ORIGIN_THREAD_NETIF = 0
OT_MESSAGE_ORIGIN_HOST_TRUSTED = 1
OT_MESSAGE_ORIGIN_HOST_UNTRUSTED = 2

}
Defines the OpenThread message origins.

Typedefs

typedef struct
otMessage

otMessage
An opaque representation of an OpenThread message buffer.

typedef enum
otMessagePriority

otMessagePriority
Defines the OpenThread message priority levels.

typedef enum
otMessageOrigin

otMessageOrigin
Defines the OpenThread message origins.

typedef struct
otMessageSettin

gs

otMessageSettings
Represents a message settings.

typedef struct
otMessageQueue

Info

otMessageQueueInfo
Represents information about a message queue .

typedef struct
otBufferInfo

otBufferInfo
Represents the message buffer information for different queues used by OpenThread stack.

Message

398/962

Functions

void otMessageFree(otMessage *aMessage)
Free an allocated message buffer.

uint16_t otMessageGetLength(const otMessage *aMessage)
Get the message length in bytes.

otError otMessageSetLength(otMessage *aMessage, uint16_t aLength)
Set the message length in bytes.

uint16_t otMessageGetOffset(const otMessage *aMessage)
Get the message offset in bytes.

void otMessageSetOffset(otMessage *aMessage, uint16_t aOffset)
Set the message offset in bytes.

bool otMessageIsLinkSecurityEnabled(const otMessage *aMessage)
Indicates whether or not link security is enabled for the message .

bool otMessageIsLoopbackToHostAllowed(const otMessage *aMessage)
Indicates whether or not the message is allowed to be looped back to host.

void otMessageSetLoopbackToHostAllowed(otMessage *aMessage, bool aAllowLoopbackToHost)
Sets whether or not the message is allowed to be looped back to host.

otMessageOrigin otMessageGetOrigin(const otMessage *aMessage)
Gets the message origin.

void otMessageSetOrigin(otMessage *aMessage, otMessageOrigin aOrigin)
Sets the message origin.

void otMessageSetDirectTransmission(otMessage *aMessage, bool aEnabled)
Sets/forces the message to be forwarded using direct transmission.

int8_t otMessageGetRss(const otMessage *aMessage)
Returns the average RSS (received signal strength) associated with the message .

otError otMessageAppend(otMessage *aMessage, const void *aBuf, uint16_t aLength)
Append bytes to a message .

uint16_t otMessageRead(const otMessage *aMessage, uint16_t aOffset, void *aBuf, uint16_t aLength)
Read bytes from a message .

int otMessageWrite(otMessage *aMessage, uint16_t aOffset, const void *aBuf, uint16_t aLength)
Write bytes to a message .

void otMessageQueueInit(otMessageQueue *aQueue)
Initialize the message queue .

void otMessageQueueEnqueue(otMessageQueue *aQueue, otMessage *aMessage)
Adds a message to the end of the given message queue .

void otMessageQueueEnqueueAtHead(otMessageQueue *aQueue, otMessage *aMessage)
Adds a message at the head/front of the given message queue .

void otMessageQueueDequeue(otMessageQueue *aQueue, otMessage *aMessage)
Removes a message from the given message queue .

otMessage * otMessageQueueGetHead(otMessageQueue *aQueue)
Returns a po inter to the message at the head of the queue .

Message

399/962

otMessage * otMessageQueueGetNext(otMessageQueue *aQueue, const otMessage *aMessage)
Returns a po inter to the next message in the queue by iterating forward (from head to tail).

void otMessageGetBufferInfo(otInstance *aInstance, otBufferInfo *aBufferInfo)
Get the Message Buffer information.

void otMessageResetBufferInfo(otInstance *aInstance)
Reset the Message Buffer information counter tracking the maximum number buffers in use at the same time .

Enumeration Documentation

otMessagePriority

otMessagePriority

Defines the OpenThread message priority levels.

Enumerator

OT_MESSAGE_PRIORITY_LOW Low priority level.

OT_MESSAGE_PRIORITY_NORMAL Normal priority level.

OT_MESSAGE_PRIORITY_HIGH High priority level.

Definition at line 65 of file include/openthread/message.h

otMessageOrigin

otMessageOrigin

Defines the OpenThread message origins.

Enumerator

OT_MESSAGE_ORIGIN_THREAD_NETIF Message from Thread Netif.

OT_MESSAGE_ORIGIN_HOST_TRUSTED Message from a trusted source on host.

OT_MESSAGE_ORIGIN_HOST_UNTRUSTED Message from an untrusted source on host.

Definition at line 76 of file include/openthread/message.h

Typedef Documentation

otMessage

typedef struct otMessage otMessage

An opaque representation of an OpenThread message buffer.

Definition at line 59 of file include/openthread/message.h

otMessagePriority

typedef enum otMessagePriority otMessagePriority

Defines the OpenThread message priority levels.

Message

400/962

Definition at line 70 of file include/openthread/message.h

otMessageOrigin

typedef enum otMessageOrigin otMessageOrigin

Defines the OpenThread message origins.

Definition at line 81 of file include/openthread/message.h

otMessageSettings

typedef struct otMessageSettings otMessageSettings

Represents a message settings.

Definition at line 91 of file include/openthread/message.h

otMessageQueueInfo

typedef struct otMessageQueueInfo otMessageQueueInfo

Represents information about a message queue.

Definition at line 332 of file include/openthread/message.h

otBufferInfo

typedef struct otBufferInfo otBufferInfo

Represents the message buffer information for different queues used by OpenThread stack.

Definition at line 358 of file include/openthread/message.h

Function Documentation

otMessageFree

void otMessageFree (otMessage *aMessage)

Free an allocated message buffer.

Parameters

[in] aMessage A pointer to a message buffer.

See Also

otMessageAppend

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

Message

401/962

otMessageRead

otMessageWrite

Definition at line 107 of file include/openthread/message.h

otMessageGetLength

uint16_t otMessageGetLength (const otMessage *aMessage)

Get the message length in bytes.

Parameters

[in] aMessage A pointer to a message buffer.

Returns

The message length in bytes.

See Also

otMessageFree

otMessageAppend

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

otMessageRead

otMessageWrite

otMessageSetLength

Definition at line 126 of file include/openthread/message.h

otMessageSetLength

otError otMessageSetLength (otMessage *aMessage, uint16_t aLength)

Set the message length in bytes.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aLength A length in bytes.

See Also

otMessageFree

otMessageAppend

otMessageGetLength

otMessageGetOffset

otMessageSetOffset

otMessageRead

otMessageWrite

Definition at line 146 of file include/openthread/message.h

otMessageGetOffset

uint16_t otMessageGetOffset (const otMessage *aMessage)

Message

402/962

Get the message offset in bytes.

Parameters

[in] aMessage A pointer to a message buffer.

Returns

The message offset value.

See Also

otMessageFree

otMessageAppend

otMessageGetLength

otMessageSetLength

otMessageSetOffset

otMessageRead

otMessageWrite

Definition at line 164 of file include/openthread/message.h

otMessageSetOffset

void otMessageSetOffset (otMessage *aMessage, uint16_t aOffset)

Set the message offset in bytes.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aOffset An offset in bytes.

See Also

otMessageFree

otMessageAppend

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageRead

otMessageWrite

Definition at line 181 of file include/openthread/message.h

otMessageIsLinkSecurityEnabled

bool otMessageIsLinkSecurityEnabled (const otMessage *aMessage)

Indicates whether or not link security is enabled for the message.

Parameters

[in] aMessage A pointer to a message buffer.

Definition at line 192 of file include/openthread/message.h

otMessageIsLoopbackToHostAllowed

Message

403/962

bool otMessageIsLoopbackToHostAllowed (const otMessage *aMessage)

Indicates whether or not the message is allowed to be looped back to host.

Parameters

[in] aMessage A pointer to a message buffer.

Definition at line 203 of file include/openthread/message.h

otMessageSetLoopbackToHostAllowed

void otMessageSetLoopbackToHostAllowed (otMessage *aMessage, bool aAllowLoopbackToHost)

Sets whether or not the message is allowed to be looped back to host.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aAllowLoopbackToHost Whether to allow the message to be looped back to host.

Definition at line 212 of file include/openthread/message.h

otMessageGetOrigin

otMessageOrigin otMessageGetOrigin (const otMessage *aMessage)

Gets the message origin.

Parameters

[in] aMessage A pointer to a message buffer.

Returns

The message origin.

Definition at line 222 of file include/openthread/message.h

otMessageSetOrigin

void otMessageSetOrigin (otMessage *aMessage, otMessageOrigin aOrigin)

Sets the message origin.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aOrigin The message origin.

Definition at line 231 of file include/openthread/message.h

otMessageSetDirectTransmission

Message

404/962

void otMessageSetDirectTransmission (otMessage *aMessage, bool aEnabled)

Sets/forces the message to be forwarded using direct transmission.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aEnabled If true , the message is forced to use direct transmission. If false , the message follows the normal

procedure.

Default setting for a new message is false .

Definition at line 242 of file include/openthread/message.h

otMessageGetRss

int8_t otMessageGetRss (const otMessage *aMessage)

Returns the average RSS (received signal strength) associated with the message.

Parameters

N/A aMessage

Returns

The average RSS value (in dBm) or OT_RADIO_RSSI_INVALID if no average RSS is available.

Definition at line 250 of file include/openthread/message.h

otMessageAppend

otError otMessageAppend (otMessage *aMessage, const void *aBuf, uint16_t aLength)

Append bytes to a message.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aBuf A pointer to the data to append.

[in] aLength Number of bytes to append.

See Also

otMessageFree

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

otMessageRead

otMessageWrite

Definition at line 271 of file include/openthread/message.h

otMessageRead

Message

405/962

uint16_t otMessageRead (const otMessage *aMessage, uint16_t aOffset, void *aBuf, uint16_t aLength)

Read bytes from a message.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aOffset An offset in bytes.

[in] aBuf A pointer to a buffer that message bytes are read to.

[in] aLength Number of bytes to read.

Returns

The number of bytes read.

See Also

otMessageFree

otMessageAppend

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

otMessageWrite

Definition at line 292 of file include/openthread/message.h

otMessageWrite

int otMessageWrite (otMessage *aMessage, uint16_t aOffset, const void *aBuf, uint16_t aLength)

Write bytes to a message.

Parameters

[in] aMessage A pointer to a message buffer.

[in] aOffset An offset in bytes.

[in] aBuf A pointer to a buffer that message bytes are written from.

[in] aLength Number of bytes to write.

Returns

The number of bytes written.

See Also

otMessageFree

otMessageAppend

otMessageGetLength

otMessageSetLength

otMessageGetOffset

otMessageSetOffset

otMessageRead

Definition at line 313 of file include/openthread/message.h

otMessageQueueInit

Message

406/962

void otMessageQueueInit (otMessageQueue *aQueue)

Initialize the message queue.

Parameters

[in] aQueue A pointer to a message queue.

MUST be called once and only once for a otMessageQueue instance before any other otMessageQueue functions. The

behavior is undefined if other queue APIs are used with an otMessageQueue before it being initialized or if it is initialized

more than once.

Definition at line 370 of file include/openthread/message.h

otMessageQueueEnqueue

void otMessageQueueEnqueue (otMessageQueue *aQueue, otMessage *aMessage)

Adds a message to the end of the given message queue.

Parameters

[in] aQueue A pointer to the message queue.

[in] aMessage The message to add.

Definition at line 379 of file include/openthread/message.h

otMessageQueueEnqueueAtHead

void otMessageQueueEnqueueAtHead (otMessageQueue *aQueue, otMessage *aMessage)

Adds a message at the head/front of the given message queue.

Parameters

[in] aQueue A pointer to the message queue.

[in] aMessage The message to add.

Definition at line 388 of file include/openthread/message.h

otMessageQueueDequeue

void otMessageQueueDequeue (otMessageQueue *aQueue, otMessage *aMessage)

Removes a message from the given message queue.

Parameters

[in] aQueue A pointer to the message queue.

[in] aMessage The message to remove.

Definition at line 397 of file include/openthread/message.h

Message

407/962

otMessageQueueGetHead

otMessage * otMessageQueueGetHead (otMessageQueue *aQueue)

Returns a pointer to the message at the head of the queue.

Parameters

[in] aQueue A pointer to a message queue.

Returns

A pointer to the message at the head of queue or NULL if queue is empty.

Definition at line 407 of file include/openthread/message.h

otMessageQueueGetNext

otMessage * otMessageQueueGetNext (otMessageQueue *aQueue, const otMessage *aMessage)

Returns a pointer to the next message in the queue by iterating forward (from head to tail).

Parameters

[in] aQueue A pointer to a message queue.

[in] aMessage A pointer to current message buffer.

Returns

A pointer to the next message in the queue after aMessage or NULL if aMessage is the tail of queue . NULL is returned

if aMessage is not in the queue aQueue`.

Definition at line 419 of file include/openthread/message.h

otMessageGetBufferInfo

void otMessageGetBufferInfo (otInstance *aInstance, otBufferInfo *aBufferInfo)

Get the Message Buffer information.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[out] aBufferInfo A pointer where the message buffer information is written.

Definition at line 428 of file include/openthread/message.h

otMessageResetBufferInfo

void otMessageResetBufferInfo (otInstance *aInstance)

Reset the Message Buffer information counter tracking the maximum number buffers in use at the same time.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Message

408/962

This resets mMaxUsedBuffers in otBufferInfo .

Definition at line 438 of file include/openthread/message.h

otMessageSettings

409/962

otMessageSettings

Represents a message settings.

Public Attributes

bool mLinkSecurityEnabled
TRUE if the message should be secured at Layer 2.

uint8_t mPriority
Priority level (MUST be a OT_MESSAGE_PRIORITY_* from otMessagePriority).

Public Attribute Documentation

mLinkSecurityEnabled

bool otMessageSettings::mLinkSecurityEnabled

TRUE if the message should be secured at Layer 2.

Definition at line 89 of file include/openthread/message.h

mPriority

uint8_t otMessageSettings::mPriority

Priority level (MUST be a OT_MESSAGE_PRIORITY_* from otMessagePriority).

Definition at line 90 of file include/openthread/message.h

otMessageQueue

410/962

otMessageQueue

Represents an OpenThread message queue.

Public Attributes

void * mData
Opaque data used by the implementation.

Public Attribute Documentation

mData

void* otMessageQueue::mData

Opaque data used by the implementation.

Definition at line 320 of file include/openthread/message.h

otMessageQueueInfo

411/962

otMessageQueueInfo

Represents information about a message queue.

Public Attributes

uint16_t mNumMessages
Number of messages in the queue .

uint16_t mNumBuffers
Number of data buffers used by messages in the queue .

uint32_t mTotalBytes
Total number of bytes used by all messages in the queue .

Public Attribute Documentation

mNumMessages

uint16_t otMessageQueueInfo::mNumMessages

Number of messages in the queue.

Definition at line 329 of file include/openthread/message.h

mNumBuffers

uint16_t otMessageQueueInfo::mNumBuffers

Number of data buffers used by messages in the queue.

Definition at line 330 of file include/openthread/message.h

mTotalBytes

uint32_t otMessageQueueInfo::mTotalBytes

Total number of bytes used by all messages in the queue.

Definition at line 331 of file include/openthread/message.h

otBufferInfo

412/962

otBufferInfo

Represents the message buffer information for different queues used by OpenThread stack.

Public Attributes

uint16_t mTotalBuffers
The total number of buffers in the messages poo l (0xffff if unknown).

uint16_t mFreeBuffers
The number of free buffers (0xffff if unknown).

uint16_t mMaxUsedBuffers
The maximum number of used buffers at the same time since OT stack initialization or last call to

otMessageResetBufferInfo() .

otMessageQueue
Info

m6loSendQueue
Info about 6LoWPAN send queue .

otMessageQueue
Info

m6loReassemblyQueue
Info about 6LoWPAN reassembly queue .

otMessageQueue
Info

mIp6Queue
Info about IPv6 send queue .

otMessageQueue
Info

mMplQueue
Info about MPL send queue .

otMessageQueue
Info

mMleQueue
Info about MLE delayed message queue .

otMessageQueue
Info

mCoapQueue
Info about CoAP/TMF send queue .

otMessageQueue
Info

mCoapSecureQueue
Info about CoAP secure send queue .

otMessageQueue
Info

mApplicationCoapQueue
Info about application CoAP send queue .

Public Attribute Documentation

mTotalBuffers

uint16_t otBufferInfo::mTotalBuffers

The total number of buffers in the messages pool (0xffff if unknown).

Definition at line 340 of file include/openthread/message.h

mFreeBuffers

uint16_t otBufferInfo::mFreeBuffers

otBufferInfo

413/962

The number of free buffers (0xffff if unknown).

Definition at line 341 of file include/openthread/message.h

mMaxUsedBuffers

uint16_t otBufferInfo::mMaxUsedBuffers

The maximum number of used buffers at the same time since OT stack initialization or last call to

otMessageResetBufferInfo() .

Definition at line 348 of file include/openthread/message.h

m6loSendQueue

otMessageQueueInfo otBufferInfo::m6loSendQueue

Info about 6LoWPAN send queue.

Definition at line 350 of file include/openthread/message.h

m6loReassemblyQueue

otMessageQueueInfo otBufferInfo::m6loReassemblyQueue

Info about 6LoWPAN reassembly queue.

Definition at line 351 of file include/openthread/message.h

mIp6Queue

otMessageQueueInfo otBufferInfo::mIp6Queue

Info about IPv6 send queue.

Definition at line 352 of file include/openthread/message.h

mMplQueue

otMessageQueueInfo otBufferInfo::mMplQueue

Info about MPL send queue.

Definition at line 353 of file include/openthread/message.h

mMleQueue

otMessageQueueInfo otBufferInfo::mMleQueue

otBufferInfo

414/962

Info about MLE delayed message queue.

Definition at line 354 of file include/openthread/message.h

mCoapQueue

otMessageQueueInfo otBufferInfo::mCoapQueue

Info about CoAP/TMF send queue.

Definition at line 355 of file include/openthread/message.h

mCoapSecureQueue

otMessageQueueInfo otBufferInfo::mCoapSecureQueue

Info about CoAP secure send queue.

Definition at line 356 of file include/openthread/message.h

mApplicationCoapQueue

otMessageQueueInfo otBufferInfo::mApplicationCoapQueue

Info about application CoAP send queue.

Definition at line 357 of file include/openthread/message.h

Multi Radio Link

415/962

Multi Radio Link

Multi Radio Link
This module includes definitions and functions for multi radio link.

Modules

otRadioLinkInfo

otMultiRadioNeighborInfo

Typedefs

typedef struct
otRadioLinkInfo

otRadioLinkInfo
Represents information associated with a radio link.

typedef struct
otMultiRadioNeigh

borInfo

otMultiRadioNeighborInfo
Represents multi radio link information associated with a neighbor.

Functions

otError otMultiRadioGetNeighborInfo(otInstance *aInstance, const otExtAddress *aExtAddress,
otMultiRadioNeighborInfo *aNeighborInfo)
Gets the multi radio link information associated with a neighbor with a given Extended Address.

Typedef Documentation

otRadioLinkInfo

typedef struct otRadioLinkInfo otRadioLinkInfo

Represents information associated with a radio link.

Definition at line 61 of file include/openthread/multi_radio.h

otMultiRadioNeighborInfo

typedef struct otMultiRadioNeighborInfo otMultiRadioNeighborInfo

Represents multi radio link information associated with a neighbor.

Definition at line 73 of file include/openthread/multi_radio.h

Function Documentation

otMultiRadioGetNeighborInfo

Multi Radio Link

416/962

otError otMultiRadioGetNeighborInfo (otInstance *aInstance, const otExtAddress *aExtAddress, otMultiRadioNeighborInfo
*aNeighborInfo)

Gets the multi radio link information associated with a neighbor with a given Extended Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress The Extended Address of neighbor.

[out] aNeighborInfo A pointer to otMultiRadioNeighborInfo to output the neighbor info (on success).

OPENTHREAD_CONFIG_MULTI_RADIO must be enabled.

Definition at line 88 of file include/openthread/multi_radio.h

otRadioLinkInfo

417/962

otRadioLinkInfo

Represents information associated with a radio link.

Public Attributes

uint8_t mPreference
Preference level of radio link.

Public Attribute Documentation

mPreference

uint8_t otRadioLinkInfo::mPreference

Preference level of radio link.

Definition at line 60 of file include/openthread/multi_radio.h

otMultiRadioNeighborInfo

418/962

otMultiRadioNeighborInfo

Represents multi radio link information associated with a neighbor.

Public Attributes

bool mSupportsIeee802154
Neighbor supports IEEE 802.15.4 radio link.

bool mSupportsTrelUdp6
Neighbor supports Thread Radio Encapsulation Link (TREL) radio link.

otRadioLinkInfo mIeee802154Info
Additional info for 15.4 radio link (applicable when supported).

otRadioLinkInfo mTrelUdp6Info
Additional info for TREL radio link (applicable when supported).

Public Attribute Documentation

mSupportsIeee802154

bool otMultiRadioNeighborInfo::mSupportsIeee802154

Neighbor supports IEEE 802.15.4 radio link.

Definition at line 69 of file include/openthread/multi_radio.h

mSupportsTrelUdp6

bool otMultiRadioNeighborInfo::mSupportsTrelUdp6

Neighbor supports Thread Radio Encapsulation Link (TREL) radio link.

Definition at line 70 of file include/openthread/multi_radio.h

mIeee802154Info

otRadioLinkInfo otMultiRadioNeighborInfo::mIeee802154Info

Additional info for 15.4 radio link (applicable when supported).

Definition at line 71 of file include/openthread/multi_radio.h

mTrelUdp6Info

otRadioLinkInfo otMultiRadioNeighborInfo::mTrelUdp6Info

Additional info for TREL radio link (applicable when supported).

otMultiRadioNeighborInfo

419/962

Definition at line 72 of file include/openthread/multi_radio.h

TREL - Thread Stack

420/962

TREL - Thread Stack

TREL - Thread Stack
This module defines Thread Radio Encapsulation Link (TREL) APIs for Thread Over Infrastructure.

The functions in this module require OPENTHREAD_CONFIG_RADIO_LINK_TREL_ENABLE to be enabled.

Modules

otTrelPeer

Typedefs

typedef struct
otTrelPeer

otTrelPeer
Represents a TREL peer.

typedef uint16_t otTrelPeerIterator
Represents an iterator for iterating over TREL peer table entries.

Functions

void otTrelSetEnabled(otInstance *aInstance, bool aEnable)
Enables or disables TREL operation.

bool otTrelIsEnabled(otInstance *aInstance)
Indicates whether the TREL operation is enabled.

void otTrelInitPeerIterator(otInstance *aInstance, otTrelPeerIterator *aIterator)
Initializes a peer table iterator.

const otTrelPeer
*

otTrelGetNextPeer(otInstance *aInstance, otTrelPeerIterator *aIterator)
Iterates over the peer table entries and get the next entry from the table .

void otTrelSetFilterEnabled(otInstance *aInstance, bool aEnable)
Sets the filter mode (enables/disables filtering).

bool otTrelIsFilterEnabled(otInstance *aInstance)
Indicates whether or not the filter mode is enabled.

Typedef Documentation

otTrelPeer

typedef struct otTrelPeer otTrelPeer

Represents a TREL peer.

Definition at line 68 of file include/openthread/trel.h

TREL - Thread Stack

421/962

otTrelPeerIterator

typedef uint16_t otTrelPeerIterator

Represents an iterator for iterating over TREL peer table entries.

Definition at line 74 of file include/openthread/trel.h

Function Documentation

otTrelSetEnabled

void otTrelSetEnabled (otInstance *aInstance, bool aEnable)

Enables or disables TREL operation.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable A boolean to enable/disable the TREL operation.

When aEnable is true, this function initiates an ongoing DNS-SD browse on the service name "_trel._udp" within the local

browsing domain to discover other devices supporting TREL. Device also registers a new service to be advertised using

DNS-SD, with the service name is "_trel._udp" indicating its support for TREL. Device is then ready to receive TREL

messages from peers.

When aEnable is false, this function stops the DNS-SD browse on the service name "_trel._udp", stops advertising TREL

DNS-SD service, and clears the TREL peer table.

Note

By default the OpenThread stack enables the TREL operation on start.

Definition at line 93 of file include/openthread/trel.h

otTrelIsEnabled

bool otTrelIsEnabled (otInstance *aInstance)

Indicates whether the TREL operation is enabled.

Parameters

[in] aInstance The OpenThread instance.

Definition at line 104 of file include/openthread/trel.h

otTrelInitPeerIterator

void otTrelInitPeerIterator (otInstance *aInstance, otTrelPeerIterator *aIterator)

Initializes a peer table iterator.

Parameters

TREL - Thread Stack

422/962

[in] aInstance The OpenThread instance.

[in] aIterator The iterator to initialize.

Definition at line 113 of file include/openthread/trel.h

otTrelGetNextPeer

const otTrelPeer * otTrelGetNextPeer (otInstance *aInstance, otTrelPeerIterator *aIterator)

Iterates over the peer table entries and get the next entry from the table.

Parameters

[in] aInstance The OpenThread instance.

[in] aIterator The iterator. MUST be initialized.

Returns

A pointer to the next otTrelPeer entry or NULL if no more entries in the table.

Definition at line 124 of file include/openthread/trel.h

otTrelSetFilterEnabled

void otTrelSetFilterEnabled (otInstance *aInstance, bool aEnable)

Sets the filter mode (enables/disables filtering).

Parameters

[in] aInstance The OpenThread instance.

[in] aEnable TRUE to enable filter mode, FALSE to disable filter mode.

When filter mode is enabled, any rx and tx traffic through TREL interface is silently dropped. This is mainly intended for use

during testing.

Unlike otTrel{Enable/Disable}() which fully starts/stops the TREL operation, when filter mode is enabled the TREL interface

continues to be enabled.

Definition at line 139 of file include/openthread/trel.h

otTrelIsFilterEnabled

bool otTrelIsFilterEnabled (otInstance *aInstance)

Indicates whether or not the filter mode is enabled.

Parameters

[in] aInstance The OpenThread instance.

Definition at line 150 of file include/openthread/trel.h

otTrelPeer

423/962

otTrelPeer

Represents a TREL peer.

Public Attributes

otExtAddress mExtAddress
The Extended MAC Address of TREL peer.

otExtendedPanId mExtPanId
The Extended PAN Identifier of TREL peer.

otSockAddr mSockAddr
The IPv6 socket address of TREL peer.

Public Attribute Documentation

mExtAddress

otExtAddress otTrelPeer::mExtAddress

The Extended MAC Address of TREL peer.

Definition at line 65 of file include/openthread/trel.h

mExtPanId

otExtendedPanId otTrelPeer::mExtPanId

The Extended PAN Identifier of TREL peer.

Definition at line 66 of file include/openthread/trel.h

mSockAddr

otSockAddr otTrelPeer::mSockAddr

The IPv6 socket address of TREL peer.

Definition at line 67 of file include/openthread/trel.h

Thread

424/962

Thread

Thread

Modules

Backbone Router

Border Agent

Border Router

Border Routing Manager

Commissioner

General

Joiner

Operational Dataset

Router/Leader

Server

Backbone Router

425/962

Backbone Router

Backbone Router
This module includes functions for the OpenThread Backbone Router Service.

Modules

otBackboneRouterConfig

otBackboneRouterMulticastListenerInfo

otBackboneRouterNdProxyInfo

Enumerations

enum otBackboneRouterState {

OT_BACKBONE_ROUTER_STATE_DISABLED = 0
OT_BACKBONE_ROUTER_STATE_SECONDARY = 1
OT_BACKBONE_ROUTER_STATE_PRIMARY = 2

}
Represents the Backbone Router Status.

enum otBackboneRouterMulticastListenerEvent {

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ADDED = 0
OT_BACKBONE_ROUTER_MULTICAST_LISTENER_REMOVED = 1

}
Represents the Multicast Listener events.

enum otBackboneRouterNdProxyEvent {

OT_BACKBONE_ROUTER_NDPROXY_ADDED = 0
OT_BACKBONE_ROUTER_NDPROXY_REMOVED = 1
OT_BACKBONE_ROUTER_NDPROXY_RENEWED = 2
OT_BACKBONE_ROUTER_NDPROXY_CLEARED = 3

}
Represents the ND Proxy events.

enum otBackboneRouterDomainPrefixEvent {

OT_BACKBONE_ROUTER_DOMAIN_PREFIX_ADDED = 0
OT_BACKBONE_ROUTER_DOMAIN_PREFIX_REMOVED = 1
OT_BACKBONE_ROUTER_DOMAIN_PREFIX_CHANGED = 2

}
Represents the Domain Prefix events.

Typedefs

typedef struct
otBackboneRout

erConfig

otBackboneRouterConfig
Represents Backbone Router configuration.

Backbone Router

426/962

typedef void(* otBackboneRouterMulticastListenerCallback)(void *aContext, otBackboneRouterMulticastListenerEvent
aEvent, const otIp6Address *aAddress)
Po inter is called whenever the Multicast Listeners change .

typedef uint16_t otBackboneRouterMulticastListenerIterator
Used to iterate through Multicast Listeners.

typedef struct
otBackboneRout
erMulticastListen

erInfo

otBackboneRouterMulticastListenerInfo
Represents a Backbone Router Multicast Listener info.

typedef void(* otBackboneRouterNdProxyCallback)(void *aContext, otBackboneRouterNdProxyEvent aEvent, const
otIp6Address *aDua)
Po inter is called whenever the Nd Proxy changed.

typedef struct
otBackboneRout
erNdProxyInfo

otBackboneRouterNdProxyInfo
Represents the Backbone Router ND Proxy info.

typedef void(* otBackboneRouterDomainPrefixCallback)(void *aContext, otBackboneRouterDomainPrefixEvent aEvent,
const otIp6Prefix *aDomainPrefix)
Po inter is called whenever the Domain Prefix changed.

Functions

otError otBackboneRouterGetPrimary(otInstance *aInstance, otBackboneRouterConfig *aConfig)
Gets the Primary Backbone Router information in the Thread Network.

void otBackboneRouterSetEnabled(otInstance *aInstance, bool aEnable)
Enables or disables Backbone functionality.

otBackboneRout
erState

otBackboneRouterGetState(otInstance *aInstance)
Gets the Backbone Router otBackboneRouterState .

void otBackboneRouterGetConfig(otInstance *aInstance, otBackboneRouterConfig *aConfig)
Gets the local Backbone Router configuration.

otError otBackboneRouterSetConfig(otInstance *aInstance, const otBackboneRouterConfig *aConfig)
Sets the local Backbone Router configuration otBackboneRouterConfig.

otError otBackboneRouterRegister(otInstance *aInstance)
Explicitly registers local Backbone Router configuration.

uint8_t otBackboneRouterGetRegistrationJitter(otInstance *aInstance)
Returns the Backbone Router registration jitter value .

void otBackboneRouterSetRegistrationJitter(otInstance *aInstance, uint8_t aJitter)
Sets the Backbone Router registration jitter value .

otError otBackboneRouterGetDomainPrefix(otInstance *aInstance, otBorderRouterConfig *aConfig)
Gets the local Domain Prefix configuration.

void otBackboneRouterConfigNextDuaRegistrationResponse(otInstance *aInstance, const otIp6InterfaceIdentifier
*aMlIid, uint8_t aStatus)
Configures response status for next DUA registration.

void otBackboneRouterConfigNextMulticastListenerRegistrationResponse(otInstance *aInstance, uint8_t aStatus)
Configures the response status for the next Multicast Listener Registration.

Backbone Router

427/962

void otBackboneRouterSetMulticastListenerCallback(otInstance *aInstance,
otBackboneRouterMulticastListenerCallback aCallback, void *aContext)
Sets the Backbone Router Multicast Listener callback.

void otBackboneRouterMulticastListenerClear(otInstance *aInstance)
Clears the Multicast Listeners.

otError otBackboneRouterMulticastListenerAdd(otInstance *aInstance, const otIp6Address *aAddress, uint32_t
aTimeout)
Adds a Multicast Listener with a timeout value , in seconds.

otError otBackboneRouterMulticastListenerGetNext(otInstance *aInstance,
otBackboneRouterMulticastListenerIterator *aIterator, otBackboneRouterMulticastListenerInfo
*aListenerInfo)
Gets the next Multicast Listener info (using an iterator).

void otBackboneRouterSetNdProxyCallback(otInstance *aInstance, otBackboneRouterNdProxyCallback
aCallback, void *aContext)
Sets the Backbone Router ND Proxy callback.

otError otBackboneRouterGetNdProxyInfo(otInstance *aInstance, const otIp6Address *aDua,
otBackboneRouterNdProxyInfo *aNdProxyInfo)
Gets the Backbone Router ND Proxy info.

void otBackboneRouterSetDomainPrefixCallback(otInstance *aInstance, otBackboneRouterDomainPrefixCallback
aCallback, void *aContext)
Sets the Backbone Router Domain Prefix callback.

Macros

#define OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ITERATOR_INIT 0
Initializer for otBackboneRouterMulticastListenerIterator.

Enumeration Documentation

otBackboneRouterState

otBackboneRouterState

Represents the Backbone Router Status.

Enumerator

OT_BACKBONE_ROUTER_STATE_DISABLED Backbone function is disabled.

OT_BACKBONE_ROUTER_STATE_SECONDARY Secondary Backbone Router.

OT_BACKBONE_ROUTER_STATE_PRIMARY The Primary Backbone Router.

Definition at line 59 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerEvent

otBackboneRouterMulticastListenerEvent

Represents the Multicast Listener events.

Enumerator

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ADDED Multicast Listener was added.

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_REMOVED Multicast Listener was removed or expired.

Backbone Router

428/962

Definition at line 231 of file include/openthread/backbone_router_ftd.h

otBackboneRouterNdProxyEvent

otBackboneRouterNdProxyEvent

Represents the ND Proxy events.

Enumerator

OT_BACKBONE_ROUTER_NDPROXY_ADDED ND Proxy was added.

OT_BACKBONE_ROUTER_NDPROXY_REMOVED ND Proxy was removed.

OT_BACKBONE_ROUTER_NDPROXY_RENEWED ND Proxy was renewed.

OT_BACKBONE_ROUTER_NDPROXY_CLEARED All ND Proxies were cleared.

Definition at line 340 of file include/openthread/backbone_router_ftd.h

otBackboneRouterDomainPrefixEvent

otBackboneRouterDomainPrefixEvent

Represents the Domain Prefix events.

Enumerator

OT_BACKBONE_ROUTER_DOMAIN_PREFIX_ADDED Domain Prefix was added.

OT_BACKBONE_ROUTER_DOMAIN_PREFIX_REMOVED Domain Prefix was removed.

OT_BACKBONE_ROUTER_DOMAIN_PREFIX_CHANGED Domain Prefix was changed.

Definition at line 403 of file include/openthread/backbone_router_ftd.h

Typedef Documentation

otBackboneRouterConfig

typedef struct otBackboneRouterConfig otBackboneRouterConfig

Represents Backbone Router configuration.

Definition at line 64 of file include/openthread/backbone_router.h

otBackboneRouterMulticastListenerCallback

typedef void(* otBackboneRouterMulticastListenerCallback) (void *aContext, otBackboneRouterMulticastListenerEvent
aEvent, const otIp6Address *aAddress))(void *aContext, otBackboneRouterMulticastListenerEvent aEvent, const
otIp6Address *aAddress)

Pointer is called whenever the Multicast Listeners change.

Parameters

[in] aContext The user context pointer.

[in] aEvent The Multicast Listener event.

[in] aAddress The IPv6 multicast address of the Multicast Listener.

Backbone Router

429/962

Definition at line 245 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerIterator

typedef uint16_t otBackboneRouterMulticastListenerIterator

Used to iterate through Multicast Listeners.

Definition at line 302 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerInfo

typedef struct otBackboneRouterMulticastListenerInfo otBackboneRouterMulticastListenerInfo

Represents a Backbone Router Multicast Listener info.

Definition at line 312 of file include/openthread/backbone_router_ftd.h

otBackboneRouterNdProxyCallback

typedef void(* otBackboneRouterNdProxyCallback) (void *aContext, otBackboneRouterNdProxyEvent aEvent, const
otIp6Address *aDua))(void *aContext, otBackboneRouterNdProxyEvent aEvent, const otIp6Address *aDua)

Pointer is called whenever the Nd Proxy changed.

Parameters

[in] aContext The user context pointer.

[in] aEvent The ND Proxy event.

[in] aDua The Domain Unicast Address of the ND Proxy, or nullptr if aEvent is

OT_BACKBONE_ROUTER_NDPROXY_CLEARED .

Definition at line 357 of file include/openthread/backbone_router_ftd.h

otBackboneRouterNdProxyInfo

typedef struct otBackboneRouterNdProxyInfo otBackboneRouterNdProxyInfo

Represents the Backbone Router ND Proxy info.

Definition at line 382 of file include/openthread/backbone_router_ftd.h

otBackboneRouterDomainPrefixCallback

typedef void(* otBackboneRouterDomainPrefixCallback) (void *aContext, otBackboneRouterDomainPrefixEvent aEvent,
const otIp6Prefix *aDomainPrefix))(void *aContext, otBackboneRouterDomainPrefixEvent aEvent, const otIp6Prefix
*aDomainPrefix)

Pointer is called whenever the Domain Prefix changed.

Parameters

Backbone Router

430/962

[in] aContext The user context pointer.

[in] aEvent The Domain Prefix event.

[in] aDomainPrefix The new Domain Prefix if added or changed, nullptr otherwise.

Definition at line 418 of file include/openthread/backbone_router_ftd.h

Function Documentation

otBackboneRouterGetPrimary

otError otBackboneRouterGetPrimary (otInstance *aInstance, otBackboneRouterConfig *aConfig)

Gets the Primary Backbone Router information in the Thread Network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aConfig A pointer to where to put Primary Backbone Router information.

Definition at line 76 of file include/openthread/backbone_router.h

otBackboneRouterSetEnabled

void otBackboneRouterSetEnabled (otInstance *aInstance, bool aEnable)

Enables or disables Backbone functionality.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnable TRUE to enable Backbone functionality, FALSE otherwise.

If enabled, a Server Data Request message SRV_DATA.ntf is triggered for the attached device if there is no Backbone

Router Service in the Thread Network Data.

If disabled, SRV_DATA.ntf is triggered if the Backbone Router is in the Primary state.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE is enabled.

See Also

otBackboneRouterGetState

otBackboneRouterGetConfig

otBackboneRouterSetConfig

otBackboneRouterRegister

Definition at line 85 of file include/openthread/backbone_router_ftd.h

otBackboneRouterGetState

otBackboneRouterState otBackboneRouterGetState (otInstance *aInstance)

Gets the Backbone Router otBackboneRouterState.

Parameters

Backbone Router

431/962

[in] aInstance A pointer to an OpenThread instance.

See Also

otBackboneRouterSetEnabled

otBackboneRouterGetConfig

otBackboneRouterSetConfig

otBackboneRouterRegister

Definition at line 102 of file include/openthread/backbone_router_ftd.h

otBackboneRouterGetConfig

void otBackboneRouterGetConfig (otInstance *aInstance, otBackboneRouterConfig *aConfig)

Gets the local Backbone Router configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aConfig A pointer where to put local Backbone Router configuration.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE is enabled.

See Also

otBackboneRouterSetEnabled

otBackboneRouterGetState

otBackboneRouterSetConfig

otBackboneRouterRegister

Definition at line 119 of file include/openthread/backbone_router_ftd.h

otBackboneRouterSetConfig

otError otBackboneRouterSetConfig (otInstance *aInstance, const otBackboneRouterConfig *aConfig)

Sets the local Backbone Router configuration otBackboneRouterConfig.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig A pointer to the Backbone Router configuration to take effect.

A Server Data Request message SRV_DATA.ntf is initiated automatically if BBR Dataset changes for Primary Backbone

Router.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE is enabled.

See Also

otBackboneRouterSetEnabled

otBackboneRouterGetState

otBackboneRouterGetConfig

otBackboneRouterRegister

Definition at line 141 of file include/openthread/backbone_router_ftd.h

Backbone Router

432/962

otBackboneRouterRegister

otError otBackboneRouterRegister (otInstance *aInstance)

Explicitly registers local Backbone Router configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

A Server Data Request message SRV_DATA.ntf is triggered for the attached device.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE is enabled.

See Also

otBackboneRouterSetEnabled

otBackboneRouterGetState

otBackboneRouterGetConfig

otBackboneRouterSetConfig

Definition at line 161 of file include/openthread/backbone_router_ftd.h

otBackboneRouterGetRegistrationJitter

uint8_t otBackboneRouterGetRegistrationJitter (otInstance *aInstance)

Returns the Backbone Router registration jitter value.

Parameters

N/A aInstance

Returns

The Backbone Router registration jitter value.

See Also

otBackboneRouterSetRegistrationJitter

Definition at line 171 of file include/openthread/backbone_router_ftd.h

otBackboneRouterSetRegistrationJitter

void otBackboneRouterSetRegistrationJitter (otInstance *aInstance, uint8_t aJitter)

Sets the Backbone Router registration jitter value.

Parameters

[in] aInstance the Backbone Router registration jitter value to set.

N/A aJitter

See Also

otBackboneRouterGetRegistrationJitter

Definition at line 181 of file include/openthread/backbone_router_ftd.h

Backbone Router

433/962

otBackboneRouterGetDomainPrefix

otError otBackboneRouterGetDomainPrefix (otInstance *aInstance, otBorderRouterConfig *aConfig)

Gets the local Domain Prefix configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aConfig A pointer to the Domain Prefix configuration.

Definition at line 193 of file include/openthread/backbone_router_ftd.h

otBackboneRouterConfigNextDuaRegistrationResponse

void otBackboneRouterConfigNextDuaRegistrationResponse (otInstance *aInstance, const otIp6InterfaceIdentifier
*aMlIid, uint8_t aStatus)

Configures response status for next DUA registration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMlIid A pointer to the Mesh Local IID. If NULL, respond with aStatus for any coming DUA.req, otherwise only

respond the one with matching aMlIid .

[in] aStatus The status to respond.

Note: available only when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE is enabled. Only used for test and certification.

TODO: (DUA) support coap error code and corresponding process for certification purpose.

Definition at line 210 of file include/openthread/backbone_router_ftd.h

otBackboneRouterConfigNextMulticastListenerRegistrationResponse

void otBackboneRouterConfigNextMulticastListenerRegistrationResponse (otInstance *aInstance, uint8_t aStatus)

Configures the response status for the next Multicast Listener Registration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aStatus The status to respond.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE ,

OPENTHREAD_CONFIG_BACKBONE_ROUTER_MULTICAST_ROUTING_ENABLE , and OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE

are enabled.

Definition at line 225 of file include/openthread/backbone_router_ftd.h

otBackboneRouterSetMulticastListenerCallback

void otBackboneRouterSetMulticastListenerCallback (otInstance *aInstance, otBackboneRouterMulticastListenerCallback
aCallback, void *aContext)

Backbone Router

434/962

Sets the Backbone Router Multicast Listener callback.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to the Multicast Listener callback.

[in] aContext A user context pointer.

Definition at line 257 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerClear

void otBackboneRouterMulticastListenerClear (otInstance *aInstance)

Clears the Multicast Listeners.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE ,

OPENTHREAD_CONFIG_BACKBONE_ROUTER_MULTICAST_ROUTING_ENABLE , and OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE

are enabled.

See Also

otBackboneRouterMulticastListenerAdd

otBackboneRouterMulticastListenerGetNext

Definition at line 274 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerAdd

otError otBackboneRouterMulticastListenerAdd (otInstance *aInstance, const otIp6Address *aAddress, uint32_t aTimeout)

Adds a Multicast Listener with a timeout value, in seconds.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress The Multicast Listener address.

[in] aTimeout The timeout (in seconds) of the Multicast Listener, or 0 to use the default MLR timeout.

Pass 0 to use the default MLR timeout.

Available when OPENTHREAD_CONFIG_BACKBONE_ROUTER_ENABLE ,

OPENTHREAD_CONFIG_BACKBONE_ROUTER_MULTICAST_ROUTING_ENABLE , and OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE

are enabled.

See Also

otBackboneRouterMulticastListenerClear

otBackboneRouterMulticastListenerGetNext

Definition at line 297 of file include/openthread/backbone_router_ftd.h

otBackboneRouterMulticastListenerGetNext

Backbone Router

435/962

otError otBackboneRouterMulticastListenerGetNext (otInstance *aInstance, otBackboneRouterMulticastListenerIterator
*aIterator, otBackboneRouterMulticastListenerInfo *aListenerInfo)

Gets the next Multicast Listener info (using an iterator).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the iterator. On success the iterator will be updated to point to next Multicast

Listener. To get the first entry the iterator should be set to

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ITERATOR_INIT.

[out] aListenerInfo A pointer to an otBackboneRouterMulticastListenerInfo where information of next Multicast Listener

is placed (on success).

See Also

otBackboneRouterMulticastListenerClear

otBackboneRouterMulticastListenerAdd

Definition at line 332 of file include/openthread/backbone_router_ftd.h

otBackboneRouterSetNdProxyCallback

void otBackboneRouterSetNdProxyCallback (otInstance *aInstance, otBackboneRouterNdProxyCallback aCallback, void
*aContext)

Sets the Backbone Router ND Proxy callback.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to the ND Proxy callback.

[in] aContext A user context pointer.

Definition at line 369 of file include/openthread/backbone_router_ftd.h

otBackboneRouterGetNdProxyInfo

otError otBackboneRouterGetNdProxyInfo (otInstance *aInstance, const otIp6Address *aDua,
otBackboneRouterNdProxyInfo *aNdProxyInfo)

Gets the Backbone Router ND Proxy info.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDua The Domain Unicast Address.

[out] aNdProxyInfo A pointer to the ND Proxy info.

Definition at line 395 of file include/openthread/backbone_router_ftd.h

otBackboneRouterSetDomainPrefixCallback

Backbone Router

436/962

void otBackboneRouterSetDomainPrefixCallback (otInstance *aInstance, otBackboneRouterDomainPrefixCallback
aCallback, void *aContext)

Sets the Backbone Router Domain Prefix callback.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to the Domain Prefix callback.

[in] aContext A user context pointer.

Definition at line 429 of file include/openthread/backbone_router_ftd.h

Macro Definition Documentation

OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ITERATOR_INIT

#define OT_BACKBONE_ROUTER_MULTICAST_LISTENER_ITERATOR_INIT

Value:

 0

Initializer for otBackboneRouterMulticastListenerIterator.

Definition at line 299 of file include/openthread/backbone_router_ftd.h

otBackboneRouterConfig

437/962

otBackboneRouterConfig

Represents Backbone Router configuration.

Public Attributes

uint16_t mServer16
Only used when get Primary Backbone Router information in the Thread Network.

uint16_t mReregistrationDelay
Reregistration Delay (in seconds)

uint32_t mMlrTimeout
Multicast Listener Registration Timeout (in seconds)

uint8_t mSequenceNumber
Sequence Number.

Public Attribute Documentation

mServer16

uint16_t otBackboneRouterConfig::mServer16

Only used when get Primary Backbone Router information in the Thread Network.

Definition at line 60 of file include/openthread/backbone_router.h

mReregistrationDelay

uint16_t otBackboneRouterConfig::mReregistrationDelay

Reregistration Delay (in seconds)

Definition at line 61 of file include/openthread/backbone_router.h

mMlrTimeout

uint32_t otBackboneRouterConfig::mMlrTimeout

Multicast Listener Registration Timeout (in seconds)

Definition at line 62 of file include/openthread/backbone_router.h

mSequenceNumber

uint8_t otBackboneRouterConfig::mSequenceNumber

Sequence Number.

otBackboneRouterConfig

438/962

Definition at line 63 of file include/openthread/backbone_router.h

otBackboneRouterMulticastListenerInfo

439/962

otBackboneRouterMulticastListenerInfo

Represents a Backbone Router Multicast Listener info.

Public Attributes

otIp6Address mAddress

uint32_t mTimeout

Public Attribute Documentation

mAddress

otIp6Address otBackboneRouterMulticastListenerInfo::mAddress

Definition at line 310 of file include/openthread/backbone_router_ftd.h

mTimeout

uint32_t otBackboneRouterMulticastListenerInfo::mTimeout

Definition at line 311 of file include/openthread/backbone_router_ftd.h

otBackboneRouterNdProxyInfo

440/962

otBackboneRouterNdProxyInfo

Represents the Backbone Router ND Proxy info.

Public Attributes

otIp6InterfaceIde
ntifier *

mMeshLocalIid
Mesh-local IID.

uint32_t mTimeSinceLastTransaction
Time since last transaction (Seconds)

uint16_t mRloc16
RLOC16.

Public Attribute Documentation

mMeshLocalIid

otIp6InterfaceIdentifier* otBackboneRouterNdProxyInfo::mMeshLocalIid

Mesh-local IID.

Definition at line 379 of file include/openthread/backbone_router_ftd.h

mTimeSinceLastTransaction

uint32_t otBackboneRouterNdProxyInfo::mTimeSinceLastTransaction

Time since last transaction (Seconds)

Definition at line 380 of file include/openthread/backbone_router_ftd.h

mRloc16

uint16_t otBackboneRouterNdProxyInfo::mRloc16

RLOC16.

Definition at line 381 of file include/openthread/backbone_router_ftd.h

Border Agent

441/962

Border Agent

Border Agent
This module includes functions for the Thread Border Agent role.

Modules

otBorderAgentId

Enumerations

enum otBorderAgentState {

OT_BORDER_AGENT_STATE_STOPPED = 0
OT_BORDER_AGENT_STATE_STARTED = 1
OT_BORDER_AGENT_STATE_ACTIVE = 2

}
Defines the Border Agent state .

Typedefs

typedef struct
otBorderAgentId

otBorderAgentId
Represents a Border Agent ID.

typedef enum
otBorderAgentSta

te

otBorderAgentState
Defines the Border Agent state .

Variables

OT_TOOL_PACKE
D_BEGIN struct
otBorderAgentId

OT_TOOL_PACKED_END

Functions

otBorderAgentSta
te

otBorderAgentGetState(otInstance *aInstance)
Gets the otBorderAgentState of the Thread Border Agent ro le .

uint16_t otBorderAgentGetUdpPort(otInstance *aInstance)
Gets the UDP port of the Thread Border Agent service .

otError otBorderAgentGetId(otInstance *aInstance, otBorderAgentId *aId)
Gets the randomly generated Border Agent ID.

otError otBorderAgentSetId(otInstance *aInstance, const otBorderAgentId *aId)
Sets the Border Agent ID.

Macros

#define OT_BORDER_AGENT_ID_LENGTH �16�

Border Agent

442/962

The length of Border

Agent/Router ID in

bytes.

Enumeration Documentation

otBorderAgentState

otBorderAgentState

Defines the Border Agent state.

Enumerator

OT_BORDER_AGENT_STATE_STOPPED Border agent role is disabled.

OT_BORDER_AGENT_STATE_STARTED Border agent is started.

OT_BORDER_AGENT_STATE_ACTIVE Border agent is connected with external commissioner.

Definition at line 82 of file include/openthread/border_agent.h

Typedef Documentation

otBorderAgentId

typedef struct otBorderAgentId otBorderAgentId

Represents a Border Agent ID.

Definition at line 76 of file include/openthread/border_agent.h

otBorderAgentState

typedef enum otBorderAgentState otBorderAgentState

Defines the Border Agent state.

Definition at line 87 of file include/openthread/border_agent.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otBorderAgentId OT_TOOL_PACKED_END

Definition at line 70 of file include/openthread/border_agent.h

Function Documentation

otBorderAgentGetState

otBorderAgentState otBorderAgentGetState (otInstance *aInstance)

Border Agent

443/962

Gets the otBorderAgentState of the Thread Border Agent role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The current otBorderAgentState of the Border Agent.

Definition at line 97 of file include/openthread/border_agent.h

otBorderAgentGetUdpPort

uint16_t otBorderAgentGetUdpPort (otInstance *aInstance)

Gets the UDP port of the Thread Border Agent service.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

UDP port of the Border Agent.

Definition at line 107 of file include/openthread/border_agent.h

otBorderAgentGetId

otError otBorderAgentGetId (otInstance *aInstance, otBorderAgentId *aId)

Gets the randomly generated Border Agent ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aId A pointer to buffer to receive the ID.

The ID is saved in persistent storage and survives reboots. The typical use case of the ID is to be published in the

MeshCoP mDNS service as the id TXT value for the client to identify this Border Router/Agent device.

See Also

otBorderAgentSetId

Definition at line 125 of file include/openthread/border_agent.h

otBorderAgentSetId

otError otBorderAgentSetId (otInstance *aInstance, const otBorderAgentId *aId)

Sets the Border Agent ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Border Agent

444/962

[out] aId A pointer to the Border Agent ID.

The Border Agent ID will be saved in persistent storage and survive reboots. It's required to set the ID only once after

factory reset. If the ID has never been set by calling this function, a random ID will be generated and returned when

otBorderAgentGetId is called.

See Also

otBorderAgentGetId

Definition at line 143 of file include/openthread/border_agent.h

Macro Definition Documentation

OT_BORDER_AGENT_ID_LENGTH

#define OT_BORDER_AGENT_ID_LENGTH

Value:

�16�

The length of Border Agent/Router ID in bytes.

Definition at line 58 of file include/openthread/border_agent.h

otBorderAgentId

445/962

otBorderAgentId

Represents a Border Agent ID.

Public Attributes

uint8_t mId

Public Attribute Documentation

mId

uint8_t otBorderAgentId::mId[OT_BORDER_AGENT_ID_LENGTH�

Definition at line 69 of file include/openthread/border_agent.h

Border Router

446/962

Border Router

Border Router
This module includes functions to manage local network data with the OpenThread Border Router.

Typedefs

typedef void(* otBorderRouterNetDataFullCallback)(void *aContext)
Function po inter callback which is invoked when Network Data (local or leader) gets full.

Functions

otError otBorderRouterGetNetData(otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)
Provides a full or stable copy of the local Thread Network Data.

otError otBorderRouterAddOnMeshPrefix(otInstance *aInstance, const otBorderRouterConfig *aConfig)
Add a border router configuration to the local network data.

otError otBorderRouterRemoveOnMeshPrefix(otInstance *aInstance, const otIp6Prefix *aPrefix)
Remove a border router configuration from the local network data.

otError otBorderRouterGetNextOnMeshPrefix(otInstance *aInstance, otNetworkDataIterator *aIterator,
otBorderRouterConfig *aConfig)
Gets the next On Mesh Prefix in the local Network Data.

otError otBorderRouterAddRoute(otInstance *aInstance, const otExternalRouteConfig *aConfig)
Add an external route configuration to the local network data.

otError otBorderRouterRemoveRoute(otInstance *aInstance, const otIp6Prefix *aPrefix)
Remove an external route configuration from the local network data.

otError otBorderRouterGetNextRoute(otInstance *aInstance, otNetworkDataIterator *aIterator,
otExternalRouteConfig *aConfig)
Gets the next external route in the local Network Data.

otError otBorderRouterRegister(otInstance *aInstance)
Immediately register the local network data with the Leader.

void otBorderRouterSetNetDataFullCallback(otInstance *aInstance, otBorderRouterNetDataFullCallback
aCallback, void *aContext)
Sets the callback to indicate when Network Data gets full.

Typedef Documentation

otBorderRouterNetDataFullCallback

typedef void(* otBorderRouterNetDataFullCallback) (void *aContext))(void *aContext)

Function pointer callback which is invoked when Network Data (local or leader) gets full.

Parameters

[in] aContext A pointer to arbitrary context information.

Border Router

447/962

Definition at line 177 of file include/openthread/border_router.h

Function Documentation

otBorderRouterGetNetData

otError otBorderRouterGetNetData (otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)

Provides a full or stable copy of the local Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aStable TRUE when copying the stable version, FALSE when copying the full version.

[out] aData A pointer to the data buffer.

[inout] aDataLength On entry, size of the data buffer pointed to by aData . On exit, number of copied bytes.

Definition at line 65 of file include/openthread/border_router.h

otBorderRouterAddOnMeshPrefix

otError otBorderRouterAddOnMeshPrefix (otInstance *aInstance, const otBorderRouterConfig *aConfig)

Add a border router configuration to the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig A pointer to the border router configuration.

See Also

otBorderRouterRemoveOnMeshPrefix

otBorderRouterRegister

Definition at line 80 of file include/openthread/border_router.h

otBorderRouterRemoveOnMeshPrefix

otError otBorderRouterRemoveOnMeshPrefix (otInstance *aInstance, const otIp6Prefix *aPrefix)

Remove a border router configuration from the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix A pointer to an IPv6 prefix.

See Also

otBorderRouterAddOnMeshPrefix

otBorderRouterRegister

Definition at line 94 of file include/openthread/border_router.h

Border Router

448/962

otBorderRouterGetNextOnMeshPrefix

otError otBorderRouterGetNextOnMeshPrefix (otInstance *aInstance, otNetworkDataIterator *aIterator,
otBorderRouterConfig *aConfig)

Gets the next On Mesh Prefix in the local Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first on-mesh entry it should be set to

OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to the On Mesh Prefix information.

Definition at line 108 of file include/openthread/border_router.h

otBorderRouterAddRoute

otError otBorderRouterAddRoute (otInstance *aInstance, const otExternalRouteConfig *aConfig)

Add an external route configuration to the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig A pointer to the external route configuration.

See Also

otBorderRouterRemoveRoute

otBorderRouterRegister

Definition at line 125 of file include/openthread/border_router.h

otBorderRouterRemoveRoute

otError otBorderRouterRemoveRoute (otInstance *aInstance, const otIp6Prefix *aPrefix)

Remove an external route configuration from the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix A pointer to an IPv6 prefix.

See Also

otBorderRouterAddRoute

otBorderRouterRegister

Definition at line 139 of file include/openthread/border_router.h

otBorderRouterGetNextRoute

Border Router

449/962

otError otBorderRouterGetNextRoute (otInstance *aInstance, otNetworkDataIterator *aIterator, otExternalRouteConfig
*aConfig)

Gets the next external route in the local Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first external route entry it should be set

to OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to the External Route information.

Definition at line 153 of file include/openthread/border_router.h

otBorderRouterRegister

otError otBorderRouterRegister (otInstance *aInstance)

Immediately register the local network data with the Leader.

Parameters

[in] aInstance A pointer to an OpenThread instance.

See Also

otBorderRouterAddOnMeshPrefix

otBorderRouterRemoveOnMeshPrefix

otBorderRouterAddRoute

otBorderRouterRemoveRoute

Definition at line 169 of file include/openthread/border_router.h

otBorderRouterSetNetDataFullCallback

void otBorderRouterSetNetDataFullCallback (otInstance *aInstance, otBorderRouterNetDataFullCallback aCallback, void
*aContext)

Sets the callback to indicate when Network Data gets full.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback The callback.

[in] aContext A pointer to arbitrary context information used with aCallback .

Requires OPENTHREAD_CONFIG_BORDER_ROUTER_SIGNAL_NETWORK_DATA_FULL .

The callback is invoked whenever:

The device is acting as a leader and receives a Network Data registration from a Border Router (BR) that it cannot add to

Network Data (running out of space).

The device is acting as a BR and new entries cannot be added to its local Network Data.

The device is acting as a BR and tries to register its local Network Data entries with the leader, but determines that its local

entries will not fit.

Border Router

450/962

Definition at line 196 of file include/openthread/border_router.h

Border Routing Manager

451/962

Border Routing Manager

Border Routing Manager
This module includes definitions related to Border Routing Manager.

All the functions in this module require OPENTHREAD_CONFIG_BORDER_ROUTING_ENABLE to be enabled.

Border Routing Manager handles bi-directional routing between Thread network and adjacent infrastructure link (AIL).

It emits ICMRv6 ND Router Advertisement (RA) messages on AIL to advertise on-link and route prefixes. It also processes

received RA messages from infrastructure and mirrors the discovered prefixes on the Thread Network Data to ensure

devices on Thread mesh can reach AIL through the Border Router.

Routing Manager manages the Off-Mesh Routable (OMR) prefix on the Thread Network data which configures Thread

devices with a suitable Off-Mesh Routable IPv6 address. It announces the reachability of this prefix on AIL by including it in

the emitted RA messages as an IPv6 Route Information Option (RIO).

Routing Manager also monitors and adds on-link prefix on the infrastructure network. If a router on AIL is already providing

RA messages containing an IPv6 Prefix Information Option (PIO) that enables IPv6 devices on the link to self-configure their

own routable unicast IPv6 address, this address can be used by Thread devices to reach AIL. If Border Router finds no such

RA message on AIL, it generates a ULA on-link prefix which it then advertises on AIL in the emitted RA messages.

Modules

otBorderRoutingPrefixTableIterator

otBorderRoutingPrefixTableEntry

Enumerations

enum otBorderRoutingState {

OT_BORDER_ROUTING_STATE_UNINITIALIZED
OT_BORDER_ROUTING_STATE_DISABLED
OT_BORDER_ROUTING_STATE_STOPPED
OT_BORDER_ROUTING_STATE_RUNNING

}
Represents the state of Border Routing Manager.

enum otBorderRoutingDhcp6PdState {

OT_BORDER_ROUTING_DHCP6_PD_STATE_DISABLED
OT_BORDER_ROUTING_DHCP6_PD_STATE_STOPPED
OT_BORDER_ROUTING_DHCP6_PD_STATE_RUNNING

}
This enumeration represents the state of DHCPv6 Prefix Delegation State .

Typedefs

typedef struct
otBorderRoutingP
refixTableIterator

otBorderRoutingPrefixTableIterator
Represents an iterator to iterate through the Border Router's discovered prefix table .

Border Routing Manager

452/962

typedef struct
otBorderRoutingP
refixTableEntry

otBorderRoutingPrefixTableEntry
Represents an entry from the discovered prefix table .

Functions

otError otBorderRoutingInit(otInstance *aInstance, uint32_t aInfraIfIndex, bool aInfraIfIsRunning)
Initializes the Border Routing Manager on given infrastructure interface .

otError otBorderRoutingSetEnabled(otInstance *aInstance, bool aEnabled)
Enables or disables the Border Routing Manager.

otBorderRoutingS
tate

otBorderRoutingGetState(otInstance *aInstance)
Gets the current state of Border Routing Manager.

otRoutePreferenc
e

otBorderRoutingGetRouteInfoOptionPreference(otInstance *aInstance)
Gets the current preference used when advertising Route Info Options (RIO) in Router Advertisement messages sent

over the infrastructure link.

void otBorderRoutingSetRouteInfoOptionPreference(otInstance *aInstance, otRoutePreference aPreference)
Explicitly sets the preference to use when advertising Route Info Options (RIO) in Router Advertisement messages sent

over the infrastructure link.

void otBorderRoutingClearRouteInfoOptionPreference(otInstance *aInstance)
Clears a previously set preference value for advertised Route Info Options.

otRoutePreferenc
e

otBorderRoutingGetRoutePreference(otInstance *aInstance)
Gets the current preference used for published routes in Network Data.

void otBorderRoutingSetRoutePreference(otInstance *aInstance, otRoutePreference aPreference)
Explicitly sets the preference of published routes in Network Data.

void otBorderRoutingClearRoutePreference(otInstance *aInstance)
Clears a previously set preference value for published routes in Network Data.

otError otBorderRoutingGetOmrPrefix(otInstance *aInstance, otIp6Prefix *aPrefix)
Gets the local Off-Mesh-Routable (OMR) Prefix, for example fdfc:1ff5:1512:5622::/64 .

otError otBorderRoutingGetPdOmrPrefix(otInstance *aInstance, otBorderRoutingPrefixTableEntry *aPrefixInfo)
Gets the DHCPv6 Prefix Delegation (PD) provided off-mesh-routable (OMR) prefix.

otError otBorderRoutingGetFavoredOmrPrefix(otInstance *aInstance, otIp6Prefix *aPrefix, otRoutePreference
*aPreference)
Gets the currently favored Off-Mesh-Routable (OMR) Prefix.

otError otBorderRoutingGetOnLinkPrefix(otInstance *aInstance, otIp6Prefix *aPrefix)
Gets the local On-Link Prefix for the adjacent infrastructure link.

otError otBorderRoutingGetFavoredOnLinkPrefix(otInstance *aInstance, otIp6Prefix *aPrefix)
Gets the currently favored On-Link Prefix.

otError otBorderRoutingGetNat64Prefix(otInstance *aInstance, otIp6Prefix *aPrefix)
Gets the local NAT64 Prefix of the Border Router.

otError otBorderRoutingGetFavoredNat64Prefix(otInstance *aInstance, otIp6Prefix *aPrefix, otRoutePreference
*aPreference)
Gets the currently favored NAT64 prefix.

void otBorderRoutingPrefixTableInitIterator(otInstance *aInstance, otBorderRoutingPrefixTableIterator *aIterator)
Initializes an otBorderRoutingPrefixTable Iterator .

Border Routing Manager

453/962

otError otBorderRoutingGetNextPrefixTableEntry(otInstance *aInstance, otBorderRoutingPrefixTableIterator
*aIterator, otBorderRoutingPrefixTableEntry *aEntry)
Iterates over the entries in the Border Router's discovered prefix table .

void otBorderRoutingDhcp6PdSetEnabled(otInstance *aInstance, bool aEnabled)
Enables / Disables DHCPv6 Prefix Delegation.

Enumeration Documentation

otBorderRoutingState

otBorderRoutingState

Represents the state of Border Routing Manager.

Enumerator

OT_BORDER_ROUTING_STATE_UNINITIALIZED Routing Manager is uninitialized.

OT_BORDER_ROUTING_STATE_DISABLED Routing Manager is initialized but disabled.

OT_BORDER_ROUTING_STATE_STOPPED Routing Manager in initialized and enabled but currently stopped.

OT_BORDER_ROUTING_STATE_RUNNING Routing Manager is initialized, enabled, and running.

Definition at line 113 of file include/openthread/border_routing.h

otBorderRoutingDhcp6PdState

otBorderRoutingDhcp6PdState

This enumeration represents the state of DHCPv6 Prefix Delegation State.

Enumerator

OT_BORDER_ROUTING_DHCP6_PD_STATE_DISABLED DHCPv6 PD is disabled on the border router.

OT_BORDER_ROUTING_DHCP6_PD_STATE_STOPPED DHCPv6 PD in enabled but won't try to request and publish a

prefix.

OT_BORDER_ROUTING_DHCP6_PD_STATE_RUNNING DHCPv6 PD is enabled and will try to request and publish a prefix.

Definition at line 125 of file include/openthread/border_routing.h

Typedef Documentation

otBorderRoutingPrefixTableIterator

typedef struct otBorderRoutingPrefixTableIterator otBorderRoutingPrefixTableIterator

Represents an iterator to iterate through the Border Router's discovered prefix table.

The fields in this type are opaque (intended for use by OpenThread core only) and therefore should not be accessed or

used by caller.

Before using an iterator, it MUST be initialized using otBorderRoutingPrefixTable InitIterator() .

Definition at line 89 of file include/openthread/border_routing.h

otBorderRoutingPrefixTableEntry

Border Routing Manager

454/962

typedef struct otBorderRoutingPrefixTableEntry otBorderRoutingPrefixTableEntry

Represents an entry from the discovered prefix table.

The entries in the discovered table track the Prefix/Route Info Options in the received Router Advertisement messages

from other routers on infrastructure link.

Definition at line 107 of file include/openthread/border_routing.h

Function Documentation

otBorderRoutingInit

otError otBorderRoutingInit (otInstance *aInstance, uint32_t aInfraIfIndex, bool aInfraIfIsRunning)

Initializes the Border Routing Manager on given infrastructure interface.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aInfraIfIndex The infrastructure interface index.

[in] aInfraIfIsRunning A boolean that indicates whether the infrastructure interface is running.

Note

This method MUST be called before any other otBorderRouting* APIs.

This method can be re-called to change the infrastructure interface, but the Border Routing Manager should be disabled

first, and re-enabled after.

See Also

otPlatInfraIfStateChanged.

otBorderRoutingSetEnabled.

Definition at line 153 of file include/openthread/border_routing.h

otBorderRoutingSetEnabled

otError otBorderRoutingSetEnabled (otInstance *aInstance, bool aEnabled)

Enables or disables the Border Routing Manager.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled A boolean to enable/disable the routing manager.

Note

The Border Routing Manager is disabled by default.

Definition at line 167 of file include/openthread/border_routing.h

otBorderRoutingGetState

Border Routing Manager

455/962

otBorderRoutingState otBorderRoutingGetState (otInstance *aInstance)

Gets the current state of Border Routing Manager.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The current state of Border Routing Manager.

Definition at line 177 of file include/openthread/border_routing.h

otBorderRoutingGetRouteInfoOptionPreference

otRoutePreference otBorderRoutingGetRouteInfoOptionPreference (otInstance *aInstance)

Gets the current preference used when advertising Route Info Options (RIO) in Router Advertisement messages sent over

the infrastructure link.

Parameters

N/A aInstance

The RIO preference is determined as follows:

If explicitly set by user by calling otBorderRoutingSetRoute InfoOptionPreference() , the given preference is used.

Otherwise, it is determined based on device's current role: Medium preference when in router/leader role and low preference

when in child role.

Returns

The current Route Info Option preference.

Definition at line 193 of file include/openthread/border_routing.h

otBorderRoutingSetRouteInfoOptionPreference

void otBorderRoutingSetRouteInfoOptionPreference (otInstance *aInstance, otRoutePreference aPreference)

Explicitly sets the preference to use when advertising Route Info Options (RIO) in Router Advertisement messages sent

over the infrastructure link.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPreference The route preference to use.

After a call to this function, BR will use the given preference for all its advertised RIOs. The preference can be cleared by

calling otBorderRoutingClearRoute InfoOptionPreference() .

Definition at line 206 of file include/openthread/border_routing.h

otBorderRoutingClearRouteInfoOptionPreference

void otBorderRoutingClearRouteInfoOptionPreference (otInstance *aInstance)

Border Routing Manager

456/962

Clears a previously set preference value for advertised Route Info Options.

Parameters

[in] aInstance A pointer to an OpenThread instance.

After a call to this function, BR will use device's role to determine the RIO preference: Medium preference when in

router/leader role and low preference when in child role.

Definition at line 217 of file include/openthread/border_routing.h

otBorderRoutingGetRoutePreference

otRoutePreference otBorderRoutingGetRoutePreference (otInstance *aInstance)

Gets the current preference used for published routes in Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The preference is determined as follows:

If explicitly set by user by calling otBorderRoutingSetRoutePreference() , the given preference is used.

Otherwise, it is determined automatically by RoutingManager based on the device's role and link quality.

Returns

The current published route preference.

Definition at line 232 of file include/openthread/border_routing.h

otBorderRoutingSetRoutePreference

void otBorderRoutingSetRoutePreference (otInstance *aInstance, otRoutePreference aPreference)

Explicitly sets the preference of published routes in Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPreference The route preference to use.

After a call to this function, BR will use the given preference. The preference can be cleared by calling

otBorderRoutingClearRoutePreference() .

Definition at line 244 of file include/openthread/border_routing.h

otBorderRoutingClearRoutePreference

void otBorderRoutingClearRoutePreference (otInstance *aInstance)

Clears a previously set preference value for published routes in Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Border Routing Manager

457/962

After a call to this function, BR will determine the preference automatically based on the device's role and link quality (to

the parent when acting as end-device).

Definition at line 255 of file include/openthread/border_routing.h

otBorderRoutingGetOmrPrefix

otError otBorderRoutingGetOmrPrefix (otInstance *aInstance, otIp6Prefix *aPrefix)

Gets the local Off-Mesh-Routable (OMR) Prefix, for example fdfc:1ff5:1512:5622::/64 .

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to where the prefix will be output to.

An OMR Prefix is a randomly generated 64-bit prefix that's published in the Thread network if there isn't already an OMR

prefix. This prefix can be reached from the local Wi-Fi or Ethernet network.

Note: When DHCPv6 PD is enabled, the border router may publish the prefix from DHCPv6 PD.

See Also

otBorderRoutingGetPdOmrPrefix

Definition at line 276 of file include/openthread/border_routing.h

otBorderRoutingGetPdOmrPrefix

otError otBorderRoutingGetPdOmrPrefix (otInstance *aInstance, otBorderRoutingPrefixTableEntry *aPrefixInfo)

Gets the DHCPv6 Prefix Delegation (PD) provided off-mesh-routable (OMR) prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefixInfo A pointer to where the prefix info will be output to.

Only mPrefix, mValidLifetime and mPreferredLifetime fields are used in the returned prefix info.

OPENTHREAD_CONFIG_BORDER_ROUTING_DHCP6_PD_ENABLE must be enabled.

See Also

otBorderRoutingGetOmrPrefix

otPlatBorderRoutingProcessIcmp6Ra

Definition at line 296 of file include/openthread/border_routing.h

otBorderRoutingGetFavoredOmrPrefix

otError otBorderRoutingGetFavoredOmrPrefix (otInstance *aInstance, otIp6Prefix *aPrefix, otRoutePreference
*aPreference)

Gets the currently favored Off-Mesh-Routable (OMR) Prefix.

Parameters

Border Routing Manager

458/962

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to output the favored OMR prefix.

[out] aPreference A pointer to output the preference associated the favored prefix.

The favored OMR prefix can be discovered from Network Data or can be this device's local OMR prefix.

Definition at line 311 of file include/openthread/border_routing.h

otBorderRoutingGetOnLinkPrefix

otError otBorderRoutingGetOnLinkPrefix (otInstance *aInstance, otIp6Prefix *aPrefix)

Gets the local On-Link Prefix for the adjacent infrastructure link.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to where the prefix will be output to.

The local On-Link Prefix is a 64-bit prefix that's advertised on the infrastructure link if there isn't already a usable on-link

prefix being advertised on the link.

Definition at line 326 of file include/openthread/border_routing.h

otBorderRoutingGetFavoredOnLinkPrefix

otError otBorderRoutingGetFavoredOnLinkPrefix (otInstance *aInstance, otIp6Prefix *aPrefix)

Gets the currently favored On-Link Prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to where the prefix will be output to.

The favored prefix is either a discovered on-link prefix on the infrastructure link or the local on-link prefix.

Definition at line 340 of file include/openthread/border_routing.h

otBorderRoutingGetNat64Prefix

otError otBorderRoutingGetNat64Prefix (otInstance *aInstance, otIp6Prefix *aPrefix)

Gets the local NAT64 Prefix of the Border Router.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to where the prefix will be output to.

NAT64 Prefix might not be advertised in the Thread network.

OPENTHREAD_CONFIG_NAT64_BORDER_ROUTING_ENABLE must be enabled.

Definition at line 356 of file include/openthread/border_routing.h

Border Routing Manager

459/962

otBorderRoutingGetFavoredNat64Prefix

otError otBorderRoutingGetFavoredNat64Prefix (otInstance *aInstance, otIp6Prefix *aPrefix, otRoutePreference
*aPreference)

Gets the currently favored NAT64 prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aPrefix A pointer to output the favored NAT64 prefix.

[out] aPreference A pointer to output the preference associated the favored prefix.

The favored NAT64 prefix can be discovered from infrastructure link or can be this device's local NAT64 prefix.

Definition at line 371 of file include/openthread/border_routing.h

otBorderRoutingPrefixTableInitIterator

void otBorderRoutingPrefixTableInitIterator (otInstance *aInstance, otBorderRoutingPrefixTableIterator *aIterator)

Initializes an otBorderRoutingPrefixTable Iterator .

Parameters

[in] aInstance The OpenThread instance.

[out] aIterator A pointer to the iterator to initialize.

An iterator MUST be initialized before it is used.

An iterator can be initialized again to restart from the beginning of the table.

When iterating over entries in the table, to ensure the update times mMsecSinceLastUpdate of entries are consistent, they

are given relative to the time the iterator was initialized.

Definition at line 389 of file include/openthread/border_routing.h

otBorderRoutingGetNextPrefixTableEntry

otError otBorderRoutingGetNextPrefixTableEntry (otInstance *aInstance, otBorderRoutingPrefixTableIterator *aIterator,
otBorderRoutingPrefixTableEntry *aEntry)

Iterates over the entries in the Border Router's discovered prefix table.

Parameters

[in] aInstance The OpenThread instance.

[inout] aIterator A pointer to the iterator.

[out] aEntry A pointer to the entry to populate.

Definition at line 402 of file include/openthread/border_routing.h

otBorderRoutingDhcp6PdSetEnabled

void otBorderRoutingDhcp6PdSetEnabled (otInstance *aInstance, bool aEnabled)

Border Routing Manager

460/962

Enables / Disables DHCPv6 Prefix Delegation.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled Whether to accept platform generated RA messages.

OPENTHREAD_CONFIG_BORDER_ROUTING_DHCP6_PD_ENABLE must be enabled.

Definition at line 415 of file include/openthread/border_routing.h

otBorderRoutingPrefixTableIterator

461/962

otBorderRoutingPrefixTableIterator

Represents an iterator to iterate through the Border Router's discovered prefix table.

The fields in this type are opaque (intended for use by OpenThread core only) and therefore should not be accessed or

used by caller.

Before using an iterator, it MUST be initialized using otBorderRoutingPrefixTable InitIterator() .

Public Attributes

const void * mPtr1

const void * mPtr2

uint32_t mData32

Public Attribute Documentation

mPtr1

const void* otBorderRoutingPrefixTableIterator::mPtr1

Definition at line 86 of file include/openthread/border_routing.h

mPtr2

const void* otBorderRoutingPrefixTableIterator::mPtr2

Definition at line 87 of file include/openthread/border_routing.h

mData32

uint32_t otBorderRoutingPrefixTableIterator::mData32

Definition at line 88 of file include/openthread/border_routing.h

otBorderRoutingPrefixTableEntry

462/962

otBorderRoutingPrefixTableEntry

Represents an entry from the discovered prefix table.

The entries in the discovered table track the Prefix/Route Info Options in the received Router Advertisement messages

from other routers on infrastructure link.

Public Attributes

otIp6Address mRouterAddress
IPv6 address of the router.

otIp6Prefix mPrefix
The discovered IPv6 prefix.

bool mIsOnLink
Indicates whether the prefix is on-link or route prefix.

uint32_t mMsecSinceLastUpdate
Milliseconds since last update of this prefix.

uint32_t mValidLifetime
Valid lifetime of the prefix (in seconds).

otRoutePreferenc
e

mRoutePreference
Route preference when mIsOnlink is false .

uint32_t mPreferredLifetime
Preferred lifetime of the on-link prefix when mIsOnLink is true .

Public Attribute Documentation

mRouterAddress

otIp6Address otBorderRoutingPrefixTableEntry::mRouterAddress

IPv6 address of the router.

Definition at line 100 of file include/openthread/border_routing.h

mPrefix

otIp6Prefix otBorderRoutingPrefixTableEntry::mPrefix

The discovered IPv6 prefix.

Definition at line 101 of file include/openthread/border_routing.h

mIsOnLink

bool otBorderRoutingPrefixTableEntry::mIsOnLink

otBorderRoutingPrefixTableEntry

463/962

Indicates whether the prefix is on-link or route prefix.

Definition at line 102 of file include/openthread/border_routing.h

mMsecSinceLastUpdate

uint32_t otBorderRoutingPrefixTableEntry::mMsecSinceLastUpdate

Milliseconds since last update of this prefix.

Definition at line 103 of file include/openthread/border_routing.h

mValidLifetime

uint32_t otBorderRoutingPrefixTableEntry::mValidLifetime

Valid lifetime of the prefix (in seconds).

Definition at line 104 of file include/openthread/border_routing.h

mRoutePreference

otRoutePreference otBorderRoutingPrefixTableEntry::mRoutePreference

Route preference when mIsOnlink is false.

Definition at line 105 of file include/openthread/border_routing.h

mPreferredLifetime

uint32_t otBorderRoutingPrefixTableEntry::mPreferredLifetime

Preferred lifetime of the on-link prefix when mIsOnLink is true.

Definition at line 106 of file include/openthread/border_routing.h

Commissioner

464/962

Commissioner

Commissioner
This module includes functions for the Thread Commissioner role.

Modules

otSteeringData

otCommissioningDataset

otJoinerPskd

otJoinerInfo

Enumerations

enum otCommissionerState {

OT_COMMISSIONER_STATE_DISABLED = 0
OT_COMMISSIONER_STATE_PETITION = 1
OT_COMMISSIONER_STATE_ACTIVE = 2

}
Defines the Commissioner State .

enum otCommissionerJoinerEvent {

OT_COMMISSIONER_JOINER_START = 0
OT_COMMISSIONER_JOINER_CONNECTED = 1
OT_COMMISSIONER_JOINER_FINALIZE = 2
OT_COMMISSIONER_JOINER_END = 3
OT_COMMISSIONER_JOINER_REMOVED = 4

}
Defines a Jo iner Event on the Commissioner.

enum otJoinerInfoType {

OT_JOINER_INFO_TYPE_ANY = 0
OT_JOINER_INFO_TYPE_EUI64 = 1
OT_JOINER_INFO_TYPE_DISCERNER = 2

}
Defines a Jo iner Info Type .

Typedefs

typedef enum
otCommissionerSt

ate

otCommissionerState
Defines the Commissioner State .

typedef enum
otCommissionerJo

inerEvent

otCommissionerJoinerEvent
Defines a Jo iner Event on the Commissioner.

typedef struct
otSteeringData

otSteeringData
Represents the steering data.

Commissioner

465/962

typedef struct
otCommissioning

Dataset

otCommissioningDataset
Represents a Commissioning Dataset.

typedef struct
otJoinerPskd

otJoinerPskd
Represents a Jo iner PSKd.

typedef enum
otJoinerInfoType

otJoinerInfoType
Defines a Jo iner Info Type .

typedef struct
otJoinerInfo

otJoinerInfo
Represents a Jo iner Info.

typedef void(* otCommissionerStateCallback)(otCommissionerState aState, void *aContext)
Po inter is called whenever the commissioner state changes.

typedef void(* otCommissionerJoinerCallback)(otCommissionerJoinerEvent aEvent, const otJoinerInfo *aJoinerInfo, const
otExtAddress *aJoinerId, void *aContext)
Po inter is called whenever the jo iner state changes.

typedef void(* otCommissionerEnergyReportCallback)(uint32_t aChannelMask, const uint8_t *aEnergyList, uint8_t
aEnergyListLength, void *aContext)
Po inter is called when the Commissioner receives an Energy Report.

typedef void(* otCommissionerPanIdConflictCallback)(uint16_t aPanId, uint32_t aChannelMask, void *aContext)
Po inter is called when the Commissioner receives a PAN ID Conflict message .

Functions

otError otCommissionerStart(otInstance *aInstance, otCommissionerStateCallback aStateCallback,
otCommissionerJoinerCallback aJoinerCallback, void *aCallbackContext)
Enables the Thread Commissioner ro le .

otError otCommissionerStop(otInstance *aInstance)
Disables the Thread Commissioner ro le .

const char * otCommissionerGetId(otInstance *aInstance)
Returns the Commissioner Id.

otError otCommissionerSetId(otInstance *aInstance, const char *aId)
Sets the Commissioner Id.

otError otCommissionerAddJoiner(otInstance *aInstance, const otExtAddress *aEui64, const char *aPskd, uint32_t
aTimeout)
Adds a Jo iner entry.

otError otCommissionerAddJoinerWithDiscerner(otInstance *aInstance, const otJoinerDiscerner *aDiscerner, const
char *aPskd, uint32_t aTimeout)
Adds a Jo iner entry with a given Jo iner Discerner value .

otError otCommissionerGetNextJoinerInfo(otInstance *aInstance, uint16_t *aIterator, otJoinerInfo *aJoiner)
Get jo iner info at aIterator position.

otError otCommissionerRemoveJoiner(otInstance *aInstance, const otExtAddress *aEui64�
Removes a Jo iner entry.

otError otCommissionerRemoveJoinerWithDiscerner(otInstance *aInstance, const otJoinerDiscerner *aDiscerner)
Removes a Jo iner entry.

const char * otCommissionerGetProvisioningUrl(otInstance *aInstance)
Gets the Provisioning URL.

Commissioner

466/962

otError otCommissionerSetProvisioningUrl(otInstance *aInstance, const char *aProvisioningUrl)
Sets the Provisioning URL.

otError otCommissionerAnnounceBegin(otInstance *aInstance, uint32_t aChannelMask, uint8_t aCount, uint16_t
aPeriod, const otIp6Address *aAddress)
Sends an Announce Begin message .

otError otCommissionerEnergyScan(otInstance *aInstance, uint32_t aChannelMask, uint8_t aCount, uint16_t aPeriod,
uint16_t aScanDuration, const otIp6Address *aAddress, otCommissionerEnergyReportCallback aCallback, void
*aContext)
Sends an Energy Scan Query message .

otError otCommissionerPanIdQuery(otInstance *aInstance, uint16_t aPanId, uint32_t aChannelMask, const
otIp6Address *aAddress, otCommissionerPanIdConflictCallback aCallback, void *aContext)
Sends a PAN ID Query message .

otError otCommissionerSendMgmtGet(otInstance *aInstance, const uint8_t *aTlvs, uint8_t aLength)
Sends MGMT_COMMISSIONER_GET.

otError otCommissionerSendMgmtSet(otInstance *aInstance, const otCommissioningDataset *aDataset, const
uint8_t *aTlvs, uint8_t aLength)
Sends MGMT_COMMISSIONER_SET.

uint16_t otCommissionerGetSessionId(otInstance *aInstance)
Returns the Commissioner Session ID.

otCommissionerSt
ate

otCommissionerGetState(otInstance *aInstance)
Returns the Commissioner State .

Macros

#define OT_COMMISSIONING_PASSPHRASE_MIN_SIZE 6
Minimum size of the Commissioning Passphrase .

#define OT_COMMISSIONING_PASSPHRASE_MAX_SIZE 255
Maximum size of the Commissioning Passphrase .

#define OT_PROVISIONING_URL_MAX_SIZE 64
Max size (number of chars) in Provisioning URL string (excludes null char).

#define OT_STEERING_DATA_MAX_LENGTH 16
Max steering data length (bytes)

#define OT_JOINER_MAX_PSKD_LENGTH 32
Maximum string length of a Jo iner PSKd (does not include null char).

Enumeration Documentation

otCommissionerState

otCommissionerState

Defines the Commissioner State.

Enumerator

OT_COMMISSIONER_STATE_DISABLED Commissioner role is disabled.

OT_COMMISSIONER_STATE_PETITION Currently petitioning to become a Commissioner.

OT_COMMISSIONER_STATE_ACTIVE Commissioner role is active.

Definition at line 62 of file include/openthread/commissioner.h

Commissioner

467/962

otCommissionerJoinerEvent

otCommissionerJoinerEvent

Defines a Joiner Event on the Commissioner.

Enumerator

OT_COMMISSIONER_JOINER_START

OT_COMMISSIONER_JOINER_CONNECTED

OT_COMMISSIONER_JOINER_FINALIZE

OT_COMMISSIONER_JOINER_END

OT_COMMISSIONER_JOINER_REMOVED

Definition at line 73 of file include/openthread/commissioner.h

otJoinerInfoType

otJoinerInfoType

Defines a Joiner Info Type.

Enumerator

OT_JOINER_INFO_TYPE_ANY Accept any Joiner (no EUI64 or Discerner is specified).

OT_JOINER_INFO_TYPE_EUI64 Joiner EUI-64 is specified (mSharedId.mEui64 in otJo inerInfo).

OT_JOINER_INFO_TYPE_DISCERNER Joiner Discerner is specified (mSharedId.mDiscerner in otJo inerInfo).

Definition at line 132 of file include/openthread/commissioner.h

Typedef Documentation

otCommissionerState

typedef enum otCommissionerState otCommissionerState

Defines the Commissioner State.

Definition at line 67 of file include/openthread/commissioner.h

otCommissionerJoinerEvent

typedef enum otCommissionerJoinerEvent otCommissionerJoinerEvent

Defines a Joiner Event on the Commissioner.

Definition at line 80 of file include/openthread/commissioner.h

otSteeringData

typedef struct otSteeringData otSteeringData

Commissioner

468/962

Represents the steering data.

Definition at line 97 of file include/openthread/commissioner.h

otCommissioningDataset

typedef struct otCommissioningDataset otCommissioningDataset

Represents a Commissioning Dataset.

Definition at line 115 of file include/openthread/commissioner.h

otJoinerPskd

typedef struct otJoinerPskd otJoinerPskd

Represents a Joiner PSKd.

Definition at line 126 of file include/openthread/commissioner.h

otJoinerInfoType

typedef enum otJoinerInfoType otJoinerInfoType

Defines a Joiner Info Type.

Definition at line 137 of file include/openthread/commissioner.h

otJoinerInfo

typedef struct otJoinerInfo otJoinerInfo

Represents a Joiner Info.

Definition at line 153 of file include/openthread/commissioner.h

otCommissionerStateCallback

typedef void(* otCommissionerStateCallback) (otCommissionerState aState, void *aContext))(otCommissionerState
aState, void *aContext)

Pointer is called whenever the commissioner state changes.

Parameters

[in] aState The Commissioner state.

[in] aContext A pointer to application-specific context.

Definition at line 162 of file include/openthread/commissioner.h

Commissioner

469/962

otCommissionerJoinerCallback

typedef void(* otCommissionerJoinerCallback) (otCommissionerJoinerEvent aEvent, const otJoinerInfo *aJoinerInfo, const
otExtAddress *aJoinerId, void *aContext))(otCommissionerJoinerEvent aEvent, const otJoinerInfo *aJoinerInfo, const
otExtAddress *aJoinerId, void *aContext)

Pointer is called whenever the joiner state changes.

Parameters

[in] aEvent The joiner event type.

[in] aJoinerInfo A pointer to the Joiner Info.

[in] aJoinerId A pointer to the Joiner ID (if not known, it will be NULL).

[in] aContext A pointer to application-specific context.

Definition at line 173 of file include/openthread/commissioner.h

otCommissionerEnergyReportCallback

typedef void(* otCommissionerEnergyReportCallback) (uint32_t aChannelMask, const uint8_t *aEnergyList, uint8_t
aEnergyListLength, void *aContext))(uint32_t aChannelMask, const uint8_t *aEnergyList, uint8_t aEnergyListLength, void
*aContext)

Pointer is called when the Commissioner receives an Energy Report.

Parameters

[in] aChannelMask The channel mask value.

[in] aEnergyList A pointer to the energy measurement list.

[in] aEnergyListLength Number of entries in aEnergyListLength .

[in] aContext A pointer to application-specific context.

Definition at line 370 of file include/openthread/commissioner.h

otCommissionerPanIdConflictCallback

typedef void(* otCommissionerPanIdConflictCallback) (uint16_t aPanId, uint32_t aChannelMask, void *aContext))(uint16_t
aPanId, uint32_t aChannelMask, void *aContext)

Pointer is called when the Commissioner receives a PAN ID Conflict message.

Parameters

[in] aPanId The PAN ID value.

[in] aChannelMask The channel mask value.

[in] aContext A pointer to application-specific context.

Definition at line 411 of file include/openthread/commissioner.h

Function Documentation

otCommissionerStart

Commissioner

470/962

otError otCommissionerStart (otInstance *aInstance, otCommissionerStateCallback aStateCallback,
otCommissionerJoinerCallback aJoinerCallback, void *aCallbackContext)

Enables the Thread Commissioner role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aStateCallback A pointer to a function that is called when the commissioner state changes.

[in] aJoinerCallback A pointer to a function that is called with a joiner event occurs.

[in] aCallbackContext A pointer to application-specific context.

Definition at line 191 of file include/openthread/commissioner.h

otCommissionerStop

otError otCommissionerStop (otInstance *aInstance)

Disables the Thread Commissioner role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 205 of file include/openthread/commissioner.h

otCommissionerGetId

const char * otCommissionerGetId (otInstance *aInstance)

Returns the Commissioner Id.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Commissioner Id.

Definition at line 215 of file include/openthread/commissioner.h

otCommissionerSetId

otError otCommissionerSetId (otInstance *aInstance, const char *aId)

Sets the Commissioner Id.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aId A pointer to a string character array. Must be null terminated.

Definition at line 228 of file include/openthread/commissioner.h

Commissioner

471/962

otCommissionerAddJoiner

otError otCommissionerAddJoiner (otInstance *aInstance, const otExtAddress *aEui64, const char *aPskd, uint32_t
aTimeout)

Adds a Joiner entry.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEui64 A pointer to the Joiner's IEEE EUI-64 or NULL for any Joiner.

[in] aPskd A pointer to the PSKd.

[in] aTimeout A time after which a Joiner is automatically removed, in seconds.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 246 of file include/openthread/commissioner.h

otCommissionerAddJoinerWithDiscerner

otError otCommissionerAddJoinerWithDiscerner (otInstance *aInstance, const otJoinerDiscerner *aDiscerner, const char
*aPskd, uint32_t aTimeout)

Adds a Joiner entry with a given Joiner Discerner value.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDiscerner A pointer to the Joiner Discerner.

[in] aPskd A pointer to the PSKd.

[in] aTimeout A time after which a Joiner is automatically removed, in seconds.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 267 of file include/openthread/commissioner.h

otCommissionerGetNextJoinerInfo

otError otCommissionerGetNextJoinerInfo (otInstance *aInstance, uint16_t *aIterator, otJoinerInfo *aJoiner)

Get joiner info at aIterator position.

Parameters

[in] aInstance A pointer to instance.

[inout] aIterator A pointer to the Joiner Info iterator context.

[out] aJoiner A reference to Joiner info.

Definition at line 283 of file include/openthread/commissioner.h

Commissioner

472/962

otCommissionerRemoveJoiner

otError otCommissionerRemoveJoiner (otInstance *aInstance, const otExtAddress *aEui64�

Removes a Joiner entry.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEui64 A pointer to the Joiner's IEEE EUI-64 or NULL for any Joiner.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 299 of file include/openthread/commissioner.h

otCommissionerRemoveJoinerWithDiscerner

otError otCommissionerRemoveJoinerWithDiscerner (otInstance *aInstance, const otJoinerDiscerner *aDiscerner)

Removes a Joiner entry.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDiscerner A pointer to the Joiner Discerner.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 315 of file include/openthread/commissioner.h

otCommissionerGetProvisioningUrl

const char * otCommissionerGetProvisioningUrl (otInstance *aInstance)

Gets the Provisioning URL.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the URL string.

Definition at line 325 of file include/openthread/commissioner.h

otCommissionerSetProvisioningUrl

otError otCommissionerSetProvisioningUrl (otInstance *aInstance, const char *aProvisioningUrl)

Sets the Provisioning URL.

Commissioner

473/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aProvisioningUrl A pointer to the Provisioning URL (may be NULL to set as empty string).

Definition at line 337 of file include/openthread/commissioner.h

otCommissionerAnnounceBegin

otError otCommissionerAnnounceBegin (otInstance *aInstance, uint32_t aChannelMask, uint8_t aCount, uint16_t aPeriod,
const otIp6Address *aAddress)

Sends an Announce Begin message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannelMask The channel mask value.

[in] aCount The number of Announcement messages per channel.

[in] aPeriod The time between two successive MLE Announce transmissions (in milliseconds).

[in] aAddress A pointer to the IPv6 destination.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 355 of file include/openthread/commissioner.h

otCommissionerEnergyScan

otError otCommissionerEnergyScan (otInstance *aInstance, uint32_t aChannelMask, uint8_t aCount, uint16_t aPeriod,
uint16_t aScanDuration, const otIp6Address *aAddress, otCommissionerEnergyReportCallback aCallback, void *aContext)

Sends an Energy Scan Query message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannelMask The channel mask value.

[in] aCount The number of energy measurements per channel.

[in] aPeriod The time between energy measurements (milliseconds).

[in] aScanDuration The scan duration for each energy measurement (milliseconds).

[in] aAddress A pointer to the IPv6 destination.

[in] aCallback A pointer to a function called on receiving an Energy Report message.

[in] aContext A pointer to application-specific context.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 394 of file include/openthread/commissioner.h

otCommissionerPanIdQuery

Commissioner

474/962

otError otCommissionerPanIdQuery (otInstance *aInstance, uint16_t aPanId, uint32_t aChannelMask, const otIp6Address
*aAddress, otCommissionerPanIdConflictCallback aCallback, void *aContext)

Sends a PAN ID Query message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPanId The PAN ID to query.

[in] aChannelMask The channel mask value.

[in] aAddress A pointer to the IPv6 destination.

[in] aCallback A pointer to a function called on receiving a PAN ID Conflict message.

[in] aContext A pointer to application-specific context.

Note

Only use this after successfully starting the Commissioner role with otCommissionerStart().

Definition at line 430 of file include/openthread/commissioner.h

otCommissionerSendMgmtGet

otError otCommissionerSendMgmtGet (otInstance *aInstance, const uint8_t *aTlvs, uint8_t aLength)

Sends MGMT_COMMISSIONER_GET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTlvs A pointer to TLVs.

[in] aLength The length of TLVs.

Definition at line 449 of file include/openthread/commissioner.h

otCommissionerSendMgmtSet

otError otCommissionerSendMgmtSet (otInstance *aInstance, const otCommissioningDataset *aDataset, const uint8_t
*aTlvs, uint8_t aLength)

Sends MGMT_COMMISSIONER_SET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to commissioning dataset.

[in] aTlvs A pointer to TLVs.

[in] aLength The length of TLVs.

Definition at line 464 of file include/openthread/commissioner.h

otCommissionerGetSessionId

Commissioner

475/962

uint16_t otCommissionerGetSessionId (otInstance *aInstance)

Returns the Commissioner Session ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The current commissioner session id.

Definition at line 477 of file include/openthread/commissioner.h

otCommissionerGetState

otCommissionerState otCommissionerGetState (otInstance *aInstance)

Returns the Commissioner State.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 489 of file include/openthread/commissioner.h

Macro Definition Documentation

OT_COMMISSIONING_PASSPHRASE_MIN_SIZE

#define OT_COMMISSIONING_PASSPHRASE_MIN_SIZE

Value:

6

Minimum size of the Commissioning Passphrase.

Definition at line 82 of file include/openthread/commissioner.h

OT_COMMISSIONING_PASSPHRASE_MAX_SIZE

#define OT_COMMISSIONING_PASSPHRASE_MAX_SIZE

Value:

255

Maximum size of the Commissioning Passphrase.

Definition at line 83 of file include/openthread/commissioner.h

OT_PROVISIONING_URL_MAX_SIZE

Commissioner

476/962

#define OT_PROVISIONING_URL_MAX_SIZE

Value:

64

Max size (number of chars) in Provisioning URL string (excludes null char).

Definition at line 85 of file include/openthread/commissioner.h

OT_STEERING_DATA_MAX_LENGTH

#define OT_STEERING_DATA_MAX_LENGTH

Value:

16

Max steering data length (bytes)

Definition at line 87 of file include/openthread/commissioner.h

OT_JOINER_MAX_PSKD_LENGTH

#define OT_JOINER_MAX_PSKD_LENGTH

Value:

32

Maximum string length of a Joiner PSKd (does not include null char).

Definition at line 117 of file include/openthread/commissioner.h

otSteeringData

477/962

otSteeringData

Represents the steering data.

Public Attributes

uint8_t mLength
Length of steering data (bytes)

uint8_t m8
Byte values.

Public Attribute Documentation

mLength

uint8_t otSteeringData::mLength

Length of steering data (bytes)

Definition at line 95 of file include/openthread/commissioner.h

m8

uint8_t otSteeringData::m8�OT_STEERING_DATA_MAX_LENGTH�

Byte values.

Definition at line 96 of file include/openthread/commissioner.h

otCommissioningDataset

478/962

otCommissioningDataset

Represents a Commissioning Dataset.

Public Attributes

uint16_t mLocator
Border Router RLOC16.

uint16_t mSessionId
Commissioner Session Id.

otSteeringData mSteeringData
Steering Data.

uint16_t mJoinerUdpPort
Jo iner UDP Port.

bool mIsLocatorSet
TRUE if Border Router RLOC16 is set, FALSE otherwise .

bool mIsSessionIdSet
TRUE if Commissioner Session Id is set, FALSE otherwise .

bool mIsSteeringDataSet
TRUE if Steering Data is set, FALSE otherwise .

bool mIsJoinerUdpPortSet
TRUE if Jo iner UDP Port is set, FALSE otherwise .

bool mHasExtraTlv
TRUE if the Dataset contains any extra unknown sub-TLV, FALSE otherwise .

Public Attribute Documentation

mLocator

uint16_t otCommissioningDataset::mLocator

Border Router RLOC16.

Definition at line 105 of file include/openthread/commissioner.h

mSessionId

uint16_t otCommissioningDataset::mSessionId

Commissioner Session Id.

Definition at line 106 of file include/openthread/commissioner.h

mSteeringData

otCommissioningDataset

479/962

otSteeringData otCommissioningDataset::mSteeringData

Steering Data.

Definition at line 107 of file include/openthread/commissioner.h

mJoinerUdpPort

uint16_t otCommissioningDataset::mJoinerUdpPort

Joiner UDP Port.

Definition at line 108 of file include/openthread/commissioner.h

mIsLocatorSet

bool otCommissioningDataset::mIsLocatorSet

TRUE if Border Router RLOC16 is set, FALSE otherwise.

Definition at line 110 of file include/openthread/commissioner.h

mIsSessionIdSet

bool otCommissioningDataset::mIsSessionIdSet

TRUE if Commissioner Session Id is set, FALSE otherwise.

Definition at line 111 of file include/openthread/commissioner.h

mIsSteeringDataSet

bool otCommissioningDataset::mIsSteeringDataSet

TRUE if Steering Data is set, FALSE otherwise.

Definition at line 112 of file include/openthread/commissioner.h

mIsJoinerUdpPortSet

bool otCommissioningDataset::mIsJoinerUdpPortSet

TRUE if Joiner UDP Port is set, FALSE otherwise.

Definition at line 113 of file include/openthread/commissioner.h

mHasExtraTlv

otCommissioningDataset

480/962

bool otCommissioningDataset::mHasExtraTlv

TRUE if the Dataset contains any extra unknown sub-TLV, FALSE otherwise.

Definition at line 114 of file include/openthread/commissioner.h

otJoinerPskd

481/962

otJoinerPskd

Represents a Joiner PSKd.

Public Attributes

char m8
Char string array (must be null terminated - +1 is for null char).

Public Attribute Documentation

m8

char otJoinerPskd::m8�OT_JOINER_MAX_PSKD_LENGTH�1�

Char string array (must be null terminated - +1 is for null char).

Definition at line 125 of file include/openthread/commissioner.h

otJoinerInfo

482/962

otJoinerInfo

Represents a Joiner Info.

Public Attributes

otJoinerInfoType mType
Jo iner type .

otExtAddress mEui64
Jo iner EUI64 (when mType is OT_JOINER_INFO_TYPE_EUI64)

otJoinerDiscerner mDiscerner
Jo iner Discerner (when mType is OT_JOINER_INFO_TYPE_DISCERNER)

union
otJoinerInfo::@0

mSharedId
Shared fields.

otJoinerPskd mPskd
Jo iner PSKd.

uint32_t mExpirationTime
Jo iner expiration time in msec.

Public Attribute Documentation

mType

otJoinerInfoType otJoinerInfo::mType

Joiner type.

Definition at line 145 of file include/openthread/commissioner.h

mEui64

otExtAddress otJoinerInfo::mEui64

Joiner EUI64 (when mType is OT_JOINER_INFO_TYPE_EUI64)

Definition at line 148 of file include/openthread/commissioner.h

mDiscerner

otJoinerDiscerner otJoinerInfo::mDiscerner

Joiner Discerner (when mType is OT_JOINER_INFO_TYPE_DISCERNER)

Definition at line 149 of file include/openthread/commissioner.h

otJoinerInfo

483/962

union otJoinerInfo::@0 otJoinerInfo::mSharedId

Shared fields.

Definition at line 150 of file include/openthread/commissioner.h

mPskd

otJoinerPskd otJoinerInfo::mPskd

Joiner PSKd.

Definition at line 151 of file include/openthread/commissioner.h

mExpirationTime

uint32_t otJoinerInfo::mExpirationTime

Joiner expiration time in msec.

Definition at line 152 of file include/openthread/commissioner.h

General

484/962

General

General
This module includes functions for all Thread roles.

The Network Data Publisher provides mechanisms to limit the number of similar Service and/or Prefix (on-mesh prefix or

external route) entries in the Thread Network Data by monitoring the Network Data and managing if or when to add or

remove entries.

All the functions in this module require OPENTHREAD_CONFIG_NETDATA_PUBLISHER_ENABLE to be enabled.

Note

The functions in this module require OPENTHREAD_FTD=1 or OPENTHREAD_MTD=1 .

Modules

otBorderRouterConfig

otLowpanContextInfo

otExternalRouteConfig

otServerConfig

otServiceConfig

otNetworkDiagConnectivity

otNetworkDiagRouteData

otNetworkDiagRoute

otNetworkDiagMacCounters

otNetworkDiagMleCounters

otNetworkDiagChildEntry

otNetworkDiagTlv

otLinkModeConfig

otNeighborInfo

otLeaderData

otRouterInfo

otIpCounters

otMleCounters

otThreadParentResponseInfo

otThreadDiscoveryRequestInfo

Enumerations

General

485/962

enum otRoutePreference {

OT_ROUTE_PREFERENCE_LOW = �1
OT_ROUTE_PREFERENCE_MED = 0
OT_ROUTE_PREFERENCE_HIGH = 1

}
Defines valid values for mPreference in otExternalRouteConfig and otBorderRouterConfig .

enum otNetDataPublisherEvent {

OT_NETDATA_PUBLISHER_EVENT_ENTRY_ADDED = 0
OT_NETDATA_PUBLISHER_EVENT_ENTRY_REMOVED = 1

}
Represents the events reported from the Publisher callbacks.

enum �5 {

OT_NETWORK_DIAGNOSTIC_TLV_EXT_ADDRESS = 0
OT_NETWORK_DIAGNOSTIC_TLV_SHORT_ADDRESS = 1
OT_NETWORK_DIAGNOSTIC_TLV_MODE = 2
OT_NETWORK_DIAGNOSTIC_TLV_TIMEOUT = 3
OT_NETWORK_DIAGNOSTIC_TLV_CONNECTIVITY = 4
OT_NETWORK_DIAGNOSTIC_TLV_ROUTE = 5
OT_NETWORK_DIAGNOSTIC_TLV_LEADER_DATA = 6
OT_NETWORK_DIAGNOSTIC_TLV_NETWORK_DATA = 7
OT_NETWORK_DIAGNOSTIC_TLV_IP6_ADDR_LIST = 8
OT_NETWORK_DIAGNOSTIC_TLV_MAC_COUNTERS = 9
OT_NETWORK_DIAGNOSTIC_TLV_BATTERY_LEVEL = 14
OT_NETWORK_DIAGNOSTIC_TLV_SUPPLY_VOLTAGE = 15
OT_NETWORK_DIAGNOSTIC_TLV_CHILD_TABLE = 16
OT_NETWORK_DIAGNOSTIC_TLV_CHANNEL_PAGES = 17
OT_NETWORK_DIAGNOSTIC_TLV_TYPE_LIST = 18
OT_NETWORK_DIAGNOSTIC_TLV_MAX_CHILD_TIMEOUT = 19
OT_NETWORK_DIAGNOSTIC_TLV_VERSION = 24
OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_NAME = 25
OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_MODEL = 26
OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_SW_VERSION = 27
OT_NETWORK_DIAGNOSTIC_TLV_THREAD_STACK_VERSION = 28
OT_NETWORK_DIAGNOSTIC_TLV_CHILD = 29
OT_NETWORK_DIAGNOSTIC_TLV_CHILD_IP6_ADDR_LIST = 30
OT_NETWORK_DIAGNOSTIC_TLV_ROUTER_NEIGHBOR = 31
OT_NETWORK_DIAGNOSTIC_TLV_ANSWER = 32
OT_NETWORK_DIAGNOSTIC_TLV_QUERY_ID = 33
OT_NETWORK_DIAGNOSTIC_TLV_MLE_COUNTERS = 34

}

enum otDeviceRole {

OT_DEVICE_ROLE_DISABLED = 0
OT_DEVICE_ROLE_DETACHED = 1
OT_DEVICE_ROLE_CHILD = 2
OT_DEVICE_ROLE_ROUTER = 3
OT_DEVICE_ROLE_LEADER = 4

}
Represents a Thread device ro le .

Typedefs

typedef uint32_t otNetworkDataIterator
Used to iterate through Network Data information.

typedef struct
otBorderRouterC

onfig

otBorderRouterConfig
Represents a Border Router configuration.

General

486/962

typedef struct
otLowpanContext

Info

otLowpanContextInfo
Represents 6LoWPAN Context ID information associated with a prefix in Network Data.

typedef struct
otExternalRouteC

onfig

otExternalRouteConfig
Represents an External Route configuration.

typedef enum
otRoutePreferenc

e

otRoutePreference
Defines valid values for mPreference in otExternalRouteConfig and otBorderRouterConfig .

typedef struct
otServerConfig

otServerConfig
Represents a Server configuration.

typedef struct
otServiceConfig

otServiceConfig
Represents a Service configuration.

typedef enum
otNetDataPublish

erEvent

otNetDataPublisherEvent
Represents the events reported from the Publisher callbacks.

typedef void(* otNetDataDnsSrpServicePublisherCallback)(otNetDataPublisherEvent aEvent, void *aContext)
Po inter type defines the callback used to notify when a "DNS/SRP Service" entry is added to or removed from the

Thread Network Data.

typedef void(* otNetDataPrefixPublisherCallback)(otNetDataPublisherEvent aEvent, const otIp6Prefix *aPrefix, void
*aContext)
Po inter type defines the callback used to notify when a prefix (on-mesh or external route) entry is added to or

removed from the Thread Network Data.

typedef uint16_t otNetworkDiagIterator
Used to iterate through Network Diagnostic TLV.

typedef struct
otNetworkDiagCo

nnectivity

otNetworkDiagConnectivity
Represents a Network Diagnostic Connectivity value .

typedef struct
otNetworkDiagRo

uteData

otNetworkDiagRouteData
Represents a Network Diagnostic Route data.

typedef struct
otNetworkDiagRo

ute

otNetworkDiagRoute
Represents a Network Diagnostic Route TLV value .

typedef struct
otNetworkDiagMa

cCounters

otNetworkDiagMacCounters
Represents a Network Diagnostic Mac Counters value .

typedef struct
otNetworkDiagMl

eCounters

otNetworkDiagMleCounters
Represents a Network Diagnostics MLE Counters value .

typedef struct
otNetworkDiagChi

ldEntry

otNetworkDiagChildEntry
Represents a Network Diagnostic Child Table Entry.

typedef struct
otNetworkDiagTlv

otNetworkDiagTlv
Represents a Network Diagnostic TLV.

typedef void(* otReceiveDiagnosticGetCallback)(otError aError, otMessage *aMessage, const otMessageInfo
*aMessageInfo, void *aContext)
Po inter is called when Network Diagnostic Get response is received.

General

487/962

typedef struct
otLinkModeConfig

otLinkModeConfig
Represents an MLE Link Mode configuration.

typedef int16_t otNeighborInfoIterator
Used to iterate through neighbor table .

typedef struct
otLeaderData

otLeaderData
Represents the Thread Leader Data.

typedef struct
otIpCounters

otIpCounters
Represents the IP level counters.

typedef struct
otMleCounters

otMleCounters
Represents the Thread MLE counters.

typedef struct
otThreadParentRe

sponseInfo

otThreadParentResponseInfo
Represents the MLE Parent Response data.

typedef void(* otDetachGracefullyCallback)(void *aContext)
This callback informs the application that the detaching process has finished.

typedef void(* otThreadParentResponseCallback)(otThreadParentResponseInfo *aInfo, void *aContext)
Po inter is called every time an MLE Parent Response message is received.

typedef struct
otThreadDiscover

yRequestInfo

otThreadDiscoveryRequestInfo
Represents the Thread Discovery Request data.

typedef void(* otThreadDiscoveryRequestCallback)(const otThreadDiscoveryRequestInfo *aInfo, void *aContext)
Po inter is called every time an MLE Discovery Request message is received.

typedef void(* otThreadAnycastLocatorCallback)(void *aContext, otError aError, const otIp6Address *aMeshLocalAddress,
uint16_t aRloc16�
Po inter type defines the callback to notify the outcome of a otThreadLocateAnycastDestination() request.

Functions

otError otNetDataGet(otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)
Provide full or stable copy of the Partition's Thread Network Data.

uint8_t otNetDataGetLength(otInstance *aInstance)
Get the current length (number of bytes) of Partition's Thread Network Data.

uint8_t otNetDataGetMaxLength(otInstance *aInstance)
Get the maximum observed length of the Thread Network Data since OT stack initialization or since the last call to

otNetDataResetMaxLength() .

void otNetDataResetMaxLength(otInstance *aInstance)
Reset the tracked maximum length of the Thread Network Data.

otError otNetDataGetNextOnMeshPrefix(otInstance *aInstance, otNetworkDataIterator *aIterator,
otBorderRouterConfig *aConfig)
Get the next On Mesh Prefix in the partition's Network Data.

otError otNetDataGetNextRoute(otInstance *aInstance, otNetworkDataIterator *aIterator, otExternalRouteConfig
*aConfig)
Get the next external route in the partition's Network Data.

otError otNetDataGetNextService(otInstance *aInstance, otNetworkDataIterator *aIterator, otServiceConfig
*aConfig)
Get the next service in the partition's Network Data.

General

488/962

otError otNetDataGetNextLowpanContextInfo(otInstance *aInstance, otNetworkDataIterator *aIterator,
otLowpanContextInfo *aContextInfo)
Get the next 6LoWPAN Context ID info in the partition's Network Data.

void otNetDataGetCommissioningDataset(otInstance *aInstance, otCommissioningDataset *aDataset)
Gets the Commissioning Dataset from the partition's Network Data.

uint8_t otNetDataGetVersion(otInstance *aInstance)
Get the Network Data Version.

uint8_t otNetDataGetStableVersion(otInstance *aInstance)
Get the Stable Network Data Version.

otError otNetDataSteeringDataCheckJoiner(otInstance *aInstance, const otExtAddress *aEui64�
Check if the steering data includes a Jo iner.

otError otNetDataSteeringDataCheckJoinerWithDiscerner(otInstance *aInstance, const struct otJoinerDiscerner
*aDiscerner)
Check if the steering data includes a Jo iner with a given discerner value .

bool otNetDataContainsOmrPrefix(otInstance *aInstance, const otIp6Prefix *aPrefix)
Check whether a given Prefix can act as a valid OMR prefix and also the Leader's Network Data contains this prefix.

void otNetDataPublishDnsSrpServiceAnycast(otInstance *aInstance, uint8_t aSequenceNUmber)
Requests "DNS/SRP Service Anycast Address" to be published in the Thread Network Data.

void otNetDataPublishDnsSrpServiceUnicast(otInstance *aInstance, const otIp6Address *aAddress, uint16_t
aPort)
Requests "DNS/SRP Service Unicast Address" to be published in the Thread Network Data.

void otNetDataPublishDnsSrpServiceUnicastMeshLocalEid(otInstance *aInstance, uint16_t aPort)
Requests "DNS/SRP Service Unicast Address" to be published in the Thread Network Data.

bool otNetDataIsDnsSrpServiceAdded(otInstance *aInstance)
Indicates whether or not currently the "DNS/SRP Service" entry is added to the Thread Network Data.

void otNetDataSetDnsSrpServicePublisherCallback(otInstance *aInstance,
otNetDataDnsSrpServicePublisherCallback aCallback, void *aContext)
Sets a callback for notifying when a published "DNS/SRP Service" is actually added to or removed from the Thread

Network Data.

void otNetDataUnpublishDnsSrpService(otInstance *aInstance)
Unpublishes any previously added DNS/SRP (Anycast or Unicast) Service entry from the Thread Network Data.

otError otNetDataPublishOnMeshPrefix(otInstance *aInstance, const otBorderRouterConfig *aConfig)
Requests an on-mesh prefix to be published in the Thread Network Data.

otError otNetDataPublishExternalRoute(otInstance *aInstance, const otExternalRouteConfig *aConfig)
Requests an external route prefix to be published in the Thread Network Data.

otError otNetDataReplacePublishedExternalRoute(otInstance *aInstance, const otIp6Prefix *aPrefix, const
otExternalRouteConfig *aConfig)
Replaces a previously published external route in the Thread Network Data.

bool otNetDataIsPrefixAdded(otInstance *aInstance, const otIp6Prefix *aPrefix)
Indicates whether or not currently a published prefix entry (on-mesh or external route) is added to the Thread Network

Data.

void otNetDataSetPrefixPublisherCallback(otInstance *aInstance, otNetDataPrefixPublisherCallback aCallback,
void *aContext)
Sets a callback for notifying when a published prefix entry is actually added to or removed from the Thread Network

Data.

General

489/962

otError otNetDataUnpublishPrefix(otInstance *aInstance, const otIp6Prefix *aPrefix)
Unpublishes a previously published On-Mesh or External Route Prefix.

otError otThreadGetNextDiagnosticTlv(const otMessage *aMessage, otNetworkDiagIterator *aIterator,
otNetworkDiagTlv *aNetworkDiagTlv)
Gets the next Network Diagnostic TLV in the message .

otError otThreadSendDiagnosticGet(otInstance *aInstance, const otIp6Address *aDestination, const uint8_t
aTlvTypes[], uint8_t aCount, otReceiveDiagnosticGetCallback aCallback, void *aCallbackContext)
Send a Network Diagnostic Get request.

otError otThreadSendDiagnosticReset(otInstance *aInstance, const otIp6Address *aDestination, const uint8_t
aTlvTypes[], uint8_t aCount)
Send a Network Diagnostic Reset request.

const char * otThreadGetVendorName(otInstance *aInstance)
Get the vendor name string.

const char * otThreadGetVendorModel(otInstance *aInstance)
Get the vendor model string.

const char * otThreadGetVendorSwVersion(otInstance *aInstance)
Get the vendor sw version string.

otError otThreadSetVendorName(otInstance *aInstance, const char *aVendorName)
Set the vendor name string.

otError otThreadSetVendorModel(otInstance *aInstance, const char *aVendorModel)
Set the vendor model string.

otError otThreadSetVendorSwVersion(otInstance *aInstance, const char *aVendorSwVersion)
Set the vendor software version string.

otError otThreadSetEnabled(otInstance *aInstance, bool aEnabled)
Starts Thread protoco l operation.

uint16_t otThreadGetVersion(void)
Gets the Thread protoco l version.

bool otThreadIsSingleton(otInstance *aInstance)
Indicates whether a node is the only router on the network.

otError otThreadDiscover(otInstance *aInstance, uint32_t aScanChannels, uint16_t aPanId, bool aJoiner, bool
aEnableEui64Filtering, otHandleActiveScanResult aCallback, void *aCallbackContext)
Starts a Thread Discovery scan.

bool otThreadIsDiscoverInProgress(otInstance *aInstance)
Determines if an MLE Thread Discovery is currently in progress.

otError otThreadSetJoinerAdvertisement(otInstance *aInstance, uint32_t aOui, const uint8_t *aAdvData, uint8_t
aAdvDataLength)
Sets the Thread Jo iner Advertisement when discovering Thread network.

uint32_t otThreadGetChildTimeout(otInstance *aInstance)
Gets the Thread Child Timeout (in seconds) used when operating in the Child ro le .

void otThreadSetChildTimeout(otInstance *aInstance, uint32_t aTimeout)
Sets the Thread Child Timeout (in seconds) used when operating in the Child ro le .

const
otExtendedPanId

*

otThreadGetExtendedPanId(otInstance *aInstance)
Gets the IEEE 802.15.4 Extended PAN ID.

General

490/962

otError otThreadSetExtendedPanId(otInstance *aInstance, const otExtendedPanId *aExtendedPanId)
Sets the IEEE 802.15.4 Extended PAN ID.

otError otThreadGetLeaderRloc(otInstance *aInstance, otIp6Address *aLeaderRloc)
Returns a po inter to the Leader's RLOC.

otLinkModeConfig otThreadGetLinkMode(otInstance *aInstance)
Get the MLE Link Mode configuration.

otError otThreadSetLinkMode(otInstance *aInstance, otLinkModeConfig aConfig)
Set the MLE Link Mode configuration.

void otThreadGetNetworkKey(otInstance *aInstance, otNetworkKey *aNetworkKey)
Get the Thread Network Key.

otNetworkKeyRef otThreadGetNetworkKeyRef(otInstance *aInstance)
Get the otNetworkKeyRef for Thread Network Key.

otError otThreadSetNetworkKey(otInstance *aInstance, const otNetworkKey *aKey)
Set the Thread Network Key.

otError otThreadSetNetworkKeyRef(otInstance *aInstance, otNetworkKeyRef aKeyRef)
Set the Thread Network Key as a otNetworkKeyRef .

const
otIp6Address *

otThreadGetRloc(otInstance *aInstance)
Gets the Thread Routing Locator (RLOC) address.

const
otIp6Address *

otThreadGetMeshLocalEid(otInstance *aInstance)
Gets the Mesh Local EID address.

const
otMeshLocalPrefi

x *

otThreadGetMeshLocalPrefix(otInstance *aInstance)
Returns a po inter to the Mesh Local Prefix.

otError otThreadSetMeshLocalPrefix(otInstance *aInstance, const otMeshLocalPrefix *aMeshLocalPrefix)
Sets the Mesh Local Prefix.

const
otIp6Address *

otThreadGetLinkLocalIp6Address(otInstance *aInstance)
Gets the Thread link-local IPv6 address.

const
otIp6Address *

otThreadGetLinkLocalAllThreadNodesMulticastAddress(otInstance *aInstance)
Gets the Thread Link-Local All Thread Nodes multicast address.

const
otIp6Address *

otThreadGetRealmLocalAllThreadNodesMulticastAddress(otInstance *aInstance)
Gets the Thread Realm-Local All Thread Nodes multicast address.

otError otThreadGetServiceAloc(otInstance *aInstance, uint8_t aServiceId, otIp6Address *aServiceAloc)
Retrieves the Service ALOC for given Service ID.

const char * otThreadGetNetworkName(otInstance *aInstance)
Get the Thread Network Name .

otError otThreadSetNetworkName(otInstance *aInstance, const char *aNetworkName)
Set the Thread Network Name .

const char * otThreadGetDomainName(otInstance *aInstance)
Gets the Thread Domain Name .

otError otThreadSetDomainName(otInstance *aInstance, const char *aDomainName)
Sets the Thread Domain Name .

otError otThreadSetFixedDuaInterfaceIdentifier(otInstance *aInstance, const otIp6InterfaceIdentifier *aIid)
Sets or clears the Interface Identifier manually specified for the Thread Domain Unicast Address.

General

491/962

const
otIp6InterfaceIde

ntifier *

otThreadGetFixedDuaInterfaceIdentifier(otInstance *aInstance)
Gets the Interface Identifier manually specified for the Thread Domain Unicast Address.

uint32_t otThreadGetKeySequenceCounter(otInstance *aInstance)
Gets the thrKeySequenceCounter.

void otThreadSetKeySequenceCounter(otInstance *aInstance, uint32_t aKeySequenceCounter)
Sets the thrKeySequenceCounter.

uint32_t otThreadGetKeySwitchGuardTime(otInstance *aInstance)
Gets the thrKeySwitchGuardTime (in hours).

void otThreadSetKeySwitchGuardTime(otInstance *aInstance, uint32_t aKeySwitchGuardTime)
Sets the thrKeySwitchGuardTime (in hours).

otError otThreadBecomeDetached(otInstance *aInstance)
Detach from the Thread network.

otError otThreadBecomeChild(otInstance *aInstance)
Attempt to reattach as a child.

otError otThreadGetNextNeighborInfo(otInstance *aInstance, otNeighborInfoIterator *aIterator, otNeighborInfo
*aInfo)
Gets the next neighbor information.

otDeviceRole otThreadGetDeviceRole(otInstance *aInstance)
Get the device ro le .

const char * otThreadDeviceRoleToString(otDeviceRole aRole)
Convert the device ro le to human-readable string.

otError otThreadGetLeaderData(otInstance *aInstance, otLeaderData *aLeaderData)
Get the Thread Leader Data.

uint8_t otThreadGetLeaderRouterId(otInstance *aInstance)
Get the Leader's Router ID.

uint8_t otThreadGetLeaderWeight(otInstance *aInstance)
Get the Leader's Weight.

uint32_t otThreadGetPartitionId(otInstance *aInstance)
Get the Partition ID.

uint16_t otThreadGetRloc16(otInstance *aInstance)
Get the RLOC16.

otError otThreadGetParentInfo(otInstance *aInstance, otRouterInfo *aParentInfo)
The function retrieves diagnostic information for a Thread Router as parent.

otError otThreadGetParentAverageRssi(otInstance *aInstance, int8_t *aParentRssi)
The function retrieves the average RSSI for the Thread Parent.

otError otThreadGetParentLastRssi(otInstance *aInstance, int8_t *aLastRssi)
The function retrieves the RSSI of the last packet from the Thread Parent.

otError otThreadSearchForBetterParent(otInstance *aInstance)
Starts the process for child to search for a better parent while staying attached to its current parent.

const
otIpCounters *

otThreadGetIp6Counters(otInstance *aInstance)
Gets the IPv6 counters.

General

492/962

void otThreadResetIp6Counters(otInstance *aInstance)
Resets the IPv6 counters.

const uint32_t * otThreadGetTimeInQueueHistogram(otInstance *aInstance, uint16_t *aNumBins, uint32_t *aBinInterval)
Gets the time-in-queue histogram for messages in the TX queue .

uint32_t otThreadGetMaxTimeInQueue(otInstance *aInstance)
Gets the maximum time-in-queue for messages in the TX queue .

void otThreadResetTimeInQueueStat(otInstance *aInstance)
Resets the TX queue time-in-queue statistics.

const
otMleCounters *

otThreadGetMleCounters(otInstance *aInstance)
Gets the Thread MLE counters.

void otThreadResetMleCounters(otInstance *aInstance)
Resets the Thread MLE counters.

void otThreadRegisterParentResponseCallback(otInstance *aInstance, otThreadParentResponseCallback
aCallback, void *aContext)
Registers a callback to receive MLE Parent Response data.

void otThreadSetDiscoveryRequestCallback(otInstance *aInstance, otThreadDiscoveryRequestCallback
aCallback, void *aContext)
Sets a callback to receive MLE Discovery Request data.

otError otThreadLocateAnycastDestination(otInstance *aInstance, const otIp6Address *aAnycastAddress,
otThreadAnycastLocatorCallback aCallback, void *aContext)
Requests the closest destination of a given anycast address to be located.

bool otThreadIsAnycastLocateInProgress(otInstance *aInstance)
Indicates whether an anycast locate request is currently in progress.

void otThreadSendAddressNotification(otInstance *aInstance, otIp6Address *aDestination, otIp6Address
*aTarget, otIp6InterfaceIdentifier *aMlIid)
Sends a Proactive Address Notification (ADDR_NTF.ntf) message .

otError otThreadSendProactiveBackboneNotification(otInstance *aInstance, otIp6Address *aTarget,
otIp6InterfaceIdentifier *aMlIid, uint32_t aTimeSinceLastTransaction)
Sends a Proactive Backbone Notification (PRO_BB.ntf) message on the Backbone link.

otError otThreadDetachGracefully(otInstance *aInstance, otDetachGracefullyCallback aCallback, void *aContext)
Notifies other nodes in the network (if any) and then stops Thread protoco l operation.

void otConvertDurationInSecondsToString(uint32_t aDuration, char *aBuffer, uint16_t aSize)
Converts an uint32_t duration (in seconds) to a human-readable string.

Macros

#define OT_NETWORK_DATA_ITERATOR_INIT 0
Value to initialize otNetworkDataIterator .

#define OT_SERVICE_DATA_MAX_SIZE 252
Max size of Service Data in bytes.

#define OT_SERVER_DATA_MAX_SIZE 248
Max size of Server Data in bytes. Theoretical limit, practically much lower.

#define OT_NETWORK_DIAGNOSTIC_TYPELIST_MAX_ENTRIES 19
Maximum Number of Network Diagnostic TLV Types to Request or Reset.

General

493/962

#define OT_NETWORK_DIAGNOSTIC_CHILD_TABLE_ENTRY_SIZE 3
Size of Network Diagnostic Child Table entry.

#define OT_NETWORK_DIAGNOSTIC_ITERATOR_INIT 0
Initializer for otNetworkDiagIterator.

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_NAME_TLV_LENGTH 32
Max length of Vendor Name TLV.

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_MODEL_TLV_LENGTH 32
Max length of Vendor Model TLV.

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_SW_VERSION_TLV_LENGTH 16
Max length of Vendor SW Version TLV.

#define OT_NETWORK_DIAGNOSTIC_MAX_THREAD_STACK_VERSION_TLV_LENGTH 64
Max length of Thread Stack Version TLV.

#define OT_NETWORK_BASE_TLV_MAX_LENGTH 254
Maximum value length of Thread Base TLV.

#define OT_NETWORK_MAX_ROUTER_ID 62
Maximum Router ID.

#define OT_NEIGHBOR_INFO_ITERATOR_INIT 0
Initializer for otNeighborInfoIterator.

#define OT_JOINER_ADVDATA_MAX_LENGTH 64
Maximum AdvData Length of Jo iner Advertisement.

#define OT_DURATION_STRING_SIZE 21
Recommended size for string representation of uint32_t duration in seconds.

Enumeration Documentation

otRoutePreference

otRoutePreference

Defines valid values for mPreference in otExternalRouteConfig and otBorderRouterConfig .

Enumerator

OT_ROUTE_PREFERENCE_LOW Low route preference.

OT_ROUTE_PREFERENCE_MED Medium route preference.

OT_ROUTE_PREFERENCE_HIGH High route preference.

Definition at line 105 of file include/openthread/netdata.h

otNetDataPublisherEvent

otNetDataPublisherEvent

Represents the events reported from the Publisher callbacks.

Enumerator

OT_NETDATA_PUBLISHER_EVENT_ENTRY_ADDED Published entry is added to the Thread Network Data.

OT_NETDATA_PUBLISHER_EVENT_ENTRY_REMOVED Published entry is removed from the Thread Network Data.

General

494/962

Definition at line 61 of file include/openthread/netdata_publisher.h

�5

�5

Enumerator

OT_NETWORK_DIAGNOSTIC_TLV_EXT_ADDRESS MAC Extended Address TLV.

OT_NETWORK_DIAGNOSTIC_TLV_SHORT_ADDRESS Address16 TLV.

OT_NETWORK_DIAGNOSTIC_TLV_MODE Mode TLV.

OT_NETWORK_DIAGNOSTIC_TLV_TIMEOUT Timeout TLV (the maximum polling time period for SEDs)

OT_NETWORK_DIAGNOSTIC_TLV_CONNECTIVITY Connectivity TLV.

OT_NETWORK_DIAGNOSTIC_TLV_ROUTE Route64 TLV.

OT_NETWORK_DIAGNOSTIC_TLV_LEADER_DATA Leader Data TLV.

OT_NETWORK_DIAGNOSTIC_TLV_NETWORK_DATA Network Data TLV.

OT_NETWORK_DIAGNOSTIC_TLV_IP6_ADDR_LIST IPv6 Address List TLV.

OT_NETWORK_DIAGNOSTIC_TLV_MAC_COUNTERS MAC Counters TLV.

OT_NETWORK_DIAGNOSTIC_TLV_BATTERY_LEVEL Battery Level TLV.

OT_NETWORK_DIAGNOSTIC_TLV_SUPPLY_VOLTAGE Supply Voltage TLV.

OT_NETWORK_DIAGNOSTIC_TLV_CHILD_TABLE Child Table TLV.

OT_NETWORK_DIAGNOSTIC_TLV_CHANNEL_PAGES Channel Pages TLV.

OT_NETWORK_DIAGNOSTIC_TLV_TYPE_LIST Type List TLV.

OT_NETWORK_DIAGNOSTIC_TLV_MAX_CHILD_TIMEOUT Max Child Timeout TLV.

OT_NETWORK_DIAGNOSTIC_TLV_VERSION Version TLV.

OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_NAME Vendor Name TLV.

OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_MODEL Vendor Model TLV.

OT_NETWORK_DIAGNOSTIC_TLV_VENDOR_SW_VERSION Vendor SW Version TLV.

OT_NETWORK_DIAGNOSTIC_TLV_THREAD_STACK_VERSION Thread Stack Version TLV.

OT_NETWORK_DIAGNOSTIC_TLV_CHILD Child TLV.

OT_NETWORK_DIAGNOSTIC_TLV_CHILD_IP6_ADDR_LIST Child IPv6 Address List TLV.

OT_NETWORK_DIAGNOSTIC_TLV_ROUTER_NEIGHBOR Router Neighbor TLV.

OT_NETWORK_DIAGNOSTIC_TLV_ANSWER Answer TLV.

OT_NETWORK_DIAGNOSTIC_TLV_QUERY_ID Query ID TLV.

OT_NETWORK_DIAGNOSTIC_TLV_MLE_COUNTERS MLE Counters TLV.

Definition at line 67 of file include/openthread/netdiag.h

otDeviceRole

otDeviceRole

Represents a Thread device role.

Enumerator

OT_DEVICE_ROLE_DISABLED The Thread stack is disabled.

General

495/962

OT_DEVICE_ROLE_DETACHED Not currently participating in a Thread network/partition.

OT_DEVICE_ROLE_CHILD The Thread Child role.

OT_DEVICE_ROLE_ROUTER The Thread Router role.

OT_DEVICE_ROLE_LEADER The Thread Leader role.

Definition at line 67 of file include/openthread/thread.h

Typedef Documentation

otNetworkDataIterator

typedef uint32_t otNetworkDataIterator

Used to iterate through Network Data information.

Definition at line 54 of file include/openthread/netdata.h

otBorderRouterConfig

typedef struct otBorderRouterConfig otBorderRouterConfig

Represents a Border Router configuration.

Definition at line 73 of file include/openthread/netdata.h

otLowpanContextInfo

typedef struct otLowpanContextInfo otLowpanContextInfo

Represents 6LoWPAN Context ID information associated with a prefix in Network Data.

Definition at line 84 of file include/openthread/netdata.h

otExternalRouteConfig

typedef struct otExternalRouteConfig otExternalRouteConfig

Represents an External Route configuration.

Definition at line 99 of file include/openthread/netdata.h

otRoutePreference

typedef enum otRoutePreference otRoutePreference

Defines valid values for mPreference in otExternalRouteConfig and otBorderRouterConfig .

Definition at line 110 of file include/openthread/netdata.h

General

496/962

otServerConfig

typedef struct otServerConfig otServerConfig

Represents a Server configuration.

Definition at line 125 of file include/openthread/netdata.h

otServiceConfig

typedef struct otServiceConfig otServiceConfig

Represents a Service configuration.

Definition at line 138 of file include/openthread/netdata.h

otNetDataPublisherEvent

typedef enum otNetDataPublisherEvent otNetDataPublisherEvent

Represents the events reported from the Publisher callbacks.

Definition at line 65 of file include/openthread/netdata_publisher.h

otNetDataDnsSrpServicePublisherCallback

typedef void(* otNetDataDnsSrpServicePublisherCallback) (otNetDataPublisherEvent aEvent, void *aContext))
(otNetDataPublisherEvent aEvent, void *aContext)

Pointer type defines the callback used to notify when a "DNS/SRP Service" entry is added to or removed from the Thread

Network Data.

Parameters

[in] aEvent Indicates the event (whether the entry was added or removed).

[in] aContext A pointer to application-specific context.

On remove the callback is invoked independent of whether the entry is removed by Publisher (e.g., when there are too

many similar entries already present in the Network Data) or through an explicit call to unpublish the entry (i.e., a call to

otNetDataUnpublishDnsSrpService()).

Definition at line 79 of file include/openthread/netdata_publisher.h

otNetDataPrefixPublisherCallback

typedef void(* otNetDataPrefixPublisherCallback) (otNetDataPublisherEvent aEvent, const otIp6Prefix *aPrefix, void
*aContext))(otNetDataPublisherEvent aEvent, const otIp6Prefix *aPrefix, void *aContext)

Pointer type defines the callback used to notify when a prefix (on-mesh or external route) entry is added to or removed

from the Thread Network Data.

Parameters

General

497/962

[in] aEvent Indicates the event (whether the entry was added or removed).

[in] aPrefix A pointer to the prefix entry.

[in] aContext A pointer to application-specific context.

On remove the callback is invoked independent of whether the entry is removed by Publisher (e.g., when there are too

many similar entries already present in the Network Data) or through an explicit call to unpublish the entry.

Definition at line 93 of file include/openthread/netdata_publisher.h

otNetworkDiagIterator

typedef uint16_t otNetworkDiagIterator

Used to iterate through Network Diagnostic TLV.

Definition at line 104 of file include/openthread/netdiag.h

otNetworkDiagConnectivity

typedef struct otNetworkDiagConnectivity otNetworkDiagConnectivity

Represents a Network Diagnostic Connectivity value.

Definition at line 156 of file include/openthread/netdiag.h

otNetworkDiagRouteData

typedef struct otNetworkDiagRouteData otNetworkDiagRouteData

Represents a Network Diagnostic Route data.

Definition at line 168 of file include/openthread/netdiag.h

otNetworkDiagRoute

typedef struct otNetworkDiagRoute otNetworkDiagRoute

Represents a Network Diagnostic Route TLV value.

Definition at line 190 of file include/openthread/netdiag.h

otNetworkDiagMacCounters

typedef struct otNetworkDiagMacCounters otNetworkDiagMacCounters

Represents a Network Diagnostic Mac Counters value.

See RFC 2863 for definitions of member fields.

Definition at line 209 of file include/openthread/netdiag.h

https://www.ietf.org/rfc/rfc2863

General

498/962

otNetworkDiagMleCounters

typedef struct otNetworkDiagMleCounters otNetworkDiagMleCounters

Represents a Network Diagnostics MLE Counters value.

Definition at line 232 of file include/openthread/netdiag.h

otNetworkDiagChildEntry

typedef struct otNetworkDiagChildEntry otNetworkDiagChildEntry

Represents a Network Diagnostic Child Table Entry.

Definition at line 262 of file include/openthread/netdiag.h

otNetworkDiagTlv

typedef struct otNetworkDiagTlv otNetworkDiagTlv

Represents a Network Diagnostic TLV.

Definition at line 316 of file include/openthread/netdiag.h

otReceiveDiagnosticGetCallback

typedef void(* otReceiveDiagnosticGetCallback) (otError aError, otMessage *aMessage, const otMessageInfo
*aMessageInfo, void *aContext))(otError aError, otMessage *aMessage, const otMessageInfo *aMessageInfo, void
*aContext)

Pointer is called when Network Diagnostic Get response is received.

Parameters

[in] aError The error when failed to get the response.

[in] aMessage A pointer to the message buffer containing the received Network Diagnostic Get response payload.

Available only when aError is OT_ERROR_NONE .

[in] aMessageInfo A pointer to the message info for aMessage . Available only when aError is OT_ERROR_NONE .

[in] aContext A pointer to application-specific context.

Definition at line 350 of file include/openthread/netdiag.h

otLinkModeConfig

typedef struct otLinkModeConfig otLinkModeConfig

Represents an MLE Link Mode configuration.

Definition at line 84 of file include/openthread/thread.h

General

499/962

otNeighborInfoIterator

typedef int16_t otNeighborInfoIterator

Used to iterate through neighbor table.

Definition at line 113 of file include/openthread/thread.h

otLeaderData

typedef struct otLeaderData otLeaderData

Represents the Thread Leader Data.

Definition at line 126 of file include/openthread/thread.h

otIpCounters

typedef struct otIpCounters otIpCounters

Represents the IP level counters.

Definition at line 164 of file include/openthread/thread.h

otMleCounters

typedef struct otMleCounters otMleCounters

Represents the Thread MLE counters.

Definition at line 203 of file include/openthread/thread.h

otThreadParentResponseInfo

typedef struct otThreadParentResponseInfo otThreadParentResponseInfo

Represents the MLE Parent Response data.

Definition at line 219 of file include/openthread/thread.h

otDetachGracefullyCallback

typedef void(* otDetachGracefullyCallback) (void *aContext))(void *aContext)

This callback informs the application that the detaching process has finished.

Parameters

[in] aContext A pointer to application-specific context.

General

500/962

Definition at line 227 of file include/openthread/thread.h

otThreadParentResponseCallback

typedef void(* otThreadParentResponseCallback) (otThreadParentResponseInfo *aInfo, void *aContext))
(otThreadParentResponseInfo *aInfo, void *aContext)

Pointer is called every time an MLE Parent Response message is received.

Parameters

[in] aInfo A pointer to a location on stack holding the stats data.

[in] aContext A pointer to callback client-specific context.

This is used in otThreadRegisterParentResponseCallback() .

Definition at line 989 of file include/openthread/thread.h

otThreadDiscoveryRequestInfo

typedef struct otThreadDiscoveryRequestInfo otThreadDiscoveryRequestInfo

Represents the Thread Discovery Request data.

Definition at line 1014 of file include/openthread/thread.h

otThreadDiscoveryRequestCallback

typedef void(* otThreadDiscoveryRequestCallback) (const otThreadDiscoveryRequestInfo *aInfo, void *aContext))(const
otThreadDiscoveryRequestInfo *aInfo, void *aContext)

Pointer is called every time an MLE Discovery Request message is received.

Parameters

[in] aInfo A pointer to the Discovery Request info data.

[in] aContext A pointer to callback application-specific context.

Definition at line 1023 of file include/openthread/thread.h

otThreadAnycastLocatorCallback

typedef void(* otThreadAnycastLocatorCallback) (void *aContext, otError aError, const otIp6Address
*aMeshLocalAddress, uint16_t aRloc16�)(void *aContext, otError aError, const otIp6Address *aMeshLocalAddress, uint16_t
aRloc16�

Pointer type defines the callback to notify the outcome of a otThreadLocateAnycastDestination() request.

Parameters

[in] aContext A pointer to an arbitrary context (provided when callback is registered).

[in] aError The error when handling the request. OT_ERROR_NONE indicates success.

OT_ERROR_RESPONSE_TIMEOUT indicates a destination could not be found. OT_ERROR_ABORT indicates

the request was aborted.

General

501/962

[in] aMeshLocalAddress A pointer to the mesh-local EID of the closest destination of the anycast address when

aError is OT_ERROR_NONE, NULL otherwise.

[in] aRloc16 The RLOC16 of the destination if found, otherwise invalid RLOC16 (0xfffe).

Definition at line 1050 of file include/openthread/thread.h

Function Documentation

otNetDataGet

otError otNetDataGet (otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)

Provide full or stable copy of the Partition's Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aStable TRUE when copying the stable version, FALSE when copying the full version.

[out] aData A pointer to the data buffer.

[inout] aDataLength On entry, size of the data buffer pointed to by aData . On exit, number of copied bytes.

Definition at line 153 of file include/openthread/netdata.h

otNetDataGetLength

uint8_t otNetDataGetLength (otInstance *aInstance)

Get the current length (number of bytes) of Partition's Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The length of the Network Data.

Definition at line 163 of file include/openthread/netdata.h

otNetDataGetMaxLength

uint8_t otNetDataGetMaxLength (otInstance *aInstance)

Get the maximum observed length of the Thread Network Data since OT stack initialization or since the last call to

otNetDataResetMaxLength() .

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum length of the Network Data (high water mark for Network Data length).

General

502/962

Definition at line 174 of file include/openthread/netdata.h

otNetDataResetMaxLength

void otNetDataResetMaxLength (otInstance *aInstance)

Reset the tracked maximum length of the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

See Also

otNetDataGetMaxLength

Definition at line 184 of file include/openthread/netdata.h

otNetDataGetNextOnMeshPrefix

otError otNetDataGetNextOnMeshPrefix (otInstance *aInstance, otNetworkDataIterator *aIterator, otBorderRouterConfig
*aConfig)

Get the next On Mesh Prefix in the partition's Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first on-mesh entry it should be set to

OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to where the On Mesh Prefix information will be placed.

Definition at line 198 of file include/openthread/netdata.h

otNetDataGetNextRoute

otError otNetDataGetNextRoute (otInstance *aInstance, otNetworkDataIterator *aIterator, otExternalRouteConfig
*aConfig)

Get the next external route in the partition's Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first external route entry it should be set

to OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to where the External Route information will be placed.

Definition at line 214 of file include/openthread/netdata.h

otNetDataGetNextService

otError otNetDataGetNextService (otInstance *aInstance, otNetworkDataIterator *aIterator, otServiceConfig *aConfig)

General

503/962

Get the next service in the partition's Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first service entry it should be set to

OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to where the service information will be placed.

Definition at line 228 of file include/openthread/netdata.h

otNetDataGetNextLowpanContextInfo

otError otNetDataGetNextLowpanContextInfo (otInstance *aInstance, otNetworkDataIterator *aIterator,
otLowpanContextInfo *aContextInfo)

Get the next 6LoWPAN Context ID info in the partition's Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator. To get the first service entry it should be set to

OT_NETWORK_DATA_ITERATOR_INIT.

[out] aContextInfo A pointer to where the retrieved 6LoWPAN Context ID information will be placed.

Definition at line 242 of file include/openthread/netdata.h

otNetDataGetCommissioningDataset

void otNetDataGetCommissioningDataset (otInstance *aInstance, otCommissioningDataset *aDataset)

Gets the Commissioning Dataset from the partition's Network Data.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[out] aDataset A pointer to a otCommissioningDataset to populate.

Definition at line 253 of file include/openthread/netdata.h

otNetDataGetVersion

uint8_t otNetDataGetVersion (otInstance *aInstance)

Get the Network Data Version.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Network Data Version.

General

504/962

Definition at line 263 of file include/openthread/netdata.h

otNetDataGetStableVersion

uint8_t otNetDataGetStableVersion (otInstance *aInstance)

Get the Stable Network Data Version.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Stable Network Data Version.

Definition at line 273 of file include/openthread/netdata.h

otNetDataSteeringDataCheckJoiner

otError otNetDataSteeringDataCheckJoiner (otInstance *aInstance, const otExtAddress *aEui64�

Check if the steering data includes a Joiner.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEui64 A pointer to the Joiner's IEEE EUI-64.

Definition at line 286 of file include/openthread/netdata.h

otNetDataSteeringDataCheckJoinerWithDiscerner

otError otNetDataSteeringDataCheckJoinerWithDiscerner (otInstance *aInstance, const struct otJoinerDiscerner
*aDiscerner)

Check if the steering data includes a Joiner with a given discerner value.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDiscerner A pointer to the Joiner Discerner.

Definition at line 302 of file include/openthread/netdata.h

otNetDataContainsOmrPrefix

bool otNetDataContainsOmrPrefix (otInstance *aInstance, const otIp6Prefix *aPrefix)

Check whether a given Prefix can act as a valid OMR prefix and also the Leader's Network Data contains this prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix A pointer to the IPv6 prefix.

General

505/962

Returns

Whether aPrefix is a valid OMR prefix and Leader's Network Data contains the OMR prefix aPrefix .

Note

This API is only available when OPENTHREAD_CONFIG_BORDER_ROUTING_ENABLE is used.

Definition at line 316 of file include/openthread/netdata.h

otNetDataPublishDnsSrpServiceAnycast

void otNetDataPublishDnsSrpServiceAnycast (otInstance *aInstance, uint8_t aSequenceNUmber)

Requests "DNS/SRP Service Anycast Address" to be published in the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSequenceNUmber The sequence number of DNS/SRP Anycast Service.

Requires the feature OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE to be enabled.

A call to this function will remove and replace any previous "DNS/SRP Service" entry that was being published (from earlier

call to any of otNetDataPublishDnsSrpService{Type}() functions).

Definition at line 109 of file include/openthread/netdata_publisher.h

otNetDataPublishDnsSrpServiceUnicast

void otNetDataPublishDnsSrpServiceUnicast (otInstance *aInstance, const otIp6Address *aAddress, uint16_t aPort)

Requests "DNS/SRP Service Unicast Address" to be published in the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAddress The DNS/SRP server address to publish (MUST NOT be NULL).

[in] aPort The SRP server port number to publish.

Requires the feature OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE to be enabled.

A call to this function will remove and replace any previous "DNS/SRP Service" entry that was being published (from earlier

call to any of otNetDataPublishDnsSrpService{Type}() functions).

Publishes the "DNS/SRP Service Unicast Address" by including the address and port info in the Service TLV data.

Definition at line 127 of file include/openthread/netdata_publisher.h

otNetDataPublishDnsSrpServiceUnicastMeshLocalEid

void otNetDataPublishDnsSrpServiceUnicastMeshLocalEid (otInstance *aInstance, uint16_t aPort)

Requests "DNS/SRP Service Unicast Address" to be published in the Thread Network Data.

Parameters

General

506/962

[in] aInstance A pointer to an OpenThread instance.

[in] aPort The SRP server port number to publish.

Requires the feature OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE to be enabled.

A call to this function will remove and replace any previous "DNS/SRP Service" entry that was being published (from earlier

call to any of otNetDataPublishDnsSrpService{Type}() functions).

Unlike otNetDataPublishDnsSrpServiceUnicast() which requires the published address to be given and includes the info in the

Service TLV data, this function uses the device's mesh-local EID and includes the info in the Server TLV data.

Definition at line 145 of file include/openthread/netdata_publisher.h

otNetDataIsDnsSrpServiceAdded

bool otNetDataIsDnsSrpServiceAdded (otInstance *aInstance)

Indicates whether or not currently the "DNS/SRP Service" entry is added to the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires the feature OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE to be enabled.

Definition at line 158 of file include/openthread/netdata_publisher.h

otNetDataSetDnsSrpServicePublisherCallback

void otNetDataSetDnsSrpServicePublisherCallback (otInstance *aInstance, otNetDataDnsSrpServicePublisherCallback
aCallback, void *aContext)

Sets a callback for notifying when a published "DNS/SRP Service" is actually added to or removed from the Thread

Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback The callback function pointer (can be NULL if not needed).

[in] aContext A pointer to application-specific context (used when aCallback is invoked).

A subsequent call to this function replaces any previously set callback function.

Requires the feature OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE to be enabled.

Definition at line 173 of file include/openthread/netdata_publisher.h

otNetDataUnpublishDnsSrpService

void otNetDataUnpublishDnsSrpService (otInstance *aInstance)

Unpublishes any previously added DNS/SRP (Anycast or Unicast) Service entry from the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

General

507/962

OPENTHREAD_CONFIG_TMF_NETDATA_SERVICE_ENABLE must be enabled.

Definition at line 186 of file include/openthread/netdata_publisher.h

otNetDataPublishOnMeshPrefix

otError otNetDataPublishOnMeshPrefix (otInstance *aInstance, const otBorderRouterConfig *aConfig)

Requests an on-mesh prefix to be published in the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig The on-mesh prefix config to publish (MUST NOT be NULL).

Requires the feature OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE to be enabled.

Only stable entries can be published (i.e., aConfig.mStable MUST be TRUE).

A subsequent call to this method will replace a previous request for the same prefix. In particular, if the new call only

changes the flags (e.g., preference level) and the prefix is already added in the Network Data, the change to flags is

immediately reflected in the Network Data. This ensures that existing entries in the Network Data are not abruptly removed.

Note that a change in the preference level can potentially later cause the entry to be removed from the Network Data

after determining there are other nodes that are publishing the same prefix with the same or higher preference.

Definition at line 213 of file include/openthread/netdata_publisher.h

otNetDataPublishExternalRoute

otError otNetDataPublishExternalRoute (otInstance *aInstance, const otExternalRouteConfig *aConfig)

Requests an external route prefix to be published in the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig The external route config to publish (MUST NOT be NULL).

Requires the feature OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE to be enabled.

Only stable entries can be published (i.e., aConfig.mStable MUST be TRUE).

A subsequent call to this method will replace a previous request for the same prefix. In particular, if the new call only

changes the flags (e.g., preference level) and the prefix is already added in the Network Data, the change to flags is

immediately reflected in the Network Data. This ensures that existing entries in the Network Data are not abruptly removed.

Note that a change in the preference level can potentially later cause the entry to be removed from the Network Data

after determining there are other nodes that are publishing the same prefix with the same or higher preference.

Definition at line 238 of file include/openthread/netdata_publisher.h

otNetDataReplacePublishedExternalRoute

otError otNetDataReplacePublishedExternalRoute (otInstance *aInstance, const otIp6Prefix *aPrefix, const
otExternalRouteConfig *aConfig)

Replaces a previously published external route in the Thread Network Data.

General

508/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix The previously published external route prefix to replace.

[in] aConfig The external route config to publish.

Requires the feature OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE to be enabled.

If there is no previously published external route matching aPrefix , this function behaves similarly to

otNetDataPublishExternalRoute() , i.e., it will start the process of publishing aConfig as an external route in the Thread Network

Data.

If there is a previously published route entry matching aPrefix , it will be replaced with the new prefix from aConfig .

If the aPrefix was already added in the Network Data, the change to the new prefix in aConfig is immediately reflected in

the Network Data. This ensures that route entries in the Network Data are not abruptly removed and the transition from

aPrefix to the new prefix is smooth.

If the old published aPrefix was not added in the Network Data, it will be replaced with the new aConfig prefix but it will not

be immediately added. Instead, it will start the process of publishing it in the Network Data (monitoring the Network Data to

determine when/if to add the prefix, depending on the number of similar prefixes present in the Network Data).

Definition at line 272 of file include/openthread/netdata_publisher.h

otNetDataIsPrefixAdded

bool otNetDataIsPrefixAdded (otInstance *aInstance, const otIp6Prefix *aPrefix)

Indicates whether or not currently a published prefix entry (on-mesh or external route) is added to the Thread Network

Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix A pointer to the prefix (MUST NOT be NULL).

Requires the feature OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE to be enabled.

Definition at line 289 of file include/openthread/netdata_publisher.h

otNetDataSetPrefixPublisherCallback

void otNetDataSetPrefixPublisherCallback (otInstance *aInstance, otNetDataPrefixPublisherCallback aCallback, void
*aContext)

Sets a callback for notifying when a published prefix entry is actually added to or removed from the Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback The callback function pointer (can be NULL if not needed).

[in] aContext A pointer to application-specific context (used when aCallback is invoked).

A subsequent call to this function replaces any previously set callback function.

Requires the feature OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE to be enabled.

Definition at line 304 of file include/openthread/netdata_publisher.h

General

509/962

otNetDataUnpublishPrefix

otError otNetDataUnpublishPrefix (otInstance *aInstance, const otIp6Prefix *aPrefix)

Unpublishes a previously published On-Mesh or External Route Prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPrefix The prefix to unpublish (MUST NOT be NULL).

OPENTHREAD_CONFIG_BORDER_ROUTER_ENABLE must be enabled.

Definition at line 320 of file include/openthread/netdata_publisher.h

otThreadGetNextDiagnosticTlv

otError otThreadGetNextDiagnosticTlv (const otMessage *aMessage, otNetworkDiagIterator *aIterator, otNetworkDiagTlv
*aNetworkDiagTlv)

Gets the next Network Diagnostic TLV in the message.

Parameters

[in] aMessage A pointer to a message.

[inout] aIterator A pointer to the Network Diagnostic iterator context. To get the first Network Diagnostic TLV

it should be set to OT_NETWORK_DIAGNOSTIC_ITERATOR_INIT.

[out] aNetworkDiagTlv A pointer to where the Network Diagnostic TLV information will be placed.

Requires OPENTHREAD_CONFIG_TMF_NETDIAG_CLIENT_ENABLE .

@Note A subsequent call to this function is allowed only when current return value is OT_ERROR_NONE.

Definition at line 335 of file include/openthread/netdiag.h

otThreadSendDiagnosticGet

otError otThreadSendDiagnosticGet (otInstance *aInstance, const otIp6Address *aDestination, const uint8_t aTlvTypes[],
uint8_t aCount, otReceiveDiagnosticGetCallback aCallback, void *aCallbackContext)

Send a Network Diagnostic Get request.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to destination address.

[in] aTlvTypes An array of Network Diagnostic TLV types.

[in] aCount Number of types in aTlvTypes.

[in] aCallback A pointer to a function that is called when Network Diagnostic Get response is received or NULL

to disable the callback.

[in] aCallbackContext A pointer to application-specific context.

Requires OPENTHREAD_CONFIG_TMF_NETDIAG_CLIENT_ENABLE .

General

510/962

Definition at line 372 of file include/openthread/netdiag.h

otThreadSendDiagnosticReset

otError otThreadSendDiagnosticReset (otInstance *aInstance, const otIp6Address *aDestination, const uint8_t
aTlvTypes[], uint8_t aCount)

Send a Network Diagnostic Reset request.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination A pointer to destination address.

[in] aTlvTypes An array of Network Diagnostic TLV types. Currently only Type 9 is allowed.

[in] aCount Number of types in aTlvTypes

Requires OPENTHREAD_CONFIG_TMF_NETDIAG_CLIENT_ENABLE .

Definition at line 393 of file include/openthread/netdiag.h

otThreadGetVendorName

const char * otThreadGetVendorName (otInstance *aInstance)

Get the vendor name string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The vendor name string.

Definition at line 406 of file include/openthread/netdiag.h

otThreadGetVendorModel

const char * otThreadGetVendorModel (otInstance *aInstance)

Get the vendor model string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The vendor model string.

Definition at line 416 of file include/openthread/netdiag.h

otThreadGetVendorSwVersion

const char * otThreadGetVendorSwVersion (otInstance *aInstance)

General

511/962

Get the vendor sw version string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The vendor sw version string.

Definition at line 426 of file include/openthread/netdiag.h

otThreadSetVendorName

otError otThreadSetVendorName (otInstance *aInstance, const char *aVendorName)

Set the vendor name string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aVendorName The vendor name string.

Requires OPENTHREAD_CONFIG_NET_DIAG_VENDOR_INFO_SET_API_ENABLE .

aVendorName should be UTF8 with max length of 32 chars (MAX_VENDOR_NAME_TLV_LENGTH). Maximum length does not

include the null \0 character.

Definition at line 443 of file include/openthread/netdiag.h

otThreadSetVendorModel

otError otThreadSetVendorModel (otInstance *aInstance, const char *aVendorModel)

Set the vendor model string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aVendorModel The vendor model string.

Requires OPENTHREAD_CONFIG_NET_DIAG_VENDOR_INFO_SET_API_ENABLE .

aVendorModel should be UTF8 with max length of 32 chars (MAX_VENDOR_MODEL_TLV_LENGTH). Maximum length does not

include the null \0 character.

Definition at line 460 of file include/openthread/netdiag.h

otThreadSetVendorSwVersion

otError otThreadSetVendorSwVersion (otInstance *aInstance, const char *aVendorSwVersion)

Set the vendor software version string.

Parameters

[in] aInstance A pointer to an OpenThread instance.

General

512/962

[in] aVendorSwVersion The vendor software version string.

Requires OPENTHREAD_CONFIG_NET_DIAG_VENDOR_INFO_SET_API_ENABLE .

aVendorSwVersion should be UTF8 with max length of 16 chars(MAX_VENDOR_SW_VERSION_TLV_LENGTH). Maximum length

does not include the null \0 character.

Definition at line 477 of file include/openthread/netdiag.h

otThreadSetEnabled

otError otThreadSetEnabled (otInstance *aInstance, bool aEnabled)

Starts Thread protocol operation.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE if Thread is enabled, FALSE otherwise.

The interface must be up when calling this function.

Calling this function with aEnabled set to FALSE stops any ongoing processes of detaching started by

otThreadDetachGracefully(). Its callback will be called.

Definition at line 244 of file include/openthread/thread.h

otThreadGetVersion

uint16_t otThreadGetVersion (void)

Gets the Thread protocol version.

Parameters

N/A

Returns

the Thread protocol version.

Definition at line 252 of file include/openthread/thread.h

otThreadIsSingleton

bool otThreadIsSingleton (otInstance *aInstance)

Indicates whether a node is the only router on the network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 263 of file include/openthread/thread.h

otThreadDiscover

General

513/962

otError otThreadDiscover (otInstance *aInstance, uint32_t aScanChannels, uint16_t aPanId, bool aJoiner, bool
aEnableEui64Filtering, otHandleActiveScanResult aCallback, void *aCallbackContext)

Starts a Thread Discovery scan.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aScanChannels A bit vector indicating which channels to scan (e.g. OT_CHANNEL_11_MASK).

[in] aPanId The PAN ID filter (set to Broadcast PAN to disable filter).

[in] aJoiner Value of the Joiner Flag in the Discovery Request TLV.

[in] aEnableEui64Filtering TRUE to filter responses on EUI-64, FALSE otherwise.

[in] aCallback A pointer to a function called on receiving an MLE Discovery Response or scan completes.

[in] aCallbackContext A pointer to application-specific context.

Note

A successful call to this function enables the rx-on-when-idle mode for the entire scan procedure.

Definition at line 285 of file include/openthread/thread.h

otThreadIsDiscoverInProgress

bool otThreadIsDiscoverInProgress (otInstance *aInstance)

Determines if an MLE Thread Discovery is currently in progress.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 299 of file include/openthread/thread.h

otThreadSetJoinerAdvertisement

otError otThreadSetJoinerAdvertisement (otInstance *aInstance, uint32_t aOui, const uint8_t *aAdvData, uint8_t
aAdvDataLength)

Sets the Thread Joiner Advertisement when discovering Thread network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aOui The Vendor IEEE OUI value that will be included in the Joiner Advertisement. Only the least

significant 3 bytes will be used, and the most significant byte will be ignored.

[in] aAdvData A pointer to the AdvData that will be included in the Joiner Advertisement.

[in] aAdvDataLength The length of AdvData in bytes.

Thread Joiner Advertisement is used to allow a Joiner to advertise its own application-specific information (such as Vendor

ID, Product ID, Discriminator, etc.) via a newly-proposed Joiner Advertisement TLV, and to make this information available to

Commissioners or Commissioner Candidates without human interaction.

Definition at line 318 of file include/openthread/thread.h

General

514/962

otThreadGetChildTimeout

uint32_t otThreadGetChildTimeout (otInstance *aInstance)

Gets the Thread Child Timeout (in seconds) used when operating in the Child role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Thread Child Timeout value in seconds.

See Also

otThreadSetChildTimeout

Definition at line 335 of file include/openthread/thread.h

otThreadSetChildTimeout

void otThreadSetChildTimeout (otInstance *aInstance, uint32_t aTimeout)

Sets the Thread Child Timeout (in seconds) used when operating in the Child role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTimeout The timeout value in seconds.

See Also

otThreadGetChildTimeout

Definition at line 346 of file include/openthread/thread.h

otThreadGetExtendedPanId

const otExtendedPanId * otThreadGetExtendedPanId (otInstance *aInstance)

Gets the IEEE 802.15.4 Extended PAN ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the IEEE 802.15.4 Extended PAN ID.

See Also

otThreadSetExtendedPanId

Definition at line 358 of file include/openthread/thread.h

otThreadSetExtendedPanId

General

515/962

otError otThreadSetExtendedPanId (otInstance *aInstance, const otExtendedPanId *aExtendedPanId)

Sets the IEEE 802.15.4 Extended PAN ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtendedPanId A pointer to the IEEE 802.15.4 Extended PAN ID.

Note

Can only be called while Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

See Also

otThreadGetExtendedPanId

Definition at line 376 of file include/openthread/thread.h

otThreadGetLeaderRloc

otError otThreadGetLeaderRloc (otInstance *aInstance, otIp6Address *aLeaderRloc)

Returns a pointer to the Leader's RLOC.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aLeaderRloc A pointer to the Leader's RLOC.

Definition at line 389 of file include/openthread/thread.h

otThreadGetLinkMode

otLinkModeConfig otThreadGetLinkMode (otInstance *aInstance)

Get the MLE Link Mode configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The MLE Link Mode configuration.

See Also

otThreadSetLinkMode

Definition at line 401 of file include/openthread/thread.h

otThreadSetLinkMode

otError otThreadSetLinkMode (otInstance *aInstance, otLinkModeConfig aConfig)

General

516/962

Set the MLE Link Mode configuration.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aConfig A pointer to the Link Mode configuration.

See Also

otThreadGetLinkMode

Definition at line 414 of file include/openthread/thread.h

otThreadGetNetworkKey

void otThreadGetNetworkKey (otInstance *aInstance, otNetworkKey *aNetworkKey)

Get the Thread Network Key.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aNetworkKey A pointer to an otNetworkKey to return the Thread Network Key.

See Also

otThreadSetNetworkKey

Definition at line 425 of file include/openthread/thread.h

otThreadGetNetworkKeyRef

otNetworkKeyRef otThreadGetNetworkKeyRef (otInstance *aInstance)

Get the otNetworkKeyRef for Thread Network Key.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires the build-time feature OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE to be enabled.

Returns

Reference to the Thread Network Key stored in memory.

See Also

otThreadSetNetworkKeyRef

Definition at line 439 of file include/openthread/thread.h

otThreadSetNetworkKey

otError otThreadSetNetworkKey (otInstance *aInstance, const otNetworkKey *aKey)

Set the Thread Network Key.

General

517/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKey A pointer to a buffer containing the Thread Network Key.

Succeeds only when Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

See Also

otThreadGetNetworkKey

Definition at line 457 of file include/openthread/thread.h

otThreadSetNetworkKeyRef

otError otThreadSetNetworkKeyRef (otInstance *aInstance, otNetworkKeyRef aKeyRef)

Set the Thread Network Key as a otNetworkKeyRef .

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKeyRef Reference to the Thread Network Key.

Succeeds only when Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

Requires the build-time feature OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE to be enabled.

See Also

otThreadGetNetworkKeyRef

Definition at line 477 of file include/openthread/thread.h

otThreadGetRloc

const otIp6Address * otThreadGetRloc (otInstance *aInstance)

Gets the Thread Routing Locator (RLOC) address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the Thread Routing Locator (RLOC) address.

Definition at line 487 of file include/openthread/thread.h

otThreadGetMeshLocalEid

const otIp6Address * otThreadGetMeshLocalEid (otInstance *aInstance)

Gets the Mesh Local EID address.

General

518/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the Mesh Local EID address.

Definition at line 497 of file include/openthread/thread.h

otThreadGetMeshLocalPrefix

const otMeshLocalPrefix * otThreadGetMeshLocalPrefix (otInstance *aInstance)

Returns a pointer to the Mesh Local Prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the Mesh Local Prefix.

Definition at line 507 of file include/openthread/thread.h

otThreadSetMeshLocalPrefix

otError otThreadSetMeshLocalPrefix (otInstance *aInstance, const otMeshLocalPrefix *aMeshLocalPrefix)

Sets the Mesh Local Prefix.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMeshLocalPrefix A pointer to the Mesh Local Prefix.

Succeeds only when Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

Definition at line 523 of file include/openthread/thread.h

otThreadGetLinkLocalIp6Address

const otIp6Address * otThreadGetLinkLocalIp6Address (otInstance *aInstance)

Gets the Thread link-local IPv6 address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The Thread link local address is derived using IEEE802.15.4 Extended Address as Interface Identifier.

Returns

A pointer to Thread link-local IPv6 address.

General

519/962

Definition at line 535 of file include/openthread/thread.h

otThreadGetLinkLocalAllThreadNodesMulticastAddress

const otIp6Address * otThreadGetLinkLocalAllThreadNodesMulticastAddress (otInstance *aInstance)

Gets the Thread Link-Local All Thread Nodes multicast address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The address is a link-local Unicast Prefix-Based Multicast Address [RFC 3306], with:

flgs set to 3 (P = 1 and T = 1)

scop set to 2

plen set to 64

network prefix set to the Mesh Local Prefix

group ID set to 1

Returns

A pointer to Thread Link-Local All Thread Nodes multicast address.

Definition at line 552 of file include/openthread/thread.h

otThreadGetRealmLocalAllThreadNodesMulticastAddress

const otIp6Address * otThreadGetRealmLocalAllThreadNodesMulticastAddress (otInstance *aInstance)

Gets the Thread Realm-Local All Thread Nodes multicast address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The address is a realm-local Unicast Prefix-Based Multicast Address [RFC 3306], with:

flgs set to 3 (P = 1 and T = 1)

scop set to 3

plen set to 64

network prefix set to the Mesh Local Prefix

group ID set to 1

Returns

A pointer to Thread Realm-Local All Thread Nodes multicast address.

Definition at line 569 of file include/openthread/thread.h

otThreadGetServiceAloc

otError otThreadGetServiceAloc (otInstance *aInstance, uint8_t aServiceId, otIp6Address *aServiceAloc)

Retrieves the Service ALOC for given Service ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

General

520/962

[in] aServiceId Service ID to get ALOC for.

[out] aServiceAloc A pointer to output the Service ALOC. MUST NOT BE NULL.

Definition at line 581 of file include/openthread/thread.h

otThreadGetNetworkName

const char * otThreadGetNetworkName (otInstance *aInstance)

Get the Thread Network Name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the Thread Network Name.

See Also

otThreadSetNetworkName

Definition at line 593 of file include/openthread/thread.h

otThreadSetNetworkName

otError otThreadSetNetworkName (otInstance *aInstance, const char *aNetworkName)

Set the Thread Network Name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aNetworkName A pointer to the Thread Network Name.

Succeeds only when Thread protocols are disabled. A successful call to this function invalidates the Active and Pending

Operational Datasets in non-volatile memory.

See Also

otThreadGetNetworkName

Definition at line 611 of file include/openthread/thread.h

otThreadGetDomainName

const char * otThreadGetDomainName (otInstance *aInstance)

Gets the Thread Domain Name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Note

Available since Thread 1.2.

General

521/962

Returns

A pointer to the Thread Domain Name.

See Also

otThreadSetDomainName

Definition at line 625 of file include/openthread/thread.h

otThreadSetDomainName

otError otThreadSetDomainName (otInstance *aInstance, const char *aDomainName)

Sets the Thread Domain Name.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDomainName A pointer to the Thread Domain Name.

Only succeeds when Thread protocols are disabled.

Note

Available since Thread 1.2.

See Also

otThreadGetDomainName

Definition at line 641 of file include/openthread/thread.h

otThreadSetFixedDuaInterfaceIdentifier

otError otThreadSetFixedDuaInterfaceIdentifier (otInstance *aInstance, const otIp6InterfaceIdentifier *aIid)

Sets or clears the Interface Identifier manually specified for the Thread Domain Unicast Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aIid A pointer to the Interface Identifier to set or NULL to clear.

Available when OPENTHREAD_CONFIG_DUA_ENABLE is enabled.

Note

Only available since Thread 1.2.

See Also

otThreadGetFixedDuaInterfaceIdentifier

Definition at line 658 of file include/openthread/thread.h

otThreadGetFixedDuaInterfaceIdentifier

const otIp6InterfaceIdentifier * otThreadGetFixedDuaInterfaceIdentifier (otInstance *aInstance)

General

522/962

Gets the Interface Identifier manually specified for the Thread Domain Unicast Address.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_DUA_ENABLE is enabled.

Note

Only available since Thread 1.2.

Returns

A pointer to the Interface Identifier which was set manually, or NULL if none was set.

See Also

otThreadSetFixedDuaInterfaceIdentifier

Definition at line 674 of file include/openthread/thread.h

otThreadGetKeySequenceCounter

uint32_t otThreadGetKeySequenceCounter (otInstance *aInstance)

Gets the thrKeySequenceCounter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The thrKeySequenceCounter value.

See Also

otThreadSetKeySequenceCounter

Definition at line 686 of file include/openthread/thread.h

otThreadSetKeySequenceCounter

void otThreadSetKeySequenceCounter (otInstance *aInstance, uint32_t aKeySequenceCounter)

Sets the thrKeySequenceCounter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKeySequenceCounter The thrKeySequenceCounter value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetKeySequenceCounter

General

523/962

Definition at line 700 of file include/openthread/thread.h

otThreadGetKeySwitchGuardTime

uint32_t otThreadGetKeySwitchGuardTime (otInstance *aInstance)

Gets the thrKeySwitchGuardTime (in hours).

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The thrKeySwitchGuardTime value (in hours).

See Also

otThreadSetKeySwitchGuardTime

Definition at line 712 of file include/openthread/thread.h

otThreadSetKeySwitchGuardTime

void otThreadSetKeySwitchGuardTime (otInstance *aInstance, uint32_t aKeySwitchGuardTime)

Sets the thrKeySwitchGuardTime (in hours).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKeySwitchGuardTime The thrKeySwitchGuardTime value (in hours).

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetKeySwitchGuardTime

Definition at line 726 of file include/openthread/thread.h

otThreadBecomeDetached

otError otThreadBecomeDetached (otInstance *aInstance)

Detach from the Thread network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 737 of file include/openthread/thread.h

otThreadBecomeChild

General

524/962

otError otThreadBecomeChild (otInstance *aInstance)

Attempt to reattach as a child.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 751 of file include/openthread/thread.h

otThreadGetNextNeighborInfo

otError otThreadGetNextNeighborInfo (otInstance *aInstance, otNeighborInfoIterator *aIterator, otNeighborInfo *aInfo)

Gets the next neighbor information.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the iterator context. To get the first neighbor entry it should be set to

OT_NEIGHBOR_INFO_ITERATOR_INIT.

[out] aInfo A pointer to the neighbor information.

It is used to go through the entries of the neighbor table.

Definition at line 767 of file include/openthread/thread.h

otThreadGetDeviceRole

otDeviceRole otThreadGetDeviceRole (otInstance *aInstance)

Get the device role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 781 of file include/openthread/thread.h

otThreadDeviceRoleToString

const char * otThreadDeviceRoleToString (otDeviceRole aRole)

Convert the device role to human-readable string.

Parameters

[in] aRole The device role to convert.

Returns

General

525/962

A string representing aRo le .

Definition at line 791 of file include/openthread/thread.h

otThreadGetLeaderData

otError otThreadGetLeaderData (otInstance *aInstance, otLeaderData *aLeaderData)

Get the Thread Leader Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aLeaderData A pointer to where the leader data is placed.

Definition at line 803 of file include/openthread/thread.h

otThreadGetLeaderRouterId

uint8_t otThreadGetLeaderRouterId (otInstance *aInstance)

Get the Leader's Router ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Leader's Router ID.

Definition at line 813 of file include/openthread/thread.h

otThreadGetLeaderWeight

uint8_t otThreadGetLeaderWeight (otInstance *aInstance)

Get the Leader's Weight.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Leader's Weight.

Definition at line 823 of file include/openthread/thread.h

otThreadGetPartitionId

uint32_t otThreadGetPartitionId (otInstance *aInstance)

Get the Partition ID.

Parameters

General

526/962

[in] aInstance A pointer to an OpenThread instance.

Returns

The Partition ID.

Definition at line 833 of file include/openthread/thread.h

otThreadGetRloc16

uint16_t otThreadGetRloc16 (otInstance *aInstance)

Get the RLOC16.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The RLOC16.

Definition at line 843 of file include/openthread/thread.h

otThreadGetParentInfo

otError otThreadGetParentInfo (otInstance *aInstance, otRouterInfo *aParentInfo)

The function retrieves diagnostic information for a Thread Router as parent.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aParentInfo A pointer to where the parent router information is placed.

Definition at line 852 of file include/openthread/thread.h

otThreadGetParentAverageRssi

otError otThreadGetParentAverageRssi (otInstance *aInstance, int8_t *aParentRssi)

The function retrieves the average RSSI for the Thread Parent.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aParentRssi A pointer to where the parent RSSI should be placed.

Definition at line 861 of file include/openthread/thread.h

otThreadGetParentLastRssi

otError otThreadGetParentLastRssi (otInstance *aInstance, int8_t *aLastRssi)

General

527/962

The function retrieves the RSSI of the last packet from the Thread Parent.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aLastRssi A pointer to where the last RSSI should be placed.

Definition at line 874 of file include/openthread/thread.h

otThreadSearchForBetterParent

otError otThreadSearchForBetterParent (otInstance *aInstance)

Starts the process for child to search for a better parent while staying attached to its current parent.

Parameters

N/A aInstance

Must be used when device is attached as a child.

Definition at line 885 of file include/openthread/thread.h

otThreadGetIp6Counters

const otIpCounters * otThreadGetIp6Counters (otInstance *aInstance)

Gets the IPv6 counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the IPv6 counters.

Definition at line 895 of file include/openthread/thread.h

otThreadResetIp6Counters

void otThreadResetIp6Counters (otInstance *aInstance)

Resets the IPv6 counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 903 of file include/openthread/thread.h

otThreadGetTimeInQueueHistogram

const uint32_t * otThreadGetTimeInQueueHistogram (otInstance *aInstance, uint16_t *aNumBins, uint32_t *aBinInterval)

General

528/962

Gets the time-in-queue histogram for messages in the TX queue.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aNumBins Pointer to return the number of bins in histogram (array length).

[out] aBinInterval Pointer to return the histogram bin interval length in milliseconds.

Requires OPENTHREAD_CONFIG_TX_QUEUE_STATISTICS_ENABLE .

Histogram of the time-in-queue of messages in the transmit queue is collected. The time-in-queue is tracked for direct

transmissions only and is measured as the duration from when a message is added to the transmit queue until it is passed to

the MAC layer for transmission or dropped.

The histogram is returned as an array of uint32_t values with aNumBins entries. The first entry in the array (at index 0)

represents the number of messages with a time-in-queue less than aBinInterval . The second entry represents the number

of messages with a time-in-queue greater than or equal to aBinInterval , but less than 2 * aBinInterval . And so on. The last

entry represents the number of messages with time-in-queue greater than or equal to (aNumBins - 1) * aBinInterval .

The collected statistics can be reset by calling otThreadResetTime InQueueStat() . The histogram information is collected since

the OpenThread instance was initialized or since the last time statistics collection was reset by calling the

otThreadResetTime InQueueStat() .

Pointers aNumBins and aBinInterval MUST NOT be NULL.

Returns

A pointer to an array of aNumBins entries representing the collected histogram info.

Definition at line 933 of file include/openthread/thread.h

otThreadGetMaxTimeInQueue

uint32_t otThreadGetMaxTimeInQueue (otInstance *aInstance)

Gets the maximum time-in-queue for messages in the TX queue.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires OPENTHREAD_CONFIG_TX_QUEUE_STATISTICS_ENABLE .

The time-in-queue is tracked for direct transmissions only and is measured as the duration from when a message is added

to the transmit queue until it is passed to the MAC layer for transmission or dropped.

The collected statistics can be reset by calling otThreadResetTime InQueueStat() .

Returns

The maximum time-in-queue in milliseconds for all messages in the TX queue (so far).

Definition at line 950 of file include/openthread/thread.h

otThreadResetTimeInQueueStat

void otThreadResetTimeInQueueStat (otInstance *aInstance)

Resets the TX queue time-in-queue statistics.

General

529/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires OPENTHREAD_CONFIG_TX_QUEUE_STATISTICS_ENABLE .

Definition at line 960 of file include/openthread/thread.h

otThreadGetMleCounters

const otMleCounters * otThreadGetMleCounters (otInstance *aInstance)

Gets the Thread MLE counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

A pointer to the Thread MLE counters.

Definition at line 970 of file include/openthread/thread.h

otThreadResetMleCounters

void otThreadResetMleCounters (otInstance *aInstance)

Resets the Thread MLE counters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 978 of file include/openthread/thread.h

otThreadRegisterParentResponseCallback

void otThreadRegisterParentResponseCallback (otInstance *aInstance, otThreadParentResponseCallback aCallback, void
*aContext)

Registers a callback to receive MLE Parent Response data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called upon receiving an MLE Parent Response message.

[in] aContext A pointer to callback client-specific context.

Requires OPENTHREAD_CONFIG_MLE_PARENT_RESPONSE_CALLBACK_API_ENABLE .

Definition at line 1001 of file include/openthread/thread.h

otThreadSetDiscoveryRequestCallback

General

530/962

void otThreadSetDiscoveryRequestCallback (otInstance *aInstance, otThreadDiscoveryRequestCallback aCallback, void
*aContext)

Sets a callback to receive MLE Discovery Request data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called upon receiving an MLE Discovery Request message.

[in] aContext A pointer to callback application-specific context.

Definition at line 1033 of file include/openthread/thread.h

otThreadLocateAnycastDestination

otError otThreadLocateAnycastDestination (otInstance *aInstance, const otIp6Address *aAnycastAddress,
otThreadAnycastLocatorCallback aCallback, void *aContext)

Requests the closest destination of a given anycast address to be located.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aAnycastAddress The anycast address to locate. MUST NOT be NULL.

[in] aCallback The callback function to report the result.

[in] aContext An arbitrary context used with aCallback .

Is only available when OPENTHREAD_CONFIG_TMF_ANYCAST_LOCATOR_ENABLE is enabled.

If a previous request is ongoing, a subsequent call to this function will cancel and replace the earlier request.

Definition at line 1072 of file include/openthread/thread.h

otThreadIsAnycastLocateInProgress

bool otThreadIsAnycastLocateInProgress (otInstance *aInstance)

Indicates whether an anycast locate request is currently in progress.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Is only available when OPENTHREAD_CONFIG_TMF_ANYCAST_LOCATOR_ENABLE is enabled.

Returns

TRUE if an anycast locate request is currently in progress, FALSE otherwise.

Definition at line 1087 of file include/openthread/thread.h

otThreadSendAddressNotification

void otThreadSendAddressNotification (otInstance *aInstance, otIp6Address *aDestination, otIp6Address *aTarget,
otIp6InterfaceIdentifier *aMlIid)

General

531/962

Sends a Proactive Address Notification (ADDR_NTF.ntf) message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestination The destination to send the ADDR_NTF.ntf message.

[in] aTarget The target address of the ADDR_NTF.ntf message.

[in] aMlIid The ML-IID of the ADDR_NTF.ntf message.

Is only available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE is enabled.

Definition at line 1100 of file include/openthread/thread.h

otThreadSendProactiveBackboneNotification

otError otThreadSendProactiveBackboneNotification (otInstance *aInstance, otIp6Address *aTarget,
otIp6InterfaceIdentifier *aMlIid, uint32_t aTimeSinceLastTransaction)

Sends a Proactive Backbone Notification (PRO_BB.ntf) message on the Backbone link.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTarget The target address of the PRO_BB.ntf message.

[in] aMlIid The ML-IID of the PRO_BB.ntf message.

[in] aTimeSinceLastTransaction Time since last transaction (in seconds).

Is only available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE is enabled.

Definition at line 1119 of file include/openthread/thread.h

otThreadDetachGracefully

otError otThreadDetachGracefully (otInstance *aInstance, otDetachGracefullyCallback aCallback, void *aContext)

Notifies other nodes in the network (if any) and then stops Thread protocol operation.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function that is called upon finishing detaching.

[in] aContext A pointer to callback application-specific context.

It sends an Address Release if it's a router, or sets its child timeout to 0 if it's a child.

Definition at line 1137 of file include/openthread/thread.h

otConvertDurationInSecondsToString

void otConvertDurationInSecondsToString (uint32_t aDuration, char *aBuffer, uint16_t aSize)

Converts an uint32_t duration (in seconds) to a human-readable string.

Parameters

General

532/962

[in] aDuration A duration interval in seconds.

[out] aBuffer A pointer to a char array to output the string.

[in] aSize The size of aBuffer (in bytes). Recommended to use OT_DURATION_STRING_SIZE .

Requires OPENTHREAD_CONFIG_UPTIME_ENABLE to be enabled.

The string follows the format "<hh>:<mm>:<ss>" for hours, minutes, seconds (if duration is shorter than one day) or "

<dd>d.<hh>:<mm>:<ss>" (if longer than a day).

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Is intended for use with mAge or mConnectionTime in otNeighborInfo or otChildInfo structures.

Definition at line 1159 of file include/openthread/thread.h

Macro Definition Documentation

OT_NETWORK_DATA_ITERATOR_INIT

#define OT_NETWORK_DATA_ITERATOR_INIT

Value:

0

Value to initialize otNetworkDataIterator .

Definition at line 52 of file include/openthread/netdata.h

OT_SERVICE_DATA_MAX_SIZE

#define OT_SERVICE_DATA_MAX_SIZE

Value:

252

Max size of Service Data in bytes.

Definition at line 112 of file include/openthread/netdata.h

OT_SERVER_DATA_MAX_SIZE

#define OT_SERVER_DATA_MAX_SIZE

Value:

248

Max size of Server Data in bytes. Theoretical limit, practically much lower.

Definition at line 113 of file include/openthread/netdata.h

General

533/962

OT_NETWORK_DIAGNOSTIC_TYPELIST_MAX_ENTRIES

#define OT_NETWORK_DIAGNOSTIC_TYPELIST_MAX_ENTRIES

Value:

19

Maximum Number of Network Diagnostic TLV Types to Request or Reset.

Definition at line 55 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_CHILD_TABLE_ENTRY_SIZE

#define OT_NETWORK_DIAGNOSTIC_CHILD_TABLE_ENTRY_SIZE

Value:

3

S ize of Network Diagnostic Child Table entry.

Definition at line 60 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_ITERATOR_INIT

#define OT_NETWORK_DIAGNOSTIC_ITERATOR_INIT

Value:

0

Initializer for otNetworkDiagIterator.

Definition at line 65 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_NAME_TLV_LENGTH

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_NAME_TLV_LENGTH

Value:

32

Max length of Vendor Name TLV.

Definition at line 99 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_MODEL_TLV_LENGTH

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_MODEL_TLV_LENGTH

Value:

General

534/962

32

Max length of Vendor Model TLV.

Definition at line 100 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_SW_VERSION_TLV_LENGTH

#define OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_SW_VERSION_TLV_LENGTH

Value:

16

Max length of Vendor SW Version TLV.

Definition at line 101 of file include/openthread/netdiag.h

OT_NETWORK_DIAGNOSTIC_MAX_THREAD_STACK_VERSION_TLV_LENGTH

#define OT_NETWORK_DIAGNOSTIC_MAX_THREAD_STACK_VERSION_TLV_LENGTH

Value:

64

Max length of Thread Stack Version TLV.

Definition at line 102 of file include/openthread/netdiag.h

OT_NETWORK_BASE_TLV_MAX_LENGTH

#define OT_NETWORK_BASE_TLV_MAX_LENGTH

Value:

254

Maximum value length of Thread Base TLV.

Definition at line 59 of file include/openthread/thread.h

OT_NETWORK_MAX_ROUTER_ID

#define OT_NETWORK_MAX_ROUTER_ID

Value:

62

Maximum Router ID.

Definition at line 61 of file include/openthread/thread.h

General

535/962

OT_NEIGHBOR_INFO_ITERATOR_INIT

#define OT_NEIGHBOR_INFO_ITERATOR_INIT

Value:

0

Initializer for otNeighborInfoIterator.

Definition at line 111 of file include/openthread/thread.h

OT_JOINER_ADVDATA_MAX_LENGTH

#define OT_JOINER_ADVDATA_MAX_LENGTH

Value:

64

Maximum AdvData Length of Joiner Advertisement.

Definition at line 323 of file include/openthread/thread.h

OT_DURATION_STRING_SIZE

#define OT_DURATION_STRING_SIZE

Value:

21

Recommended size for string representation of uint32_t duration in seconds.

Definition at line 1139 of file include/openthread/thread.h

otBorderRouterConfig

536/962

otBorderRouterConfig

Represents a Border Router configuration.

Public Attributes

otIp6Prefix mPrefix
The IPv6 prefix.

signed int mPreference
A 2-bit signed int preference (OT_ROUTE_PREFERENCE_* values).

bool mPreferred
Whether prefix is preferred.

bool mSlaac
Whether prefix can be used for address auto-configuration (SLAAC).

bool mDhcp
Whether border router is DHCPv6 Agent.

bool mConfigure
Whether DHCPv6 Agent supplying other config data.

bool mDefaultRoute
Whether border router is a default router for prefix.

bool mOnMesh
Whether this prefix is considered on-mesh.

bool mStable
Whether this configuration is considered Stable Network Data.

bool mNdDns
Whether this border router can supply DNS information via ND.

bool mDp
Whether prefix is a Thread Domain Prefix (added since Thread 1.2).

uint16_t mRloc16
The border router's RLOC16 (value ignored on config add).

Public Attribute Documentation

mPrefix

otIp6Prefix otBorderRouterConfig::mPrefix

The IPv6 prefix.

Definition at line 61 of file include/openthread/netdata.h

mPreference

otBorderRouterConfig

537/962

signed int otBorderRouterConfig::mPreference

A 2-bit signed int preference (OT_ROUTE_PREFERENCE_* values).

Definition at line 62 of file include/openthread/netdata.h

mPreferred

bool otBorderRouterConfig::mPreferred

Whether prefix is preferred.

Definition at line 63 of file include/openthread/netdata.h

mSlaac

bool otBorderRouterConfig::mSlaac

Whether prefix can be used for address auto-configuration (SLAAC).

Definition at line 64 of file include/openthread/netdata.h

mDhcp

bool otBorderRouterConfig::mDhcp

Whether border router is DHCPv6 Agent.

Definition at line 65 of file include/openthread/netdata.h

mConfigure

bool otBorderRouterConfig::mConfigure

Whether DHCPv6 Agent supplying other config data.

Definition at line 66 of file include/openthread/netdata.h

mDefaultRoute

bool otBorderRouterConfig::mDefaultRoute

Whether border router is a default router for prefix.

Definition at line 67 of file include/openthread/netdata.h

mOnMesh

otBorderRouterConfig

538/962

bool otBorderRouterConfig::mOnMesh

Whether this prefix is considered on-mesh.

Definition at line 68 of file include/openthread/netdata.h

mStable

bool otBorderRouterConfig::mStable

Whether this configuration is considered Stable Network Data.

Definition at line 69 of file include/openthread/netdata.h

mNdDns

bool otBorderRouterConfig::mNdDns

Whether this border router can supply DNS information via ND.

Definition at line 70 of file include/openthread/netdata.h

mDp

bool otBorderRouterConfig::mDp

Whether prefix is a Thread Domain Prefix (added since Thread 1.2).

Definition at line 71 of file include/openthread/netdata.h

mRloc16

uint16_t otBorderRouterConfig::mRloc16

The border router's RLOC16 (value ignored on config add).

Definition at line 72 of file include/openthread/netdata.h

otLowpanContextInfo

539/962

otLowpanContextInfo

Represents 6LoWPAN Context ID information associated with a prefix in Network Data.

Public Attributes

uint8_t mContextId
The 6LoWPAN Context ID.

bool mCompressFlag
The compress flag.

otIp6Prefix mPrefix
The associated IPv6 prefix.

Public Attribute Documentation

mContextId

uint8_t otLowpanContextInfo::mContextId

The 6LoWPAN Context ID.

Definition at line 81 of file include/openthread/netdata.h

mCompressFlag

bool otLowpanContextInfo::mCompressFlag

The compress flag.

Definition at line 82 of file include/openthread/netdata.h

mPrefix

otIp6Prefix otLowpanContextInfo::mPrefix

The associated IPv6 prefix.

Definition at line 83 of file include/openthread/netdata.h

otExternalRouteConfig

540/962

otExternalRouteConfig

Represents an External Route configuration.

Public Attributes

otIp6Prefix mPrefix
The IPv6 prefix.

uint16_t mRloc16
The border router's RLOC16 (value ignored on config add).

signed int mPreference
A 2-bit signed int preference (OT_ROUTE_PREFERENCE_* values).

bool mNat64
Whether this is a NAT64 prefix.

bool mStable
Whether this configuration is considered Stable Network Data.

bool mNextHopIsThisDevice
Whether the next hop is this device (value ignored on config add).

bool mAdvPio
Whether or not BR is advertising a ULA prefix in PIO (AP flag).

Public Attribute Documentation

mPrefix

otIp6Prefix otExternalRouteConfig::mPrefix

The IPv6 prefix.

Definition at line 92 of file include/openthread/netdata.h

mRloc16

uint16_t otExternalRouteConfig::mRloc16

The border router's RLOC16 (value ignored on config add).

Definition at line 93 of file include/openthread/netdata.h

mPreference

signed int otExternalRouteConfig::mPreference

A 2-bit signed int preference (OT_ROUTE_PREFERENCE_* values).

otExternalRouteConfig

541/962

Definition at line 94 of file include/openthread/netdata.h

mNat64

bool otExternalRouteConfig::mNat64

Whether this is a NAT64 prefix.

Definition at line 95 of file include/openthread/netdata.h

mStable

bool otExternalRouteConfig::mStable

Whether this configuration is considered Stable Network Data.

Definition at line 96 of file include/openthread/netdata.h

mNextHopIsThisDevice

bool otExternalRouteConfig::mNextHopIsThisDevice

Whether the next hop is this device (value ignored on config add).

Definition at line 97 of file include/openthread/netdata.h

mAdvPio

bool otExternalRouteConfig::mAdvPio

Whether or not BR is advertising a ULA prefix in PIO (AP flag).

Definition at line 98 of file include/openthread/netdata.h

otServerConfig

542/962

otServerConfig

Represents a Server configuration.

Public Attributes

bool mStable
Whether this config is considered Stable Network Data.

uint8_t mServerDataLength
Length of server data.

uint8_t mServerData
Server data bytes.

uint16_t mRloc16
The Server RLOC16.

Public Attribute Documentation

mStable

bool otServerConfig::mStable

Whether this config is considered Stable Network Data.

Definition at line 121 of file include/openthread/netdata.h

mServerDataLength

uint8_t otServerConfig::mServerDataLength

Length of server data.

Definition at line 122 of file include/openthread/netdata.h

mServerData

uint8_t otServerConfig::mServerData[OT_SERVER_DATA_MAX_SIZE�

Server data bytes.

Definition at line 123 of file include/openthread/netdata.h

mRloc16

uint16_t otServerConfig::mRloc16

The Server RLOC16.

otServerConfig

543/962

Definition at line 124 of file include/openthread/netdata.h

otServiceConfig

544/962

otServiceConfig

Represents a Service configuration.

Public Attributes

uint8_t mServiceId
Service ID (when iterating over the Network Data).

uint32_t mEnterpriseNumber
IANA Enterprise Number.

uint8_t mServiceDataLength
Length of service data.

uint8_t mServiceData
Service data bytes.

otServerConfig mServerConfig
The Server configuration.

Public Attribute Documentation

mServiceId

uint8_t otServiceConfig::mServiceId

Service ID (when iterating over the Network Data).

Definition at line 133 of file include/openthread/netdata.h

mEnterpriseNumber

uint32_t otServiceConfig::mEnterpriseNumber

IANA Enterprise Number.

Definition at line 134 of file include/openthread/netdata.h

mServiceDataLength

uint8_t otServiceConfig::mServiceDataLength

Length of service data.

Definition at line 135 of file include/openthread/netdata.h

mServiceData

otServiceConfig

545/962

uint8_t otServiceConfig::mServiceData[OT_SERVICE_DATA_MAX_SIZE�

Service data bytes.

Definition at line 136 of file include/openthread/netdata.h

mServerConfig

otServerConfig otServiceConfig::mServerConfig

The Server configuration.

Definition at line 137 of file include/openthread/netdata.h

otNetworkDiagConnectivity

546/962

otNetworkDiagConnectivity

Represents a Network Diagnostic Connectivity value.

Public Attributes

int8_t mParentPriority
The priority of the sender as a parent.

uint8_t mLinkQuality3
The number of neighboring devices with which the sender shares a link of quality 3.

uint8_t mLinkQuality2
The number of neighboring devices with which the sender shares a link of quality 2.

uint8_t mLinkQuality1
The number of neighboring devices with which the sender shares a link of quality 1.

uint8_t mLeaderCost
The sender's routing cost to the Leader.

uint8_t mIdSequence
The most recent ID sequence number received by the sender.

uint8_t mActiveRouters
The number of active Routers in the sender's Thread Network Partition.

uint16_t mSedBufferSize
The guaranteed buffer capacity in octets for all IPv6 datagrams destined to a given SED.

uint8_t mSedDatagramCount
The guaranteed queue capacity in number of IPv6 datagrams destined to a given SED.

Public Attribute Documentation

mParentPriority

int8_t otNetworkDiagConnectivity::mParentPriority

The priority of the sender as a parent.

Definition at line 115 of file include/openthread/netdiag.h

mLinkQuality3

uint8_t otNetworkDiagConnectivity::mLinkQuality3

The number of neighboring devices with which the sender shares a link of quality 3.

Definition at line 120 of file include/openthread/netdiag.h

otNetworkDiagConnectivity

547/962

mLinkQuality2

uint8_t otNetworkDiagConnectivity::mLinkQuality2

The number of neighboring devices with which the sender shares a link of quality 2.

Definition at line 125 of file include/openthread/netdiag.h

mLinkQuality1

uint8_t otNetworkDiagConnectivity::mLinkQuality1

The number of neighboring devices with which the sender shares a link of quality 1.

Definition at line 130 of file include/openthread/netdiag.h

mLeaderCost

uint8_t otNetworkDiagConnectivity::mLeaderCost

The sender's routing cost to the Leader.

Definition at line 135 of file include/openthread/netdiag.h

mIdSequence

uint8_t otNetworkDiagConnectivity::mIdSequence

The most recent ID sequence number received by the sender.

Definition at line 140 of file include/openthread/netdiag.h

mActiveRouters

uint8_t otNetworkDiagConnectivity::mActiveRouters

The number of active Routers in the sender's Thread Network Partition.

Definition at line 145 of file include/openthread/netdiag.h

mSedBufferSize

uint16_t otNetworkDiagConnectivity::mSedBufferSize

The guaranteed buffer capacity in octets for all IPv6 datagrams destined to a given SED.

Optional.

Definition at line 150 of file include/openthread/netdiag.h

otNetworkDiagConnectivity

548/962

mSedDatagramCount

uint8_t otNetworkDiagConnectivity::mSedDatagramCount

The guaranteed queue capacity in number of IPv6 datagrams destined to a given SED.

Optional.

Definition at line 155 of file include/openthread/netdiag.h

otNetworkDiagRouteData

549/962

otNetworkDiagRouteData

Represents a Network Diagnostic Route data.

Public Attributes

uint8_t mRouterId
The Assigned Router ID.

uint8_t mLinkQualityOut
Link Quality Out.

uint8_t mLinkQualityIn
Link Quality In.

uint8_t mRouteCost
Routing Cost. Infinite routing cost is represented by value 0.

Public Attribute Documentation

mRouterId

uint8_t otNetworkDiagRouteData::mRouterId

The Assigned Router ID.

Definition at line 164 of file include/openthread/netdiag.h

mLinkQualityOut

uint8_t otNetworkDiagRouteData::mLinkQualityOut

Link Quality Out.

Definition at line 165 of file include/openthread/netdiag.h

mLinkQualityIn

uint8_t otNetworkDiagRouteData::mLinkQualityIn

Link Quality In.

Definition at line 166 of file include/openthread/netdiag.h

mRouteCost

uint8_t otNetworkDiagRouteData::mRouteCost

Routing Cost. Infinite routing cost is represented by value 0.

otNetworkDiagRouteData

550/962

Definition at line 167 of file include/openthread/netdiag.h

otNetworkDiagRoute

551/962

otNetworkDiagRoute

Represents a Network Diagnostic Route TLV value.

Public Attributes

uint8_t mIdSequence
The sequence number associated with the set of Router ID assignments in mRouteData.

uint8_t mRouteCount
Number of elements in mRouteData.

otNetworkDiagRo
uteData

mRouteData
Link Quality and Routing Cost data.

Public Attribute Documentation

mIdSequence

uint8_t otNetworkDiagRoute::mIdSequence

The sequence number associated with the set of Router ID assignments in mRouteData.

Definition at line 179 of file include/openthread/netdiag.h

mRouteCount

uint8_t otNetworkDiagRoute::mRouteCount

Number of elements in mRouteData.

Definition at line 184 of file include/openthread/netdiag.h

mRouteData

otNetworkDiagRouteData otNetworkDiagRoute::mRouteData[OT_NETWORK_MAX_ROUTER_ID�1�

Link Quality and Routing Cost data.

Definition at line 189 of file include/openthread/netdiag.h

otNetworkDiagMacCounters

552/962

otNetworkDiagMacCounters

Represents a Network Diagnostic Mac Counters value.

See RFC 2863 for definitions of member fields.

Public Attributes

uint32_t mIfInUnknownProtos

uint32_t mIfInErrors

uint32_t mIfOutErrors

uint32_t mIfInUcastPkts

uint32_t mIfInBroadcastPkts

uint32_t mIfInDiscards

uint32_t mIfOutUcastPkts

uint32_t mIfOutBroadcastPkts

uint32_t mIfOutDiscards

Public Attribute Documentation

mIfInUnknownProtos

uint32_t otNetworkDiagMacCounters::mIfInUnknownProtos

Definition at line 200 of file include/openthread/netdiag.h

mIfInErrors

uint32_t otNetworkDiagMacCounters::mIfInErrors

Definition at line 201 of file include/openthread/netdiag.h

mIfOutErrors

uint32_t otNetworkDiagMacCounters::mIfOutErrors

Definition at line 202 of file include/openthread/netdiag.h

mIfInUcastPkts

https://www.ietf.org/rfc/rfc2863

otNetworkDiagMacCounters

553/962

uint32_t otNetworkDiagMacCounters::mIfInUcastPkts

Definition at line 203 of file include/openthread/netdiag.h

mIfInBroadcastPkts

uint32_t otNetworkDiagMacCounters::mIfInBroadcastPkts

Definition at line 204 of file include/openthread/netdiag.h

mIfInDiscards

uint32_t otNetworkDiagMacCounters::mIfInDiscards

Definition at line 205 of file include/openthread/netdiag.h

mIfOutUcastPkts

uint32_t otNetworkDiagMacCounters::mIfOutUcastPkts

Definition at line 206 of file include/openthread/netdiag.h

mIfOutBroadcastPkts

uint32_t otNetworkDiagMacCounters::mIfOutBroadcastPkts

Definition at line 207 of file include/openthread/netdiag.h

mIfOutDiscards

uint32_t otNetworkDiagMacCounters::mIfOutDiscards

Definition at line 208 of file include/openthread/netdiag.h

otNetworkDiagMleCounters

554/962

otNetworkDiagMleCounters

Represents a Network Diagnostics MLE Counters value.

Public Attributes

uint16_t mDisabledRole
Number of times device entered disabled ro le .

uint16_t mDetachedRole
Number of times device entered detached ro le .

uint16_t mChildRole
Number of times device entered child ro le .

uint16_t mRouterRole
Number of times device entered router ro le .

uint16_t mLeaderRole
Number of times device entered leader ro le .

uint16_t mAttachAttempts
Number of attach attempts while device was detached.

uint16_t mPartitionIdChanges
Number of changes to partition ID.

uint16_t mBetterPartitionAttachAttempts
Number of attempts to attach to a better partition.

uint16_t mParentChanges
Number of time device changed its parent.

uint64_t mTrackedTime
Milliseconds tracked by next counters (zero if not supported).

uint64_t mDisabledTime
Milliseconds device has been in disabled ro le .

uint64_t mDetachedTime
Milliseconds device has been in detached ro le .

uint64_t mChildTime
Milliseconds device has been in child ro le .

uint64_t mRouterTime
Milliseconds device has been in router ro le .

uint64_t mLeaderTime
Milliseconds device has been in leader ro le .

Public Attribute Documentation

mDisabledRole

uint16_t otNetworkDiagMleCounters::mDisabledRole

otNetworkDiagMleCounters

555/962

Number of times device entered disabled role.

Definition at line 217 of file include/openthread/netdiag.h

mDetachedRole

uint16_t otNetworkDiagMleCounters::mDetachedRole

Number of times device entered detached role.

Definition at line 218 of file include/openthread/netdiag.h

mChildRole

uint16_t otNetworkDiagMleCounters::mChildRole

Number of times device entered child role.

Definition at line 219 of file include/openthread/netdiag.h

mRouterRole

uint16_t otNetworkDiagMleCounters::mRouterRole

Number of times device entered router role.

Definition at line 220 of file include/openthread/netdiag.h

mLeaderRole

uint16_t otNetworkDiagMleCounters::mLeaderRole

Number of times device entered leader role.

Definition at line 221 of file include/openthread/netdiag.h

mAttachAttempts

uint16_t otNetworkDiagMleCounters::mAttachAttempts

Number of attach attempts while device was detached.

Definition at line 222 of file include/openthread/netdiag.h

mPartitionIdChanges

uint16_t otNetworkDiagMleCounters::mPartitionIdChanges

Number of changes to partition ID.

otNetworkDiagMleCounters

556/962

Definition at line 223 of file include/openthread/netdiag.h

mBetterPartitionAttachAttempts

uint16_t otNetworkDiagMleCounters::mBetterPartitionAttachAttempts

Number of attempts to attach to a better partition.

Definition at line 224 of file include/openthread/netdiag.h

mParentChanges

uint16_t otNetworkDiagMleCounters::mParentChanges

Number of time device changed its parent.

Definition at line 225 of file include/openthread/netdiag.h

mTrackedTime

uint64_t otNetworkDiagMleCounters::mTrackedTime

Milliseconds tracked by next counters (zero if not supported).

Definition at line 226 of file include/openthread/netdiag.h

mDisabledTime

uint64_t otNetworkDiagMleCounters::mDisabledTime

Milliseconds device has been in disabled role.

Definition at line 227 of file include/openthread/netdiag.h

mDetachedTime

uint64_t otNetworkDiagMleCounters::mDetachedTime

Milliseconds device has been in detached role.

Definition at line 228 of file include/openthread/netdiag.h

mChildTime

uint64_t otNetworkDiagMleCounters::mChildTime

Milliseconds device has been in child role.

Definition at line 229 of file include/openthread/netdiag.h

otNetworkDiagMleCounters

557/962

mRouterTime

uint64_t otNetworkDiagMleCounters::mRouterTime

Milliseconds device has been in router role.

Definition at line 230 of file include/openthread/netdiag.h

mLeaderTime

uint64_t otNetworkDiagMleCounters::mLeaderTime

Milliseconds device has been in leader role.

Definition at line 231 of file include/openthread/netdiag.h

otNetworkDiagChildEntry

558/962

otNetworkDiagChildEntry

Represents a Network Diagnostic Child Table Entry.

Public Attributes

uint16_t mTimeout
Expected po ll time expressed as 2^(Timeout-4) seconds.

uint8_t mLinkQuality
Link Quality In value in [0,3].

uint16_t mChildId
Child ID from which an RLOC can be generated.

otLinkModeConfig mMode
Link mode bits.

Public Attribute Documentation

mTimeout

uint16_t otNetworkDiagChildEntry::mTimeout

Expected poll time expressed as 2^(Timeout-4) seconds.

Definition at line 243 of file include/openthread/netdiag.h

mLinkQuality

uint8_t otNetworkDiagChildEntry::mLinkQuality

Link Quality In value in [0,3].

Value 0 indicates that sender does not support the feature to provide link quality info.

Definition at line 251 of file include/openthread/netdiag.h

mChildId

uint16_t otNetworkDiagChildEntry::mChildId

Child ID from which an RLOC can be generated.

Definition at line 256 of file include/openthread/netdiag.h

mMode

otLinkModeConfig otNetworkDiagChildEntry::mMode

otNetworkDiagChildEntry

559/962

Link mode bits.

Definition at line 261 of file include/openthread/netdiag.h

otNetworkDiagT lv

560/962

otNetworkDiagTlv

Represents a Network Diagnostic TLV.

Public Attributes

uint8_t mType
The Network Diagnostic TLV type .

otExtAddress mExtAddress

uint16_t mAddr16

otLinkModeConfig mMode

uint32_t mTimeout

otNetworkDiagCo
nnectivity

mConnectivity

otNetworkDiagRo
ute

mRoute

otLeaderData mLeaderData

otNetworkDiagMa
cCounters

mMacCounters

otNetworkDiagMl
eCounters

mMleCounters

uint8_t mBatteryLevel

uint16_t mSupplyVoltage

uint32_t mMaxChildTimeout

uint16_t mVersion

char mVendorName

char mVendorModel

char mVendorSwVersion

char mThreadStackVersion

uint8_t mCount

uint8_t m8

struct
otNetworkDiagTlv

���6���7

mNetworkData

otIp6Address mList

struct
otNetworkDiagTlv

otNetworkDiagT lv

561/962

���6���8
mIp6AddrList

otNetworkDiagChi
ldEntry

mTable

struct
otNetworkDiagTlv

���6���9

mChildTable

struct
otNetworkDiagTlv

���6���10

mChannelPages

union
otNetworkDiagTlv

���6

mData

Public Attribute Documentation

mType

uint8_t otNetworkDiagTlv::mType

The Network Diagnostic TLV type.

Definition at line 273 of file include/openthread/netdiag.h

mExtAddress

otExtAddress otNetworkDiagTlv::mExtAddress

Definition at line 277 of file include/openthread/netdiag.h

mAddr16

uint16_t otNetworkDiagTlv::mAddr16

Definition at line 278 of file include/openthread/netdiag.h

mMode

otLinkModeConfig otNetworkDiagTlv::mMode

Definition at line 279 of file include/openthread/netdiag.h

mTimeout

uint32_t otNetworkDiagTlv::mTimeout

Definition at line 280 of file include/openthread/netdiag.h

otNetworkDiagT lv

562/962

mConnectivity

otNetworkDiagConnectivity otNetworkDiagTlv::mConnectivity

Definition at line 281 of file include/openthread/netdiag.h

mRoute

otNetworkDiagRoute otNetworkDiagTlv::mRoute

Definition at line 282 of file include/openthread/netdiag.h

mLeaderData

otLeaderData otNetworkDiagTlv::mLeaderData

Definition at line 283 of file include/openthread/netdiag.h

mMacCounters

otNetworkDiagMacCounters otNetworkDiagTlv::mMacCounters

Definition at line 284 of file include/openthread/netdiag.h

mMleCounters

otNetworkDiagMleCounters otNetworkDiagTlv::mMleCounters

Definition at line 285 of file include/openthread/netdiag.h

mBatteryLevel

uint8_t otNetworkDiagTlv::mBatteryLevel

Definition at line 286 of file include/openthread/netdiag.h

mSupplyVoltage

uint16_t otNetworkDiagTlv::mSupplyVoltage

Definition at line 287 of file include/openthread/netdiag.h

mMaxChildTimeout

otNetworkDiagT lv

563/962

uint32_t otNetworkDiagTlv::mMaxChildTimeout

Definition at line 288 of file include/openthread/netdiag.h

mVersion

uint16_t otNetworkDiagTlv::mVersion

Definition at line 289 of file include/openthread/netdiag.h

mVendorName

char otNetworkDiagTlv::mVendorName[OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_NAME_TLV_LENGTH�1�

Definition at line 290 of file include/openthread/netdiag.h

mVendorModel

char otNetworkDiagTlv::mVendorModel[OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_MODEL_TLV_LENGTH�1�

Definition at line 291 of file include/openthread/netdiag.h

mVendorSwVersion

char otNetworkDiagTlv::mVendorSwVersion[OT_NETWORK_DIAGNOSTIC_MAX_VENDOR_SW_VERSION_TLV_LENGTH�1�

Definition at line 292 of file include/openthread/netdiag.h

mThreadStackVersion

char
otNetworkDiagTlv::mThreadStackVersion[OT_NETWORK_DIAGNOSTIC_MAX_THREAD_STACK_VERSION_TLV_LENGTH�1�

Definition at line 293 of file include/openthread/netdiag.h

mCount

uint8_t otNetworkDiagTlv::mCount

Definition at line 296 of file include/openthread/netdiag.h

m8

uint8_t otNetworkDiagTlv::m8�OT_NETWORK_BASE_TLV_MAX_LENGTH�

otNetworkDiagT lv

564/962

Definition at line 297 of file include/openthread/netdiag.h

mNetworkData

struct otNetworkDiagTlv::@6���7 otNetworkDiagTlv::mNetworkData

Definition at line 298 of file include/openthread/netdiag.h

mList

otIp6Address otNetworkDiagTlv::mList[OT_NETWORK_BASE_TLV_MAX_LENGTH/OT_IP6_ADDRESS_SIZE�

Definition at line 302 of file include/openthread/netdiag.h

mIp6AddrList

struct otNetworkDiagTlv::@6���8 otNetworkDiagTlv::mIp6AddrList

Definition at line 303 of file include/openthread/netdiag.h

mTable

otNetworkDiagChildEntry
otNetworkDiagTlv::mTable[OT_NETWORK_BASE_TLV_MAX_LENGTH/OT_NETWORK_DIAGNOSTIC_CHILD_TABLE_ENTRY_SIZE�

Definition at line 308 of file include/openthread/netdiag.h

mChildTable

struct otNetworkDiagTlv::@6���9 otNetworkDiagTlv::mChildTable

Definition at line 309 of file include/openthread/netdiag.h

mChannelPages

struct otNetworkDiagTlv::@6���10 otNetworkDiagTlv::mChannelPages

Definition at line 314 of file include/openthread/netdiag.h

mData

union otNetworkDiagTlv::@6 otNetworkDiagTlv::mData

Definition at line 315 of file include/openthread/netdiag.h

otLinkModeConfig

565/962

otLinkModeConfig

Represents an MLE Link Mode configuration.

Public Attributes

bool mRxOnWhenIdle
1, if the sender has its receiver on when not transmitting. 0, otherwise .

bool mDeviceType
1, if the sender is an FTD. 0, otherwise .

bool mNetworkData
1, if the sender requires the full Network Data. 0, otherwise .

Public Attribute Documentation

mRxOnWhenIdle

bool otLinkModeConfig::mRxOnWhenIdle

1, if the sender has its receiver on when not transmitting. 0, otherwise.

Definition at line 81 of file include/openthread/thread.h

mDeviceType

bool otLinkModeConfig::mDeviceType

1, if the sender is an FTD. 0, otherwise.

Definition at line 82 of file include/openthread/thread.h

mNetworkData

bool otLinkModeConfig::mNetworkData

1, if the sender requires the full Network Data. 0, otherwise.

Definition at line 83 of file include/openthread/thread.h

otNeighborInfo

566/962

otNeighborInfo

Holds diagnostic information for a neighboring Thread node.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address.

uint32_t mAge
Seconds since last heard.

uint32_t mConnectionTime
Seconds since link establishment (requires CONFIG_UPTIME_ENABLE)

uint16_t mRloc16
RLOC16.

uint32_t mLinkFrameCounter
Link Frame Counter.

uint32_t mMleFrameCounter
MLE Frame Counter.

uint8_t mLinkQualityIn
Link Quality In.

int8_t mAverageRssi
Average RSSI.

int8_t mLastRssi
Last observed RSSI.

uint8_t mLinkMargin
Link Margin.

uint16_t mFrameErrorRate
Frame error rate (0xffff->100%). Requires error tracking feature .

uint16_t mMessageErrorRate
(IPv6) msg error rate (0xffff->100%). Requires error tracking feature .

uint16_t mVersion
Thread version of the neighbor.

bool mRxOnWhenIdle
rx-on-when-idle

bool mFullThreadDevice
Full Thread Device .

bool mFullNetworkData
Full Network Data.

bool mIsChild
Is the neighbor a child.

Public Attribute Documentation

otNeighborInfo

567/962

mExtAddress

otExtAddress otNeighborInfo::mExtAddress

IEEE 802.15.4 Extended Address.

Definition at line 92 of file include/openthread/thread.h

mAge

uint32_t otNeighborInfo::mAge

Seconds since last heard.

Definition at line 93 of file include/openthread/thread.h

mConnectionTime

uint32_t otNeighborInfo::mConnectionTime

Seconds since link establishment (requires CONFIG_UPTIME_ENABLE)

Definition at line 94 of file include/openthread/thread.h

mRloc16

uint16_t otNeighborInfo::mRloc16

RLOC16.

Definition at line 95 of file include/openthread/thread.h

mLinkFrameCounter

uint32_t otNeighborInfo::mLinkFrameCounter

Link Frame Counter.

Definition at line 96 of file include/openthread/thread.h

mMleFrameCounter

uint32_t otNeighborInfo::mMleFrameCounter

MLE Frame Counter.

Definition at line 97 of file include/openthread/thread.h

mLinkQualityIn

otNeighborInfo

568/962

uint8_t otNeighborInfo::mLinkQualityIn

Link Quality In.

Definition at line 98 of file include/openthread/thread.h

mAverageRssi

int8_t otNeighborInfo::mAverageRssi

Average RSSI.

Definition at line 99 of file include/openthread/thread.h

mLastRssi

int8_t otNeighborInfo::mLastRssi

Last observed RSSI.

Definition at line 100 of file include/openthread/thread.h

mLinkMargin

uint8_t otNeighborInfo::mLinkMargin

Link Margin.

Definition at line 101 of file include/openthread/thread.h

mFrameErrorRate

uint16_t otNeighborInfo::mFrameErrorRate

Frame error rate (0xffff->100%). Requires error tracking feature.

Definition at line 102 of file include/openthread/thread.h

mMessageErrorRate

uint16_t otNeighborInfo::mMessageErrorRate

(IPv6) msg error rate (0xffff->100%). Requires error tracking feature.

Definition at line 103 of file include/openthread/thread.h

mVersion

otNeighborInfo

569/962

uint16_t otNeighborInfo::mVersion

Thread version of the neighbor.

Definition at line 104 of file include/openthread/thread.h

mRxOnWhenIdle

bool otNeighborInfo::mRxOnWhenIdle

rx-on-when-idle

Definition at line 105 of file include/openthread/thread.h

mFullThreadDevice

bool otNeighborInfo::mFullThreadDevice

Full Thread Device.

Definition at line 106 of file include/openthread/thread.h

mFullNetworkData

bool otNeighborInfo::mFullNetworkData

Full Network Data.

Definition at line 107 of file include/openthread/thread.h

mIsChild

bool otNeighborInfo::mIsChild

Is the neighbor a child.

Definition at line 108 of file include/openthread/thread.h

otLeaderData

570/962

otLeaderData

Represents the Thread Leader Data.

Public Attributes

uint32_t mPartitionId
Partition ID.

uint8_t mWeighting
Leader Weight.

uint8_t mDataVersion
Full Network Data Version.

uint8_t mStableDataVersion
Stable Network Data Version.

uint8_t mLeaderRouterId
Leader Router ID.

Public Attribute Documentation

mPartitionId

uint32_t otLeaderData::mPartitionId

Partition ID.

Definition at line 121 of file include/openthread/thread.h

mWeighting

uint8_t otLeaderData::mWeighting

Leader Weight.

Definition at line 122 of file include/openthread/thread.h

mDataVersion

uint8_t otLeaderData::mDataVersion

Full Network Data Version.

Definition at line 123 of file include/openthread/thread.h

mStableDataVersion

otLeaderData

571/962

uint8_t otLeaderData::mStableDataVersion

Stable Network Data Version.

Definition at line 124 of file include/openthread/thread.h

mLeaderRouterId

uint8_t otLeaderData::mLeaderRouterId

Leader Router ID.

Definition at line 125 of file include/openthread/thread.h

otRouterInfo

572/962

otRouterInfo

Holds diagnostic information for a Thread Router.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address.

uint16_t mRloc16
RLOC16.

uint8_t mRouterId
Router ID.

uint8_t mNextHop
Next hop to router.

uint8_t mPathCost
Path cost to router.

uint8_t mLinkQualityIn
Link Quality In.

uint8_t mLinkQualityOut
Link Quality Out.

uint8_t mAge
Time last heard.

bool mAllocated
Router ID allocated or not.

bool mLinkEstablished
Link established with Router ID or not.

uint8_t mVersion
Thread version.

uint8_t mCslClockAccuracy
Parent CSL parameters are only relevant when OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE is enabled.

uint8_t mCslUncertainty
CSL uncertainty, in ±10 us.

Public Attribute Documentation

mExtAddress

otExtAddress otRouterInfo::mExtAddress

IEEE 802.15.4 Extended Address.

Definition at line 134 of file include/openthread/thread.h

mRloc16

otRouterInfo

573/962

uint16_t otRouterInfo::mRloc16

RLOC16.

Definition at line 135 of file include/openthread/thread.h

mRouterId

uint8_t otRouterInfo::mRouterId

Router ID.

Definition at line 136 of file include/openthread/thread.h

mNextHop

uint8_t otRouterInfo::mNextHop

Next hop to router.

Definition at line 137 of file include/openthread/thread.h

mPathCost

uint8_t otRouterInfo::mPathCost

Path cost to router.

Definition at line 138 of file include/openthread/thread.h

mLinkQualityIn

uint8_t otRouterInfo::mLinkQualityIn

Link Quality In.

Definition at line 139 of file include/openthread/thread.h

mLinkQualityOut

uint8_t otRouterInfo::mLinkQualityOut

Link Quality Out.

Definition at line 140 of file include/openthread/thread.h

mAge

otRouterInfo

574/962

uint8_t otRouterInfo::mAge

Time last heard.

Definition at line 141 of file include/openthread/thread.h

mAllocated

bool otRouterInfo::mAllocated

Router ID allocated or not.

Definition at line 142 of file include/openthread/thread.h

mLinkEstablished

bool otRouterInfo::mLinkEstablished

Link established with Router ID or not.

Definition at line 143 of file include/openthread/thread.h

mVersion

uint8_t otRouterInfo::mVersion

Thread version.

Definition at line 144 of file include/openthread/thread.h

mCslClockAccuracy

uint8_t otRouterInfo::mCslClockAccuracy

Parent CSL parameters are only relevant when OPENTHREAD_CONFIG_MAC_CSL_RECEIVER_ENABLE is enabled.

CSL clock accuracy, in ± ppm

Definition at line 150 of file include/openthread/thread.h

mCslUncertainty

uint8_t otRouterInfo::mCslUncertainty

CSL uncertainty, in ±10 us.

Definition at line 151 of file include/openthread/thread.h

otIpCounters

575/962

otIpCounters

Represents the IP level counters.

Public Attributes

uint32_t mTxSuccess
The number of IPv6 packets successfully transmitted.

uint32_t mRxSuccess
The number of IPv6 packets successfully received.

uint32_t mTxFailure
The number of IPv6 packets failed to transmit.

uint32_t mRxFailure
The number of IPv6 packets failed to receive .

Public Attribute Documentation

mTxSuccess

uint32_t otIpCounters::mTxSuccess

The number of IPv6 packets successfully transmitted.

Definition at line 160 of file include/openthread/thread.h

mRxSuccess

uint32_t otIpCounters::mRxSuccess

The number of IPv6 packets successfully received.

Definition at line 161 of file include/openthread/thread.h

mTxFailure

uint32_t otIpCounters::mTxFailure

The number of IPv6 packets failed to transmit.

Definition at line 162 of file include/openthread/thread.h

mRxFailure

uint32_t otIpCounters::mRxFailure

The number of IPv6 packets failed to receive.

otIpCounters

576/962

Definition at line 163 of file include/openthread/thread.h

otMleCounters

577/962

otMleCounters

Represents the Thread MLE counters.

Public Attributes

uint16_t mDisabledRole
Number of times device entered OT_DEVICE_ROLE_DISABLED ro le .

uint16_t mDetachedRole
Number of times device entered OT_DEVICE_ROLE_DETACHED ro le .

uint16_t mChildRole
Number of times device entered OT_DEVICE_ROLE_CHILD ro le .

uint16_t mRouterRole
Number of times device entered OT_DEVICE_ROLE_ROUTER ro le .

uint16_t mLeaderRole
Number of times device entered OT_DEVICE_ROLE_LEADER ro le .

uint16_t mAttachAttempts
Number of attach attempts while device was detached.

uint16_t mPartitionIdChanges
Number of changes to partition ID.

uint16_t mBetterPartitionAttachAttempts
Number of attempts to attach to a better partition.

uint64_t mDisabledTime
Ro le time tracking.

uint64_t mDetachedTime
Number of milliseconds device has been in OT_DEVICE_ROLE_DETACHED ro le .

uint64_t mChildTime
Number of milliseconds device has been in OT_DEVICE_ROLE_CHILD ro le .

uint64_t mRouterTime
Number of milliseconds device has been in OT_DEVICE_ROLE_ROUTER ro le .

uint64_t mLeaderTime
Number of milliseconds device has been in OT_DEVICE_ROLE_LEADER ro le .

uint64_t mTrackedTime
Number of milliseconds tracked by previous counters.

uint16_t mParentChanges
Number of times device changed its parent.

Public Attribute Documentation

mDisabledRole

otMleCounters

578/962

uint16_t otMleCounters::mDisabledRole

Number of times device entered OT_DEVICE_ROLE_DISABLED role.

Definition at line 172 of file include/openthread/thread.h

mDetachedRole

uint16_t otMleCounters::mDetachedRole

Number of times device entered OT_DEVICE_ROLE_DETACHED role.

Definition at line 173 of file include/openthread/thread.h

mChildRole

uint16_t otMleCounters::mChildRole

Number of times device entered OT_DEVICE_ROLE_CHILD role.

Definition at line 174 of file include/openthread/thread.h

mRouterRole

uint16_t otMleCounters::mRouterRole

Number of times device entered OT_DEVICE_ROLE_ROUTER role.

Definition at line 175 of file include/openthread/thread.h

mLeaderRole

uint16_t otMleCounters::mLeaderRole

Number of times device entered OT_DEVICE_ROLE_LEADER role.

Definition at line 176 of file include/openthread/thread.h

mAttachAttempts

uint16_t otMleCounters::mAttachAttempts

Number of attach attempts while device was detached.

Definition at line 177 of file include/openthread/thread.h

mPartitionIdChanges

otMleCounters

579/962

uint16_t otMleCounters::mPartitionIdChanges

Number of changes to partition ID.

Definition at line 178 of file include/openthread/thread.h

mBetterPartitionAttachAttempts

uint16_t otMleCounters::mBetterPartitionAttachAttempts

Number of attempts to attach to a better partition.

Definition at line 179 of file include/openthread/thread.h

mDisabledTime

uint64_t otMleCounters::mDisabledTime

Role time tracking.

When uptime feature is enabled (OPENTHREAD_CONFIG_UPTIME_ENABLE = 1) time spent in each MLE role is tracked.

Number of milliseconds device has been in OT_DEVICE_ROLE_DISABLED role.

Definition at line 187 of file include/openthread/thread.h

mDetachedTime

uint64_t otMleCounters::mDetachedTime

Number of milliseconds device has been in OT_DEVICE_ROLE_DETACHED role.

Definition at line 188 of file include/openthread/thread.h

mChildTime

uint64_t otMleCounters::mChildTime

Number of milliseconds device has been in OT_DEVICE_ROLE_CHILD role.

Definition at line 189 of file include/openthread/thread.h

mRouterTime

uint64_t otMleCounters::mRouterTime

Number of milliseconds device has been in OT_DEVICE_ROLE_ROUTER role.

Definition at line 190 of file include/openthread/thread.h

otMleCounters

580/962

uint64_t otMleCounters::mLeaderTime

Number of milliseconds device has been in OT_DEVICE_ROLE_LEADER role.

Definition at line 191 of file include/openthread/thread.h

mTrackedTime

uint64_t otMleCounters::mTrackedTime

Number of milliseconds tracked by previous counters.

Definition at line 192 of file include/openthread/thread.h

mParentChanges

uint16_t otMleCounters::mParentChanges

Number of times device changed its parent.

A parent change can happen if device detaches from its current parent and attaches to a different one, or even while

device is attached when the periodic parent search feature is enabled (please see option

OPENTHREAD_CONFIG_PARENT_SEARCH_ENABLE).

Definition at line 202 of file include/openthread/thread.h

otThreadParentResponseInfo

581/962

otThreadParentResponseInfo

Represents the MLE Parent Response data.

Public Attributes

otExtAddress mExtAddr
IEEE 802.15.4 Extended Address of the Parent.

uint16_t mRloc16
Short address of the Parent.

int8_t mRssi
Rssi of the Parent.

int8_t mPriority
Parent priority.

uint8_t mLinkQuality3
Parent Link Quality 3.

uint8_t mLinkQuality2
Parent Link Quality 2.

uint8_t mLinkQuality1
Parent Link Quality 1.

bool mIsAttached
Is the node receiving parent response attached.

Public Attribute Documentation

mExtAddr

otExtAddress otThreadParentResponseInfo::mExtAddr

IEEE 802.15.4 Extended Address of the Parent.

Definition at line 211 of file include/openthread/thread.h

mRloc16

uint16_t otThreadParentResponseInfo::mRloc16

Short address of the Parent.

Definition at line 212 of file include/openthread/thread.h

mRssi

int8_t otThreadParentResponseInfo::mRssi

otThreadParentResponseInfo

582/962

Rssi of the Parent.

Definition at line 213 of file include/openthread/thread.h

mPriority

int8_t otThreadParentResponseInfo::mPriority

Parent priority.

Definition at line 214 of file include/openthread/thread.h

mLinkQuality3

uint8_t otThreadParentResponseInfo::mLinkQuality3

Parent Link Quality 3.

Definition at line 215 of file include/openthread/thread.h

mLinkQuality2

uint8_t otThreadParentResponseInfo::mLinkQuality2

Parent Link Quality 2.

Definition at line 216 of file include/openthread/thread.h

mLinkQuality1

uint8_t otThreadParentResponseInfo::mLinkQuality1

Parent Link Quality 1.

Definition at line 217 of file include/openthread/thread.h

mIsAttached

bool otThreadParentResponseInfo::mIsAttached

Is the node receiving parent response attached.

Definition at line 218 of file include/openthread/thread.h

otThreadDiscoveryRequestInfo

583/962

otThreadDiscoveryRequestInfo

Represents the Thread Discovery Request data.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address of the requester.

uint8_t mVersion
Thread version.

bool mIsJoiner
Whether is from jo iner.

Public Attribute Documentation

mExtAddress

otExtAddress otThreadDiscoveryRequestInfo::mExtAddress

IEEE 802.15.4 Extended Address of the requester.

Definition at line 1011 of file include/openthread/thread.h

mVersion

uint8_t otThreadDiscoveryRequestInfo::mVersion

Thread version.

Definition at line 1012 of file include/openthread/thread.h

mIsJoiner

bool otThreadDiscoveryRequestInfo::mIsJoiner

Whether is from joiner.

Definition at line 1013 of file include/openthread/thread.h

Joiner

584/962

Joiner

Joiner
This module includes functions for the Thread Joiner role.

Note

The functions in this module require OPENTHREAD_CONFIG_JOINER_ENABLE=1 .

Modules

otJoinerDiscerner

Enumerations

enum otJoinerState {

OT_JOINER_STATE_IDLE = 0
OT_JOINER_STATE_DISCOVER = 1
OT_JOINER_STATE_CONNECT = 2
OT_JOINER_STATE_CONNECTED = 3
OT_JOINER_STATE_ENTRUST = 4
OT_JOINER_STATE_JOINED = 5

}
Defines the Jo iner State .

Typedefs

typedef enum
otJoinerState

otJoinerState
Defines the Jo iner State .

typedef struct
otJoinerDiscerner

otJoinerDiscerner
Represents a Jo iner Discerner.

typedef void(* otJoinerCallback)(otError aError, void *aContext)
Po inter is called to notify the completion of a jo in operation.

Functions

otError otJoinerStart(otInstance *aInstance, const char *aPskd, const char *aProvisioningUrl, const char
*aVendorName, const char *aVendorModel, const char *aVendorSwVersion, const char *aVendorData,
otJoinerCallback aCallback, void *aContext)
Enables the Thread Jo iner ro le .

void otJoinerStop(otInstance *aInstance)
Disables the Thread Jo iner ro le .

otJoinerState otJoinerGetState(otInstance *aInstance)
Gets the Jo iner State .

const
otExtAddress *

otJoinerGetId(otInstance *aInstance)
Gets the Jo iner ID.

Joiner

585/962

otError otJoinerSetDiscerner(otInstance *aInstance, otJoinerDiscerner *aDiscerner)
Sets the Jo iner Discerner.

const
otJoinerDiscerner

*

otJoinerGetDiscerner(otInstance *aInstance)
Gets the Jo iner Discerner.

const char * otJoinerStateToString(otJoinerState aState)
Converts a given jo iner state enumeration value to a human-readable string.

Macros

#define OT_JOINER_MAX_DISCERNER_LENGTH 64
Maximum length of a Jo iner Discerner in bits.

Enumeration Documentation

otJoinerState

otJoinerState

Defines the Joiner State.

Enumerator

OT_JOINER_STATE_IDLE

OT_JOINER_STATE_DISCOVER

OT_JOINER_STATE_CONNECT

OT_JOINER_STATE_CONNECTED

OT_JOINER_STATE_ENTRUST

OT_JOINER_STATE_JOINED

Definition at line 62 of file include/openthread/joiner.h

Typedef Documentation

otJoinerState

typedef enum otJoinerState otJoinerState

Defines the Joiner State.

Definition at line 70 of file include/openthread/joiner.h

otJoinerDiscerner

typedef struct otJoinerDiscerner otJoinerDiscerner

Represents a Joiner Discerner.

Definition at line 82 of file include/openthread/joiner.h

otJoinerCallback

Joiner

586/962

typedef void(* otJoinerCallback) (otError aError, void *aContext))(otError aError, void *aContext)

Pointer is called to notify the completion of a join operation.

Parameters

[in] aError OT_ERROR_NONE if the join process succeeded. OT_ERROR_SECURITY if the join process failed due to

security credentials. OT_ERROR_NOT_FOUND if no joinable network was discovered.

OT_ERROR_RESPONSE_TIMEOUT if a response timed out.

[in] aContext A pointer to application-specific context.

Definition at line 94 of file include/openthread/joiner.h

Function Documentation

otJoinerStart

otError otJoinerStart (otInstance *aInstance, const char *aPskd, const char *aProvisioningUrl, const char *aVendorName,
const char *aVendorModel, const char *aVendorSwVersion, const char *aVendorData, otJoinerCallback aCallback, void
*aContext)

Enables the Thread Joiner role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPskd A pointer to the PSKd.

[in] aProvisioningUrl A pointer to the Provisioning URL (may be NULL).

[in] aVendorName A pointer to the Vendor Name (may be NULL).

[in] aVendorModel A pointer to the Vendor Model (may be NULL).

[in] aVendorSwVersion A pointer to the Vendor SW Version (may be NULL).

[in] aVendorData A pointer to the Vendor Data (may be NULL).

[in] aCallback A pointer to a function that is called when the join operation completes.

[in] aContext A pointer to application-specific context.

Definition at line 115 of file include/openthread/joiner.h

otJoinerStop

void otJoinerStop (otInstance *aInstance)

Disables the Thread Joiner role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 131 of file include/openthread/joiner.h

otJoinerGetState

Joiner

587/962

otJoinerState otJoinerGetState (otInstance *aInstance)

Gets the Joiner State.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The joiner state.

Definition at line 141 of file include/openthread/joiner.h

otJoinerGetId

const otExtAddress * otJoinerGetId (otInstance *aInstance)

Gets the Joiner ID.

Parameters

[in] aInstance A pointer to the OpenThread instance.

If a Joiner Discerner is not set, Joiner ID is the first 64 bits of the result of computing SHA-256 over factory-assigned IEEE

EUI-64. Otherwise the Joiner ID is calculated from the Joiner Discerner value.

The Joiner ID is also used as the device's IEEE 802.15.4 Extended Address during the commissioning process.

Returns

A pointer to the Joiner ID.

Definition at line 156 of file include/openthread/joiner.h

otJoinerSetDiscerner

otError otJoinerSetDiscerner (otInstance *aInstance, otJoinerDiscerner *aDiscerner)

Sets the Joiner Discerner.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aDiscerner A pointer to a Joiner Discerner. If NULL clears any previously set discerner.

The Joiner Discerner is used to calculate the Joiner ID during the Thread Commissioning process. For more information, refer

to otJoinerGetId. Note

The Joiner Discerner takes the place of the Joiner EUI-64 during the joiner session of Thread Commissioning.

Definition at line 173 of file include/openthread/joiner.h

otJoinerGetDiscerner

const otJoinerDiscerner * otJoinerGetDiscerner (otInstance *aInstance)

Joiner

588/962

Gets the Joiner Discerner.

Parameters

[in] aInstance A pointer to the OpenThread instance.

For more information, refer to otJoinerSetDiscerner.

Returns

A pointer to Joiner Discerner or NULL if none is set.

Definition at line 183 of file include/openthread/joiner.h

otJoinerStateToString

const char * otJoinerStateToString (otJoinerState aState)

Converts a given joiner state enumeration value to a human-readable string.

Parameters

[in] aState The joiner state.

Returns

A human-readable string representation of aState .

Definition at line 193 of file include/openthread/joiner.h

Macro Definition Documentation

OT_JOINER_MAX_DISCERNER_LENGTH

#define OT_JOINER_MAX_DISCERNER_LENGTH

Value:

64

Maximum length of a Joiner Discerner in bits.

Definition at line 72 of file include/openthread/joiner.h

otJoinerDiscerner

589/962

otJoinerDiscerner

Represents a Joiner Discerner.

Public Attributes

uint64_t mValue
Discerner value (the lowest mLength bits specify the discerner).

uint8_t mLength
Length (number of bits) - must be non-zero and at most OT_JOINER_MAX_DISCERNER_LENGTH .

Public Attribute Documentation

mValue

uint64_t otJoinerDiscerner::mValue

Discerner value (the lowest mLength bits specify the discerner).

Definition at line 80 of file include/openthread/joiner.h

mLength

uint8_t otJoinerDiscerner::mLength

Length (number of bits) - must be non-zero and at most OT_JOINER_MAX_DISCERNER_LENGTH .

Definition at line 81 of file include/openthread/joiner.h

Operational Dataset

590/962

Operational Dataset

Operational Dataset
Includes functions for the Operational Dataset API.

For FTD builds only, Dataset Updater includes functions to manage dataset updates.

For FTD and MTD builds, the Operational Dataset API includes functions to manage Active and Pending datasets and

dataset TLVs.

Modules

otNetworkKey

otNetworkName

otExtendedPanId

otPskc

otSecurityPolicy

otOperationalDatasetComponents

otTimestamp

otOperationalDataset

otOperationalDatasetTlvs

Enumerations

Operational Dataset

591/962

enum otMeshcopTlvType {

OT_MESHCOP_TLV_CHANNEL = 0
OT_MESHCOP_TLV_PANID = 1
OT_MESHCOP_TLV_EXTPANID = 2
OT_MESHCOP_TLV_NETWORKNAME = 3
OT_MESHCOP_TLV_PSKC = 4
OT_MESHCOP_TLV_NETWORKKEY = 5
OT_MESHCOP_TLV_NETWORK_KEY_SEQUENCE = 6
OT_MESHCOP_TLV_MESHLOCALPREFIX = 7
OT_MESHCOP_TLV_STEERING_DATA = 8
OT_MESHCOP_TLV_BORDER_AGENT_RLOC = 9
OT_MESHCOP_TLV_COMMISSIONER_ID = 10
OT_MESHCOP_TLV_COMM_SESSION_ID = 11
OT_MESHCOP_TLV_SECURITYPOLICY = 12
OT_MESHCOP_TLV_GET = 13
OT_MESHCOP_TLV_ACTIVETIMESTAMP = 14
OT_MESHCOP_TLV_COMMISSIONER_UDP_PORT = 15
OT_MESHCOP_TLV_STATE = 16
OT_MESHCOP_TLV_JOINER_DTLS = 17
OT_MESHCOP_TLV_JOINER_UDP_PORT = 18
OT_MESHCOP_TLV_JOINER_IID = 19
OT_MESHCOP_TLV_JOINER_RLOC = 20
OT_MESHCOP_TLV_JOINER_ROUTER_KEK = 21
OT_MESHCOP_TLV_PROVISIONING_URL = 32
OT_MESHCOP_TLV_VENDOR_NAME_TLV = 33
OT_MESHCOP_TLV_VENDOR_MODEL_TLV = 34
OT_MESHCOP_TLV_VENDOR_SW_VERSION_TLV = 35
OT_MESHCOP_TLV_VENDOR_DATA_TLV = 36
OT_MESHCOP_TLV_VENDOR_STACK_VERSION_TLV = 37
OT_MESHCOP_TLV_UDP_ENCAPSULATION_TLV = 48
OT_MESHCOP_TLV_IPV6_ADDRESS_TLV = 49
OT_MESHCOP_TLV_PENDINGTIMESTAMP = 51
OT_MESHCOP_TLV_DELAYTIMER = 52
OT_MESHCOP_TLV_CHANNELMASK = 53
OT_MESHCOP_TLV_COUNT = 54
OT_MESHCOP_TLV_PERIOD = 55
OT_MESHCOP_TLV_SCAN_DURATION = 56
OT_MESHCOP_TLV_ENERGY_LIST = 57
OT_MESHCOP_TLV_DISCOVERYREQUEST = 128
OT_MESHCOP_TLV_DISCOVERYRESPONSE = 129
OT_MESHCOP_TLV_JOINERADVERTISEMENT = 241

}
Represents meshcop TLV types.

Typedefs

typedef struct
otNetworkKey

otNetworkKey
Represents a Thread Network Key.

typedef
otCryptoKeyRef

otNetworkKeyRef
This datatype represents KeyRef to NetworkKey.

typedef struct
otNetworkName

otNetworkName
Represents a Network Name .

typedef struct
otExtendedPanId

otExtendedPanId
Represents an Extended PAN ID.

typedef
otIp6NetworkPref

ix

otMeshLocalPrefix
Represents a Mesh Local Prefix.

typedef struct
otPskc

otPskc
Represents a PSKc.

Operational Dataset

592/962

typedef
otCryptoKeyRef

otPskcRef
This datatype represents KeyRef to PSKc.

typedef struct
otSecurityPolicy

otSecurityPolicy
Represent Security Po licy.

typedef uint32_t otChannelMask
Represents Channel Mask.

typedef struct
otOperationalDat
asetComponents

otOperationalDatasetComponents
Represents presence of different components in Active or Pending Operational Dataset.

typedef struct
otTimestamp

otTimestamp
Represents a Thread Dataset timestamp component.

typedef struct
otOperationalDat

aset

otOperationalDataset
Represents an Active or Pending Operational Dataset.

typedef struct
otOperationalDat

asetTlvs

otOperationalDatasetTlvs
Represents an Active or Pending Operational Dataset.

typedef enum
otMeshcopTlvTyp

e

otMeshcopTlvType
Represents meshcop TLV types.

typedef void(* otDatasetMgmtSetCallback)(otError aResult, void *aContext)
Po inter is called when a response to a MGMT_SET request is received or times out.

typedef void(* otDatasetUpdaterCallback)(otError aError, void *aContext)
This callback function po inter is called when a Dataset update request finishes, reporting success or failure status of

the Dataset update request.

Variables

OT_TOOL_PACKE
D_BEGIN struct
otNetworkKey

OT_TOOL_PACKED_END

Functions

bool otDatasetIsCommissioned(otInstance *aInstance)
Indicates whether a valid network is present in the Active Operational Dataset or not.

otError otDatasetGetActive(otInstance *aInstance, otOperationalDataset *aDataset)
Gets the Active Operational Dataset.

otError otDatasetGetActiveTlvs(otInstance *aInstance, otOperationalDatasetTlvs *aDataset)
Gets the Active Operational Dataset.

otError otDatasetSetActive(otInstance *aInstance, const otOperationalDataset *aDataset)
Sets the Active Operational Dataset.

otError otDatasetSetActiveTlvs(otInstance *aInstance, const otOperationalDatasetTlvs *aDataset)
Sets the Active Operational Dataset.

otError otDatasetGetPending(otInstance *aInstance, otOperationalDataset *aDataset)
Gets the Pending Operational Dataset.

Operational Dataset

593/962

otError otDatasetGetPendingTlvs(otInstance *aInstance, otOperationalDatasetTlvs *aDataset)
Gets the Pending Operational Dataset.

otError otDatasetSetPending(otInstance *aInstance, const otOperationalDataset *aDataset)
Sets the Pending Operational Dataset.

otError otDatasetSetPendingTlvs(otInstance *aInstance, const otOperationalDatasetTlvs *aDataset)
Sets the Pending Operational Dataset.

otError otDatasetSendMgmtActiveGet(otInstance *aInstance, const otOperationalDatasetComponents
*aDatasetComponents, const uint8_t *aTlvTypes, uint8_t aLength, const otIp6Address *aAddress)
Sends MGMT_ACTIVE_GET.

otError otDatasetSendMgmtActiveSet(otInstance *aInstance, const otOperationalDataset *aDataset, const uint8_t
*aTlvs, uint8_t aLength, otDatasetMgmtSetCallback aCallback, void *aContext)
Sends MGMT_ACTIVE_SET.

otError otDatasetSendMgmtPendingGet(otInstance *aInstance, const otOperationalDatasetComponents
*aDatasetComponents, const uint8_t *aTlvTypes, uint8_t aLength, const otIp6Address *aAddress)
Sends MGMT_PENDING_GET.

otError otDatasetSendMgmtPendingSet(otInstance *aInstance, const otOperationalDataset *aDataset, const
uint8_t *aTlvs, uint8_t aLength, otDatasetMgmtSetCallback aCallback, void *aContext)
Sends MGMT_PENDING_SET.

otError otDatasetGeneratePskc(const char *aPassPhrase, const otNetworkName *aNetworkName, const
otExtendedPanId *aExtPanId, otPskc *aPskc)
Generates PSKc from a given pass-phrase , network name , and extended PAN ID.

otError otNetworkNameFromString(otNetworkName *aNetworkName, const char *aNameString)
Sets an otNetworkName instance from a given null terminated C string.

otError otDatasetParseTlvs(const otOperationalDatasetTlvs *aDatasetTlvs, otOperationalDataset *aDataset)
Parses an Operational Dataset from a given otOperationalDatasetTlvs .

otError otDatasetConvertToTlvs(const otOperationalDataset *aDataset, otOperationalDatasetTlvs *aDatasetTlvs)
Converts a given Operational Dataset to otOperationalDatasetTlvs .

otError otDatasetUpdateTlvs(const otOperationalDataset *aDataset, otOperationalDatasetTlvs *aDatasetTlvs)
Updates a given Operational Dataset.

otError otDatasetCreateNewNetwork(otInstance *aInstance, otOperationalDataset *aDataset)
For FTD only, creates a new Operational Dataset to use when forming a new network.

uint32_t otDatasetGetDelayTimerMinimal(otInstance *aInstance)
For FTD only, gets a minimal delay timer.

otError otDatasetSetDelayTimerMinimal(otInstance *aInstance, uint32_t aDelayTimerMinimal)
For FTD only, sets a minimal delay timer.

otError otDatasetUpdaterRequestUpdate(otInstance *aInstance, const otOperationalDataset *aDataset,
otDatasetUpdaterCallback aCallback, void *aContext)
Requests an update to Operational Dataset.

void otDatasetUpdaterCancelUpdate(otInstance *aInstance)
Cancels an ongo ing (if any) Operational Dataset update request.

bool otDatasetUpdaterIsUpdateOngoing(otInstance *aInstance)
Indicates whether there is an ongo ing Operation Dataset update request.

Macros

Operational Dataset

594/962

#define OT_NETWORK_KEY_SIZE 16
Size of the Thread Network Key (bytes)

#define OT_NETWORK_NAME_MAX_SIZE 16
Maximum size of the Thread Network Name field (bytes)

#define OT_EXT_PAN_ID_SIZE 8
Size of a Thread PAN ID (bytes)

#define OT_MESH_LOCAL_PREFIX_SIZE OT_IP6_PREFIX_SIZE
Size of the Mesh Local Prefix (bytes)

#define OT_PSKC_MAX_SIZE 16
Maximum size of the PSKc (bytes)

#define OT_CHANNEL_1_MASK �1 << 1�
Channel 1.

#define OT_CHANNEL_2_MASK �1 << 2�
Channel 2.

#define OT_CHANNEL_3_MASK �1 << 3�
Channel 3.

#define OT_CHANNEL_4_MASK �1 << 4�
Channel 4.

#define OT_CHANNEL_5_MASK �1 << 5�
Channel 5.

#define OT_CHANNEL_6_MASK �1 << 6�
Channel 6.

#define OT_CHANNEL_7_MASK �1 << 7�
Channel 7.

#define OT_CHANNEL_8_MASK �1 << 8�
Channel 8.

#define OT_CHANNEL_9_MASK �1 << 9�
Channel 9.

#define OT_CHANNEL_10_MASK �1 << 10�
Channel 10.

#define OT_CHANNEL_11_MASK �1 << 11�
Channel 11.

#define OT_CHANNEL_12_MASK �1 << 12�
Channel 12.

#define OT_CHANNEL_13_MASK �1 << 13�
Channel 13.

#define OT_CHANNEL_14_MASK �1 << 14�
Channel 14.

#define OT_CHANNEL_15_MASK �1 << 15�
Channel 15.

#define OT_CHANNEL_16_MASK �1 << 16�
Channel 16.

#define OT_CHANNEL_17_MASK �1 << 17�
Channel 17.

Operational Dataset

595/962

#define OT_CHANNEL_18_MASK �1 << 18�
Channel 18.

#define OT_CHANNEL_19_MASK �1 << 19�
Channel 19.

#define OT_CHANNEL_20_MASK �1 << 20�
Channel 20.

#define OT_CHANNEL_21_MASK �1 << 21�
Channel 21.

#define OT_CHANNEL_22_MASK �1 << 22�
Channel 22.

#define OT_CHANNEL_23_MASK �1 << 23�
Channel 23.

#define OT_CHANNEL_24_MASK �1 << 24�
Channel 24.

#define OT_CHANNEL_25_MASK �1 << 25�
Channel 25.

#define OT_CHANNEL_26_MASK �1 << 26�
Channel 26.

#define OT_OPERATIONAL_DATASET_MAX_LENGTH 254
Maximum length of Operational Dataset in bytes.

Enumeration Documentation

otMeshcopTlvType

otMeshcopTlvType

Represents meshcop TLV types.

Enumerator

OT_MESHCOP_TLV_CHANNEL meshcop Channel TLV

OT_MESHCOP_TLV_PANID meshcop Pan Id TLV

OT_MESHCOP_TLV_EXTPANID meshcop Extended Pan Id TLV

OT_MESHCOP_TLV_NETWORKNAME meshcop Network Name TLV

OT_MESHCOP_TLV_PSKC meshcop PSKc TLV

OT_MESHCOP_TLV_NETWORKKEY meshcop Network Key TLV

OT_MESHCOP_TLV_NETWORK_KEY_SEQUENCE meshcop Network Key Sequence TLV

OT_MESHCOP_TLV_MESHLOCALPREFIX meshcop Mesh Local Prefix TLV

OT_MESHCOP_TLV_STEERING_DATA meshcop Steering Data TLV

OT_MESHCOP_TLV_BORDER_AGENT_RLOC meshcop Border Agent Locator TLV

OT_MESHCOP_TLV_COMMISSIONER_ID meshcop Commissioner ID TLV

OT_MESHCOP_TLV_COMM_SESSION_ID meshcop Commissioner Session ID TLV

OT_MESHCOP_TLV_SECURITYPOLICY meshcop Security Policy TLV

OT_MESHCOP_TLV_GET meshcop Get TLV

OT_MESHCOP_TLV_ACTIVETIMESTAMP meshcop Active Timestamp TLV

Operational Dataset

596/962

OT_MESHCOP_TLV_COMMISSIONER_UDP_PORT meshcop Commissioner UDP Port TLV

OT_MESHCOP_TLV_STATE meshcop State TLV

OT_MESHCOP_TLV_JOINER_DTLS meshcop Joiner DTLS Encapsulation TLV

OT_MESHCOP_TLV_JOINER_UDP_PORT meshcop Joiner UDP Port TLV

OT_MESHCOP_TLV_JOINER_IID meshcop Joiner IID TLV

OT_MESHCOP_TLV_JOINER_RLOC meshcop Joiner Router Locator TLV

OT_MESHCOP_TLV_JOINER_ROUTER_KEK meshcop Joiner Router KEK TLV

OT_MESHCOP_TLV_PROVISIONING_URL meshcop Provisioning URL TLV

OT_MESHCOP_TLV_VENDOR_NAME_TLV meshcop Vendor Name TLV

OT_MESHCOP_TLV_VENDOR_MODEL_TLV meshcop Vendor Model TLV

OT_MESHCOP_TLV_VENDOR_SW_VERSION_TLV meshcop Vendor SW Version TLV

OT_MESHCOP_TLV_VENDOR_DATA_TLV meshcop Vendor Data TLV

OT_MESHCOP_TLV_VENDOR_STACK_VERSION_TLV meshcop Vendor Stack Version TLV

OT_MESHCOP_TLV_UDP_ENCAPSULATION_TLV meshcop UDP encapsulation TLV

OT_MESHCOP_TLV_IPV6_ADDRESS_TLV meshcop IPv6 address TLV

OT_MESHCOP_TLV_PENDINGTIMESTAMP meshcop Pending Timestamp TLV

OT_MESHCOP_TLV_DELAYTIMER meshcop Delay Timer TLV

OT_MESHCOP_TLV_CHANNELMASK meshcop Channel Mask TLV

OT_MESHCOP_TLV_COUNT meshcop Count TLV

OT_MESHCOP_TLV_PERIOD meshcop Period TLV

OT_MESHCOP_TLV_SCAN_DURATION meshcop Scan Duration TLV

OT_MESHCOP_TLV_ENERGY_LIST meshcop Energy List TLV

OT_MESHCOP_TLV_DISCOVERYREQUEST meshcop Discovery Request TLV

OT_MESHCOP_TLV_DISCOVERYRESPONSE meshcop Discovery Response TLV

OT_MESHCOP_TLV_JOINERADVERTISEMENT meshcop Joiner Advertisement TLV

Definition at line 274 of file include/openthread/dataset.h

Typedef Documentation

otNetworkKey

typedef struct otNetworkKey otNetworkKey

Represents a Thread Network Key.

Definition at line 74 of file include/openthread/dataset.h

otNetworkKeyRef

typedef otCryptoKeyRef otNetworkKeyRef

This datatype represents KeyRef to NetworkKey.

Reference to Key

Operational Dataset

597/962

Definition at line 80 of file include/openthread/dataset.h

otNetworkName

typedef struct otNetworkName otNetworkName

Represents a Network Name.

The otNetworkName is a null terminated C string (i.e., m8 char array MUST end with null char \0).

Definition at line 93 of file include/openthread/dataset.h

otExtendedPanId

typedef struct otExtendedPanId otExtendedPanId

Represents an Extended PAN ID.

Definition at line 111 of file include/openthread/dataset.h

otMeshLocalPrefix

typedef otIp6NetworkPrefix otMeshLocalPrefix

Represents a Mesh Local Prefix.

Definition at line 119 of file include/openthread/dataset.h

otPskc

typedef struct otPskc otPskc

Represents a PSKc.

Definition at line 137 of file include/openthread/dataset.h

otPskcRef

typedef otCryptoKeyRef otPskcRef

This datatype represents KeyRef to PSKc.

Reference to Key

Definition at line 143 of file include/openthread/dataset.h

otSecurityPolicy

typedef struct otSecurityPolicy otSecurityPolicy

Represent Security Policy.

Operational Dataset

598/962

Definition at line 163 of file include/openthread/dataset.h

otChannelMask

typedef uint32_t otChannelMask

Represents Channel Mask.

Definition at line 169 of file include/openthread/dataset.h

otOperationalDatasetComponents

typedef struct otOperationalDatasetComponents otOperationalDatasetComponents

Represents presence of different components in Active or Pending Operational Dataset.

Definition at line 216 of file include/openthread/dataset.h

otTimestamp

typedef struct otTimestamp otTimestamp

Represents a Thread Dataset timestamp component.

Definition at line 227 of file include/openthread/dataset.h

otOperationalDataset

typedef struct otOperationalDataset otOperationalDataset

Represents an Active or Pending Operational Dataset.

Components in Dataset are optional. mComponents structure specifies which components are present in the Dataset.

Definition at line 250 of file include/openthread/dataset.h

otOperationalDatasetTlvs

typedef struct otOperationalDatasetTlvs otOperationalDatasetTlvs

Represents an Active or Pending Operational Dataset.

The Operational Dataset is TLV encoded as specified by Thread.

Definition at line 268 of file include/openthread/dataset.h

otMeshcopTlvType

Operational Dataset

599/962

typedef enum otMeshcopTlvType otMeshcopTlvType

Represents meshcop TLV types.

Definition at line 316 of file include/openthread/dataset.h

otDatasetMgmtSetCallback

typedef void(* otDatasetMgmtSetCallback) (otError aResult, void *aContext))(otError aResult, void *aContext)

Pointer is called when a response to a MGMT_SET request is received or times out.

Parameters

[in] aResult A result of the operation.

[in] aContext A pointer to application-specific context.

Definition at line 331 of file include/openthread/dataset.h

otDatasetUpdaterCallback

typedef void(* otDatasetUpdaterCallback) (otError aError, void *aContext))(otError aError, void *aContext)

This callback function pointer is called when a Dataset update request finishes, reporting success or failure status of the

Dataset update request.

Parameters

[in] aError The error status. OT_ERROR_NONE indicates successful Dataset update. OT_ERROR_INVALID_STATE

indicates failure due invalid state (MLE being disabled). OT_ERROR_ALREADY indicates failure due to

another device within network requesting a conflicting Dataset update.

[in] aContext A pointer to the arbitrary context (provided by user in otDatasetUpdaterRequestUpdate()).

Available when OPENTHREAD_CONFIG_DATASET_UPDATER_ENABLE is enabled.

Definition at line 69 of file include/openthread/dataset_updater.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otPskc OT_TOOL_PACKED_END

Definition at line 68 of file include/openthread/dataset.h

Function Documentation

otDatasetIsCommissioned

bool otDatasetIsCommissioned (otInstance *aInstance)

Operational Dataset

600/962

Indicates whether a valid network is present in the Active Operational Dataset or not.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

TRUE if a valid network is present in the Active Operational Dataset, FALSE otherwise.

Definition at line 341 of file include/openthread/dataset.h

otDatasetGetActive

otError otDatasetGetActive (otInstance *aInstance, otOperationalDataset *aDataset)

Gets the Active Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aDataset A pointer to where the Active Operational Dataset will be placed.

Definition at line 353 of file include/openthread/dataset.h

otDatasetGetActiveTlvs

otError otDatasetGetActiveTlvs (otInstance *aInstance, otOperationalDatasetTlvs *aDataset)

Gets the Active Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aDataset A pointer to where the Active Operational Dataset will be placed.

Definition at line 365 of file include/openthread/dataset.h

otDatasetSetActive

otError otDatasetSetActive (otInstance *aInstance, const otOperationalDataset *aDataset)

Sets the Active Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to the Active Operational Dataset.

If the dataset does not include an Active Timestamp, the dataset is only partially complete.

If Thread is enabled on a device that has a partially complete Active Dataset, the device will attempt to attach to an

existing Thread network using any existing information in the dataset. Only the Thread Network Key is needed to attach to

a network.

Operational Dataset

601/962

If channel is not included in the dataset, the device will send MLE Announce messages across different channels to find

neighbors on other channels.

If the device successfully attaches to a Thread network, the device will then retrieve the full Active Dataset from its

Parent. Note that a router-capable device will not transition to the Router or Leader roles until it has a complete Active

Dataset.

Definition at line 391 of file include/openthread/dataset.h

otDatasetSetActiveTlvs

otError otDatasetSetActiveTlvs (otInstance *aInstance, const otOperationalDatasetTlvs *aDataset)

Sets the Active Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to the Active Operational Dataset.

If the dataset does not include an Active Timestamp, the dataset is only partially complete.

If Thread is enabled on a device that has a partially complete Active Dataset, the device will attempt to attach to an

existing Thread network using any existing information in the dataset. Only the Thread Network Key is needed to attach to

a network.

If channel is not included in the dataset, the device will send MLE Announce messages across different channels to find

neighbors on other channels.

If the device successfully attaches to a Thread network, the device will then retrieve the full Active Dataset from its

Parent. Note that a router-capable device will not transition to the Router or Leader roles until it has a complete Active

Dataset.

Definition at line 417 of file include/openthread/dataset.h

otDatasetGetPending

otError otDatasetGetPending (otInstance *aInstance, otOperationalDataset *aDataset)

Gets the Pending Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aDataset A pointer to where the Pending Operational Dataset will be placed.

Definition at line 429 of file include/openthread/dataset.h

otDatasetGetPendingTlvs

otError otDatasetGetPendingTlvs (otInstance *aInstance, otOperationalDatasetTlvs *aDataset)

Gets the Pending Operational Dataset.

Parameters

Operational Dataset

602/962

[in] aInstance A pointer to an OpenThread instance.

[out] aDataset A pointer to where the Pending Operational Dataset will be placed.

Definition at line 441 of file include/openthread/dataset.h

otDatasetSetPending

otError otDatasetSetPending (otInstance *aInstance, const otOperationalDataset *aDataset)

Sets the Pending Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to the Pending Operational Dataset.

Definition at line 454 of file include/openthread/dataset.h

otDatasetSetPendingTlvs

otError otDatasetSetPendingTlvs (otInstance *aInstance, const otOperationalDatasetTlvs *aDataset)

Sets the Pending Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to the Pending Operational Dataset.

Definition at line 467 of file include/openthread/dataset.h

otDatasetSendMgmtActiveGet

otError otDatasetSendMgmtActiveGet (otInstance *aInstance, const otOperationalDatasetComponents
*aDatasetComponents, const uint8_t *aTlvTypes, uint8_t aLength, const otIp6Address *aAddress)

Sends MGMT_ACTIVE_GET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDatasetComponents A pointer to a Dataset Components structure specifying which components to request.

[in] aTlvTypes A pointer to array containing additional raw TLV types to be requested.

[in] aLength The length of aTlvTypes .

[in] aAddress A pointer to the IPv6 destination, if it is NULL, will use Leader ALOC as default.

Definition at line 482 of file include/openthread/dataset.h

otDatasetSendMgmtActiveSet

otError otDatasetSendMgmtActiveSet (otInstance *aInstance, const otOperationalDataset *aDataset, const uint8_t
*aTlvs, uint8_t aLength, otDatasetMgmtSetCallback aCallback, void *aContext)

Operational Dataset

603/962

Sends MGMT_ACTIVE_SET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to operational dataset.

[in] aTlvs A pointer to TLVs.

[in] aLength The length of TLVs.

[in] aCallback A pointer to a function that is called on response reception or timeout.

[in] aContext A pointer to application-specific context for aCallback .

Definition at line 503 of file include/openthread/dataset.h

otDatasetSendMgmtPendingGet

otError otDatasetSendMgmtPendingGet (otInstance *aInstance, const otOperationalDatasetComponents
*aDatasetComponents, const uint8_t *aTlvTypes, uint8_t aLength, const otIp6Address *aAddress)

Sends MGMT_PENDING_GET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDatasetComponents A pointer to a Dataset Components structure specifying which components to request.

[in] aTlvTypes A pointer to array containing additional raw TLV types to be requested.

[in] aLength The length of aTlvTypes .

[in] aAddress A pointer to the IPv6 destination, if it is NULL, will use Leader ALOC as default.

Definition at line 523 of file include/openthread/dataset.h

otDatasetSendMgmtPendingSet

otError otDatasetSendMgmtPendingSet (otInstance *aInstance, const otOperationalDataset *aDataset, const uint8_t
*aTlvs, uint8_t aLength, otDatasetMgmtSetCallback aCallback, void *aContext)

Sends MGMT_PENDING_SET.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to operational dataset.

[in] aTlvs A pointer to TLVs.

[in] aLength The length of TLVs.

[in] aCallback A pointer to a function that is called on response reception or timeout.

[in] aContext A pointer to application-specific context for aCallback .

Definition at line 544 of file include/openthread/dataset.h

otDatasetGeneratePskc

Operational Dataset

604/962

otError otDatasetGeneratePskc (const char *aPassPhrase, const otNetworkName *aNetworkName, const
otExtendedPanId *aExtPanId, otPskc *aPskc)

Generates PSKc from a given pass-phrase, network name, and extended PAN ID.

Parameters

[in] aPassPhrase The commissioning pass-phrase.

[in] aNetworkName The network name for PSKc computation.

[in] aExtPanId The extended PAN ID for PSKc computation.

[out] aPskc A pointer to variable to output the generated PSKc.

PSKc is used to establish the Commissioner Session.

Definition at line 565 of file include/openthread/dataset.h

otNetworkNameFromString

otError otNetworkNameFromString (otNetworkName *aNetworkName, const char *aNameString)

Sets an otNetworkName instance from a given null terminated C string.

Parameters

[out] aNetworkName A pointer to the otNetworkName to set.

[in] aNameString A name C string.

aNameString must follow UTF-8 encoding and the Network Name length must not be longer than

OT_NETWORK_NAME_MAX_SIZE .

Definition at line 583 of file include/openthread/dataset.h

otDatasetParseTlvs

otError otDatasetParseTlvs (const otOperationalDatasetTlvs *aDatasetTlvs, otOperationalDataset *aDataset)

Parses an Operational Dataset from a given otOperationalDatasetTlvs .

Parameters

[in] aDatasetTlvs A pointer to dataset TLVs.

[out] aDataset A pointer to where the dataset will be placed.

Definition at line 595 of file include/openthread/dataset.h

otDatasetConvertToTlvs

otError otDatasetConvertToTlvs (const otOperationalDataset *aDataset, otOperationalDatasetTlvs *aDatasetTlvs)

Converts a given Operational Dataset to otOperationalDatasetTlvs .

Parameters

Operational Dataset

605/962

[in] aDataset An Operational dataset to convert to TLVs.

[out] aDatasetTlvs A pointer to dataset TLVs to return the result.

Definition at line 607 of file include/openthread/dataset.h

otDatasetUpdateTlvs

otError otDatasetUpdateTlvs (const otOperationalDataset *aDataset, otOperationalDatasetTlvs *aDatasetTlvs)

Updates a given Operational Dataset.

Parameters

[in] aDataset Specifies the set of types and values to update.

[inout] aDatasetTlvs A pointer to dataset TLVs to update.

aDataset contains the fields to be updated and their new value.

Definition at line 622 of file include/openthread/dataset.h

otDatasetCreateNewNetwork

otError otDatasetCreateNewNetwork (otInstance *aInstance, otOperationalDataset *aDataset)

For FTD only, creates a new Operational Dataset to use when forming a new network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aDataset The Operational Dataset.

Definition at line 62 of file include/openthread/dataset_ftd.h

otDatasetGetDelayTimerMinimal

uint32_t otDatasetGetDelayTimerMinimal (otInstance *aInstance)

For FTD only, gets a minimal delay timer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 72 of file include/openthread/dataset_ftd.h

otDatasetSetDelayTimerMinimal

otError otDatasetSetDelayTimerMinimal (otInstance *aInstance, uint32_t aDelayTimerMinimal)

For FTD only, sets a minimal delay timer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Operational Dataset

606/962

[in] aDelayTimerMinimal The value of minimal delay timer (in ms).

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 87 of file include/openthread/dataset_ftd.h

otDatasetUpdaterRequestUpdate

otError otDatasetUpdaterRequestUpdate (otInstance *aInstance, const otOperationalDataset *aDataset,
otDatasetUpdaterCallback aCallback, void *aContext)

Requests an update to Operational Dataset.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDataset A pointer to the Dataset containing the fields to change.

[in] aCallback A callback to indicate when Dataset update request finishes.

[in] aContext An arbitrary context passed to callback.

Available when OPENTHREAD_CONFIG_DATASET_UPDATER_ENABLE is enabled.

aDataset should contain the fields to be updated and their new value. It must not contain Active or Pending Timestamp

fields. The Delay field is optional, if not provided a default value (1000 ms) would be used.

Definition at line 91 of file include/openthread/dataset_updater.h

otDatasetUpdaterCancelUpdate

void otDatasetUpdaterCancelUpdate (otInstance *aInstance)

Cancels an ongoing (if any) Operational Dataset update request.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_DATASET_UPDATER_ENABLE is enabled.

Definition at line 104 of file include/openthread/dataset_updater.h

otDatasetUpdaterIsUpdateOngoing

bool otDatasetUpdaterIsUpdateOngoing (otInstance *aInstance)

Indicates whether there is an ongoing Operation Dataset update request.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Available when OPENTHREAD_CONFIG_DATASET_UPDATER_ENABLE is enabled.

Operational Dataset

607/962

Definition at line 117 of file include/openthread/dataset_updater.h

Macro Definition Documentation

OT_NETWORK_KEY_SIZE

#define OT_NETWORK_KEY_SIZE

Value:

16

S ize of the Thread Network Key (bytes)

Definition at line 56 of file include/openthread/dataset.h

OT_NETWORK_NAME_MAX_SIZE

#define OT_NETWORK_NAME_MAX_SIZE

Value:

16

Maximum size of the Thread Network Name field (bytes)

Definition at line 82 of file include/openthread/dataset.h

OT_EXT_PAN_ID_SIZE

#define OT_EXT_PAN_ID_SIZE

Value:

8

S ize of a Thread PAN ID (bytes)

Definition at line 95 of file include/openthread/dataset.h

OT_MESH_LOCAL_PREFIX_SIZE

#define OT_MESH_LOCAL_PREFIX_SIZE

Value:

OT_IP6_PREFIX_SIZE

S ize of the Mesh Local Prefix (bytes)

Definition at line 113 of file include/openthread/dataset.h

OT_PSKC_MAX_SIZE

Operational Dataset

608/962

#define OT_PSKC_MAX_SIZE

Value:

16

Maximum size of the PSKc (bytes)

Definition at line 121 of file include/openthread/dataset.h

OT_CHANNEL_1_MASK

#define OT_CHANNEL_1_MASK

Value:

�1 << 1�

Channel 1.

Definition at line 171 of file include/openthread/dataset.h

OT_CHANNEL_2_MASK

#define OT_CHANNEL_2_MASK

Value:

�1 << 2�

Channel 2.

Definition at line 172 of file include/openthread/dataset.h

OT_CHANNEL_3_MASK

#define OT_CHANNEL_3_MASK

Value:

�1 << 3�

Channel 3.

Definition at line 173 of file include/openthread/dataset.h

OT_CHANNEL_4_MASK

#define OT_CHANNEL_4_MASK

Value:

�1 << 4�

Operational Dataset

609/962

Channel 4.

Definition at line 174 of file include/openthread/dataset.h

OT_CHANNEL_5_MASK

#define OT_CHANNEL_5_MASK

Value:

�1 << 5�

Channel 5.

Definition at line 175 of file include/openthread/dataset.h

OT_CHANNEL_6_MASK

#define OT_CHANNEL_6_MASK

Value:

�1 << 6�

Channel 6.

Definition at line 176 of file include/openthread/dataset.h

OT_CHANNEL_7_MASK

#define OT_CHANNEL_7_MASK

Value:

�1 << 7�

Channel 7.

Definition at line 177 of file include/openthread/dataset.h

OT_CHANNEL_8_MASK

#define OT_CHANNEL_8_MASK

Value:

�1 << 8�

Channel 8.

Definition at line 178 of file include/openthread/dataset.h

OT_CHANNEL_9_MASK

Operational Dataset

610/962

#define OT_CHANNEL_9_MASK

Value:

�1 << 9�

Channel 9.

Definition at line 179 of file include/openthread/dataset.h

OT_CHANNEL_10_MASK

#define OT_CHANNEL_10_MASK

Value:

�1 << 10�

Channel 10.

Definition at line 180 of file include/openthread/dataset.h

OT_CHANNEL_11_MASK

#define OT_CHANNEL_11_MASK

Value:

�1 << 11�

Channel 11.

Definition at line 181 of file include/openthread/dataset.h

OT_CHANNEL_12_MASK

#define OT_CHANNEL_12_MASK

Value:

�1 << 12�

Channel 12.

Definition at line 182 of file include/openthread/dataset.h

OT_CHANNEL_13_MASK

#define OT_CHANNEL_13_MASK

Value:

�1 << 13�

Operational Dataset

611/962

Channel 13.

Definition at line 183 of file include/openthread/dataset.h

OT_CHANNEL_14_MASK

#define OT_CHANNEL_14_MASK

Value:

�1 << 14�

Channel 14.

Definition at line 184 of file include/openthread/dataset.h

OT_CHANNEL_15_MASK

#define OT_CHANNEL_15_MASK

Value:

�1 << 15�

Channel 15.

Definition at line 185 of file include/openthread/dataset.h

OT_CHANNEL_16_MASK

#define OT_CHANNEL_16_MASK

Value:

�1 << 16�

Channel 16.

Definition at line 186 of file include/openthread/dataset.h

OT_CHANNEL_17_MASK

#define OT_CHANNEL_17_MASK

Value:

�1 << 17�

Channel 17.

Definition at line 187 of file include/openthread/dataset.h

OT_CHANNEL_18_MASK

Operational Dataset

612/962

#define OT_CHANNEL_18_MASK

Value:

�1 << 18�

Channel 18.

Definition at line 188 of file include/openthread/dataset.h

OT_CHANNEL_19_MASK

#define OT_CHANNEL_19_MASK

Value:

�1 << 19�

Channel 19.

Definition at line 189 of file include/openthread/dataset.h

OT_CHANNEL_20_MASK

#define OT_CHANNEL_20_MASK

Value:

�1 << 20�

Channel 20.

Definition at line 190 of file include/openthread/dataset.h

OT_CHANNEL_21_MASK

#define OT_CHANNEL_21_MASK

Value:

�1 << 21�

Channel 21.

Definition at line 191 of file include/openthread/dataset.h

OT_CHANNEL_22_MASK

#define OT_CHANNEL_22_MASK

Value:

�1 << 22�

Operational Dataset

613/962

Channel 22.

Definition at line 192 of file include/openthread/dataset.h

OT_CHANNEL_23_MASK

#define OT_CHANNEL_23_MASK

Value:

�1 << 23�

Channel 23.

Definition at line 193 of file include/openthread/dataset.h

OT_CHANNEL_24_MASK

#define OT_CHANNEL_24_MASK

Value:

�1 << 24�

Channel 24.

Definition at line 194 of file include/openthread/dataset.h

OT_CHANNEL_25_MASK

#define OT_CHANNEL_25_MASK

Value:

�1 << 25�

Channel 25.

Definition at line 195 of file include/openthread/dataset.h

OT_CHANNEL_26_MASK

#define OT_CHANNEL_26_MASK

Value:

�1 << 26�

Channel 26.

Definition at line 196 of file include/openthread/dataset.h

OT_OPERATIONAL_DATASET_MAX_LENGTH

Operational Dataset

614/962

#define OT_OPERATIONAL_DATASET_MAX_LENGTH

Value:

254

Maximum length of Operational Dataset in bytes.

Definition at line 256 of file include/openthread/dataset.h

otNetworkKey

615/962

otNetworkKey

Represents a Thread Network Key.

Public Attributes

uint8_t m8
Byte values.

Public Attribute Documentation

m8

uint8_t otNetworkKey::m8�OT_NETWORK_KEY_SIZE�

Byte values.

Definition at line 67 of file include/openthread/dataset.h

otNetworkName

616/962

otNetworkName

Represents a Network Name.

The otNetworkName is a null terminated C string (i.e., m8 char array MUST end with null char \0).

Public Attributes

char m8
Byte values. The + 1 is for null char.

Public Attribute Documentation

m8

char otNetworkName::m8�OT_NETWORK_NAME_MAX_SIZE�1�

Byte values. The + 1 is for null char.

Definition at line 92 of file include/openthread/dataset.h

otExtendedPanId

617/962

otExtendedPanId

Represents an Extended PAN ID.

Public Attributes

uint8_t m8
Byte values.

Public Attribute Documentation

m8

uint8_t otExtendedPanId::m8�OT_EXT_PAN_ID_SIZE�

Byte values.

Definition at line 104 of file include/openthread/dataset.h

otPskc

618/962

otPskc

Represents PSKc.

Public Attributes

uint8_t m8
Byte values.

Public Attribute Documentation

m8

uint8_t otPskc::m8�OT_PSKC_MAX_SIZE�

Byte values.

Definition at line 130 of file include/openthread/dataset.h

otSecurityPolicy

619/962

otSecurityPolicy

Represent Security Policy.

Public Attributes

uint16_t mRotationTime
The value for thrKeyRotation in units of hours.

bool mObtainNetworkKeyEnabled
Obtaining the Network Key for out-of-band commissioning is enabled.

bool mNativeCommissioningEnabled
Native Commissioning using PSKc is allowed.

bool mRoutersEnabled
Thread 1.0/1.1.x Routers are enabled.

bool mExternalCommissioningEnabled
External Commissioner authentication is allowed.

bool mCommercialCommissioningEnabled
Commercial Commissioning is enabled.

bool mAutonomousEnrollmentEnabled
Autonomous Enro llment is enabled.

bool mNetworkKeyProvisioningEnabled
Network Key Provisioning is enabled.

bool mTobleLinkEnabled
ToBLE link is enabled.

bool mNonCcmRoutersEnabled
Non-CCM Routers enabled.

uint8_t mVersionThresholdForRouting
Version-thresho ld for Routing.

Public Attribute Documentation

mRotationTime

uint16_t otSecurityPolicy::mRotationTime

The value for thrKeyRotation in units of hours.

Definition at line 151 of file include/openthread/dataset.h

mObtainNetworkKeyEnabled

bool otSecurityPolicy::mObtainNetworkKeyEnabled

Obtaining the Network Key for out-of-band commissioning is enabled.

otSecurityPolicy

620/962

Definition at line 153 of file include/openthread/dataset.h

mNativeCommissioningEnabled

bool otSecurityPolicy::mNativeCommissioningEnabled

Native Commissioning using PSKc is allowed.

Definition at line 154 of file include/openthread/dataset.h

mRoutersEnabled

bool otSecurityPolicy::mRoutersEnabled

Thread 1.0/1.1.x Routers are enabled.

Definition at line 155 of file include/openthread/dataset.h

mExternalCommissioningEnabled

bool otSecurityPolicy::mExternalCommissioningEnabled

External Commissioner authentication is allowed.

Definition at line 156 of file include/openthread/dataset.h

mCommercialCommissioningEnabled

bool otSecurityPolicy::mCommercialCommissioningEnabled

Commercial Commissioning is enabled.

Definition at line 157 of file include/openthread/dataset.h

mAutonomousEnrollmentEnabled

bool otSecurityPolicy::mAutonomousEnrollmentEnabled

Autonomous Enrollment is enabled.

Definition at line 158 of file include/openthread/dataset.h

mNetworkKeyProvisioningEnabled

bool otSecurityPolicy::mNetworkKeyProvisioningEnabled

Network Key Provisioning is enabled.

Definition at line 159 of file include/openthread/dataset.h

otSecurityPolicy

621/962

mTobleLinkEnabled

bool otSecurityPolicy::mTobleLinkEnabled

ToBLE link is enabled.

Definition at line 160 of file include/openthread/dataset.h

mNonCcmRoutersEnabled

bool otSecurityPolicy::mNonCcmRoutersEnabled

Non-CCM Routers enabled.

Definition at line 161 of file include/openthread/dataset.h

mVersionThresholdForRouting

uint8_t otSecurityPolicy::mVersionThresholdForRouting

Version-threshold for Routing.

Definition at line 162 of file include/openthread/dataset.h

otOperationalDatasetComponents

622/962

otOperationalDatasetComponents

Represents presence of different components in Active or Pending Operational Dataset.

Public Attributes

bool mIsActiveTimestampPresent
TRUE if Active Timestamp is present, FALSE otherwise .

bool mIsPendingTimestampPresent
TRUE if Pending Timestamp is present, FALSE otherwise .

bool mIsNetworkKeyPresent
TRUE if Network Key is present, FALSE otherwise .

bool mIsNetworkNamePresent
TRUE if Network Name is present, FALSE otherwise .

bool mIsExtendedPanIdPresent
TRUE if Extended PAN ID is present, FALSE otherwise .

bool mIsMeshLocalPrefixPresent
TRUE if Mesh Local Prefix is present, FALSE otherwise .

bool mIsDelayPresent
TRUE if Delay Timer is present, FALSE otherwise .

bool mIsPanIdPresent
TRUE if PAN ID is present, FALSE otherwise .

bool mIsChannelPresent
TRUE if Channel is present, FALSE otherwise .

bool mIsPskcPresent
TRUE if PSKc is present, FALSE otherwise .

bool mIsSecurityPolicyPresent
TRUE if Security Po licy is present, FALSE otherwise .

bool mIsChannelMaskPresent
TRUE if Channel Mask is present, FALSE otherwise .

Public Attribute Documentation

mIsActiveTimestampPresent

bool otOperationalDatasetComponents::mIsActiveTimestampPresent

TRUE if Active Timestamp is present, FALSE otherwise.

Definition at line 204 of file include/openthread/dataset.h

mIsPendingTimestampPresent

otOperationalDatasetComponents

623/962

bool otOperationalDatasetComponents::mIsPendingTimestampPresent

TRUE if Pending Timestamp is present, FALSE otherwise.

Definition at line 205 of file include/openthread/dataset.h

mIsNetworkKeyPresent

bool otOperationalDatasetComponents::mIsNetworkKeyPresent

TRUE if Network Key is present, FALSE otherwise.

Definition at line 206 of file include/openthread/dataset.h

mIsNetworkNamePresent

bool otOperationalDatasetComponents::mIsNetworkNamePresent

TRUE if Network Name is present, FALSE otherwise.

Definition at line 207 of file include/openthread/dataset.h

mIsExtendedPanIdPresent

bool otOperationalDatasetComponents::mIsExtendedPanIdPresent

TRUE if Extended PAN ID is present, FALSE otherwise.

Definition at line 208 of file include/openthread/dataset.h

mIsMeshLocalPrefixPresent

bool otOperationalDatasetComponents::mIsMeshLocalPrefixPresent

TRUE if Mesh Local Prefix is present, FALSE otherwise.

Definition at line 209 of file include/openthread/dataset.h

mIsDelayPresent

bool otOperationalDatasetComponents::mIsDelayPresent

TRUE if Delay Timer is present, FALSE otherwise.

Definition at line 210 of file include/openthread/dataset.h

mIsPanIdPresent

otOperationalDatasetComponents

624/962

bool otOperationalDatasetComponents::mIsPanIdPresent

TRUE if PAN ID is present, FALSE otherwise.

Definition at line 211 of file include/openthread/dataset.h

mIsChannelPresent

bool otOperationalDatasetComponents::mIsChannelPresent

TRUE if Channel is present, FALSE otherwise.

Definition at line 212 of file include/openthread/dataset.h

mIsPskcPresent

bool otOperationalDatasetComponents::mIsPskcPresent

TRUE if PSKc is present, FALSE otherwise.

Definition at line 213 of file include/openthread/dataset.h

mIsSecurityPolicyPresent

bool otOperationalDatasetComponents::mIsSecurityPolicyPresent

TRUE if Security Policy is present, FALSE otherwise.

Definition at line 214 of file include/openthread/dataset.h

mIsChannelMaskPresent

bool otOperationalDatasetComponents::mIsChannelMaskPresent

TRUE if Channel Mask is present, FALSE otherwise.

Definition at line 215 of file include/openthread/dataset.h

otT imestamp

625/962

otTimestamp

Represents a Thread Dataset timestamp component.

Public Attributes

uint64_t mSeconds

uint16_t mTicks

bool mAuthoritative

Public Attribute Documentation

mSeconds

uint64_t otTimestamp::mSeconds

Definition at line 224 of file include/openthread/dataset.h

mTicks

uint16_t otTimestamp::mTicks

Definition at line 225 of file include/openthread/dataset.h

mAuthoritative

bool otTimestamp::mAuthoritative

Definition at line 226 of file include/openthread/dataset.h

otOperationalDataset

626/962

otOperationalDataset

Represents an Active or Pending Operational Dataset.

Components in Dataset are optional. mComponents structure specifies which components are present in the Dataset.

Public Attributes

otTimestamp mActiveTimestamp
Active Timestamp.

otTimestamp mPendingTimestamp
Pending Timestamp.

otNetworkKey mNetworkKey
Network Key.

otNetworkName mNetworkName
Network Name .

otExtendedPanId mExtendedPanId
Extended PAN ID.

otMeshLocalPrefi
x

mMeshLocalPrefix
Mesh Local Prefix.

uint32_t mDelay
Delay Timer.

otPanId mPanId
PAN ID.

uint16_t mChannel
Channel.

otPskc mPskc
PSKc.

otSecurityPolicy mSecurityPolicy
Security Po licy.

otChannelMask mChannelMask
Channel Mask.

otOperationalDat
asetComponents

mComponents
Specifies which components are set in the Dataset.

Public Attribute Documentation

mActiveTimestamp

otTimestamp otOperationalDataset::mActiveTimestamp

Active Timestamp.

Definition at line 237 of file include/openthread/dataset.h

otOperationalDataset

627/962

mPendingTimestamp

otTimestamp otOperationalDataset::mPendingTimestamp

Pending Timestamp.

Definition at line 238 of file include/openthread/dataset.h

mNetworkKey

otNetworkKey otOperationalDataset::mNetworkKey

Network Key.

Definition at line 239 of file include/openthread/dataset.h

mNetworkName

otNetworkName otOperationalDataset::mNetworkName

Network Name.

Definition at line 240 of file include/openthread/dataset.h

mExtendedPanId

otExtendedPanId otOperationalDataset::mExtendedPanId

Extended PAN ID.

Definition at line 241 of file include/openthread/dataset.h

mMeshLocalPrefix

otMeshLocalPrefix otOperationalDataset::mMeshLocalPrefix

Mesh Local Prefix.

Definition at line 242 of file include/openthread/dataset.h

mDelay

uint32_t otOperationalDataset::mDelay

Delay Timer.

Definition at line 243 of file include/openthread/dataset.h

mPanId

otOperationalDataset

628/962

otPanId otOperationalDataset::mPanId

PAN ID.

Definition at line 244 of file include/openthread/dataset.h

mChannel

uint16_t otOperationalDataset::mChannel

Channel.

Definition at line 245 of file include/openthread/dataset.h

mPskc

otPskc otOperationalDataset::mPskc

PSKc.

Definition at line 246 of file include/openthread/dataset.h

mSecurityPolicy

otSecurityPolicy otOperationalDataset::mSecurityPolicy

Security Policy.

Definition at line 247 of file include/openthread/dataset.h

mChannelMask

otChannelMask otOperationalDataset::mChannelMask

Channel Mask.

Definition at line 248 of file include/openthread/dataset.h

mComponents

otOperationalDatasetComponents otOperationalDataset::mComponents

Specifies which components are set in the Dataset.

Definition at line 249 of file include/openthread/dataset.h

otOperationalDatasetT lvs

629/962

otOperationalDatasetTlvs

Represents an Active or Pending Operational Dataset.

The Operational Dataset is TLV encoded as specified by Thread.

Public Attributes

uint8_t mTlvs
Operational Dataset TLVs.

uint8_t mLength
Size of Operational Dataset in bytes.

Public Attribute Documentation

mTlvs

uint8_t otOperationalDatasetTlvs::mTlvs[OT_OPERATIONAL_DATASET_MAX_LENGTH�

Operational Dataset TLVs.

Definition at line 266 of file include/openthread/dataset.h

mLength

uint8_t otOperationalDatasetTlvs::mLength

S ize of Operational Dataset in bytes.

Definition at line 267 of file include/openthread/dataset.h

Router/Leader

630/962

Router/Leader

Router/Leader
This module includes functions for Thread Routers and Leaders.

Modules

otChildInfo

otCacheEntryInfo

otCacheEntryIterator

otDeviceProperties

otNeighborTableEntryInfo

Enumerations

enum otCacheEntryState {

OT_CACHE_ENTRY_STATE_CACHED = 0
OT_CACHE_ENTRY_STATE_SNOOPED = 1
OT_CACHE_ENTRY_STATE_QUERY = 2
OT_CACHE_ENTRY_STATE_RETRY_QUERY = 3

}
Defines the EID cache entry state .

enum otPowerSupply {

OT_POWER_SUPPLY_BATTERY = 0
OT_POWER_SUPPLY_EXTERNAL = 1
OT_POWER_SUPPLY_EXTERNAL_STABLE = 2
OT_POWER_SUPPLY_EXTERNAL_UNSTABLE = 3

}
Represents the power supply property on a device .

enum otNeighborTableEvent {

OT_NEIGHBOR_TABLE_EVENT_CHILD_ADDED
OT_NEIGHBOR_TABLE_EVENT_CHILD_REMOVED
OT_NEIGHBOR_TABLE_EVENT_CHILD_MODE_CHANGED
OT_NEIGHBOR_TABLE_EVENT_ROUTER_ADDED
OT_NEIGHBOR_TABLE_EVENT_ROUTER_REMOVED

}
Defines the constants used in otNeighborTableCallback to indicate changes in neighbor table .

Typedefs

typedef uint16_t otChildIp6AddressIterator
Used to iterate through IPv6 addresses of a Thread Child entry.

typedef enum
otCacheEntryStat

e

otCacheEntryState
Defines the EID cache entry state .

Router/Leader

631/962

typedef struct
otCacheEntryInfo

otCacheEntryInfo
Represents an EID cache entry.

typedef struct
otCacheEntryIter

ator

otCacheEntryIterator
Represents an iterator used for iterating through the EID cache table entries.

typedef struct
otDeviceProperti

es

otDeviceProperties
Represents the device properties which are used for calculating the local leader weight on a device .

typedef void(* otNeighborTableCallback)(otNeighborTableEvent aEvent, const otNeighborTableEntryInfo *aEntryInfo)
Po inter is called to notify that there is a change in the neighbor table .

Functions

uint16_t otThreadGetMaxAllowedChildren(otInstance *aInstance)
Gets the maximum number of children currently allowed.

otError otThreadSetMaxAllowedChildren(otInstance *aInstance, uint16_t aMaxChildren)
Sets the maximum number of children currently allowed.

bool otThreadIsRouterEligible(otInstance *aInstance)
Indicates whether or not the device is router-eligible .

otError otThreadSetRouterEligible(otInstance *aInstance, bool aEligible)
Sets whether or not the device is router-eligible .

otError otThreadSetPreferredRouterId(otInstance *aInstance, uint8_t aRouterId)
Set the preferred Router Id.

const
otDeviceProperti

es *

otThreadGetDeviceProperties(otInstance *aInstance)
Get the current device properties.

void otThreadSetDeviceProperties(otInstance *aInstance, const otDeviceProperties *aDeviceProperties)
Set the device properties which are then used to determine and set the Leader Weight.

uint8_t otThreadGetLocalLeaderWeight(otInstance *aInstance)
Gets the Thread Leader Weight used when operating in the Leader ro le .

void otThreadSetLocalLeaderWeight(otInstance *aInstance, uint8_t aWeight)
Sets the Thread Leader Weight used when operating in the Leader ro le .

uint32_t otThreadGetPreferredLeaderPartitionId(otInstance *aInstance)
Get the preferred Thread Leader Partition Id used when operating in the Leader ro le .

void otThreadSetPreferredLeaderPartitionId(otInstance *aInstance, uint32_t aPartitionId)
Set the preferred Thread Leader Partition Id used when operating in the Leader ro le .

uint16_t otThreadGetJoinerUdpPort(otInstance *aInstance)
Gets the Jo iner UDP Port.

otError otThreadSetJoinerUdpPort(otInstance *aInstance, uint16_t aJoinerUdpPort)
Sets the Jo iner UDP Port.

void otThreadSetSteeringData(otInstance *aInstance, const otExtAddress *aExtAddress)
Set Steering data out of band.

uint32_t otThreadGetContextIdReuseDelay(otInstance *aInstance)
Get the CONTEXT_ID_REUSE_DELAY parameter used in the Leader ro le .

Router/Leader

632/962

void otThreadSetContextIdReuseDelay(otInstance *aInstance, uint32_t aDelay)
Set the CONTEXT_ID_REUSE_DELAY parameter used in the Leader ro le .

uint8_t otThreadGetNetworkIdTimeout(otInstance *aInstance)
Get the NETWORK_ID_TIMEOUT parameter.

void otThreadSetNetworkIdTimeout(otInstance *aInstance, uint8_t aTimeout)
Set the NETWORK_ID_TIMEOUT parameter.

uint8_t otThreadGetRouterUpgradeThreshold(otInstance *aInstance)
Get the ROUTER_UPGRADE_THRESHOLD parameter used in the REED ro le .

void otThreadSetRouterUpgradeThreshold(otInstance *aInstance, uint8_t aThreshold)
Set the ROUTER_UPGRADE_THRESHOLD parameter used in the Leader ro le .

uint8_t otThreadGetChildRouterLinks(otInstance *aInstance)
Get the MLE_CHILD_ROUTER_LINKS parameter used in the REED ro le .

otError otThreadSetChildRouterLinks(otInstance *aInstance, uint8_t aChildRouterLinks)
Set the MLE_CHILD_ROUTER_LINKS parameter used in the REED ro le .

otError otThreadReleaseRouterId(otInstance *aInstance, uint8_t aRouterId)
Release a Router ID that has been allocated by the device in the Leader ro le .

otError otThreadBecomeRouter(otInstance *aInstance)
Attempt to become a router.

otError otThreadBecomeLeader(otInstance *aInstance)
Become a leader and start a new partition.

uint8_t otThreadGetRouterDowngradeThreshold(otInstance *aInstance)
Get the ROUTER_DOWNGRADE_THRESHOLD parameter used in the Router ro le .

void otThreadSetRouterDowngradeThreshold(otInstance *aInstance, uint8_t aThreshold)
Set the ROUTER_DOWNGRADE_THRESHOLD parameter used in the Leader ro le .

uint8_t otThreadGetRouterSelectionJitter(otInstance *aInstance)
Get the ROUTER_SELECTION_JITTER parameter used in the REED/Router ro le .

void otThreadSetRouterSelectionJitter(otInstance *aInstance, uint8_t aRouterJitter)
Set the ROUTER_SELECTION_JITTER parameter used in the REED/Router ro le .

otError otThreadGetChildInfoById(otInstance *aInstance, uint16_t aChildId, otChildInfo *aChildInfo)
Gets diagnostic information for an attached Child by its Child ID or RLOC16.

otError otThreadGetChildInfoByIndex(otInstance *aInstance, uint16_t aChildIndex, otChildInfo *aChildInfo)
The function retains diagnostic information for an attached Child by the internal table index.

otError otThreadGetChildNextIp6Address(otInstance *aInstance, uint16_t aChildIndex, otChildIp6AddressIterator
*aIterator, otIp6Address *aAddress)
Gets the next IPv6 address (using an iterator) for a given child.

uint8_t otThreadGetRouterIdSequence(otInstance *aInstance)
Get the current Router ID Sequence .

uint8_t otThreadGetMaxRouterId(otInstance *aInstance)
The function returns the maximum allowed router ID.

otError otThreadGetRouterInfo(otInstance *aInstance, uint16_t aRouterId, otRouterInfo *aRouterInfo)
The function retains diagnostic information for a given Thread Router.

Router/Leader

633/962

otError otThreadGetNextCacheEntry(otInstance *aInstance, otCacheEntryInfo *aEntryInfo, otCacheEntryIterator
*aIterator)
Gets the next EID cache entry (using an iterator).

void otThreadGetPskc(otInstance *aInstance, otPskc *aPskc)
Get the Thread PSKc.

otPskcRef otThreadGetPskcRef(otInstance *aInstance)
Get Key Reference to Thread PSKc stored.

otError otThreadSetPskc(otInstance *aInstance, const otPskc *aPskc)
Set the Thread PSKc.

otError otThreadSetPskcRef(otInstance *aInstance, otPskcRef aKeyRef)
Set the Key Reference to the Thread PSKc.

int8_t otThreadGetParentPriority(otInstance *aInstance)
Get the assigned parent priority.

otError otThreadSetParentPriority(otInstance *aInstance, int8_t aParentPriority)
Set the parent priority.

uint8_t otThreadGetMaxChildIpAddresses(otInstance *aInstance)
Gets the maximum number of IP addresses that each MTD child may register with this device as parent.

otError otThreadSetMaxChildIpAddresses(otInstance *aInstance, uint8_t aMaxIpAddresses)
Sets or restores the maximum number of IP addresses that each MTD child may register with this device as parent.

void otThreadRegisterNeighborTableCallback(otInstance *aInstance, otNeighborTableCallback aCallback)
Registers a neighbor table callback function.

void otThreadSetCcmEnabled(otInstance *aInstance, bool aEnabled)
Sets whether the device was commissioned using CCM.

void otThreadSetThreadVersionCheckEnabled(otInstance *aInstance, bool aEnabled)
Sets whether the Security Po licy TLV version-thresho ld for routing (VR field) is enabled.

void otThreadGetRouterIdRange(otInstance *aInstance, uint8_t *aMinRouterId, uint8_t *aMaxRouterId)
Gets the range of router IDs that are allowed to assign to nodes within the thread network.

otError otThreadSetRouterIdRange(otInstance *aInstance, uint8_t aMinRouterId, uint8_t aMaxRouterId)
Sets the range of router IDs that are allowed to assign to nodes within the thread network.

uint32_t otThreadGetAdvertisementTrickleIntervalMax(otInstance *aInstance)
Gets the current Interval Max value used by Advertisement trickle timer.

bool otThreadIsRouterIdAllocated(otInstance *aInstance, uint8_t aRouterId)
Indicates whether or not a Router ID is currently allocated.

void otThreadGetNextHopAndPathCost(otInstance *aInstance, uint16_t aDestRloc16, uint16_t *aNextHopRloc16,
uint8_t *aPathCost)
Gets the next hop and path cost towards a given RLOC16 destination.

Macros

#define OT_CHILD_IP6_ADDRESS_ITERATOR_INIT 0
Initializer for otChildIP6AddressIterator.

Enumeration Documentation

Router/Leader

634/962

otCacheEntryState

otCacheEntryState

Defines the EID cache entry state.

Enumerator

OT_CACHE_ENTRY_STATE_CACHED

OT_CACHE_ENTRY_STATE_SNOOPED

OT_CACHE_ENTRY_STATE_QUERY

OT_CACHE_ENTRY_STATE_RETRY_QUERY

Definition at line 89 of file include/openthread/thread_ftd.h

otPowerSupply

otPowerSupply

Represents the power supply property on a device.

This is used as a property in otDeviceProperties to calculate the leader weight.

Enumerator

OT_POWER_SUPPLY_BATTERY Battery powered.

OT_POWER_SUPPLY_EXTERNAL Externally powered (mains-powered).

OT_POWER_SUPPLY_EXTERNAL_STABLE Stable external power with a battery backup or UPS.

OT_POWER_SUPPLY_EXTERNAL_UNSTABLE Potentially unstable ext power (e.g. light bulb powered via a switch).

Definition at line 207 of file include/openthread/thread_ftd.h

otNeighborTableEvent

otNeighborTableEvent

Defines the constants used in otNeighborTableCallback to indicate changes in neighbor table.

Enumerator

OT_NEIGHBOR_TABLE_EVENT_CHILD_ADDED A child is being added.

OT_NEIGHBOR_TABLE_EVENT_CHILD_REMOVED A child is being removed.

OT_NEIGHBOR_TABLE_EVENT_CHILD_MODE_CHANGED An existing child's mode is changed.

OT_NEIGHBOR_TABLE_EVENT_ROUTER_ADDED A router is being added.

OT_NEIGHBOR_TABLE_EVENT_ROUTER_REMOVED A router is being removed.

Definition at line 782 of file include/openthread/thread_ftd.h

Typedef Documentation

otChildIp6AddressIterator

typedef uint16_t otChildIp6AddressIterator

Router/Leader

635/962

Used to iterate through IPv6 addresses of a Thread Child entry.

Definition at line 83 of file include/openthread/thread_ftd.h

otCacheEntryState

typedef enum otCacheEntryState otCacheEntryState

Defines the EID cache entry state.

Definition at line 95 of file include/openthread/thread_ftd.h

otCacheEntryInfo

typedef struct otCacheEntryInfo otCacheEntryInfo

Represents an EID cache entry.

Definition at line 113 of file include/openthread/thread_ftd.h

otCacheEntryIterator

typedef struct otCacheEntryIterator otCacheEntryIterator

Represents an iterator used for iterating through the EID cache table entries.

To initialize the iterator and start from the first entry in the cache table, set all its fields in the structure to zero (e.g.,

memset the iterator to zero).

Definition at line 125 of file include/openthread/thread_ftd.h

otDeviceProperties

typedef struct otDeviceProperties otDeviceProperties

Represents the device properties which are used for calculating the local leader weight on a device.

The parameters are set based on device's capability, whether acting as border router, its power supply config, etc.

mIsUnstable indicates operational stability of device and is determined via a vendor specific mechanism. It can include the

following cases:

Device internally detects that it loses external power supply more often than usual. What is usual is determined by the

vendor.

Device internally detects that it reboots more often than usual. What is usual is determined by the vendor.

Definition at line 235 of file include/openthread/thread_ftd.h

otNeighborTableCallback

Router/Leader

636/962

typedef void(* otNeighborTableCallback) (otNeighborTableEvent aEvent, const otNeighborTableEntryInfo *aEntryInfo))
(otNeighborTableEvent aEvent, const otNeighborTableEntryInfo *aEntryInfo)

Pointer is called to notify that there is a change in the neighbor table.

Parameters

[in] aEvent A event flag.

[in] aEntryInfo A pointer to table entry info.

Definition at line 813 of file include/openthread/thread_ftd.h

Function Documentation

otThreadGetMaxAllowedChildren

uint16_t otThreadGetMaxAllowedChildren (otInstance *aInstance)

Gets the maximum number of children currently allowed.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum number of children currently allowed.

See Also

otThreadSetMaxAllowedChildren

Definition at line 137 of file include/openthread/thread_ftd.h

otThreadSetMaxAllowedChildren

otError otThreadSetMaxAllowedChildren (otInstance *aInstance, uint16_t aMaxChildren)

Sets the maximum number of children currently allowed.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMaxChildren The maximum allowed children.

This parameter can only be set when Thread protocol operation has been stopped.

See Also

otThreadGetMaxAllowedChildren

Definition at line 154 of file include/openthread/thread_ftd.h

otThreadIsRouterEligible

bool otThreadIsRouterEligible (otInstance *aInstance)

Router/Leader

637/962

Indicates whether or not the device is router-eligible.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 165 of file include/openthread/thread_ftd.h

otThreadSetRouterEligible

otError otThreadSetRouterEligible (otInstance *aInstance, bool aEligible)

Sets whether or not the device is router-eligible.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEligible TRUE to configure the device as router-eligible, FALSE otherwise.

If aEligible is false and the device is currently operating as a router, this call will cause the device to detach and attempt to

reattach as a child.

Definition at line 180 of file include/openthread/thread_ftd.h

otThreadSetPreferredRouterId

otError otThreadSetPreferredRouterId (otInstance *aInstance, uint8_t aRouterId)

Set the preferred Router Id.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRouterId The preferred Router Id.

Upon becoming a router/leader the node attempts to use this Router Id. If the preferred Router Id is not set or if it can not

be used, a randomly generated router id is picked. This property can be set only when the device role is either detached or

disabled.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 199 of file include/openthread/thread_ftd.h

otThreadGetDeviceProperties

const otDeviceProperties * otThreadGetDeviceProperties (otInstance *aInstance)

Get the current device properties.

Parameters

N/A aInstance

Requires OPENTHREAD_CONFIG_MLE_DEVICE_PROPERTY_LEADER_WEIGHT_ENABLE .

Router/Leader

638/962

Returns

The device properties otDeviceProperties .

Definition at line 245 of file include/openthread/thread_ftd.h

otThreadSetDeviceProperties

void otThreadSetDeviceProperties (otInstance *aInstance, const otDeviceProperties *aDeviceProperties)

Set the device properties which are then used to determine and set the Leader Weight.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDeviceProperties The device properties.

Requires OPENTHREAD_CONFIG_MLE_DEVICE_PROPERTY_LEADER_WEIGHT_ENABLE .

Definition at line 256 of file include/openthread/thread_ftd.h

otThreadGetLocalLeaderWeight

uint8_t otThreadGetLocalLeaderWeight (otInstance *aInstance)

Gets the Thread Leader Weight used when operating in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Thread Leader Weight value.

See Also

otThreadSetLeaderWeight

otThreadSetDeviceProperties

Definition at line 269 of file include/openthread/thread_ftd.h

otThreadSetLocalLeaderWeight

void otThreadSetLocalLeaderWeight (otInstance *aInstance, uint8_t aWeight)

Sets the Thread Leader Weight used when operating in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aWeight The Thread Leader Weight value.

Directly sets the Leader Weight to the new value, replacing its previous value (which may have been determined from the

current otDeviceProperties).

See Also

Router/Leader

639/962

otThreadGetLeaderWeight

Definition at line 283 of file include/openthread/thread_ftd.h

otThreadGetPreferredLeaderPartitionId

uint32_t otThreadGetPreferredLeaderPartitionId (otInstance *aInstance)

Get the preferred Thread Leader Partition Id used when operating in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Thread Leader Partition Id value.

Definition at line 293 of file include/openthread/thread_ftd.h

otThreadSetPreferredLeaderPartitionId

void otThreadSetPreferredLeaderPartitionId (otInstance *aInstance, uint32_t aPartitionId)

Set the preferred Thread Leader Partition Id used when operating in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPartitionId The Thread Leader Partition Id value.

Definition at line 302 of file include/openthread/thread_ftd.h

otThreadGetJoinerUdpPort

uint16_t otThreadGetJoinerUdpPort (otInstance *aInstance)

Gets the Joiner UDP Port.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Joiner UDP Port number.

See Also

otThreadSetJoinerUdpPort

Definition at line 314 of file include/openthread/thread_ftd.h

otThreadSetJoinerUdpPort

otError otThreadSetJoinerUdpPort (otInstance *aInstance, uint16_t aJoinerUdpPort)

Router/Leader

640/962

Sets the Joiner UDP Port.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aJoinerUdpPort The Joiner UDP Port number.

See Also

otThreadGetJoinerUdpPort

Definition at line 327 of file include/openthread/thread_ftd.h

otThreadSetSteeringData

void otThreadSetSteeringData (otInstance *aInstance, const otExtAddress *aExtAddress)

Set Steering data out of band.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aExtAddress Address used to update the steering data. All zeros to clear the steering data (no steering data). All

0xFFs to set steering data/bloom filter to accept/allow all. A specific EUI64 which is then added to

current steering data/bloom filter.

Configuration option OPENTHREAD_CONFIG_MLE_STEERING_DATA_SET_OOB_ENABLE should be set to enable setting of steering

data out of band.

Definition at line 342 of file include/openthread/thread_ftd.h

otThreadGetContextIdReuseDelay

uint32_t otThreadGetContextIdReuseDelay (otInstance *aInstance)

Get the CONTEXT_ID_REUSE_DELAY parameter used in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The CONTEXT_ID_REUSE_DELAY value.

See Also

otThreadSetContextIdReuseDelay

Definition at line 354 of file include/openthread/thread_ftd.h

otThreadSetContextIdReuseDelay

void otThreadSetContextIdReuseDelay (otInstance *aInstance, uint32_t aDelay)

Set the CONTEXT_ID_REUSE_DELAY parameter used in the Leader role.

Router/Leader

641/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDelay The CONTEXT_ID_REUSE_DELAY value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetContextIdReuseDelay

Definition at line 368 of file include/openthread/thread_ftd.h

otThreadGetNetworkIdTimeout

uint8_t otThreadGetNetworkIdTimeout (otInstance *aInstance)

Get the NETWORK_ID_TIMEOUT parameter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Returns

The NETWORK_ID_TIMEOUT value.

See Also

otThreadSetNetworkIdTimeout

Definition at line 383 of file include/openthread/thread_ftd.h

otThreadSetNetworkIdTimeout

void otThreadSetNetworkIdTimeout (otInstance *aInstance, uint8_t aTimeout)

Set the NETWORK_ID_TIMEOUT parameter.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTimeout The NETWORK_ID_TIMEOUT value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetNetworkIdTimeout

Router/Leader

642/962

Definition at line 397 of file include/openthread/thread_ftd.h

otThreadGetRouterUpgradeThreshold

uint8_t otThreadGetRouterUpgradeThreshold (otInstance *aInstance)

Get the ROUTER_UPGRADE_THRESHOLD parameter used in the REED role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The ROUTER_UPGRADE_THRESHOLD value.

See Also

otThreadSetRouterUpgradeThreshold

Definition at line 409 of file include/openthread/thread_ftd.h

otThreadSetRouterUpgradeThreshold

void otThreadSetRouterUpgradeThreshold (otInstance *aInstance, uint8_t aThreshold)

Set the ROUTER_UPGRADE_THRESHOLD parameter used in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aThreshold The ROUTER_UPGRADE_THRESHOLD value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetRouterUpgradeThreshold

Definition at line 423 of file include/openthread/thread_ftd.h

otThreadGetChildRouterLinks

uint8_t otThreadGetChildRouterLinks (otInstance *aInstance)

Get the MLE_CHILD_ROUTER_LINKS parameter used in the REED role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

This parameter specifies the max number of neighboring routers with which the device (as an FED) will try to establish link.

Returns

The MLE_CHILD_ROUTER_LINKS value.

Router/Leader

643/962

See Also

otThreadSetChildRouterLinks

Definition at line 438 of file include/openthread/thread_ftd.h

otThreadSetChildRouterLinks

otError otThreadSetChildRouterLinks (otInstance *aInstance, uint8_t aChildRouterLinks)

Set the MLE_CHILD_ROUTER_LINKS parameter used in the REED role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChildRouterLinks The MLE_CHILD_ROUTER_LINKS value.

See Also

otThreadGetChildRouterLinks

Definition at line 452 of file include/openthread/thread_ftd.h

otThreadReleaseRouterId

otError otThreadReleaseRouterId (otInstance *aInstance, uint8_t aRouterId)

Release a Router ID that has been allocated by the device in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRouterId The Router ID to release. Valid range is [0, 62].

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 469 of file include/openthread/thread_ftd.h

otThreadBecomeRouter

otError otThreadBecomeRouter (otInstance *aInstance)

Attempt to become a router.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 482 of file include/openthread/thread_ftd.h

Router/Leader

644/962

otThreadBecomeLeader

otError otThreadBecomeLeader (otInstance *aInstance)

Become a leader and start a new partition.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

Definition at line 495 of file include/openthread/thread_ftd.h

otThreadGetRouterDowngradeThreshold

uint8_t otThreadGetRouterDowngradeThreshold (otInstance *aInstance)

Get the ROUTER_DOWNGRADE_THRESHOLD parameter used in the Router role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The ROUTER_DOWNGRADE_THRESHOLD value.

See Also

otThreadSetRouterDowngradeThreshold

Definition at line 507 of file include/openthread/thread_ftd.h

otThreadSetRouterDowngradeThreshold

void otThreadSetRouterDowngradeThreshold (otInstance *aInstance, uint8_t aThreshold)

Set the ROUTER_DOWNGRADE_THRESHOLD parameter used in the Leader role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aThreshold The ROUTER_DOWNGRADE_THRESHOLD value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetRouterDowngradeThreshold

Definition at line 521 of file include/openthread/thread_ftd.h

Router/Leader

645/962

otThreadGetRouterSelectionJitter

uint8_t otThreadGetRouterSelectionJitter (otInstance *aInstance)

Get the ROUTER_SELECTION_JITTER parameter used in the REED/Router role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The ROUTER_SELECTION_JITTER value.

See Also

otThreadSetRouterSelectionJitter

Definition at line 533 of file include/openthread/thread_ftd.h

otThreadSetRouterSelectionJitter

void otThreadSetRouterSelectionJitter (otInstance *aInstance, uint8_t aRouterJitter)

Set the ROUTER_SELECTION_JITTER parameter used in the REED/Router role.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRouterJitter The ROUTER_SELECTION_JITTER value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetRouterSelectionJitter

Definition at line 547 of file include/openthread/thread_ftd.h

otThreadGetChildInfoById

otError otThreadGetChildInfoById (otInstance *aInstance, uint16_t aChildId, otChildInfo *aChildInfo)

Gets diagnostic information for an attached Child by its Child ID or RLOC16.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChildId The Child ID or RLOC16 for the attached child.

[out] aChildInfo A pointer to where the child information is placed.

Definition at line 561 of file include/openthread/thread_ftd.h

otThreadGetChildInfoByIndex

Router/Leader

646/962

otError otThreadGetChildInfoByIndex (otInstance *aInstance, uint16_t aChildIndex, otChildInfo *aChildInfo)

The function retains diagnostic information for an attached Child by the internal table index.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChildIndex The table index.

[out] aChildInfo A pointer to where the child information is placed.

See Also

otGetMaxAllowedChildren

Definition at line 578 of file include/openthread/thread_ftd.h

otThreadGetChildNextIp6Address

otError otThreadGetChildNextIp6Address (otInstance *aInstance, uint16_t aChildIndex, otChildIp6AddressIterator *aIterator,
otIp6Address *aAddress)

Gets the next IPv6 address (using an iterator) for a given child.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChildIndex The child index.

[inout] aIterator A pointer to the iterator. On success the iterator will be updated to point to next entry in the list. To

get the first IPv6 address the iterator should be set to OT_CHILD_IP6_ADDRESS_ITERATOR_INIT.

[out] aAddress A pointer to an IPv6 address where the child's next address is placed (on success).

See Also

otThreadGetChildInfoByIndex

Definition at line 597 of file include/openthread/thread_ftd.h

otThreadGetRouterIdSequence

uint8_t otThreadGetRouterIdSequence (otInstance *aInstance)

Get the current Router ID Sequence.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Router ID Sequence.

Definition at line 610 of file include/openthread/thread_ftd.h

otThreadGetMaxRouterId

Router/Leader

647/962

uint8_t otThreadGetMaxRouterId (otInstance *aInstance)

The function returns the maximum allowed router ID.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum allowed router ID.

Definition at line 620 of file include/openthread/thread_ftd.h

otThreadGetRouterInfo

otError otThreadGetRouterInfo (otInstance *aInstance, uint16_t aRouterId, otRouterInfo *aRouterInfo)

The function retains diagnostic information for a given Thread Router.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRouterId The router ID or RLOC16 for a given router.

[out] aRouterInfo A pointer to where the router information is placed.

Definition at line 634 of file include/openthread/thread_ftd.h

otThreadGetNextCacheEntry

otError otThreadGetNextCacheEntry (otInstance *aInstance, otCacheEntryInfo *aEntryInfo, otCacheEntryIterator
*aIterator)

Gets the next EID cache entry (using an iterator).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aEntryInfo A pointer to where the EID cache entry information is placed.

[inout] aIterator A pointer to an iterator. It will be updated to point to next entry on success. To get the first entry,

initialize the iterator by setting all its fields to zero (e.g., memset the iterator structure to zero).

Definition at line 649 of file include/openthread/thread_ftd.h

otThreadGetPskc

void otThreadGetPskc (otInstance *aInstance, otPskc *aPskc)

Get the Thread PSKc.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Router/Leader

648/962

[out] aPskc A pointer to an otPskc to return the retrieved Thread PSKc.

See Also

otThreadSetPskc

Definition at line 660 of file include/openthread/thread_ftd.h

otThreadGetPskcRef

otPskcRef otThreadGetPskcRef (otInstance *aInstance)

Get Key Reference to Thread PSKc stored.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Requires the build-time feature OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE to be enabled.

Returns

Key Reference to PSKc

See Also

otThreadSetPskcRef

Definition at line 674 of file include/openthread/thread_ftd.h

otThreadSetPskc

otError otThreadSetPskc (otInstance *aInstance, const otPskc *aPskc)

Set the Thread PSKc.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPskc A pointer to the new Thread PSKc.

Will only succeed when Thread protocols are disabled. A successful call to this function will also invalidate the Active and

Pending Operational Datasets in non-volatile memory.

See Also

otThreadGetPskc

Definition at line 692 of file include/openthread/thread_ftd.h

otThreadSetPskcRef

otError otThreadSetPskcRef (otInstance *aInstance, otPskcRef aKeyRef)

Set the Key Reference to the Thread PSKc.

Parameters

Router/Leader

649/962

[in] aInstance A pointer to an OpenThread instance.

[in] aKeyRef Key Reference to the new Thread PSKc.

Requires the build-time feature OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE to be enabled.

Will only succeed when Thread protocols are disabled. Upon success, this will also invalidate the Active and Pending

Operational Datasets in non-volatile memory.

See Also

otThreadGetPskcRef

Definition at line 712 of file include/openthread/thread_ftd.h

otThreadGetParentPriority

int8_t otThreadGetParentPriority (otInstance *aInstance)

Get the assigned parent priority.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The assigned parent priority value, -2 means not assigned.

See Also

otThreadSetParentPriority

Definition at line 724 of file include/openthread/thread_ftd.h

otThreadSetParentPriority

otError otThreadSetParentPriority (otInstance *aInstance, int8_t aParentPriority)

Set the parent priority.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aParentPriority The parent priority value.

Note

This API is reserved for testing and demo purposes only. Changing settings with this API will render a production application

non-compliant with the Thread Specification.

See Also

otThreadGetParentPriority

Definition at line 741 of file include/openthread/thread_ftd.h

otThreadGetMaxChildIpAddresses

uint8_t otThreadGetMaxChildIpAddresses (otInstance *aInstance)

Router/Leader

650/962

Gets the maximum number of IP addresses that each MTD child may register with this device as parent.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The maximum number of IP addresses that each MTD child may register with this device as parent.

See Also

otThreadSetMaxChildIpAddresses

Definition at line 753 of file include/openthread/thread_ftd.h

otThreadSetMaxChildIpAddresses

otError otThreadSetMaxChildIpAddresses (otInstance *aInstance, uint8_t aMaxIpAddresses)

Sets or restores the maximum number of IP addresses that each MTD child may register with this device as parent.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMaxIpAddresses The maximum number of IP addresses that each MTD child may register with this device as

parent. 0 to clear the setting and restore the default.

Pass 0 to clear the setting and restore the default.

Available when OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE is enabled.

Note

Only used by Thread Test Harness to limit the address registrations of the reference parent in order to test the MTD DUT

reaction.

See Also

otThreadGetMaxChildIpAddresses

Definition at line 776 of file include/openthread/thread_ftd.h

otThreadRegisterNeighborTableCallback

void otThreadRegisterNeighborTableCallback (otInstance *aInstance, otNeighborTableCallback aCallback)

Registers a neighbor table callback function.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to callback handler function.

The provided callback (if non-NULL) will be invoked when there is a change in the neighbor table (e.g., a child or a router

neighbor entry is being added/removed or an existing child's mode is changed).

Subsequent calls to this method will overwrite the previous callback. Note that this callback in invoked while the

neighbor/child table is being updated and always before the otStateChangedCallback .

Router/Leader

651/962

Definition at line 828 of file include/openthread/thread_ftd.h

otThreadSetCcmEnabled

void otThreadSetCcmEnabled (otInstance *aInstance, bool aEnabled)

Sets whether the device was commissioned using CCM.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE if the device was commissioned using CCM, FALSE otherwise.

Note

This API requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE , and is only used by Thread Test Harness to indicate

whether this device was commissioned using CCM.

Definition at line 840 of file include/openthread/thread_ftd.h

otThreadSetThreadVersionCheckEnabled

void otThreadSetThreadVersionCheckEnabled (otInstance *aInstance, bool aEnabled)

Sets whether the Security Policy TLV version-threshold for routing (VR field) is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE to enable Security Policy TLV version-threshold for routing, FALSE otherwise.

Note

This API requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE , and is only used by Thread Test Harness to indicate that

thread protocol version check VR should be skipped.

Definition at line 852 of file include/openthread/thread_ftd.h

otThreadGetRouterIdRange

void otThreadGetRouterIdRange (otInstance *aInstance, uint8_t *aMinRouterId, uint8_t *aMaxRouterId)

Gets the range of router IDs that are allowed to assign to nodes within the thread network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[out] aMinRouterId The minimum router ID.

[out] aMaxRouterId The maximum router ID.

Note

This API requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE , and is only used for test purpose. All the router IDs in the

range [aMinRouterId, aMaxRouterId] are allowed.

See Also

otThreadSetRouterIdRange

Router/Leader

652/962

Definition at line 867 of file include/openthread/thread_ftd.h

otThreadSetRouterIdRange

otError otThreadSetRouterIdRange (otInstance *aInstance, uint8_t aMinRouterId, uint8_t aMaxRouterId)

Sets the range of router IDs that are allowed to assign to nodes within the thread network.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMinRouterId The minimum router ID.

[in] aMaxRouterId The maximum router ID.

Note

This API requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE , and is only used for test purpose. All the router IDs in the

range [aMinRouterId, aMaxRouterId] are allowed.

See Also

otThreadGetRouterIdRange

Definition at line 885 of file include/openthread/thread_ftd.h

otThreadGetAdvertisementTrickleIntervalMax

uint32_t otThreadGetAdvertisementTrickleIntervalMax (otInstance *aInstance)

Gets the current Interval Max value used by Advertisement trickle timer.

Parameters

N/A aInstance

This API requires OPENTHREAD_CONFIG_REFERENCE_DEVICE_ENABLE , and is intended for testing only.

Returns

The Interval Max of Advertisement trickle timer in milliseconds.

Definition at line 895 of file include/openthread/thread_ftd.h

otThreadIsRouterIdAllocated

bool otThreadIsRouterIdAllocated (otInstance *aInstance, uint8_t aRouterId)

Indicates whether or not a Router ID is currently allocated.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRouterId The router ID to check.

Definition at line 907 of file include/openthread/thread_ftd.h

otThreadGetNextHopAndPathCost

Router/Leader

653/962

void otThreadGetNextHopAndPathCost (otInstance *aInstance, uint16_t aDestRloc16, uint16_t *aNextHopRloc16, uint8_t
*aPathCost)

Gets the next hop and path cost towards a given RLOC16 destination.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDestRloc16 The RLOC16 of destination.

[out] aNextHopRloc16 A pointer to return RLOC16 of next hop, 0xfffe if no next hop.

[out] aPathCost A pointer to return path cost towards destination.

Can be used with either aNextHopRloc16 or aPathCost being NULL indicating caller does not want to get the value.

Definition at line 921 of file include/openthread/thread_ftd.h

Macro Definition Documentation

OT_CHILD_IP6_ADDRESS_ITERATOR_INIT

#define OT_CHILD_IP6_ADDRESS_ITERATOR_INIT

Value:

0

Initializer for otChildIP6AddressIterator.

Definition at line 81 of file include/openthread/thread_ftd.h

otChildInfo

654/962

otChildInfo

Holds diagnostic information for a Thread Child.

Public Attributes

otExtAddress mExtAddress
IEEE 802.15.4 Extended Address.

uint32_t mTimeout
Timeout.

uint32_t mAge
Seconds since last heard.

uint64_t mConnectionTime
Seconds since attach (requires OPENTHREAD_CONFIG_UPTIME_ENABLE)

uint16_t mRloc16
RLOC16.

uint16_t mChildId
Child ID.

uint8_t mNetworkDataVersion
Network Data Version.

uint8_t mLinkQualityIn
Link Quality In.

int8_t mAverageRssi
Average RSSI.

int8_t mLastRssi
Last observed RSSI.

uint16_t mFrameErrorRate
Frame error rate (0xffff->100%). Requires error tracking feature .

uint16_t mMessageErrorRate
(IPv6) msg error rate (0xffff->100%). Requires error tracking feature .

uint16_t mQueuedMessageCnt
Number of queued messages for the child.

uint16_t mSupervisionInterval
Supervision interval (in seconds).

uint8_t mVersion
MLE version.

bool mRxOnWhenIdle
rx-on-when-idle

bool mFullThreadDevice
Full Thread Device .

bool mFullNetworkData
Full Network Data.

otChildInfo

655/962

bool mIsStateRestoring
Is in restoring state .

bool mIsCslSynced
Is child CSL synchronized.

Public Attribute Documentation

mExtAddress

otExtAddress otChildInfo::mExtAddress

IEEE 802.15.4 Extended Address.

Definition at line 59 of file include/openthread/thread_ftd.h

mTimeout

uint32_t otChildInfo::mTimeout

Timeout.

Definition at line 60 of file include/openthread/thread_ftd.h

mAge

uint32_t otChildInfo::mAge

Seconds since last heard.

Definition at line 61 of file include/openthread/thread_ftd.h

mConnectionTime

uint64_t otChildInfo::mConnectionTime

Seconds since attach (requires OPENTHREAD_CONFIG_UPTIME_ENABLE)

Definition at line 62 of file include/openthread/thread_ftd.h

mRloc16

uint16_t otChildInfo::mRloc16

RLOC16.

Definition at line 63 of file include/openthread/thread_ftd.h

mChildId

otChildInfo

656/962

uint16_t otChildInfo::mChildId

Child ID.

Definition at line 64 of file include/openthread/thread_ftd.h

mNetworkDataVersion

uint8_t otChildInfo::mNetworkDataVersion

Network Data Version.

Definition at line 65 of file include/openthread/thread_ftd.h

mLinkQualityIn

uint8_t otChildInfo::mLinkQualityIn

Link Quality In.

Definition at line 66 of file include/openthread/thread_ftd.h

mAverageRssi

int8_t otChildInfo::mAverageRssi

Average RSSI.

Definition at line 67 of file include/openthread/thread_ftd.h

mLastRssi

int8_t otChildInfo::mLastRssi

Last observed RSSI.

Definition at line 68 of file include/openthread/thread_ftd.h

mFrameErrorRate

uint16_t otChildInfo::mFrameErrorRate

Frame error rate (0xffff->100%). Requires error tracking feature.

Definition at line 69 of file include/openthread/thread_ftd.h

mMessageErrorRate

otChildInfo

657/962

uint16_t otChildInfo::mMessageErrorRate

(IPv6) msg error rate (0xffff->100%). Requires error tracking feature.

Definition at line 70 of file include/openthread/thread_ftd.h

mQueuedMessageCnt

uint16_t otChildInfo::mQueuedMessageCnt

Number of queued messages for the child.

Definition at line 71 of file include/openthread/thread_ftd.h

mSupervisionInterval

uint16_t otChildInfo::mSupervisionInterval

Supervision interval (in seconds).

Definition at line 72 of file include/openthread/thread_ftd.h

mVersion

uint8_t otChildInfo::mVersion

MLE version.

Definition at line 73 of file include/openthread/thread_ftd.h

mRxOnWhenIdle

bool otChildInfo::mRxOnWhenIdle

rx-on-when-idle

Definition at line 74 of file include/openthread/thread_ftd.h

mFullThreadDevice

bool otChildInfo::mFullThreadDevice

Full Thread Device.

Definition at line 75 of file include/openthread/thread_ftd.h

mFullNetworkData

otChildInfo

658/962

bool otChildInfo::mFullNetworkData

Full Network Data.

Definition at line 76 of file include/openthread/thread_ftd.h

mIsStateRestoring

bool otChildInfo::mIsStateRestoring

Is in restoring state.

Definition at line 77 of file include/openthread/thread_ftd.h

mIsCslSynced

bool otChildInfo::mIsCslSynced

Is child CSL synchronized.

Definition at line 78 of file include/openthread/thread_ftd.h

otCacheEntryInfo

659/962

otCacheEntryInfo

Represents an EID cache entry.

Public Attributes

otIp6Address mTarget
Target EID.

otShortAddress mRloc16
RLOC16.

otCacheEntryStat
e

mState
Entry state .

bool mCanEvict
Indicates whether the entry can be evicted.

bool mRampDown
Whether in ramp-down mode while in OT_CACHE_ENTRY_STATE_RETRY_QUERY .

bool mValidLastTrans
Indicates whether last transaction time and ML-EID are valid.

uint32_t mLastTransTime
Last transaction time (applicable in cached state).

otIp6Address mMeshLocalEid
Mesh Local EID (applicable if entry in cached state).

uint16_t mTimeout
Timeout in seconds (applicable if in snooped/query/retry-query states).

uint16_t mRetryDelay
Retry delay in seconds (applicable if in query-retry state).

Public Attribute Documentation

mTarget

otIp6Address otCacheEntryInfo::mTarget

Target EID.

Definition at line 103 of file include/openthread/thread_ftd.h

mRloc16

otShortAddress otCacheEntryInfo::mRloc16

RLOC16.

Definition at line 104 of file include/openthread/thread_ftd.h

otCacheEntryInfo

660/962

mState

otCacheEntryState otCacheEntryInfo::mState

Entry state.

Definition at line 105 of file include/openthread/thread_ftd.h

mCanEvict

bool otCacheEntryInfo::mCanEvict

Indicates whether the entry can be evicted.

Definition at line 106 of file include/openthread/thread_ftd.h

mRampDown

bool otCacheEntryInfo::mRampDown

Whether in ramp-down mode while in OT_CACHE_ENTRY_STATE_RETRY_QUERY .

Definition at line 107 of file include/openthread/thread_ftd.h

mValidLastTrans

bool otCacheEntryInfo::mValidLastTrans

Indicates whether last transaction time and ML-EID are valid.

Definition at line 108 of file include/openthread/thread_ftd.h

mLastTransTime

uint32_t otCacheEntryInfo::mLastTransTime

Last transaction time (applicable in cached state).

Definition at line 109 of file include/openthread/thread_ftd.h

mMeshLocalEid

otIp6Address otCacheEntryInfo::mMeshLocalEid

Mesh Local EID (applicable if entry in cached state).

Definition at line 110 of file include/openthread/thread_ftd.h

mTimeout

otCacheEntryInfo

661/962

uint16_t otCacheEntryInfo::mTimeout

Timeout in seconds (applicable if in snooped/query/retry-query states).

Definition at line 111 of file include/openthread/thread_ftd.h

mRetryDelay

uint16_t otCacheEntryInfo::mRetryDelay

Retry delay in seconds (applicable if in query-retry state).

Definition at line 112 of file include/openthread/thread_ftd.h

otCacheEntryIterator

662/962

otCacheEntryIterator

Represents an iterator used for iterating through the EID cache table entries.

To initialize the iterator and start from the first entry in the cache table, set all its fields in the structure to zero (e.g.,

memset the iterator to zero).

Public Attributes

const void * mData
Opaque data used by the core implementation. Should not be changed by user.

Public Attribute Documentation

mData

const void* otCacheEntryIterator::mData[2]

Opaque data used by the core implementation. Should not be changed by user.

Definition at line 124 of file include/openthread/thread_ftd.h

otDeviceProperties

663/962

otDeviceProperties

Represents the device properties which are used for calculating the local leader weight on a device.

The parameters are set based on device's capability, whether acting as border router, its power supply config, etc.

mIsUnstable indicates operational stability of device and is determined via a vendor specific mechanism. It can include the

following cases:

Device internally detects that it loses external power supply more often than usual. What is usual is determined by the

vendor.

Device internally detects that it reboots more often than usual. What is usual is determined by the vendor.

Public Attributes

otPowerSupply mPowerSupply
Power supply config.

bool mIsBorderRouter
Whether device is a border router.

bool mSupportsCcm
Whether device supports CCM (can act as a CCM border router).

bool mIsUnstable
Operational stability of device (vendor specific).

int8_t mLeaderWeightAdjustment
Weight adjustment. Should be -16 to +16 (clamped otherwise).

Public Attribute Documentation

mPowerSupply

otPowerSupply otDeviceProperties::mPowerSupply

Power supply config.

Definition at line 230 of file include/openthread/thread_ftd.h

mIsBorderRouter

bool otDeviceProperties::mIsBorderRouter

Whether device is a border router.

Definition at line 231 of file include/openthread/thread_ftd.h

mSupportsCcm

otDeviceProperties

664/962

bool otDeviceProperties::mSupportsCcm

Whether device supports CCM (can act as a CCM border router).

Definition at line 232 of file include/openthread/thread_ftd.h

mIsUnstable

bool otDeviceProperties::mIsUnstable

Operational stability of device (vendor specific).

Definition at line 233 of file include/openthread/thread_ftd.h

mLeaderWeightAdjustment

int8_t otDeviceProperties::mLeaderWeightAdjustment

Weight adjustment. Should be -16 to +16 (clamped otherwise).

Definition at line 234 of file include/openthread/thread_ftd.h

otNeighborTableEntryInfo

665/962

otNeighborTableEntryInfo

Represent a neighbor table entry info (child or router) and is used as a parameter in the neighbor table callback

otNeighborTableCallback .

Public Attributes

otInstance * mInstance
The OpenThread instance .

otChildInfo mChild
The child neighbor info.

otNeighborInfo mRouter
The router neighbor info.

union
otNeighborTableE

ntryInfo::@27

mInfo

Public Attribute Documentation

mInstance

otInstance* otNeighborTableEntryInfo::mInstance

The OpenThread instance.

Definition at line 798 of file include/openthread/thread_ftd.h

mChild

otChildInfo otNeighborTableEntryInfo::mChild

The child neighbor info.

Definition at line 801 of file include/openthread/thread_ftd.h

mRouter

otNeighborInfo otNeighborTableEntryInfo::mRouter

The router neighbor info.

Definition at line 802 of file include/openthread/thread_ftd.h

mInfo

union otNeighborTableEntryInfo::@27 otNeighborTableEntryInfo::mInfo

otNeighborTableEntryInfo

666/962

Definition at line 803 of file include/openthread/thread_ftd.h

Server

667/962

Server

Server
This module includes functions to manage local network data with the OpenThread Server.

Functions

otError otServerGetNetDataLocal(otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)
Provides a full or stable copy of the local Thread Network Data.

otError otServerAddService(otInstance *aInstance, const otServiceConfig *aConfig)
Add a service configuration to the local network data.

otError otServerRemoveService(otInstance *aInstance, uint32_t aEnterpriseNumber, const uint8_t *aServiceData,
uint8_t aServiceDataLength)
Remove a service configuration from the local network data.

otError otServerGetNextService(otInstance *aInstance, otNetworkDataIterator *aIterator, otServiceConfig
*aConfig)
Gets the next service in the local Network Data.

otError otServerRegister(otInstance *aInstance)
Immediately register the local network data with the Leader.

Function Documentation

otServerGetNetDataLocal

otError otServerGetNetDataLocal (otInstance *aInstance, bool aStable, uint8_t *aData, uint8_t *aDataLength)

Provides a full or stable copy of the local Thread Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aStable TRUE when copying the stable version, FALSE when copying the full version.

[out] aData A pointer to the data buffer.

[inout] aDataLength On entry, size of the data buffer pointed to by aData . On exit, number of copied bytes.

Definition at line 64 of file include/openthread/server.h

otServerAddService

otError otServerAddService (otInstance *aInstance, const otServiceConfig *aConfig)

Add a service configuration to the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Server

668/962

[in] aConfig A pointer to the service configuration.

See Also

otServerRemoveService

otServerRegister

Definition at line 80 of file include/openthread/server.h

otServerRemoveService

otError otServerRemoveService (otInstance *aInstance, uint32_t aEnterpriseNumber, const uint8_t *aServiceData, uint8_t
aServiceDataLength)

Remove a service configuration from the local network data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnterpriseNumber Enterprise Number of the service entry to be deleted.

[in] aServiceData A pointer to an Service Data to look for during deletion.

[in] aServiceDataLength The length of aServiceData in bytes.

See Also

otServerAddService

otServerRegister

Definition at line 97 of file include/openthread/server.h

otServerGetNextService

otError otServerGetNextService (otInstance *aInstance, otNetworkDataIterator *aIterator, otServiceConfig *aConfig)

Gets the next service in the local Network Data.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[inout] aIterator A pointer to the Network Data iterator context. To get the first service entry it should be set to

OT_NETWORK_DATA_ITERATOR_INIT.

[out] aConfig A pointer to where the service information will be placed.

Definition at line 114 of file include/openthread/server.h

otServerRegister

otError otServerRegister (otInstance *aInstance)

Immediately register the local network data with the Leader.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Server

669/962

See Also

otServerAddService

otServerRemoveService

Definition at line 127 of file include/openthread/server.h

Add-Ons

670/962

Add-Ons

Add-Ons

Modules

Channel Manager

Channel Monitoring

Child Supervision

CoAP

Command Line Interface

Crypto - Thread Stack

Factory Diagnostics - Thread Stack

Heap

History Tracker

Jam Detection

Logging - Thread Stack

Mesh Diagnostics

Network Co-Processor

Network Time Synchronization

Radio Statistics

Random Number Generator

SNTP

Channel Manager

671/962

Channel Manager

Channel Manager
This module includes functions for Channel Manager.

The functions in this module are available when Channel Manager feature (OPENTHREAD_CONFIG_CHANNEL_MANAGER_ENABLE)

is enabled. Channel Manager is available only on an FTD build.

Functions

void otChannelManagerRequestChannelChange(otInstance *aInstance, uint8_t aChannel)
Requests a Thread network channel change .

uint8_t otChannelManagerGetRequestedChannel(otInstance *aInstance)
Gets the channel from the last successful call to otChannelManagerRequestChannelChange()

uint16_t otChannelManagerGetDelay(otInstance *aInstance)
Gets the delay (in seconds) used by Channel Manager for a channel change .

otError otChannelManagerSetDelay(otInstance *aInstance, uint16_t aDelay)
Sets the delay (in seconds) used for a channel change .

otError otChannelManagerRequestChannelSelect(otInstance *aInstance, bool aSkipQualityCheck)
Requests that ChannelManager checks and selects a new channel and starts a channel change .

void otChannelManagerSetAutoChannelSelectionEnabled(otInstance *aInstance, bool aEnabled)
Enables or disables the auto-channel-selection functionality.

bool otChannelManagerGetAutoChannelSelectionEnabled(otInstance *aInstance)
Indicates whether the auto-channel-selection functionality is enabled or not.

otError otChannelManagerSetAutoChannelSelectionInterval(otInstance *aInstance, uint32_t aInterval)
Sets the period interval (in seconds) used by auto-channel-selection functionality.

uint32_t otChannelManagerGetAutoChannelSelectionInterval(otInstance *aInstance)
Gets the period interval (in seconds) used by auto-channel-selection functionality.

uint32_t otChannelManagerGetSupportedChannels(otInstance *aInstance)
Gets the supported channel mask.

void otChannelManagerSetSupportedChannels(otInstance *aInstance, uint32_t aChannelMask)
Sets the supported channel mask.

uint32_t otChannelManagerGetFavoredChannels(otInstance *aInstance)
Gets the favored channel mask.

void otChannelManagerSetFavoredChannels(otInstance *aInstance, uint32_t aChannelMask)
Sets the favored channel mask.

uint16_t otChannelManagerGetCcaFailureRateThreshold(otInstance *aInstance)
Gets the CCA failure rate thresho ld.

void otChannelManagerSetCcaFailureRateThreshold(otInstance *aInstance, uint16_t aThreshold)
Sets the CCA failure rate thresho ld.

Channel Manager

672/962

Function Documentation

otChannelManagerRequestChannelChange

void otChannelManagerRequestChannelChange (otInstance *aInstance, uint8_t aChannel)

Requests a Thread network channel change.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannel The new channel for the Thread network.

The network switches to the given channel after a specified delay (see otChannelManagerSetDelay()). The channel change

is performed by updating the Pending Operational Dataset.

A subsequent call will cancel an ongoing previously requested channel change.

Definition at line 69 of file include/openthread/channel_manager.h

otChannelManagerGetRequestedChannel

uint8_t otChannelManagerGetRequestedChannel (otInstance *aInstance)

Gets the channel from the last successful call to otChannelManagerRequestChannelChange()

Parameters

N/A aInstance

Returns

The last requested channel or zero if there has been no channel change request yet.

Definition at line 77 of file include/openthread/channel_manager.h

otChannelManagerGetDelay

uint16_t otChannelManagerGetDelay (otInstance *aInstance)

Gets the delay (in seconds) used by Channel Manager for a channel change.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The delay (in seconds) for channel change.

Definition at line 87 of file include/openthread/channel_manager.h

otChannelManagerSetDelay

otError otChannelManagerSetDelay (otInstance *aInstance, uint16_t aDelay)

Channel Manager

673/962

Sets the delay (in seconds) used for a channel change.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aDelay Delay in seconds.

The delay should preferably be longer than the maximum data poll interval used by all sleepy-end-devices within the Thread

network.

Definition at line 102 of file include/openthread/channel_manager.h

otChannelManagerRequestChannelSelect

otError otChannelManagerRequestChannelSelect (otInstance *aInstance, bool aSkipQualityCheck)

Requests that ChannelManager checks and selects a new channel and starts a channel change.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSkipQualityCheck Indicates whether the quality check (step 1) should be skipped.

Unlike the otChannelManagerRequestChannelChange() where the channel must be given as a parameter, this function asks the

ChannelManager to select a channel by itself (based on collected channel quality info).

Once called, the Channel Manager will perform the following 3 steps:

1) ChannelManager decides if the channel change would be helpful. This check can be skipped if aSkipQualityCheck is set to

true (forcing a channel selection to happen and skipping the quality check). This step uses the collected link quality metrics

on the device (such as CCA failure rate, frame and message error rates per neighbor, etc.) to determine if the current

channel quality is at the level that justifies a channel change.

2) If the first step passes, then ChannelManager selects a potentially better channel. It uses the collected channel quality

data by ChannelMonitor module. The supported and favored channels are used at this step. (see

otChannelManagerSetSupportedChannels() and otChannelManagerSetFavoredChannels()).

3) If the newly selected channel is different from the current channel, ChannelManager requests/starts the channel change

process (internally invoking a RequestChannelChange()).

Definition at line 132 of file include/openthread/channel_manager.h

otChannelManagerSetAutoChannelSelectionEnabled

void otChannelManagerSetAutoChannelSelectionEnabled (otInstance *aInstance, bool aEnabled)

Enables or disables the auto-channel-selection functionality.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled Indicates whether to enable or disable this functionality.

When enabled, ChannelManager will periodically invoke a RequestChannelSelect(false) . The period interval can be set by

SetAutoChannelSelectionInterval() .

Definition at line 144 of file include/openthread/channel_manager.h

Channel Manager

674/962

otChannelManagerGetAutoChannelSelectionEnabled

bool otChannelManagerGetAutoChannelSelectionEnabled (otInstance *aInstance)

Indicates whether the auto-channel-selection functionality is enabled or not.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

TRUE if enabled, FALSE if disabled.

Definition at line 154 of file include/openthread/channel_manager.h

otChannelManagerSetAutoChannelSelectionInterval

otError otChannelManagerSetAutoChannelSelectionInterval (otInstance *aInstance, uint32_t aInterval)

Sets the period interval (in seconds) used by auto-channel-selection functionality.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aInterval The interval in seconds.

Definition at line 166 of file include/openthread/channel_manager.h

otChannelManagerGetAutoChannelSelectionInterval

uint32_t otChannelManagerGetAutoChannelSelectionInterval (otInstance *aInstance)

Gets the period interval (in seconds) used by auto-channel-selection functionality.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The interval in seconds.

Definition at line 176 of file include/openthread/channel_manager.h

otChannelManagerGetSupportedChannels

uint32_t otChannelManagerGetSupportedChannels (otInstance *aInstance)

Gets the supported channel mask.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

Channel Manager

675/962

The supported channels as a bit-mask.

Definition at line 186 of file include/openthread/channel_manager.h

otChannelManagerSetSupportedChannels

void otChannelManagerSetSupportedChannels (otInstance *aInstance, uint32_t aChannelMask)

Sets the supported channel mask.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannelMask A channel mask.

Definition at line 195 of file include/openthread/channel_manager.h

otChannelManagerGetFavoredChannels

uint32_t otChannelManagerGetFavoredChannels (otInstance *aInstance)

Gets the favored channel mask.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The favored channels as a bit-mask.

Definition at line 205 of file include/openthread/channel_manager.h

otChannelManagerSetFavoredChannels

void otChannelManagerSetFavoredChannels (otInstance *aInstance, uint32_t aChannelMask)

Sets the favored channel mask.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannelMask A channel mask.

Definition at line 214 of file include/openthread/channel_manager.h

otChannelManagerGetCcaFailureRateThreshold

uint16_t otChannelManagerGetCcaFailureRateThreshold (otInstance *aInstance)

Gets the CCA failure rate threshold.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Channel Manager

676/962

Returns

The CCA failure rate threshold. Value 0 maps to 0% and 0xffff maps to 100%.

Definition at line 224 of file include/openthread/channel_manager.h

otChannelManagerSetCcaFailureRateThreshold

void otChannelManagerSetCcaFailureRateThreshold (otInstance *aInstance, uint16_t aThreshold)

Sets the CCA failure rate threshold.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aThreshold A CCA failure rate threshold. Value 0 maps to 0% and 0xffff maps to 100%.

Definition at line 233 of file include/openthread/channel_manager.h

Channel Monitoring

677/962

Channel Monitoring

Channel Monitoring
This module includes functions for channel monitoring feature.

The functions in this module are available when channel monitor feature (OPENTHREAD_CONFIG_CHANNEL_MONITOR_ENABLE)

is enabled.

Channel monitoring will periodically monitor all channels to help determine the cleaner channels (channels with less

interference).

When channel monitoring is active, a zero-duration Energy Scan is performed, collecting a single RSSI sample on every

channel per sample interval. The RSSI samples are compared with a pre-specified RSSI threshold. As an indicator of channel

quality, the channel monitoring module maintains and provides the average rate/percentage of RSSI samples that are above

the threshold within (approximately) a specified sample window (referred to as channel occupancy).

Functions

otError otChannelMonitorSetEnabled(otInstance *aInstance, bool aEnabled)
Enables or disables the Channel Monitoring operation.

bool otChannelMonitorIsEnabled(otInstance *aInstance)
Indicates whether the Channel Monitoring operation is enabled and running.

uint32_t otChannelMonitorGetSampleInterval(otInstance *aInstance)
Get channel monitoring sample interval in milliseconds.

int8_t otChannelMonitorGetRssiThreshold(otInstance *aInstance)
Get channel monitoring RSSI thresho ld in dBm.

uint32_t otChannelMonitorGetSampleWindow(otInstance *aInstance)
Get channel monitoring averaging sample window length (number of samples).

uint32_t otChannelMonitorGetSampleCount(otInstance *aInstance)
Get channel monitoring total number of RSSI samples (per channel).

uint16_t otChannelMonitorGetChannelOccupancy(otInstance *aInstance, uint8_t aChannel)
Gets the current channel occupancy for a given channel.

Function Documentation

otChannelMonitorSetEnabled

otError otChannelMonitorSetEnabled (otInstance *aInstance, bool aEnabled)

Enables or disables the Channel Monitoring operation.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aEnabled TRUE to enable/start Channel Monitoring operation, FALSE to disable/stop it.

Once operation starts, any previously collected data is cleared. However, after operation is disabled, the previous collected

data is still valid and can be read.

Channel Monitoring

678/962

Note

OpenThread core internally enables or disables the Channel Monitoring operation when the IPv6 interface is brought up or

down, for example in a call to otIp6SetEnabled() .

Definition at line 82 of file include/openthread/channel_monitor.h

otChannelMonitorIsEnabled

bool otChannelMonitorIsEnabled (otInstance *aInstance)

Indicates whether the Channel Monitoring operation is enabled and running.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

TRUE if the Channel Monitoring operation is enabled, FALSE otherwise.

Definition at line 92 of file include/openthread/channel_monitor.h

otChannelMonitorGetSampleInterval

uint32_t otChannelMonitorGetSampleInterval (otInstance *aInstance)

Get channel monitoring sample interval in milliseconds.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The channel monitor sample interval in milliseconds.

Definition at line 102 of file include/openthread/channel_monitor.h

otChannelMonitorGetRssiThreshold

int8_t otChannelMonitorGetRssiThreshold (otInstance *aInstance)

Get channel monitoring RSSI threshold in dBm.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The RSSI threshold in dBm.

Definition at line 112 of file include/openthread/channel_monitor.h

otChannelMonitorGetSampleWindow

Channel Monitoring

679/962

uint32_t otChannelMonitorGetSampleWindow (otInstance *aInstance)

Get channel monitoring averaging sample window length (number of samples).

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The averaging sample window.

Definition at line 122 of file include/openthread/channel_monitor.h

otChannelMonitorGetSampleCount

uint32_t otChannelMonitorGetSampleCount (otInstance *aInstance)

Get channel monitoring total number of RSSI samples (per channel).

Parameters

[in] aInstance A pointer to an OpenThread instance.

The count indicates total number samples per channel by channel monitoring module since its start (since Thread network

interface was enabled).

Returns

Total number of RSSI samples (per channel) taken so far.

Definition at line 135 of file include/openthread/channel_monitor.h

otChannelMonitorGetChannelOccupancy

uint16_t otChannelMonitorGetChannelOccupancy (otInstance *aInstance, uint8_t aChannel)

Gets the current channel occupancy for a given channel.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aChannel The channel for which to get the link occupancy.

The channel occupancy value represents the average rate/percentage of RSSI samples that were above RSSI threshold

("bad" RSSI samples).

For the first "sample window" samples, the average is maintained as the actual percentage (i.e., ratio of number of "bad"

samples by total number of samples). After "window" samples, the averager uses an exponentially weighted moving

average. Practically, this means the average is representative of up to 3 * window last samples with highest weight given to

the latest kSampleWindow samples.

Max value of 0xffff indicates all RSSI samples were above RSSI threshold (i.e. 100% of samples were "bad").

Returns

The current channel occupancy for the given channel.

Channel Monitoring

680/962

Definition at line 156 of file include/openthread/channel_monitor.h

Child Supervision

681/962

Child Supervision

Child Supervision
This module includes functions for Child Supervision feature.

Functions

uint16_t otChildSupervisionGetInterval(otInstance *aInstance)
Gets the Child Supervision interval (in seconds) on a child.

void otChildSupervisionSetInterval(otInstance *aInstance, uint16_t aInterval)
Sets the child supervision interval (in seconds) on the child.

uint16_t otChildSupervisionGetCheckTimeout(otInstance *aInstance)
Gets the supervision check timeout interval (in seconds) on the child.

void otChildSupervisionSetCheckTimeout(otInstance *aInstance, uint16_t aTimeout)
Sets the supervision check timeout interval (in seconds) on the child.

uint16_t otChildSupervisionGetCheckFailureCounter(otInstance *aInstance)
Get the value of supervision check timeout failure counter.

void otChildSupervisionResetCheckFailureCounter(otInstance *aInstance)
Reset the supervision check timeout failure counter to zero.

Function Documentation

otChildSupervisionGetInterval

uint16_t otChildSupervisionGetInterval (otInstance *aInstance)

Gets the Child Supervision interval (in seconds) on a child.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Child Supervision feature provides a mechanism for parent to ensure that a message is sent to each sleepy child within the

supervision interval. If there is no transmission to the child within the supervision interval, OpenThread enqueues and sends

a Child Supervision Message to the child.

Returns

The child supervision interval. Zero indicates that supervision is disabled.

Definition at line 66 of file include/openthread/child_supervision.h

otChildSupervisionSetInterval

void otChildSupervisionSetInterval (otInstance *aInstance, uint16_t aInterval)

Sets the child supervision interval (in seconds) on the child.

Child Supervision

682/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aInterval The supervision interval (in seconds). Zero to disable supervision.

Definition at line 75 of file include/openthread/child_supervision.h

otChildSupervisionGetCheckTimeout

uint16_t otChildSupervisionGetCheckTimeout (otInstance *aInstance)

Gets the supervision check timeout interval (in seconds) on the child.

Parameters

[in] aInstance A pointer to an OpenThread instance.

If the device is a sleepy child and it does not hear from its parent within the specified check timeout, it initiates the re-

attach process (MLE Child Update Request/Response exchange with its parent).

Returns

The supervision check timeout. Zero indicates that supervision check on the child is disabled.

Definition at line 88 of file include/openthread/child_supervision.h

otChildSupervisionSetCheckTimeout

void otChildSupervisionSetCheckTimeout (otInstance *aInstance, uint16_t aTimeout)

Sets the supervision check timeout interval (in seconds) on the child.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aTimeout The check timeout (in seconds). Zero to disable supervision check on the child.

Definition at line 97 of file include/openthread/child_supervision.h

otChildSupervisionGetCheckFailureCounter

uint16_t otChildSupervisionGetCheckFailureCounter (otInstance *aInstance)

Get the value of supervision check timeout failure counter.

Parameters

N/A aInstance

The counter tracks the number of supervision check failures on the child. It is incremented when the child does not hear

from its parent within the specified check timeout interval.

Definition at line 106 of file include/openthread/child_supervision.h

otChildSupervisionResetCheckFailureCounter

Child Supervision

683/962

void otChildSupervisionResetCheckFailureCounter (otInstance *aInstance)

Reset the supervision check timeout failure counter to zero.

Parameters

N/A aInstance

Definition at line 112 of file include/openthread/child_supervision.h

CoAP

684/962

CoAP

CoAP

Modules

CoAP

CoAP Secure

CoAP

685/962

CoAP

CoAP
This module includes functions that control CoAP communication.

The functions in this module are available when CoAP API feature (OPENTHREAD_CONFIG_COAP_API_ENABLE) is enabled.

Modules

otCoapOption

otCoapOptionIterator

otCoapResource

otCoapBlockwiseResource

otCoapTxParameters

Enumerations

enum otCoapType {

OT_COAP_TYPE_CONFIRMABLE = 0
OT_COAP_TYPE_NON_CONFIRMABLE = 1
OT_COAP_TYPE_ACKNOWLEDGMENT = 2
OT_COAP_TYPE_RESET = 3

}
CoAP Type values (2 bit unsigned integer).

CoAP

686/962

enum otCoapCode {

OT_COAP_CODE_EMPTY = OT_COAP_CODE�0, 0�
OT_COAP_CODE_GET = OT_COAP_CODE�0, 1�
OT_COAP_CODE_POST = OT_COAP_CODE�0, 2�
OT_COAP_CODE_PUT = OT_COAP_CODE�0, 3�
OT_COAP_CODE_DELETE = OT_COAP_CODE�0, 4�
OT_COAP_CODE_RESPONSE_MIN = OT_COAP_CODE�2, 0�
OT_COAP_CODE_CREATED = OT_COAP_CODE�2, 1�
OT_COAP_CODE_DELETED = OT_COAP_CODE�2, 2�
OT_COAP_CODE_VALID = OT_COAP_CODE�2, 3�
OT_COAP_CODE_CHANGED = OT_COAP_CODE�2, 4�
OT_COAP_CODE_CONTENT = OT_COAP_CODE�2, 5�
OT_COAP_CODE_CONTINUE = OT_COAP_CODE�2, 31�
OT_COAP_CODE_BAD_REQUEST = OT_COAP_CODE�4, 0�
OT_COAP_CODE_UNAUTHORIZED = OT_COAP_CODE�4, 1�
OT_COAP_CODE_BAD_OPTION = OT_COAP_CODE�4, 2�
OT_COAP_CODE_FORBIDDEN = OT_COAP_CODE�4, 3�
OT_COAP_CODE_NOT_FOUND = OT_COAP_CODE�4, 4�
OT_COAP_CODE_METHOD_NOT_ALLOWED = OT_COAP_CODE�4, 5�
OT_COAP_CODE_NOT_ACCEPTABLE = OT_COAP_CODE�4, 6�
OT_COAP_CODE_REQUEST_INCOMPLETE = OT_COAP_CODE�4, 8�
OT_COAP_CODE_PRECONDITION_FAILED = OT_COAP_CODE�4, 12�
OT_COAP_CODE_REQUEST_TOO_LARGE = OT_COAP_CODE�4, 13�
OT_COAP_CODE_UNSUPPORTED_FORMAT = OT_COAP_CODE�4, 15�
OT_COAP_CODE_INTERNAL_ERROR = OT_COAP_CODE�5, 0�
OT_COAP_CODE_NOT_IMPLEMENTED = OT_COAP_CODE�5, 1�
OT_COAP_CODE_BAD_GATEWAY = OT_COAP_CODE�5, 2�
OT_COAP_CODE_SERVICE_UNAVAILABLE = OT_COAP_CODE�5, 3�
OT_COAP_CODE_GATEWAY_TIMEOUT = OT_COAP_CODE�5, 4�
OT_COAP_CODE_PROXY_NOT_SUPPORTED = OT_COAP_CODE�5, 5�

}
CoAP Code values.

enum otCoapOptionType {

OT_COAP_OPTION_IF_MATCH = 1
OT_COAP_OPTION_URI_HOST = 3
OT_COAP_OPTION_E_TAG = 4
OT_COAP_OPTION_IF_NONE_MATCH = 5
OT_COAP_OPTION_OBSERVE = 6
OT_COAP_OPTION_URI_PORT = 7
OT_COAP_OPTION_LOCATION_PATH = 8
OT_COAP_OPTION_URI_PATH = 11
OT_COAP_OPTION_CONTENT_FORMAT = 12
OT_COAP_OPTION_MAX_AGE = 14
OT_COAP_OPTION_URI_QUERY = 15
OT_COAP_OPTION_ACCEPT = 17
OT_COAP_OPTION_LOCATION_QUERY = 20
OT_COAP_OPTION_BLOCK2 = 23
OT_COAP_OPTION_BLOCK1 = 27
OT_COAP_OPTION_SIZE2 = 28
OT_COAP_OPTION_PROXY_URI = 35
OT_COAP_OPTION_PROXY_SCHEME = 39
OT_COAP_OPTION_SIZE1 = 60

}
CoAP Option Numbers.

CoAP

687/962

enum otCoapOptionContentFormat {

OT_COAP_OPTION_CONTENT_FORMAT_TEXT_PLAIN = 0
OT_COAP_OPTION_CONTENT_FORMAT_COSE_ENCRYPT0 = 16
OT_COAP_OPTION_CONTENT_FORMAT_COSE_MAC0 = 17
OT_COAP_OPTION_CONTENT_FORMAT_COSE_SIGN1 = 18
OT_COAP_OPTION_CONTENT_FORMAT_LINK_FORMAT = 40
OT_COAP_OPTION_CONTENT_FORMAT_XML = 41
OT_COAP_OPTION_CONTENT_FORMAT_OCTET_STREAM = 42
OT_COAP_OPTION_CONTENT_FORMAT_EXI = 47
OT_COAP_OPTION_CONTENT_FORMAT_JSON = 50
OT_COAP_OPTION_CONTENT_FORMAT_JSON_PATCH_JSON = 51
OT_COAP_OPTION_CONTENT_FORMAT_MERGE_PATCH_JSON = 52
OT_COAP_OPTION_CONTENT_FORMAT_CBOR = 60
OT_COAP_OPTION_CONTENT_FORMAT_CWT = 61
OT_COAP_OPTION_CONTENT_FORMAT_COSE_ENCRYPT = 96
OT_COAP_OPTION_CONTENT_FORMAT_COSE_MAC = 97
OT_COAP_OPTION_CONTENT_FORMAT_COSE_SIGN = 98
OT_COAP_OPTION_CONTENT_FORMAT_COSE_KEY = 101
OT_COAP_OPTION_CONTENT_FORMAT_COSE_KEY_SET = 102
OT_COAP_OPTION_CONTENT_FORMAT_SENML_JSON = 110
OT_COAP_OPTION_CONTENT_FORMAT_SENSML_JSON = 111
OT_COAP_OPTION_CONTENT_FORMAT_SENML_CBOR = 112
OT_COAP_OPTION_CONTENT_FORMAT_SENSML_CBOR = 113
OT_COAP_OPTION_CONTENT_FORMAT_SENML_EXI = 114
OT_COAP_OPTION_CONTENT_FORMAT_SENSML_EXI = 115
OT_COAP_OPTION_CONTENT_FORMAT_COAP_GROUP_JSON = 256
OT_COAP_OPTION_CONTENT_FORMAT_SENML_XML = 310
OT_COAP_OPTION_CONTENT_FORMAT_SENSML_XML = 311

}
CoAP Content Format codes.

enum otCoapBlockSzx {

OT_COAP_OPTION_BLOCK_SZX_16 = 0
OT_COAP_OPTION_BLOCK_SZX_32 = 1
OT_COAP_OPTION_BLOCK_SZX_64 = 2
OT_COAP_OPTION_BLOCK_SZX_128 = 3
OT_COAP_OPTION_BLOCK_SZX_256 = 4
OT_COAP_OPTION_BLOCK_SZX_512 = 5
OT_COAP_OPTION_BLOCK_SZX_1024 = 6

}
CoAP Block Size Exponents.

Typedefs

typedef enum
otCoapType

otCoapType
CoAP Type values (2 bit unsigned integer).

typedef enum
otCoapCode

otCoapCode
CoAP Code values.

typedef enum
otCoapOptionTyp

e

otCoapOptionType
CoAP Option Numbers.

typedef struct
otCoapOption

otCoapOption
Represents a CoAP option.

typedef struct
otCoapOptionIter

ator

otCoapOptionIterator
Acts as an iterator for CoAP options.

CoAP

688/962

typedef enum
otCoapOptionCon

tentFormat

otCoapOptionContentFormat
CoAP Content Format codes.

typedef enum
otCoapBlockSzx

otCoapBlockSzx
CoAP Block Size Exponents.

typedef void(* otCoapResponseHandler)(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo,
otError aResult)
Po inter is called when a CoAP response is received or on the request timeout.

typedef void(* otCoapRequestHandler)(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo)
Po inter is called when a CoAP request with a given Uri-Path is received.

typedef otError(* otCoapBlockwiseReceiveHook)(void *aContext, const uint8_t *aBlock, uint32_t aPosition, uint16_t
aBlockLength, bool aMore, uint32_t aTotalLength)
Po inter is called when a CoAP message with an block-wise transfer option is received.

typedef otError(* otCoapBlockwiseTransmitHook)(void *aContext, uint8_t *aBlock, uint32_t aPosition, uint16_t *aBlockLength,
bool *aMore)
Po inter is called before the next block in a block-wise transfer is sent.

typedef struct
otCoapResource

otCoapResource
Represents a CoAP resource .

typedef struct
otCoapBlockwise

Resource

otCoapBlockwiseResource
Represents a CoAP resource with block-wise transfer.

typedef struct
otCoapTxParamet

ers

otCoapTxParameters
Represents the CoAP transmission parameters.

Functions

void otCoapMessageInit(otMessage *aMessage, otCoapType aType, otCoapCode aCode)
Initializes the CoAP header.

otError otCoapMessageInitResponse(otMessage *aResponse, const otMessage *aRequest, otCoapType aType,
otCoapCode aCode)
Initializes a response message .

otError otCoapMessageSetToken(otMessage *aMessage, const uint8_t *aToken, uint8_t aTokenLength)
Sets the Token value and length in a header.

void otCoapMessageGenerateToken(otMessage *aMessage, uint8_t aTokenLength)
Sets the Token length and randomizes its value .

otError otCoapMessageAppendContentFormatOption(otMessage *aMessage, otCoapOptionContentFormat
aContentFormat)
Appends the Content Format CoAP option as specified in https://too ls.ietf.org/html/rfc7252#page-92.

otError otCoapMessageAppendOption(otMessage *aMessage, uint16_t aNumber, uint16_t aLength, const void
*aValue)
Appends a CoAP option in a header.

otError otCoapMessageAppendUintOption(otMessage *aMessage, uint16_t aNumber, uint32_t aValue)
Appends an unsigned integer CoAP option as specified in https://too ls.ietf.org/html/rfc7252#section-3.2.

otError otCoapMessageAppendObserveOption(otMessage *aMessage, uint32_t aObserve)
Appends an Observe option.

https://tools.ietf.org/html/rfc7252#page-92
https://tools.ietf.org/html/rfc7252#section-3.2

CoAP

689/962

otError otCoapMessageAppendUriPathOptions(otMessage *aMessage, const char *aUriPath)
Appends a Uri-Path option.

uint16_t otCoapBlockSizeFromExponent(otCoapBlockSzx aSize)
Converts a CoAP Block option SZX field to the actual block size .

otError otCoapMessageAppendBlock2Option(otMessage *aMessage, uint32_t aNum, bool aMore, otCoapBlockSzx
aSize)
Appends a Block2 option.

otError otCoapMessageAppendBlock1Option(otMessage *aMessage, uint32_t aNum, bool aMore, otCoapBlockSzx
aSize)
Appends a Block1 option.

otError otCoapMessageAppendProxyUriOption(otMessage *aMessage, const char *aUriPath)
Appends a Proxy-Uri option.

otError otCoapMessageAppendMaxAgeOption(otMessage *aMessage, uint32_t aMaxAge)
Appends a Max-Age option.

otError otCoapMessageAppendUriQueryOption(otMessage *aMessage, const char *aUriQuery)
Appends a single Uri-Query option.

otError otCoapMessageSetPayloadMarker(otMessage *aMessage)
Adds Payload Marker indicating beginning of the payload to the CoAP header.

otCoapType otCoapMessageGetType(const otMessage *aMessage)
Returns the Type value .

otCoapCode otCoapMessageGetCode(const otMessage *aMessage)
Returns the Code value .

void otCoapMessageSetCode(otMessage *aMessage, otCoapCode aCode)
Sets the Code value .

const char * otCoapMessageCodeToString(const otMessage *aMessage)
Returns the CoAP Code as human readable string.

uint16_t otCoapMessageGetMessageId(const otMessage *aMessage)
Returns the Message ID value .

uint8_t otCoapMessageGetTokenLength(const otMessage *aMessage)
Returns the Token length.

const uint8_t * otCoapMessageGetToken(const otMessage *aMessage)
Returns a po inter to the Token value .

otError otCoapOptionIteratorInit(otCoapOptionIterator *aIterator, const otMessage *aMessage)
Initialises an iterator for the options in the given message .

const
otCoapOption *

otCoapOptionIteratorGetFirstOptionMatching(otCoapOptionIterator *aIterator, uint16_t aOption)
Returns a po inter to the first option matching the specified option number.

const
otCoapOption *

otCoapOptionIteratorGetFirstOption(otCoapOptionIterator *aIterator)
Returns a po inter to the first option.

const
otCoapOption *

otCoapOptionIteratorGetNextOptionMatching(otCoapOptionIterator *aIterator, uint16_t aOption)
Returns a po inter to the next option matching the specified option number.

const
otCoapOption *

otCoapOptionIteratorGetNextOption(otCoapOptionIterator *aIterator)
Returns a po inter to the next option.

CoAP

690/962

otError otCoapOptionIteratorGetOptionUintValue(otCoapOptionIterator *aIterator, uint64_t *aValue)
Fills current option value into aValue assuming the current value is an unsigned integer encoded according to

https://too ls.ietf.org/html/rfc7252#section-3.2.

otError otCoapOptionIteratorGetOptionValue(otCoapOptionIterator *aIterator, void *aValue)
Fills current option value into aValue .

otMessage * otCoapNewMessage(otInstance *aInstance, const otMessageSettings *aSettings)
Creates a new CoAP message .

otError otCoapSendRequestWithParameters(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, otCoapResponseHandler aHandler, void *aContext, const otCoapTxParameters
*aTxParameters)
Sends a CoAP request with custom transmission parameters.

otError otCoapSendRequestBlockWiseWithParameters(otInstance *aInstance, otMessage *aMessage, const
otMessageInfo *aMessageInfo, otCoapResponseHandler aHandler, void *aContext, const
otCoapTxParameters *aTxParameters, otCoapBlockwiseTransmitHook aTransmitHook,
otCoapBlockwiseReceiveHook aReceiveHook)
Sends a CoAP request block-wise with custom transmission parameters.

otError otCoapSendRequestBlockWise(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, otCoapResponseHandler aHandler, void *aContext, otCoapBlockwiseTransmitHook
aTransmitHook, otCoapBlockwiseReceiveHook aReceiveHook)
Sends a CoAP request block-wise .

otError otCoapSendRequest(otInstance *aInstance, otMessage *aMessage, const otMessageInfo *aMessageInfo,
otCoapResponseHandler aHandler, void *aContext)
Sends a CoAP request.

otError otCoapStart(otInstance *aInstance, uint16_t aPort)
Starts the CoAP server.

otError otCoapStop(otInstance *aInstance)
Stops the CoAP server.

void otCoapAddResource(otInstance *aInstance, otCoapResource *aResource)
Adds a resource to the CoAP server.

void otCoapRemoveResource(otInstance *aInstance, otCoapResource *aResource)
Removes a resource from the CoAP server.

void otCoapAddBlockWiseResource(otInstance *aInstance, otCoapBlockwiseResource *aResource)
Adds a block-wise resource to the CoAP server.

void otCoapRemoveBlockWiseResource(otInstance *aInstance, otCoapBlockwiseResource *aResource)
Removes a block-wise resource from the CoAP server.

void otCoapSetDefaultHandler(otInstance *aInstance, otCoapRequestHandler aHandler, void *aContext)
Sets the default handler for unhandled CoAP requests.

otError otCoapSendResponseWithParameters(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, const otCoapTxParameters *aTxParameters)
Sends a CoAP response from the server with custom transmission parameters.

otError otCoapSendResponseBlockWiseWithParameters(otInstance *aInstance, otMessage *aMessage, const
otMessageInfo *aMessageInfo, const otCoapTxParameters *aTxParameters, void *aContext,
otCoapBlockwiseTransmitHook aTransmitHook)
Sends a CoAP response block-wise from the server with custom transmission parameters.

otError otCoapSendResponseBlockWise(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook)
Sends a CoAP response block-wise from the server.

https://tools.ietf.org/html/rfc7252#section-3.2

CoAP

691/962

otError otCoapSendResponse(otInstance *aInstance, otMessage *aMessage, const otMessageInfo *aMessageInfo)
Sends a CoAP response from the server.

Macros

#define OT_DEFAULT_COAP_PORT 5683
Default CoAP port, as specified in RFC 7252.

#define OT_COAP_DEFAULT_TOKEN_LENGTH 2
Default token length.

#define OT_COAP_MAX_TOKEN_LENGTH 8
Max token length as specified (RFC 7252).

#define OT_COAP_MAX_RETRANSMIT 20
Max retransmit supported by OpenThread.

#define OT_COAP_MIN_ACK_TIMEOUT 1000
Minimal ACK timeout in milliseconds supported by OpenThread.

#define OT_COAP_CODE (c, d)
Helper macro to define CoAP Code values.

Enumeration Documentation

otCoapType

otCoapType

CoAP Type values (2 bit unsigned integer).

Enumerator

OT_COAP_TYPE_CONFIRMABLE Confirmable.

OT_COAP_TYPE_NON_CONFIRMABLE Non-confirmable.

OT_COAP_TYPE_ACKNOWLEDGMENT Acknowledgment.

OT_COAP_TYPE_RESET Reset.

Definition at line 73 of file include/openthread/coap.h

otCoapCode

otCoapCode

CoAP Code values.

Enumerator

OT_COAP_CODE_EMPTY Empty message code.

OT_COAP_CODE_GET Get.

OT_COAP_CODE_POST Post.

OT_COAP_CODE_PUT Put.

OT_COAP_CODE_DELETE Delete.

OT_COAP_CODE_RESPONSE_MIN 2.00

OT_COAP_CODE_CREATED Created.

CoAP

692/962

OT_COAP_CODE_DELETED Deleted.

OT_COAP_CODE_VALID Valid.

OT_COAP_CODE_CHANGED Changed.

OT_COAP_CODE_CONTENT Content.

OT_COAP_CODE_CONTINUE RFC7959 Continue.

OT_COAP_CODE_BAD_REQUEST Bad Request.

OT_COAP_CODE_UNAUTHORIZED Unauthorized.

OT_COAP_CODE_BAD_OPTION Bad Option.

OT_COAP_CODE_FORBIDDEN Forbidden.

OT_COAP_CODE_NOT_FOUND Not Found.

OT_COAP_CODE_METHOD_NOT_ALLOWED Method Not Allowed.

OT_COAP_CODE_NOT_ACCEPTABLE Not Acceptable.

OT_COAP_CODE_REQUEST_INCOMPLETE RFC7959 Request Entity Incomplete.

OT_COAP_CODE_PRECONDITION_FAILED Precondition Failed.

OT_COAP_CODE_REQUEST_TOO_LARGE Request Entity Too Large.

OT_COAP_CODE_UNSUPPORTED_FORMAT Unsupported Content-Format.

OT_COAP_CODE_INTERNAL_ERROR Internal Server Error.

OT_COAP_CODE_NOT_IMPLEMENTED Not Implemented.

OT_COAP_CODE_BAD_GATEWAY Bad Gateway.

OT_COAP_CODE_SERVICE_UNAVAILABLE Service Unavailable.

OT_COAP_CODE_GATEWAY_TIMEOUT Gateway Timeout.

OT_COAP_CODE_PROXY_NOT_SUPPORTED Proxying Not Supported.

Definition at line 91 of file include/openthread/coap.h

otCoapOptionType

otCoapOptionType

CoAP Option Numbers.

Enumerator

OT_COAP_OPTION_IF_MATCH If-Match.

OT_COAP_OPTION_URI_HOST Uri-Host.

OT_COAP_OPTION_E_TAG ETag.

OT_COAP_OPTION_IF_NONE_MATCH If-None-Match.

OT_COAP_OPTION_OBSERVE Observe [RFC7641].

OT_COAP_OPTION_URI_PORT Uri-Port.

OT_COAP_OPTION_LOCATION_PATH Location-Path.

OT_COAP_OPTION_URI_PATH Uri-Path.

OT_COAP_OPTION_CONTENT_FORMAT Content-Format.

OT_COAP_OPTION_MAX_AGE Max-Age.

OT_COAP_OPTION_URI_QUERY Uri-Query.

OT_COAP_OPTION_ACCEPT Accept.

CoAP

693/962

OT_COAP_OPTION_LOCATION_QUERY Location-Query.

OT_COAP_OPTION_BLOCK2 Block2 (RFC7959)

OT_COAP_OPTION_BLOCK1 Block1 (RFC7959)

OT_COAP_OPTION_SIZE2 S ize2 (RFC7959)

OT_COAP_OPTION_PROXY_URI Proxy-Uri.

OT_COAP_OPTION_PROXY_SCHEME Proxy-Scheme.

OT_COAP_OPTION_SIZE1 S ize1.

Definition at line 130 of file include/openthread/coap.h

otCoapOptionContentFormat

otCoapOptionContentFormat

CoAP Content Format codes.

The full list is documented at https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

Enumerator

OT_COAP_OPTION_CONTENT_FORMAT_TEXT_PLAIN text/plain; charset=utf-8: [RFC2046][RFC3676][RFC5147]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_ENCRYPT0 application/cose; cose-type="cose-encrypt0": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_MAC0 application/cose; cose-type="cose-mac0": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_SIGN1 application/cose; cose-type="cose-sign1": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_LINK_FORMAT application/link-format: [RFC6690]

OT_COAP_OPTION_CONTENT_FORMAT_XML application/xml: [RFC3023]

OT_COAP_OPTION_CONTENT_FORMAT_OCTET_STREAM application/octet-stream: [RFC2045][RFC2046]

OT_COAP_OPTION_CONTENT_FORMAT_EXI application/exi: ["Efficient XML Interchange (EXI) Format 1.0

(Second Edition)", February 2014]

OT_COAP_OPTION_CONTENT_FORMAT_JSON application/json: [RFC7159]

OT_COAP_OPTION_CONTENT_FORMAT_JSON_PATCH_JSON application/json-patch+json: [RFC6902]

OT_COAP_OPTION_CONTENT_FORMAT_MERGE_PATCH_JSON application/merge-patch+json: [RFC7396]

OT_COAP_OPTION_CONTENT_FORMAT_CBOR application/cbor: [RFC7049]

OT_COAP_OPTION_CONTENT_FORMAT_CWT application/cwt: [RFC8392]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_ENCRYPT application/cose; cose-type="cose-encrypt": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_MAC application/cose; cose-type="cose-mac": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_SIGN application/cose; cose-type="cose-sign": [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_KEY application/cose-key: [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_COSE_KEY_SET application/cose-key-set: [RFC8152]

OT_COAP_OPTION_CONTENT_FORMAT_SENML_JSON application/senml+json: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENSML_JSON application/sensml+json: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENML_CBOR application/senml+cbor: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENSML_CBOR application/sensml+cbor: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENML_EXI application/senml-exi: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENSML_EXI application/sensml-exi: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_COAP_GROUP_JSON application/coap-group+json: [RFC7390]

https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

CoAP

694/962

OT_COAP_OPTION_CONTENT_FORMAT_SENML_XML application/senml+xml: [RFC8428]

OT_COAP_OPTION_CONTENT_FORMAT_SENSML_XML application/sensml+xml: [RFC8428]

Definition at line 178 of file include/openthread/coap.h

otCoapBlockSzx

otCoapBlockSzx

CoAP Block S ize Exponents.

Enumerator

OT_COAP_OPTION_BLOCK_SZX_16

OT_COAP_OPTION_BLOCK_SZX_32

OT_COAP_OPTION_BLOCK_SZX_64

OT_COAP_OPTION_BLOCK_SZX_128

OT_COAP_OPTION_BLOCK_SZX_256

OT_COAP_OPTION_BLOCK_SZX_512

OT_COAP_OPTION_BLOCK_SZX_1024

Definition at line 320 of file include/openthread/coap.h

Typedef Documentation

otCoapType

typedef enum otCoapType otCoapType

CoAP Type values (2 bit unsigned integer).

Definition at line 79 of file include/openthread/coap.h

otCoapCode

typedef enum otCoapCode otCoapCode

CoAP Code values.

Definition at line 125 of file include/openthread/coap.h

otCoapOptionType

typedef enum otCoapOptionType otCoapOptionType

CoAP Option Numbers.

Definition at line 151 of file include/openthread/coap.h

otCoapOption

CoAP

695/962

typedef struct otCoapOption otCoapOption

Represents a CoAP option.

Definition at line 161 of file include/openthread/coap.h

otCoapOptionIterator

typedef struct otCoapOptionIterator otCoapOptionIterator

Acts as an iterator for CoAP options.

Definition at line 172 of file include/openthread/coap.h

otCoapOptionContentFormat

typedef enum otCoapOptionContentFormat otCoapOptionContentFormat

CoAP Content Format codes.

The full list is documented at https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

Definition at line 315 of file include/openthread/coap.h

otCoapBlockSzx

typedef enum otCoapBlockSzx otCoapBlockSzx

CoAP Block S ize Exponents.

Definition at line 329 of file include/openthread/coap.h

otCoapResponseHandler

typedef void(* otCoapResponseHandler) (void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo,
otError aResult))(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo, otError aResult)

Pointer is called when a CoAP response is received or on the request timeout.

Parameters

[in] aContext A pointer to application-specific context.

[in] aMessage A pointer to the message buffer containing the response. NULL if no response was received.

[in] aMessageInfo A pointer to the message info for aMessage . NULL if no response was received.

[in] aResult A result of the CoAP transaction.

Definition at line 344 of file include/openthread/coap.h

otCoapRequestHandler

https://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

CoAP

696/962

typedef void(* otCoapRequestHandler) (void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo))
(void *aContext, otMessage *aMessage, const otMessageInfo *aMessageInfo)

Pointer is called when a CoAP request with a given Uri-Path is received.

Parameters

[in] aContext A pointer to arbitrary context information.

[in] aMessage A pointer to the message.

[in] aMessageInfo A pointer to the message info for aMessage .

Definition at line 357 of file include/openthread/coap.h

otCoapBlockwiseReceiveHook

typedef otError(* otCoapBlockwiseReceiveHook) (void *aContext, const uint8_t *aBlock, uint32_t aPosition, uint16_t
aBlockLength, bool aMore, uint32_t aTotalLength))(void *aContext, const uint8_t *aBlock, uint32_t aPosition, uint16_t
aBlockLength, bool aMore, uint32_t aTotalLength)

Pointer is called when a CoAP message with an block-wise transfer option is received.

Parameters

[in] aContext A pointer to application-specific context.

[in] aBlock A pointer to the block segment.

[in] aPosition The position of aBlock in a sequence in bytes.

[in] aBlockLength The length of the block segment in bytes.

[in] aMore Flag if more block segments are following.

[in] aTotalLength The total length in bytes of the transferred information (indicated by a S ize1 or S ize2 option).

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Definition at line 378 of file include/openthread/coap.h

otCoapBlockwiseTransmitHook

typedef otError(* otCoapBlockwiseTransmitHook) (void *aContext, uint8_t *aBlock, uint32_t aPosition, uint16_t
*aBlockLength, bool *aMore))(void *aContext, uint8_t *aBlock, uint32_t aPosition, uint16_t *aBlockLength, bool *aMore)

Pointer is called before the next block in a block-wise transfer is sent.

Parameters

[in] aContext A pointer to application-specific context.

[inout] aBlock A pointer to where the block segment can be written to.

[in] aPosition The position in a sequence from which to obtain the block segment.

[inout] aBlockLength On entry, the maximum block segment length in bytes.

[out] aMore A pointer to the flag if more block segments will follow.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Warnings

CoAP

697/962

By changing the value of aBlockLength, the block size of the whole exchange is renegotiated. It is recommended to do this

after the first block has been received as later changes could cause problems with other CoAP implementations.

Definition at line 405 of file include/openthread/coap.h

otCoapResource

typedef struct otCoapResource otCoapResource

Represents a CoAP resource.

Definition at line 421 of file include/openthread/coap.h

otCoapBlockwiseResource

typedef struct otCoapBlockwiseResource otCoapBlockwiseResource

Represents a CoAP resource with block-wise transfer.

Definition at line 445 of file include/openthread/coap.h

otCoapTxParameters

typedef struct otCoapTxParameters otCoapTxParameters

Represents the CoAP transmission parameters.

Note

mAckTimeout * ((2 ** (mMaxRetransmit + 1)) - 1) * (mAckRandomFactorNumerator / mAckRandomFactorDenominator) must

not exceed what can be represented by a uint32_t (0xffffffff). This limitation allows OpenThread to avoid 64-bit arithmetic.

Definition at line 483 of file include/openthread/coap.h

Function Documentation

otCoapMessageInit

void otCoapMessageInit (otMessage *aMessage, otCoapType aType, otCoapCode aCode)

Initializes the CoAP header.

Parameters

[inout] aMessage A pointer to the CoAP message to initialize.

[in] aType CoAP message type.

[in] aCode CoAP message code.

Definition at line 493 of file include/openthread/coap.h

otCoapMessageInitResponse

CoAP

698/962

otError otCoapMessageInitResponse (otMessage *aResponse, const otMessage *aRequest, otCoapType aType,
otCoapCode aCode)

Initializes a response message.

Parameters

[inout] aResponse A pointer to the CoAP response message.

[in] aRequest A pointer to the CoAP request message.

[in] aType CoAP message type.

[in] aCode CoAP message code.

Note

Both message ID and token are set according to aRequest .

Definition at line 509 of file include/openthread/coap.h

otCoapMessageSetToken

otError otCoapMessageSetToken (otMessage *aMessage, const uint8_t *aToken, uint8_t aTokenLength)

Sets the Token value and length in a header.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aToken A pointer to the Token value.

[in] aTokenLength The Length of aToken .

Definition at line 522 of file include/openthread/coap.h

otCoapMessageGenerateToken

void otCoapMessageGenerateToken (otMessage *aMessage, uint8_t aTokenLength)

Sets the Token length and randomizes its value.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aTokenLength The Length of a Token to set.

Definition at line 531 of file include/openthread/coap.h

otCoapMessageAppendContentFormatOption

otError otCoapMessageAppendContentFormatOption (otMessage *aMessage, otCoapOptionContentFormat
aContentFormat)

Appends the Content Format CoAP option as specified in https://tools.ietf.org/html/rfc7252#page-92.

Parameters

https://tools.ietf.org/html/rfc7252#page-92

CoAP

699/962

[inout] aMessage A pointer to the CoAP message.

[in] aContentFormat One of the content formats listed in otCoapOptionContentFormat above.

This must be called before setting otCoapMessageSetPayloadMarker if a payload is to be included in the message.

The function is a convenience wrapper around otCoapMessageAppendUintOption, and if the desired format type code isn't

listed in otCoapOptionContentFormat, this base function should be used instead.

Definition at line 552 of file include/openthread/coap.h

otCoapMessageAppendOption

otError otCoapMessageAppendOption (otMessage *aMessage, uint16_t aNumber, uint16_t aLength, const void *aValue)

Appends a CoAP option in a header.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aNumber The CoAP Option number.

[in] aLength The CoAP Option length.

[in] aValue A pointer to the CoAP value.

Definition at line 567 of file include/openthread/coap.h

otCoapMessageAppendUintOption

otError otCoapMessageAppendUintOption (otMessage *aMessage, uint16_t aNumber, uint32_t aValue)

Appends an unsigned integer CoAP option as specified in https://tools.ietf.org/html/rfc7252#section-3.2.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aNumber The CoAP Option number.

[in] aValue The CoAP Option unsigned integer value.

See Also

otCoapMessageGetOptionUintValue

Definition at line 583 of file include/openthread/coap.h

otCoapMessageAppendObserveOption

otError otCoapMessageAppendObserveOption (otMessage *aMessage, uint32_t aObserve)

Appends an Observe option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aObserve Observe field value.

https://tools.ietf.org/html/rfc7252#section-3.2

CoAP

700/962

Definition at line 596 of file include/openthread/coap.h

otCoapMessageAppendUriPathOptions

otError otCoapMessageAppendUriPathOptions (otMessage *aMessage, const char *aUriPath)

Appends a Uri-Path option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aUriPath A pointer to a NULL-terminated string.

Definition at line 609 of file include/openthread/coap.h

otCoapBlockSizeFromExponent

uint16_t otCoapBlockSizeFromExponent (otCoapBlockSzx aSize)

Converts a CoAP Block option SZX field to the actual block size.

Parameters

[in] aSize Block size exponent.

Returns

The actual size exponent value.

Definition at line 619 of file include/openthread/coap.h

otCoapMessageAppendBlock2Option

otError otCoapMessageAppendBlock2Option (otMessage *aMessage, uint32_t aNum, bool aMore, otCoapBlockSzx aSize)

Appends a Block2 option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aNum Current block number.

[in] aMore Boolean to indicate more blocks are to be sent.

[in] aSize Block S ize Exponent.

Definition at line 634 of file include/openthread/coap.h

otCoapMessageAppendBlock1Option

otError otCoapMessageAppendBlock1Option (otMessage *aMessage, uint32_t aNum, bool aMore, otCoapBlockSzx aSize)

Appends a Block1 option.

Parameters

[inout] aMessage A pointer to the CoAP message.

CoAP

701/962

[in] aNum Current block number.

[in] aMore Boolean to indicate more blocks are to be sent.

[in] aSize Block S ize Exponent.

Definition at line 649 of file include/openthread/coap.h

otCoapMessageAppendProxyUriOption

otError otCoapMessageAppendProxyUriOption (otMessage *aMessage, const char *aUriPath)

Appends a Proxy-Uri option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aUriPath A pointer to a NULL-terminated string.

Definition at line 662 of file include/openthread/coap.h

otCoapMessageAppendMaxAgeOption

otError otCoapMessageAppendMaxAgeOption (otMessage *aMessage, uint32_t aMaxAge)

Appends a Max-Age option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aMaxAge The Max-Age value.

Definition at line 675 of file include/openthread/coap.h

otCoapMessageAppendUriQueryOption

otError otCoapMessageAppendUriQueryOption (otMessage *aMessage, const char *aUriQuery)

Appends a single Uri-Query option.

Parameters

[inout] aMessage A pointer to the CoAP message.

[in] aUriQuery A pointer to NULL-terminated string, which should contain a single key=value pair.

Definition at line 687 of file include/openthread/coap.h

otCoapMessageSetPayloadMarker

otError otCoapMessageSetPayloadMarker (otMessage *aMessage)

Adds Payload Marker indicating beginning of the payload to the CoAP header.

Parameters

CoAP

702/962

[inout] aMessage A pointer to the CoAP message.

Definition at line 698 of file include/openthread/coap.h

otCoapMessageGetType

otCoapType otCoapMessageGetType (const otMessage *aMessage)

Returns the Type value.

Parameters

[in] aMessage A pointer to the CoAP message.

Returns

The Type value.

Definition at line 708 of file include/openthread/coap.h

otCoapMessageGetCode

otCoapCode otCoapMessageGetCode (const otMessage *aMessage)

Returns the Code value.

Parameters

[in] aMessage A pointer to the CoAP message.

Returns

The Code value.

Definition at line 718 of file include/openthread/coap.h

otCoapMessageSetCode

void otCoapMessageSetCode (otMessage *aMessage, otCoapCode aCode)

Sets the Code value.

Parameters

[inout] aMessage A pointer to the CoAP message to initialize.

[in] aCode CoAP message code.

Definition at line 727 of file include/openthread/coap.h

otCoapMessageCodeToString

const char * otCoapMessageCodeToString (const otMessage *aMessage)

Returns the CoAP Code as human readable string.

Parameters

CoAP

703/962

[in] aMessage A pointer to the CoAP message.

@ returns The CoAP Code as string.

Definition at line 737 of file include/openthread/coap.h

otCoapMessageGetMessageId

uint16_t otCoapMessageGetMessageId (const otMessage *aMessage)

Returns the Message ID value.

Parameters

[in] aMessage A pointer to the CoAP message.

Returns

The Message ID value.

Definition at line 747 of file include/openthread/coap.h

otCoapMessageGetTokenLength

uint8_t otCoapMessageGetTokenLength (const otMessage *aMessage)

Returns the Token length.

Parameters

[in] aMessage A pointer to the CoAP message.

Returns

The Token length.

Definition at line 757 of file include/openthread/coap.h

otCoapMessageGetToken

const uint8_t * otCoapMessageGetToken (const otMessage *aMessage)

Returns a pointer to the Token value.

Parameters

[in] aMessage A pointer to the CoAP message.

Returns

A pointer to the Token value.

Definition at line 767 of file include/openthread/coap.h

otCoapOptionIteratorInit

CoAP

704/962

otError otCoapOptionIteratorInit (otCoapOptionIterator *aIterator, const otMessage *aMessage)

Initialises an iterator for the options in the given message.

Parameters

[inout] aIterator A pointer to the CoAP message option iterator.

[in] aMessage A pointer to the CoAP message.

Definition at line 779 of file include/openthread/coap.h

otCoapOptionIteratorGetFirstOptionMatching

const otCoapOption * otCoapOptionIteratorGetFirstOptionMatching (otCoapOptionIterator *aIterator, uint16_t aOption)

Returns a pointer to the first option matching the specified option number.

Parameters

[in] aIterator A pointer to the CoAP message option iterator.

[in] aOption The option number sought.

Returns

A pointer to the first matching option. If no matching option is present NULL pointer is returned.

Definition at line 790 of file include/openthread/coap.h

otCoapOptionIteratorGetFirstOption

const otCoapOption * otCoapOptionIteratorGetFirstOption (otCoapOptionIterator *aIterator)

Returns a pointer to the first option.

Parameters

[inout] aIterator A pointer to the CoAP message option iterator.

Returns

A pointer to the first option. If no option is present NULL pointer is returned.

Definition at line 800 of file include/openthread/coap.h

otCoapOptionIteratorGetNextOptionMatching

const otCoapOption * otCoapOptionIteratorGetNextOptionMatching (otCoapOptionIterator *aIterator, uint16_t aOption)

Returns a pointer to the next option matching the specified option number.

Parameters

[in] aIterator A pointer to the CoAP message option iterator.

[in] aOption The option number sought.

CoAP

705/962

Returns

A pointer to the next matching option. If no further matching option is present NULL pointer is returned.

Definition at line 811 of file include/openthread/coap.h

otCoapOptionIteratorGetNextOption

const otCoapOption * otCoapOptionIteratorGetNextOption (otCoapOptionIterator *aIterator)

Returns a pointer to the next option.

Parameters

[inout] aIterator A pointer to the CoAP message option iterator.

Returns

A pointer to the next option. If no more options are present NULL pointer is returned.

Definition at line 821 of file include/openthread/coap.h

otCoapOptionIteratorGetOptionUintValue

otError otCoapOptionIteratorGetOptionUintValue (otCoapOptionIterator *aIterator, uint64_t *aValue)

Fills current option value into aValue assuming the current value is an unsigned integer encoded according to

https://tools.ietf.org/html/rfc7252#section-3.2.

Parameters

[inout] aIterator A pointer to the CoAP message option iterator.

[out] aValue A pointer to an unsigned integer to receive the option value.

See Also

otCoapMessageAppendUintOption

Definition at line 836 of file include/openthread/coap.h

otCoapOptionIteratorGetOptionValue

otError otCoapOptionIteratorGetOptionValue (otCoapOptionIterator *aIterator, void *aValue)

Fills current option value into aValue .

Parameters

[inout] aIterator A pointer to the CoAP message option iterator.

[out] aValue A pointer to a buffer to receive the option value.

Definition at line 848 of file include/openthread/coap.h

otCoapNewMessage

https://tools.ietf.org/html/rfc7252#section-3.2

CoAP

706/962

otMessage * otCoapNewMessage (otInstance *aInstance, const otMessageSettings *aSettings)

Creates a new CoAP message.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSettings A pointer to the message settings or NULL to set default settings.

Note

If aSettings is 'NULL', the link layer security is enabled and the message priority is set to OT_MESSAGE_PRIORITY_NORMAL

by default.

Returns

A pointer to the message buffer or NULL if no message buffers are available or parameters are invalid.

Definition at line 862 of file include/openthread/coap.h

otCoapSendRequestWithParameters

otError otCoapSendRequestWithParameters (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, otCoapResponseHandler aHandler, void *aContext, const otCoapTxParameters *aTxParameters)

Sends a CoAP request with custom transmission parameters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the message to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aHandler A function pointer that shall be called on response reception or timeout.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTxParameters A pointer to transmission parameters for this request. Use NULL for defaults. Otherwise, parameters

given must meet the following conditions:

 mMaxRetransmit is no more than OT_COAP_MAX_RETRANSMIT.

 mAckRandomFactorNumerator / mAckRandomFactorDenominator must not be below 1.0.

 The calculated exchange life time must not overflow uint32_t.

If a response for a request is expected, respective function and context information should be provided. If no response is

expected, these arguments should be NULL pointers.

Definition at line 886 of file include/openthread/coap.h

otCoapSendRequestBlockWiseWithParameters

otError otCoapSendRequestBlockWiseWithParameters (otInstance *aInstance, otMessage *aMessage, const
otMessageInfo *aMessageInfo, otCoapResponseHandler aHandler, void *aContext, const otCoapTxParameters
*aTxParameters, otCoapBlockwiseTransmitHook aTransmitHook, otCoapBlockwiseReceiveHook aReceiveHook)

Sends a CoAP request block-wise with custom transmission parameters.

Parameters

CoAP

707/962

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the message to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aHandler A function pointer that shall be called on response reception or timeout.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTxParameters A pointer to transmission parameters for this request. Use NULL for defaults.

[in] aTransmitHook A pointer to a hook function for outgoing block-wise transfer.

[in] aReceiveHook A pointer to a hook function for incoming block-wise transfer.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

If a response for a request is expected, respective function and context information should be provided. If the response is

expected to be block-wise, a respective hook function should be provided. If no response is expected, these arguments

should be NULL pointers.

Definition at line 917 of file include/openthread/coap.h

otCoapSendRequestBlockWise

static otError otCoapSendRequestBlockWise (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, otCoapResponseHandler aHandler, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook,
otCoapBlockwiseReceiveHook aReceiveHook)

Sends a CoAP request block-wise.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the message to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aHandler A function pointer that shall be called on response reception or timeout.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTransmitHook A pointer to a hook function for outgoing block-wise transfer.

[in] aReceiveHook A pointer to a hook function for incoming block-wise transfer.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

If a response for a request is expected, respective function and context information should be provided. If the response is

expected to be block-wise, a respective hook function should be provided. If no response is expected, these arguments

should be NULL pointers.

Definition at line 948 of file include/openthread/coap.h

otCoapSendRequest

static otError otCoapSendRequest (otInstance *aInstance, otMessage *aMessage, const otMessageInfo *aMessageInfo,
otCoapResponseHandler aHandler, void *aContext)

Sends a CoAP request.

Parameters

[in] aInstance A pointer to an OpenThread instance.

CoAP

708/962

[in] aMessage A pointer to the message to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aHandler A function pointer that shall be called on response reception or timeout.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

If a response for a request is expected, respective function and context information should be provided. If no response is

expected, these arguments should be NULL pointers.

Definition at line 977 of file include/openthread/coap.h

otCoapStart

otError otCoapStart (otInstance *aInstance, uint16_t aPort)

Starts the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPort The local UDP port to bind to.

Definition at line 997 of file include/openthread/coap.h

otCoapStop

otError otCoapStop (otInstance *aInstance)

Stops the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 1007 of file include/openthread/coap.h

otCoapAddResource

void otCoapAddResource (otInstance *aInstance, otCoapResource *aResource)

Adds a resource to the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 1016 of file include/openthread/coap.h

otCoapRemoveResource

void otCoapRemoveResource (otInstance *aInstance, otCoapResource *aResource)

CoAP

709/962

Removes a resource from the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 1025 of file include/openthread/coap.h

otCoapAddBlockWiseResource

void otCoapAddBlockWiseResource (otInstance *aInstance, otCoapBlockwiseResource *aResource)

Adds a block-wise resource to the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 1034 of file include/openthread/coap.h

otCoapRemoveBlockWiseResource

void otCoapRemoveBlockWiseResource (otInstance *aInstance, otCoapBlockwiseResource *aResource)

Removes a block-wise resource from the CoAP server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 1043 of file include/openthread/coap.h

otCoapSetDefaultHandler

void otCoapSetDefaultHandler (otInstance *aInstance, otCoapRequestHandler aHandler, void *aContext)

Sets the default handler for unhandled CoAP requests.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHandler A function pointer that shall be called when an unhandled request arrives.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

Definition at line 1053 of file include/openthread/coap.h

otCoapSendResponseWithParameters

otError otCoapSendResponseWithParameters (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, const otCoapTxParameters *aTxParameters)

CoAP

710/962

Sends a CoAP response from the server with custom transmission parameters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aTxParameters A pointer to transmission parameters for this response. Use NULL for defaults.

Definition at line 1068 of file include/openthread/coap.h

otCoapSendResponseBlockWiseWithParameters

otError otCoapSendResponseBlockWiseWithParameters (otInstance *aInstance, otMessage *aMessage, const
otMessageInfo *aMessageInfo, const otCoapTxParameters *aTxParameters, void *aContext,
otCoapBlockwiseTransmitHook aTransmitHook)

Sends a CoAP response block-wise from the server with custom transmission parameters.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aTxParameters A pointer to transmission parameters for this response. Use NULL for defaults.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTransmitHook A pointer to a hook function for outgoing block-wise transfer.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Definition at line 1091 of file include/openthread/coap.h

otCoapSendResponseBlockWise

static otError otCoapSendResponseBlockWise (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook)

Sends a CoAP response block-wise from the server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTransmitHook A pointer to a hook function for outgoing block-wise transfer.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Definition at line 1114 of file include/openthread/coap.h

otCoapSendResponse

CoAP

711/962

static otError otCoapSendResponse (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo)

Sends a CoAP response from the server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

Definition at line 1135 of file include/openthread/coap.h

Macro Definition Documentation

OT_DEFAULT_COAP_PORT

#define OT_DEFAULT_COAP_PORT

Value:

5683

Default CoAP port, as specified in RFC 7252.

Definition at line 59 of file include/openthread/coap.h

OT_COAP_DEFAULT_TOKEN_LENGTH

#define OT_COAP_DEFAULT_TOKEN_LENGTH

Value:

2

Default token length.

Definition at line 61 of file include/openthread/coap.h

OT_COAP_MAX_TOKEN_LENGTH

#define OT_COAP_MAX_TOKEN_LENGTH

Value:

8

Max token length as specified (RFC 7252).

Definition at line 63 of file include/openthread/coap.h

OT_COAP_MAX_RETRANSMIT

CoAP

712/962

#define OT_COAP_MAX_RETRANSMIT

Value:

20

Max retransmit supported by OpenThread.

Definition at line 65 of file include/openthread/coap.h

OT_COAP_MIN_ACK_TIMEOUT

#define OT_COAP_MIN_ACK_TIMEOUT

Value:

1000

Minimal ACK timeout in milliseconds supported by OpenThread.

Definition at line 67 of file include/openthread/coap.h

OT_COAP_CODE

#define OT_COAP_CODE

Value:

(c, d)

Helper macro to define CoAP Code values.

Definition at line 85 of file include/openthread/coap.h

otCoapOption

713/962

otCoapOption

Represents a CoAP option.

Public Attributes

uint16_t mNumber
Option Number.

uint16_t mLength
Option Length.

Public Attribute Documentation

mNumber

uint16_t otCoapOption::mNumber

Option Number.

Definition at line 159 of file include/openthread/coap.h

mLength

uint16_t otCoapOption::mLength

Option Length.

Definition at line 160 of file include/openthread/coap.h

otCoapOptionIterator

714/962

otCoapOptionIterator

Acts as an iterator for CoAP options.

Public Attributes

const otMessage
*

mMessage
CoAP message .

otCoapOption mOption
CoAP message option.

uint16_t mNextOptionOffset
Byte offset of next option.

Public Attribute Documentation

mMessage

const otMessage* otCoapOptionIterator::mMessage

CoAP message.

Definition at line 169 of file include/openthread/coap.h

mOption

otCoapOption otCoapOptionIterator::mOption

CoAP message option.

Definition at line 170 of file include/openthread/coap.h

mNextOptionOffset

uint16_t otCoapOptionIterator::mNextOptionOffset

Byte offset of next option.

Definition at line 171 of file include/openthread/coap.h

otCoapResource

715/962

otCoapResource

Represents a CoAP resource.

Public Attributes

const char * mUriPath
The URI Path string.

otCoapRequestH
andler

mHandler
The callback for handling a received request.

void * mContext
Application-specific context.

struct
otCoapResource

*

mNext
The next CoAP resource in the list.

Public Attribute Documentation

mUriPath

const char* otCoapResource::mUriPath

The URI Path string.

Definition at line 417 of file include/openthread/coap.h

mHandler

otCoapRequestHandler otCoapResource::mHandler

The callback for handling a received request.

Definition at line 418 of file include/openthread/coap.h

mContext

void* otCoapResource::mContext

Application-specific context.

Definition at line 419 of file include/openthread/coap.h

mNext

struct otCoapResource* otCoapResource::mNext

otCoapResource

716/962

The next CoAP resource in the list.

Definition at line 420 of file include/openthread/coap.h

otCoapBlockwiseResource

717/962

otCoapBlockwiseResource

Represents a CoAP resource with block-wise transfer.

Public Attributes

const char * mUriPath
The URI Path string.

otCoapRequestH
andler

mHandler
The callback for handling a received request.

otCoapBlockwise
ReceiveHook

mReceiveHook
The callback for handling incoming block-wise transfer.

otCoapBlockwise
TransmitHook

mTransmitHook
The callback for handling outgo ing block-wise transfer.

void * mContext
Application-specific context.

struct
otCoapBlockwise

Resource *

mNext
The next CoAP resource in the list.

Public Attribute Documentation

mUriPath

const char* otCoapBlockwiseResource::mUriPath

The URI Path string.

Definition at line 429 of file include/openthread/coap.h

mHandler

otCoapRequestHandler otCoapBlockwiseResource::mHandler

The callback for handling a received request.

Definition at line 430 of file include/openthread/coap.h

mReceiveHook

otCoapBlockwiseReceiveHook otCoapBlockwiseResource::mReceiveHook

The callback for handling incoming block-wise transfer.

This callback is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

otCoapBlockwiseResource

718/962

Definition at line 436 of file include/openthread/coap.h

mTransmitHook

otCoapBlockwiseTransmitHook otCoapBlockwiseResource::mTransmitHook

The callback for handling outgoing block-wise transfer.

This callback is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Definition at line 442 of file include/openthread/coap.h

mContext

void* otCoapBlockwiseResource::mContext

Application-specific context.

Definition at line 443 of file include/openthread/coap.h

mNext

struct otCoapBlockwiseResource* otCoapBlockwiseResource::mNext

The next CoAP resource in the list.

Definition at line 444 of file include/openthread/coap.h

otCoapTxParameters

719/962

otCoapTxParameters

Represents the CoAP transmission parameters.

Note

mAckTimeout * ((2 ** (mMaxRetransmit + 1)) - 1) * (mAckRandomFactorNumerator / mAckRandomFactorDenominator) must

not exceed what can be represented by a uint32_t (0xffffffff). This limitation allows OpenThread to avoid 64-bit arithmetic.

Public Attributes

uint32_t mAckTimeout
Minimum spacing before first retransmission when ACK is not received, in milliseconds (RFC7252 default value is

2000ms).

uint8_t mAckRandomFactorNumerator
Numerator of ACK_RANDOM_FACTOR used to calculate maximum spacing before first retransmission when ACK is not

received (RFC7252 default value of ACK_RANDOM_FACTOR is 1.5; must not be decreased below 1).

uint8_t mAckRandomFactorDenominator
Denominator of ACK_RANDOM_FACTOR used to calculate maximum spacing before first retransmission when ACK is not

received (RFC7252 default value of ACK_RANDOM_FACTOR is 1.5; must not be decreased below 1).

uint8_t mMaxRetransmit
Maximum number of retransmissions for CoAP Confirmable messages (RFC7252 default value is 4).

Public Attribute Documentation

mAckTimeout

uint32_t otCoapTxParameters::mAckTimeout

Minimum spacing before first retransmission when ACK is not received, in milliseconds (RFC7252 default value is 2000ms).

Definition at line 462 of file include/openthread/coap.h

mAckRandomFactorNumerator

uint8_t otCoapTxParameters::mAckRandomFactorNumerator

Numerator of ACK_RANDOM_FACTOR used to calculate maximum spacing before first retransmission when ACK is not

received (RFC7252 default value of ACK_RANDOM_FACTOR is 1.5; must not be decreased below 1).

Definition at line 469 of file include/openthread/coap.h

mAckRandomFactorDenominator

uint8_t otCoapTxParameters::mAckRandomFactorDenominator

otCoapTxParameters

720/962

Denominator of ACK_RANDOM_FACTOR used to calculate maximum spacing before first retransmission when ACK is not

received (RFC7252 default value of ACK_RANDOM_FACTOR is 1.5; must not be decreased below 1).

Definition at line 476 of file include/openthread/coap.h

mMaxRetransmit

uint8_t otCoapTxParameters::mMaxRetransmit

Maximum number of retransmissions for CoAP Confirmable messages (RFC7252 default value is 4).

Definition at line 482 of file include/openthread/coap.h

CoAP Secure

721/962

CoAP Secure

CoAP Secure
This module includes functions that control CoAP Secure (CoAP over DTLS) communication.

The functions in this module are available when CoAP Secure API feature (OPENTHREAD_CONFIG_COAP_SECURE_API_ENABLE)

is enabled.

Typedefs

typedef void(* otHandleCoapSecureClientConnect)(bool aConnected, void *aContext)
Po inter is called when the DTLS connection state changes.

Functions

otError otCoapSecureStart(otInstance *aInstance, uint16_t aPort)
Starts the CoAP Secure service .

void otCoapSecureStop(otInstance *aInstance)
Stops the CoAP Secure server.

void otCoapSecureSetPsk(otInstance *aInstance, const uint8_t *aPsk, uint16_t aPskLength, const uint8_t
*aPskIdentity, uint16_t aPskIdLength)
Sets the Pre-Shared Key (PSK) and cipher suite DTLS_PSK_WITH_AES_128_CCM_8.

otError otCoapSecureGetPeerCertificateBase64(otInstance *aInstance, unsigned char *aPeerCert, size_t
*aCertLength, size_t aCertBufferSize)
Returns the peer x509 certificate base64 encoded.

void otCoapSecureSetSslAuthMode(otInstance *aInstance, bool aVerifyPeerCertificate)
Sets the authentication mode for the coap secure connection.

void otCoapSecureSetCertificate(otInstance *aInstance, const uint8_t *aX509Cert, uint32_t aX509Length, const
uint8_t *aPrivateKey, uint32_t aPrivateKeyLength)
Sets the local device 's X509 certificate with corresponding private key for DTLS session with

DTLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.

void otCoapSecureSetCaCertificateChain(otInstance *aInstance, const uint8_t *aX509CaCertificateChain,
uint32_t aX509CaCertChainLength)
Sets the trusted top level CAs.

otError otCoapSecureConnect(otInstance *aInstance, const otSockAddr *aSockAddr,
otHandleCoapSecureClientConnect aHandler, void *aContext)
Initializes DTLS session with a peer.

void otCoapSecureDisconnect(otInstance *aInstance)
Stops the DTLS connection.

bool otCoapSecureIsConnected(otInstance *aInstance)
Indicates whether or not the DTLS session is connected.

bool otCoapSecureIsConnectionActive(otInstance *aInstance)
Indicates whether or not the DTLS session is active .

CoAP Secure

722/962

otError otCoapSecureSendRequestBlockWise(otInstance *aInstance, otMessage *aMessage,
otCoapResponseHandler aHandler, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook,
otCoapBlockwiseReceiveHook aReceiveHook)
Sends a CoAP request block-wise over secure DTLS connection.

otError otCoapSecureSendRequest(otInstance *aInstance, otMessage *aMessage, otCoapResponseHandler
aHandler, void *aContext)
Sends a CoAP request over secure DTLS connection.

void otCoapSecureAddResource(otInstance *aInstance, otCoapResource *aResource)
Adds a resource to the CoAP Secure server.

void otCoapSecureRemoveResource(otInstance *aInstance, otCoapResource *aResource)
Removes a resource from the CoAP Secure server.

void otCoapSecureAddBlockWiseResource(otInstance *aInstance, otCoapBlockwiseResource *aResource)
Adds a block-wise resource to the CoAP Secure server.

void otCoapSecureRemoveBlockWiseResource(otInstance *aInstance, otCoapBlockwiseResource *aResource)
Removes a block-wise resource from the CoAP Secure server.

void otCoapSecureSetDefaultHandler(otInstance *aInstance, otCoapRequestHandler aHandler, void *aContext)
Sets the default handler for unhandled CoAP Secure requests.

void otCoapSecureSetClientConnectedCallback(otInstance *aInstance, otHandleCoapSecureClientConnect
aHandler, void *aContext)
Sets the connected callback to indicate , when a Client connect to the CoAP Secure server.

otError otCoapSecureSendResponseBlockWise(otInstance *aInstance, otMessage *aMessage, const
otMessageInfo *aMessageInfo, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook)
Sends a CoAP response block-wise from the CoAP Secure server.

otError otCoapSecureSendResponse(otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo)
Sends a CoAP response from the CoAP Secure server.

Macros

#define OT_DEFAULT_COAP_SECURE_PORT 5684
Default CoAP Secure port, as specified in RFC 7252.

Typedef Documentation

otHandleCoapSecureClientConnect

typedef void(* otHandleCoapSecureClientConnect) (bool aConnected, void *aContext))(bool aConnected, void
*aContext)

Pointer is called when the DTLS connection state changes.

Parameters

[in] aConnected true, if a connection was established, false otherwise.

[in] aContext A pointer to arbitrary context information.

Definition at line 77 of file include/openthread/coap_secure.h

Function Documentation

otCoapSecureStart

CoAP Secure

723/962

otError otCoapSecureStart (otInstance *aInstance, uint16_t aPort)

Starts the CoAP Secure service.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPort The local UDP port to bind to.

Definition at line 88 of file include/openthread/coap_secure.h

otCoapSecureStop

void otCoapSecureStop (otInstance *aInstance)

Stops the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 96 of file include/openthread/coap_secure.h

otCoapSecureSetPsk

void otCoapSecureSetPsk (otInstance *aInstance, const uint8_t *aPsk, uint16_t aPskLength, const uint8_t *aPskIdentity,
uint16_t aPskIdLength)

Sets the Pre-Shared Key (PSK) and cipher suite DTLS_PSK_WITH_AES_128_CCM_8.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aPsk A pointer to the PSK.

[in] aPskLength The PSK length.

[in] aPskIdentity The Identity Name for the PSK.

[in] aPskIdLength The PSK Identity Length.

Note

This function requires the build-time feature MBEDTLS_KEY_EXCHANGE_PSK_ENABLED to be enabled.

Definition at line 111 of file include/openthread/coap_secure.h

otCoapSecureGetPeerCertificateBase64

otError otCoapSecureGetPeerCertificateBase64 (otInstance *aInstance, unsigned char *aPeerCert, size_t *aCertLength,
size_t aCertBufferSize)

Returns the peer x509 certificate base64 encoded.

Parameters

[in] aInstance A pointer to an OpenThread instance.

CoAP Secure

724/962

[out] aPeerCert A pointer to the base64 encoded certificate buffer.

[out] aCertLength The length of the base64 encoded peer certificate.

[in] aCertBufferSize The buffer size of aPeerCert.

Note

This function requires the build-time features MBEDTLS_BASE64_C and MBEDTLS_SSL_KEEP_PEER_CERTIFICATE to be enabled.

Definition at line 133 of file include/openthread/coap_secure.h

otCoapSecureSetSslAuthMode

void otCoapSecureSetSslAuthMode (otInstance *aInstance, bool aVerifyPeerCertificate)

Sets the authentication mode for the coap secure connection.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aVerifyPeerCertificate true, to verify the peer certificate.

Disable or enable the verification of peer certificate. Must be called before start.

Definition at line 148 of file include/openthread/coap_secure.h

otCoapSecureSetCertificate

void otCoapSecureSetCertificate (otInstance *aInstance, const uint8_t *aX509Cert, uint32_t aX509Length, const uint8_t
*aPrivateKey, uint32_t aPrivateKeyLength)

Sets the local device's X509 certificate with corresponding private key for DTLS session with

DTLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aX509Cert A pointer to the PEM formatted X509 certificate.

[in] aX509Length The length of certificate.

[in] aPrivateKey A pointer to the PEM formatted private key.

[in] aPrivateKeyLength The length of the private key.

Note

This function requires MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED=1 .

Definition at line 163 of file include/openthread/coap_secure.h

otCoapSecureSetCaCertificateChain

void otCoapSecureSetCaCertificateChain (otInstance *aInstance, const uint8_t *aX509CaCertificateChain, uint32_t
aX509CaCertChainLength)

Sets the trusted top level CAs.

Parameters

CoAP Secure

725/962

[in] aInstance A pointer to an OpenThread instance.

[in] aX509CaCertificateChain A pointer to the PEM formatted X509 CA chain.

[in] aX509CaCertChainLength The length of chain.

It is needed for validating the certificate of the peer.

DTLS mode "ECDHE ECDSA with AES 128 CCM 8" for Application CoAPS.

Note

This function requires MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED=1 .

Definition at line 182 of file include/openthread/coap_secure.h

otCoapSecureConnect

otError otCoapSecureConnect (otInstance *aInstance, const otSockAddr *aSockAddr,
otHandleCoapSecureClientConnect aHandler, void *aContext)

Initializes DTLS session with a peer.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aSockAddr A pointer to the remote socket address.

[in] aHandler A pointer to a function that will be called when the DTLS connection state changes.

[in] aContext A pointer to arbitrary context information.

Definition at line 198 of file include/openthread/coap_secure.h

otCoapSecureDisconnect

void otCoapSecureDisconnect (otInstance *aInstance)

Stops the DTLS connection.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 209 of file include/openthread/coap_secure.h

otCoapSecureIsConnected

bool otCoapSecureIsConnected (otInstance *aInstance)

Indicates whether or not the DTLS session is connected.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 220 of file include/openthread/coap_secure.h

CoAP Secure

726/962

otCoapSecureIsConnectionActive

bool otCoapSecureIsConnectionActive (otInstance *aInstance)

Indicates whether or not the DTLS session is active.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 231 of file include/openthread/coap_secure.h

otCoapSecureSendRequestBlockWise

otError otCoapSecureSendRequestBlockWise (otInstance *aInstance, otMessage *aMessage, otCoapResponseHandler
aHandler, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook, otCoapBlockwiseReceiveHook aReceiveHook)

Sends a CoAP request block-wise over secure DTLS connection.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A reference to the message to send.

[in] aHandler A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

[in] aTransmitHook A function pointer that is called on Block1 response reception.

[in] aReceiveHook A function pointer that is called on Block2 response reception.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

If a response for a request is expected, respective function and context information should be provided. If no response is

expected, these arguments should be NULL pointers. If Message Id was not set in the header (equal to 0), this function will

assign unique Message Id to the message.

Definition at line 255 of file include/openthread/coap_secure.h

otCoapSecureSendRequest

otError otCoapSecureSendRequest (otInstance *aInstance, otMessage *aMessage, otCoapResponseHandler aHandler,
void *aContext)

Sends a CoAP request over secure DTLS connection.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A reference to the message to send.

[in] aHandler A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

If a response for a request is expected, respective function and context information should be provided. If no response is

expected, these arguments should be NULL pointers. If Message Id was not set in the header (equal to 0), this function will

assign unique Message Id to the message.

CoAP Secure

727/962

Definition at line 279 of file include/openthread/coap_secure.h

otCoapSecureAddResource

void otCoapSecureAddResource (otInstance *aInstance, otCoapResource *aResource)

Adds a resource to the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 291 of file include/openthread/coap_secure.h

otCoapSecureRemoveResource

void otCoapSecureRemoveResource (otInstance *aInstance, otCoapResource *aResource)

Removes a resource from the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 300 of file include/openthread/coap_secure.h

otCoapSecureAddBlockWiseResource

void otCoapSecureAddBlockWiseResource (otInstance *aInstance, otCoapBlockwiseResource *aResource)

Adds a block-wise resource to the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 309 of file include/openthread/coap_secure.h

otCoapSecureRemoveBlockWiseResource

void otCoapSecureRemoveBlockWiseResource (otInstance *aInstance, otCoapBlockwiseResource *aResource)

Removes a block-wise resource from the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aResource A pointer to the resource.

Definition at line 318 of file include/openthread/coap_secure.h

CoAP Secure

728/962

otCoapSecureSetDefaultHandler

void otCoapSecureSetDefaultHandler (otInstance *aInstance, otCoapRequestHandler aHandler, void *aContext)

Sets the default handler for unhandled CoAP Secure requests.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHandler A function pointer that shall be called when an unhandled request arrives.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

Definition at line 328 of file include/openthread/coap_secure.h

otCoapSecureSetClientConnectedCallback

void otCoapSecureSetClientConnectedCallback (otInstance *aInstance, otHandleCoapSecureClientConnect aHandler,
void *aContext)

Sets the connected callback to indicate, when a Client connect to the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aHandler A pointer to a function that will be called once DTLS connection is established.

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

Definition at line 339 of file include/openthread/coap_secure.h

otCoapSecureSendResponseBlockWise

otError otCoapSecureSendResponseBlockWise (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo, void *aContext, otCoapBlockwiseTransmitHook aTransmitHook)

Sends a CoAP response block-wise from the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

[in] aContext A pointer to arbitrary context information. May be NULL if not used.

[in] aTransmitHook A function pointer that is called on Block1 request reception.

Is available when OPENTHREAD_CONFIG_COAP_BLOCKWISE_TRANSFER_ENABLE configuration is enabled.

Definition at line 359 of file include/openthread/coap_secure.h

otCoapSecureSendResponse

otError otCoapSecureSendResponse (otInstance *aInstance, otMessage *aMessage, const otMessageInfo
*aMessageInfo)

CoAP Secure

729/962

Sends a CoAP response from the CoAP Secure server.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMessage A pointer to the CoAP response to send.

[in] aMessageInfo A pointer to the message info associated with aMessage .

Definition at line 376 of file include/openthread/coap_secure.h

Macro Definition Documentation

OT_DEFAULT_COAP_SECURE_PORT

#define OT_DEFAULT_COAP_SECURE_PORT

Value:

5684

Default CoAP Secure port, as specified in RFC 7252.

Definition at line 68 of file include/openthread/coap_secure.h

Command Line Interface

730/962

Command Line Interface

Command Line Interface
This module includes functions that control the Thread stack's execution.

Modules

otCliCommand

Typedefs

typedef int(* otCliOutputCallback)(void *aContext, const char *aFormat, va_list aArguments)
Po inter is called to notify about Conso le output.

typedef struct
otCliCommand

otCliCommand

Functions

void otCliInit(otInstance *aInstance, otCliOutputCallback aCallback, void *aContext)
Initialize the CLI module .

void otCliInputLine(char *aBuf)
Is called to feed in a conso le input line .

otError otCliSetUserCommands(const otCliCommand *aUserCommands, uint8_t aLength, void *aContext)
Set a user command table .

void otCliOutputBytes(const uint8_t *aBytes, uint8_t aLength)
Write a number of bytes to the CLI conso le as a hex string.

void otCliOutputFormat(const char *aFmt,...)
Write formatted string to the CLI conso le .

void otCliAppendResult(otError aError)
Write error code to the CLI conso le .

void otCliPlatLogv(otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat, va_list aArgs)
Callback to write the OpenThread Log to the CLI conso le .

void otCliVendorSetUserCommands(void)
Callback to allow vendor specific commands to be added to the user command table .

Typedef Documentation

otCliOutputCallback

typedef int(* otCliOutputCallback) (void *aContext, const char *aFormat, va_list aArguments))(void *aContext, const char
*aFormat, va_list aArguments)

Command Line Interface

731/962

Pointer is called to notify about Console output.

Parameters

[out] aContext A user context pointer.

[in] aFormat The format string.

[in] aArguments The format string arguments.

Returns

Number of bytes written by the callback.

Definition at line 80 of file include/openthread/cli.h

otCliCommand

typedef struct otCliCommand otCliCommand

Definition at line 10 of file doxygen_overrides.txt

Function Documentation

otCliInit

void otCliInit (otInstance *aInstance, otCliOutputCallback aCallback, void *aContext)

Initialize the CLI module.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aCallback A callback method called to process CLI output.

[in] aContext A user context pointer.

Definition at line 90 of file include/openthread/cli.h

otCliInputLine

void otCliInputLine (char *aBuf)

Is called to feed in a console input line.

Parameters

[in] aBuf A pointer to a null-terminated string.

Definition at line 98 of file include/openthread/cli.h

otCliSetUserCommands

otError otCliSetUserCommands (const otCliCommand *aUserCommands, uint8_t aLength, void *aContext)

Command Line Interface

732/962

Set a user command table.

Parameters

[in] aUserCommands A pointer to an array with user commands.

[in] aLength aUserCommands length.

[in] aContext The context passed to the handler.

Definition at line 110 of file include/openthread/cli.h

otCliOutputBytes

void otCliOutputBytes (const uint8_t *aBytes, uint8_t aLength)

Write a number of bytes to the CLI console as a hex string.

Parameters

[in] aBytes A pointer to data which should be printed.

[in] aLength aBytes length.

Definition at line 119 of file include/openthread/cli.h

otCliOutputFormat

void otCliOutputFormat (const char *aFmt,...)

Write formatted string to the CLI console.

Parameters

[in] aFmt A pointer to the format string.

[in] A matching list of arguments.

Definition at line 128 of file include/openthread/cli.h

otCliAppendResult

void otCliAppendResult (otError aError)

Write error code to the CLI console.

Parameters

[in] aError Error code value.

If the aError is OT_ERROR_PENDING nothing will be outputted.

Definition at line 138 of file include/openthread/cli.h

otCliPlatLogv

void otCliPlatLogv (otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat, va_list aArgs)

Command Line Interface

733/962

Callback to write the OpenThread Log to the CLI console.

Parameters

[in] aLogLevel The log level.

[in] aLogRegion The log region.

[in] aFormat A pointer to the format string.

[in] aArgs va_list matching aFormat.

Definition at line 149 of file include/openthread/cli.h

otCliVendorSetUserCommands

void otCliVendorSetUserCommands (void)

Callback to allow vendor specific commands to be added to the user command table.

Parameters

N/A

Available when OPENTHREAD_CONFIG_CLI_VENDOR_COMMANDS_ENABLE is enabled and

OPENTHREAD_CONFIG_CLI_MAX_USER_CMD_ENTRIES is greater than 1.

Definition at line 158 of file include/openthread/cli.h

otCliCommand

734/962

otCliCommand

Represents a CLI command.

Public Attributes

const char * mName
A po inter to the command string.

otError(* mCommand
A function po inter to process the command.

void(* mCommand
A function po inter to process the command.

Public Attribute Documentation

mName

const char * otCliCommand::mName

A pointer to the command string.

Definition at line 54 of file include/openthread/cli.h

mCommand

otError(* otCliCommand::mCommand) (void *aContext, uint8_t aArgsLength, char *aArgs[])

A function pointer to process the command.

Definition at line 55 of file include/openthread/cli.h

mCommand

void(* otCliCommand::mCommand) (void *aContext, uint8_t aArgsLength, char *aArgs[])

A function pointer to process the command.

Definition at line 7 of file doxygen_overrides.txt

Crypto - Thread Stack

735/962

Crypto - Thread Stack

Crypto - Thread Stack
This module includes cryptographic functions.

Typedefs

typedef
otPlatCryptoSha2

56Hash

otCryptoSha256Hash
Represents a SHA-256 hash.

Functions

void otCryptoHmacSha256(const otCryptoKey *aKey, const uint8_t *aBuf, uint16_t aBufLength,
otCryptoSha256Hash *aHash)
Performs HMAC computation.

void otCryptoAesCcm(const otCryptoKey *aKey, uint8_t aTagLength, const void *aNonce, uint8_t aNonceLength,
const void *aHeader, uint32_t aHeaderLength, void *aPlainText, void *aCipherText, uint32_t aLength, bool
aEncrypt, void *aTag)
Performs AES CCM computation.

Typedef Documentation

otCryptoSha256Hash

typedef otPlatCryptoSha256Hash otCryptoSha256Hash

Represents a SHA-256 hash.

Definition at line 62 of file include/openthread/crypto.h

Function Documentation

otCryptoHmacSha256

void otCryptoHmacSha256 (const otCryptoKey *aKey, const uint8_t *aBuf, uint16_t aBufLength, otCryptoSha256Hash
*aHash)

Performs HMAC computation.

Parameters

[in] aKey A pointer to the key.

[in] aBuf A pointer to the input buffer.

[in] aBufLength The length of aBuf in bytes.

[out] aHash A pointer to a otCryptoSha256Hash structure to output the hash value.

Crypto - Thread Stack

736/962

Definition at line 73 of file include/openthread/crypto.h

otCryptoAesCcm

void otCryptoAesCcm (const otCryptoKey *aKey, uint8_t aTagLength, const void *aNonce, uint8_t aNonceLength, const
void *aHeader, uint32_t aHeaderLength, void *aPlainText, void *aCipherText, uint32_t aLength, bool aEncrypt, void *aTag)

Performs AES CCM computation.

Parameters

[in] aKey A pointer to the key.

[in] aTagLength Length of tag in bytes.

[in] aNonce A pointer to the nonce.

[in] aNonceLength Length of nonce in bytes.

[in] aHeader A pointer to the header.

[in] aHeaderLength Length of header in bytes.

[inout] aPlainText A pointer to the plaintext.

[inout] aCipherText A pointer to the ciphertext.

[in] aLength Plaintext length in bytes.

[in] aEncrypt true on encrypt and false on decrypt.

[out] aTag A pointer to the tag.

Definition at line 94 of file include/openthread/crypto.h

Factory Diagnostics - Thread Stack

737/962

Factory Diagnostics - Thread Stack

Factory Diagnostics - Thread Stack
This module includes functions that control the Thread stack's execution.

Functions

otError otDiagProcessCmd(otInstance *aInstance, uint8_t aArgsLength, char *aArgs[], char *aOutput, size_t
aOutputMaxLen)
Processes a factory diagnostics command line .

otError otDiagProcessCmdLine(otInstance *aInstance, const char *aString, char *aOutput, size_t aOutputMaxLen)
Processes a factory diagnostics command line .

bool otDiagIsEnabled(otInstance *aInstance)
Indicates whether or not the factory diagnostics mode is enabled.

Function Documentation

otDiagProcessCmd

otError otDiagProcessCmd (otInstance *aInstance, uint8_t aArgsLength, char *aArgs[], char *aOutput, size_t
aOutputMaxLen)

Processes a factory diagnostics command line.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aArgsLength The number of elements in aArgs .

[in] aArgs An array of arguments.

[out] aOutput The diagnostics execution result.

[in] aOutputMaxLen The output buffer size.

The output of this function (the content written to aOutput) MUST terminate with \0 and the \0 is within the output

buffer.

Definition at line 71 of file include/openthread/diag.h

otDiagProcessCmdLine

otError otDiagProcessCmdLine (otInstance *aInstance, const char *aString, char *aOutput, size_t aOutputMaxLen)

Processes a factory diagnostics command line.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aString A NULL-terminated input string.

Factory Diagnostics - Thread Stack

738/962

[out] aOutput The diagnostics execution result.

[in] aOutputMaxLen The output buffer size.

The output of this function (the content written to aOutput) MUST terminate with \0 and the \0 is within the output

buffer.

Definition at line 94 of file include/openthread/diag.h

otDiagIsEnabled

bool otDiagIsEnabled (otInstance *aInstance)

Indicates whether or not the factory diagnostics mode is enabled.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 105 of file include/openthread/diag.h

Heap

739/962

Heap

Heap
This module includes functions that set the external OpenThread heap.

Functions

void * otHeapCAlloc(size_t aCount, size_t aSize)

void otHeapFree(void *aPointer)

Function Documentation

otHeapCAlloc

void * otHeapCAlloc (size_t aCount, size_t aSize)

Parameters

N/A aCount

N/A aSize

Note

This API is deprecated and use of it is discouraged.

Definition at line 60 of file include/openthread/heap.h

otHeapFree

void otHeapFree (void *aPointer)

Parameters

N/A aPointer

Note

This API is deprecated and use of it is discouraged.

Definition at line 68 of file include/openthread/heap.h

History Tracker

740/962

History Tracker

History Tracker
Records the history of different events, for example RX and TX messages or network info changes.

All tracked entries are timestamped.

The functions in this module are available when OPENTHREAD_CONFIG_HISTORY_TRACKER_ENABLE is enabled.

Modules

otHistoryTrackerIterator

otHistoryTrackerNetworkInfo

otHistoryTrackerUnicastAddressInfo

otHistoryTrackerMulticastAddressInfo

otHistoryTrackerMessageInfo

otHistoryTrackerNeighborInfo

otHistoryTrackerRouterInfo

otHistoryTrackerOnMeshPrefixInfo

otHistoryTrackerExternalRouteInfo

Enumerations

enum otHistoryTrackerAddressEvent {

OT_HISTORY_TRACKER_ADDRESS_EVENT_ADDED = 0
OT_HISTORY_TRACKER_ADDRESS_EVENT_REMOVED = 1

}
Defines the events for an IPv6 (unicast or multicast) address info (i.e ., whether address is added or removed).

enum �1 {

OT_HISTORY_TRACKER_MSG_PRIORITY_LOW = OT_MESSAGE_PRIORITY_LOW
OT_HISTORY_TRACKER_MSG_PRIORITY_NORMAL = OT_MESSAGE_PRIORITY_NORMAL
OT_HISTORY_TRACKER_MSG_PRIORITY_HIGH = OT_MESSAGE_PRIORITY_HIGH
OT_HISTORY_TRACKER_MSG_PRIORITY_NET = OT_MESSAGE_PRIORITY_HIGH + 1

}
Constants representing message priority used in otHistoryTrackerMessage Info struct.

enum otHistoryTrackerNeighborEvent {

OT_HISTORY_TRACKER_NEIGHBOR_EVENT_ADDED = 0
OT_HISTORY_TRACKER_NEIGHBOR_EVENT_REMOVED = 1
OT_HISTORY_TRACKER_NEIGHBOR_EVENT_CHANGED = 2
OT_HISTORY_TRACKER_NEIGHBOR_EVENT_RESTORING = 3

}
Defines the events in a neighbor info (i.e .

History Tracker

741/962

enum otHistoryTrackerRouterEvent {

OT_HISTORY_TRACKER_ROUTER_EVENT_ADDED = 0
OT_HISTORY_TRACKER_ROUTER_EVENT_REMOVED = 1
OT_HISTORY_TRACKER_ROUTER_EVENT_NEXT_HOP_CHANGED = 2
OT_HISTORY_TRACKER_ROUTER_EVENT_COST_CHANGED = 3

}
Defines the events in a router info (i.e .

enum otHistoryTrackerNetDataEvent {

OT_HISTORY_TRACKER_NET_DATA_ENTRY_ADDED = 0
OT_HISTORY_TRACKER_NET_DATA_ENTRY_REMOVED = 1

}
Defines the events for a Network Data entry (i.e ., whether an entry is added or removed).

Typedefs

typedef struct
otHistoryTrackerIt

erator

otHistoryTrackerIterator
Represents an iterator to iterate through a history list.

typedef struct
otHistoryTrackerN

etworkInfo

otHistoryTrackerNetworkInfo
Represents Thread network info.

typedef struct
otHistoryTrackerU
nicastAddressInfo

otHistoryTrackerUnicastAddressInfo
Represent a unicast IPv6 address info.

typedef struct
otHistoryTracker
MulticastAddressI

nfo

otHistoryTrackerMulticastAddressInfo
Represent an IPv6 multicast address info.

typedef struct
otHistoryTracker
MessageInfo

otHistoryTrackerMessageInfo
Represents a RX/TX IPv6 message info.

typedef struct
otHistoryTrackerN

eighborInfo

otHistoryTrackerNeighborInfo
Represents a neighbor info.

typedef struct
otHistoryTrackerR

outerInfo

otHistoryTrackerRouterInfo
Represents a router table entry event.

typedef struct
otHistoryTrackerO
nMeshPrefixInfo

otHistoryTrackerOnMeshPrefixInfo
Represent a Network Data on mesh prefix info.

typedef struct
otHistoryTrackerE
xternalRouteInfo

otHistoryTrackerExternalRouteInfo
Represent a Network Data extern route info.

Functions

void otHistoryTrackerInitIterator(otHistoryTrackerIterator *aIterator)
Initializes an otHistoryTrackerIterator .

History Tracker

742/962

const
otHistoryTrackerN

etworkInfo *

otHistoryTrackerIterateNetInfoHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator, uint32_t
*aEntryAge)
Iterates over the entries in the network info history list.

const
otHistoryTrackerU
nicastAddressInfo

*

otHistoryTrackerIterateUnicastAddressHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator,
uint32_t *aEntryAge)
Iterates over the entries in the unicast address history list.

const
otHistoryTracker
MulticastAddressI

nfo *

otHistoryTrackerIterateMulticastAddressHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator,
uint32_t *aEntryAge)
Iterates over the entries in the multicast address history list.

const
otHistoryTracker
MessageInfo *

otHistoryTrackerIterateRxHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator, uint32_t
*aEntryAge)
Iterates over the entries in the RX message history list.

const
otHistoryTracker
MessageInfo *

otHistoryTrackerIterateTxHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator, uint32_t
*aEntryAge)
Iterates over the entries in the TX message history list.

const
otHistoryTrackerN

eighborInfo *

otHistoryTrackerIterateNeighborHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator, uint32_t
*aEntryAge)
Iterates over the entries in the neighbor history list.

const
otHistoryTrackerR

outerInfo *

otHistoryTrackerIterateRouterHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator, uint32_t
*aEntryAge)
Iterates over the entries in the router history list.

const
otHistoryTrackerO
nMeshPrefixInfo *

otHistoryTrackerIterateOnMeshPrefixHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator,
uint32_t *aEntryAge)
Iterates over the entries in the Network Data on mesh prefix entry history list.

const
otHistoryTrackerE
xternalRouteInfo

*

otHistoryTrackerIterateExternalRouteHistory(otInstance *aInstance, otHistoryTrackerIterator *aIterator,
uint32_t *aEntryAge)
Iterates over the entries in the Network Data external route entry history list.

void otHistoryTrackerEntryAgeToString(uint32_t aEntryAge, char *aBuffer, uint16_t aSize)
Converts a given entry age to a human-readable string.

Macros

#define OT_HISTORY_TRACKER_MAX_AGE �49 * 24 * 60 * 60 * 1000u)
This constant specifies the maximum age of entries which is 49 days (in msec).

#define OT_HISTORY_TRACKER_ENTRY_AGE_STRING_SIZE 21
Recommended size for string representation of an entry age .

#define OT_HISTORY_TRACKER_NO_NEXT_HOP 63
No next hop - For mNextHop in otHistoryTrackerRouterInfo .

#define OT_HISTORY_TRACKER_INFINITE_PATH_COST 0
Infinite path cost - used in otHistoryTrackerRouterInfo .

Enumeration Documentation

otHistoryTrackerAddressEvent

History Tracker

743/962

otHistoryTrackerAddressEvent

Defines the events for an IPv6 (unicast or multicast) address info (i.e., whether address is added or removed).

Enumerator

OT_HISTORY_TRACKER_ADDRESS_EVENT_ADDED Address is added.

OT_HISTORY_TRACKER_ADDRESS_EVENT_REMOVED Address is removed.

Definition at line 94 of file include/openthread/history_tracker.h

�1

�1

Constants representing message priority used in otHistoryTrackerMessage Info struct.

Enumerator

OT_HISTORY_TRACKER_MSG_PRIORITY_LOW Low priority level.

OT_HISTORY_TRACKER_MSG_PRIORITY_NORMAL Normal priority level.

OT_HISTORY_TRACKER_MSG_PRIORITY_HIGH High priority level.

OT_HISTORY_TRACKER_MSG_PRIORITY_NET Network Control priority level.

Definition at line 131 of file include/openthread/history_tracker.h

otHistoryTrackerNeighborEvent

otHistoryTrackerNeighborEvent

Defines the events in a neighbor info (i.e.

whether neighbor is added, removed, or changed).

Event OT_HISTORY_TRACKER_NEIGHBOR_EVENT_RESTORING is applicable to child neighbors only. It is triggered after the device

(re)starts and when the previous children list is retrieved from non-volatile settings and the device tries to restore

connection to them.

Enumerator

OT_HISTORY_TRACKER_NEIGHBOR_EVENT_ADDED Neighbor is added.

OT_HISTORY_TRACKER_NEIGHBOR_EVENT_REMOVED Neighbor is removed.

OT_HISTORY_TRACKER_NEIGHBOR_EVENT_CHANGED Neighbor changed (e.g., device mode flags changed).

OT_HISTORY_TRACKER_NEIGHBOR_EVENT_RESTORING Neighbor is being restored (applicable to child only).

Definition at line 171 of file include/openthread/history_tracker.h

otHistoryTrackerRouterEvent

otHistoryTrackerRouterEvent

Defines the events in a router info (i.e.

whether router is added, removed, or changed).

History Tracker

744/962

Enumerator

OT_HISTORY_TRACKER_ROUTER_EVENT_ADDED Router is added (router ID allocated).

OT_HISTORY_TRACKER_ROUTER_EVENT_REMOVED Router entry is removed (router ID released).

OT_HISTORY_TRACKER_ROUTER_EVENT_NEXT_HOP_CHANGED Router entry next hop and cost changed.

OT_HISTORY_TRACKER_ROUTER_EVENT_COST_CHANGED Router entry path cost changed (next hop as before).

Definition at line 199 of file include/openthread/history_tracker.h

otHistoryTrackerNetDataEvent

otHistoryTrackerNetDataEvent

Defines the events for a Network Data entry (i.e., whether an entry is added or removed).

Enumerator

OT_HISTORY_TRACKER_NET_DATA_ENTRY_ADDED Network data entry is added.

OT_HISTORY_TRACKER_NET_DATA_ENTRY_REMOVED Network data entry is removed.

Definition at line 228 of file include/openthread/history_tracker.h

Typedef Documentation

otHistoryTrackerIterator

typedef struct otHistoryTrackerIterator otHistoryTrackerIterator

Represents an iterator to iterate through a history list.

The fields in this type are opaque (intended for use by OpenThread core) and therefore should not be accessed/used by

caller.

Before using an iterator, it MUST be initialized using otHistoryTrackerInitIterator() ,

Definition at line 75 of file include/openthread/history_tracker.h

otHistoryTrackerNetworkInfo

typedef struct otHistoryTrackerNetworkInfo otHistoryTrackerNetworkInfo

Represents Thread network info.

Definition at line 87 of file include/openthread/history_tracker.h

otHistoryTrackerUnicastAddressInfo

typedef struct otHistoryTrackerUnicastAddressInfo otHistoryTrackerUnicastAddressInfo

Represent a unicast IPv6 address info.

Definition at line 114 of file include/openthread/history_tracker.h

History Tracker

745/962

otHistoryTrackerMulticastAddressInfo

typedef struct otHistoryTrackerMulticastAddressInfo otHistoryTrackerMulticastAddressInfo

Represent an IPv6 multicast address info.

Definition at line 125 of file include/openthread/history_tracker.h

otHistoryTrackerMessageInfo

typedef struct otHistoryTrackerMessageInfo otHistoryTrackerMessageInfo

Represents a RX/TX IPv6 message info.

Some of the fields in this struct are applicable to a RX message or a TX message only, e.g., mAveRxRss is the average RSS

of all fragment frames that form a received message and is only applicable for a RX message.

Definition at line 161 of file include/openthread/history_tracker.h

otHistoryTrackerNeighborInfo

typedef struct otHistoryTrackerNeighborInfo otHistoryTrackerNeighborInfo

Represents a neighbor info.

Definition at line 193 of file include/openthread/history_tracker.h

otHistoryTrackerRouterInfo

typedef struct otHistoryTrackerRouterInfo otHistoryTrackerRouterInfo

Represents a router table entry event.

Definition at line 222 of file include/openthread/history_tracker.h

otHistoryTrackerOnMeshPrefixInfo

typedef struct otHistoryTrackerOnMeshPrefixInfo otHistoryTrackerOnMeshPrefixInfo

Represent a Network Data on mesh prefix info.

Definition at line 242 of file include/openthread/history_tracker.h

otHistoryTrackerExternalRouteInfo

typedef struct otHistoryTrackerExternalRouteInfo otHistoryTrackerExternalRouteInfo

Represent a Network Data extern route info.

History Tracker

746/962

Definition at line 252 of file include/openthread/history_tracker.h

Function Documentation

otHistoryTrackerInitIterator

void otHistoryTrackerInitIterator (otHistoryTrackerIterator *aIterator)

Initializes an otHistoryTrackerIterator .

Parameters

[in] aIterator A pointer to the iterator to initialize (MUST NOT be NULL).

An iterator MUST be initialized before it is used.

An iterator can be initialized again to start from the beginning of the list.

When iterating over entries in a list, to ensure the entry ages are consistent, the age is given relative to the time the

iterator was initialized, i.e., the entry age is provided as the duration (in milliseconds) from the event (when entry was

recorded) to the iterator initialization time.

Definition at line 268 of file include/openthread/history_tracker.h

otHistoryTrackerIterateNetInfoHistory

const otHistoryTrackerNetworkInfo * otHistoryTrackerIterateNetInfoHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the network info history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

A pointer to otHistoryTrackerNetworkInfo entry or NULL if no more entries in the list.

Definition at line 283 of file include/openthread/history_tracker.h

otHistoryTrackerIterateUnicastAddressHistory

const otHistoryTrackerUnicastAddressInfo * otHistoryTrackerIterateUnicastAddressHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the unicast address history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

History Tracker

747/962

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the duration

(in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

A pointer to otHistoryTrackerUnicastAddressInfo entry or NULL if no more entries in the list.

Definition at line 300 of file include/openthread/history_tracker.h

otHistoryTrackerIterateMulticastAddressHistory

const otHistoryTrackerMulticastAddressInfo * otHistoryTrackerIterateMulticastAddressHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the multicast address history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

A pointer to otHistoryTrackerMulticastAddressInfo entry or NULL if no more entries in the list.

Definition at line 318 of file include/openthread/history_tracker.h

otHistoryTrackerIterateRxHistory

const otHistoryTrackerMessageInfo * otHistoryTrackerIterateRxHistory (otInstance *aInstance, otHistoryTrackerIterator
*aIterator, uint32_t *aEntryAge)

Iterates over the entries in the RX message history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

The otHistoryTrackerMessage Info entry or NULL if no more entries in the list.

Definition at line 336 of file include/openthread/history_tracker.h

otHistoryTrackerIterateTxHistory

History Tracker

748/962

const otHistoryTrackerMessageInfo * otHistoryTrackerIterateTxHistory (otInstance *aInstance, otHistoryTrackerIterator
*aIterator, uint32_t *aEntryAge)

Iterates over the entries in the TX message history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

The otHistoryTrackerMessage Info entry or NULL if no more entries in the list.

Definition at line 353 of file include/openthread/history_tracker.h

otHistoryTrackerIterateNeighborHistory

const otHistoryTrackerNeighborInfo * otHistoryTrackerIterateNeighborHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the neighbor history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

The otHistoryTrackerNeighborInfo entry or NULL if no more entries in the list.

Definition at line 370 of file include/openthread/history_tracker.h

otHistoryTrackerIterateRouterHistory

const otHistoryTrackerRouterInfo * otHistoryTrackerIterateRouterHistory (otInstance *aInstance, otHistoryTrackerIterator
*aIterator, uint32_t *aEntryAge)

Iterates over the entries in the router history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

History Tracker

749/962

Returns

The otHistoryTrackerRouterInfo entry or NULL if no more entries in the list.

Definition at line 387 of file include/openthread/history_tracker.h

otHistoryTrackerIterateOnMeshPrefixHistory

const otHistoryTrackerOnMeshPrefixInfo * otHistoryTrackerIterateOnMeshPrefixHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the Network Data on mesh prefix entry history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

The otHistoryTrackerOnMeshPrefixInfo entry or NULL if no more entries in the list.

Definition at line 404 of file include/openthread/history_tracker.h

otHistoryTrackerIterateExternalRouteHistory

const otHistoryTrackerExternalRouteInfo * otHistoryTrackerIterateExternalRouteHistory (otInstance *aInstance,
otHistoryTrackerIterator *aIterator, uint32_t *aEntryAge)

Iterates over the entries in the Network Data external route entry history list.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[inout] aIterator A pointer to an iterator. MUST be initialized or the behavior is undefined.

[out] aEntryAge A pointer to a variable to output the entry's age. MUST NOT be NULL. Age is provided as the

duration (in milliseconds) from when entry was recorded to aIterator initialization time. It is set to

OT_HISTORY_TRACKER_MAX_AGE for entries older than max age.

Returns

The otHistoryTrackerExternalRoute Info entry or NULL if no more entries in the list.

Definition at line 421 of file include/openthread/history_tracker.h

otHistoryTrackerEntryAgeToString

void otHistoryTrackerEntryAgeToString (uint32_t aEntryAge, char *aBuffer, uint16_t aSize)

Converts a given entry age to a human-readable string.

Parameters

History Tracker

750/962

[in] aEntryAge The entry age (duration in msec).

[out] aBuffer A pointer to a char array to output the string (MUST NOT be NULL).

[in] aSize The size of aBuffer . Recommended to use OT_HISTORY_TRACKER_ENTRY_AGE_STRING_SIZE .

The entry age string follows the format "<hh>:<mm>:<ss>.<mmmm>" for hours, minutes, seconds and millisecond (if shorter

than one day) or "<dd> days <hh>:<mm>:<ss>.<mmmm>" (if longer than one day).

If the resulting string does not fit in aBuffer (within its aSize characters), the string will be truncated but the outputted

string is always null-terminated.

Definition at line 440 of file include/openthread/history_tracker.h

Macro Definition Documentation

OT_HISTORY_TRACKER_MAX_AGE

#define OT_HISTORY_TRACKER_MAX_AGE

Value:

�49 * 24 * 60 * 60 * 1000u)

This constant specifies the maximum age of entries which is 49 days (in msec).

Entries older than the max age will give this value as their age.

Definition at line 58 of file include/openthread/history_tracker.h

OT_HISTORY_TRACKER_ENTRY_AGE_STRING_SIZE

#define OT_HISTORY_TRACKER_ENTRY_AGE_STRING_SIZE

Value:

21

Recommended size for string representation of an entry age.

Definition at line 60 of file include/openthread/history_tracker.h

OT_HISTORY_TRACKER_NO_NEXT_HOP

#define OT_HISTORY_TRACKER_NO_NEXT_HOP

Value:

63

No next hop - For mNextHop in otHistoryTrackerRouterInfo .

Definition at line 207 of file include/openthread/history_tracker.h

OT_HISTORY_TRACKER_INFINITE_PATH_COST

History Tracker

751/962

#define OT_HISTORY_TRACKER_INFINITE_PATH_COST

Value:

0

Infinite path cost - used in otHistoryTrackerRouterInfo .

Definition at line 209 of file include/openthread/history_tracker.h

otHistoryTrackerIterator

752/962

otHistoryTrackerIterator

Represents an iterator to iterate through a history list.

The fields in this type are opaque (intended for use by OpenThread core) and therefore should not be accessed/used by

caller.

Before using an iterator, it MUST be initialized using otHistoryTrackerInitIterator() ,

Public Attributes

uint32_t mData32

uint16_t mData16

Public Attribute Documentation

mData32

uint32_t otHistoryTrackerIterator::mData32

Definition at line 73 of file include/openthread/history_tracker.h

mData16

uint16_t otHistoryTrackerIterator::mData16

Definition at line 74 of file include/openthread/history_tracker.h

otHistoryTrackerNetworkInfo

753/962

otHistoryTrackerNetworkInfo

Represents Thread network info.

Public Attributes

otDeviceRole mRole
Device Ro le .

otLinkModeConfig mMode
Device Mode .

uint16_t mRloc16
Device RLOC16.

uint32_t mPartitionId
Partition ID (valid when attached).

Public Attribute Documentation

mRole

otDeviceRole otHistoryTrackerNetworkInfo::mRole

Device Role.

Definition at line 83 of file include/openthread/history_tracker.h

mMode

otLinkModeConfig otHistoryTrackerNetworkInfo::mMode

Device Mode.

Definition at line 84 of file include/openthread/history_tracker.h

mRloc16

uint16_t otHistoryTrackerNetworkInfo::mRloc16

Device RLOC16.

Definition at line 85 of file include/openthread/history_tracker.h

mPartitionId

uint32_t otHistoryTrackerNetworkInfo::mPartitionId

Partition ID (valid when attached).

otHistoryTrackerNetworkInfo

754/962

Definition at line 86 of file include/openthread/history_tracker.h

otHistoryTrackerUnicastAddressInfo

755/962

otHistoryTrackerUnicastAddressInfo

Represent a unicast IPv6 address info.

Public Attributes

otIp6Address mAddress
The unicast IPv6 address.

uint8_t mPrefixLength
The Prefix length (in bits).

uint8_t mAddressOrigin
The address origin (OT_ADDRESS_ORIGIN_* constants).

otHistoryTrackerA
ddressEvent

mEvent
Indicates the event (address is added/removed).

uint8_t mScope
The IPv6 scope .

bool mPreferred
If the address is preferred.

bool mValid
If the address is valid.

bool mRloc
If the address is an RLOC.

Public Attribute Documentation

mAddress

otIp6Address otHistoryTrackerUnicastAddressInfo::mAddress

The unicast IPv6 address.

Definition at line 106 of file include/openthread/history_tracker.h

mPrefixLength

uint8_t otHistoryTrackerUnicastAddressInfo::mPrefixLength

The Prefix length (in bits).

Definition at line 107 of file include/openthread/history_tracker.h

mAddressOrigin

uint8_t otHistoryTrackerUnicastAddressInfo::mAddressOrigin

otHistoryTrackerUnicastAddressInfo

756/962

The address origin (OT_ADDRESS_ORIGIN_* constants).

Definition at line 108 of file include/openthread/history_tracker.h

mEvent

otHistoryTrackerAddressEvent otHistoryTrackerUnicastAddressInfo::mEvent

Indicates the event (address is added/removed).

Definition at line 109 of file include/openthread/history_tracker.h

mScope

uint8_t otHistoryTrackerUnicastAddressInfo::mScope

The IPv6 scope.

Definition at line 110 of file include/openthread/history_tracker.h

mPreferred

bool otHistoryTrackerUnicastAddressInfo::mPreferred

If the address is preferred.

Definition at line 111 of file include/openthread/history_tracker.h

mValid

bool otHistoryTrackerUnicastAddressInfo::mValid

If the address is valid.

Definition at line 112 of file include/openthread/history_tracker.h

mRloc

bool otHistoryTrackerUnicastAddressInfo::mRloc

If the address is an RLOC.

Definition at line 113 of file include/openthread/history_tracker.h

otHistoryTrackerMulticastAddressInfo

757/962

otHistoryTrackerMulticastAddressInfo

Represent an IPv6 multicast address info.

Public Attributes

otIp6Address mAddress
The IPv6 multicast address.

uint8_t mAddressOrigin
The address origin (OT_ADDRESS_ORIGIN_* constants).

otHistoryTrackerA
ddressEvent

mEvent
Indicates the event (address is added/removed).

Public Attribute Documentation

mAddress

otIp6Address otHistoryTrackerMulticastAddressInfo::mAddress

The IPv6 multicast address.

Definition at line 122 of file include/openthread/history_tracker.h

mAddressOrigin

uint8_t otHistoryTrackerMulticastAddressInfo::mAddressOrigin

The address origin (OT_ADDRESS_ORIGIN_* constants).

Definition at line 123 of file include/openthread/history_tracker.h

mEvent

otHistoryTrackerAddressEvent otHistoryTrackerMulticastAddressInfo::mEvent

Indicates the event (address is added/removed).

Definition at line 124 of file include/openthread/history_tracker.h

otHistoryTrackerMessageInfo

758/962

otHistoryTrackerMessageInfo

Represents a RX/TX IPv6 message info.

Some of the fields in this struct are applicable to a RX message or a TX message only, e.g., mAveRxRss is the average RSS

of all fragment frames that form a received message and is only applicable for a RX message.

Public Attributes

uint16_t mPayloadLength
IPv6 payload length (exclude IP6 header itself).

uint16_t mNeighborRloc16
RLOC16 of neighbor which sent/received the msg (0xfffe if no RLOC16).

otSockAddr mSource
Source IPv6 address and port (if UDP/TCP)

otSockAddr mDestination
Destination IPv6 address and port (if UDP/TCP).

uint16_t mChecksum
Message checksum (valid only for UDP/TCP/ICMP6).

uint8_t mIpProto
IP Protoco l number (OT_IP6_PROTO_* enumeration).

uint8_t mIcmp6Type
ICMP6 type if msg is ICMP6, zero otherwise (OT_ICMP6_TYPE_* enumeration).

int8_t mAveRxRss
RSS of received message or OT_RADIO_INVALID_RSSI if not known.

bool mLinkSecurity
Indicates whether msg used link security.

bool mTxSuccess
Indicates TX success (e .g., ack received). Applicable for TX msg only.

uint8_t mPriority
Message priority (OT_HISTORY_TRACKER_MSG_PRIORITY_* enumeration).

bool mRadioIeee802154
Indicates whether msg was sent/received over a 15.4 radio link.

bool mRadioTrelUdp6
Indicates whether msg was sent/received over a TREL radio link.

Public Attribute Documentation

mPayloadLength

uint16_t otHistoryTrackerMessageInfo::mPayloadLength

otHistoryTrackerMessageInfo

759/962

IPv6 payload length (exclude IP6 header itself).

Definition at line 148 of file include/openthread/history_tracker.h

mNeighborRloc16

uint16_t otHistoryTrackerMessageInfo::mNeighborRloc16

RLOC16 of neighbor which sent/received the msg (0xfffe if no RLOC16).

Definition at line 149 of file include/openthread/history_tracker.h

mSource

otSockAddr otHistoryTrackerMessageInfo::mSource

Source IPv6 address and port (if UDP/TCP)

Definition at line 150 of file include/openthread/history_tracker.h

mDestination

otSockAddr otHistoryTrackerMessageInfo::mDestination

Destination IPv6 address and port (if UDP/TCP).

Definition at line 151 of file include/openthread/history_tracker.h

mChecksum

uint16_t otHistoryTrackerMessageInfo::mChecksum

Message checksum (valid only for UDP/TCP/ICMP6).

Definition at line 152 of file include/openthread/history_tracker.h

mIpProto

uint8_t otHistoryTrackerMessageInfo::mIpProto

IP Protocol number (OT_IP6_PROTO_* enumeration).

Definition at line 153 of file include/openthread/history_tracker.h

mIcmp6Type

uint8_t otHistoryTrackerMessageInfo::mIcmp6Type

ICMP6 type if msg is ICMP6, zero otherwise (OT_ICMP6_TYPE_* enumeration).

otHistoryTrackerMessageInfo

760/962

Definition at line 154 of file include/openthread/history_tracker.h

mAveRxRss

int8_t otHistoryTrackerMessageInfo::mAveRxRss

RSS of received message or OT_RADIO_INVALID_RSSI if not known.

Definition at line 155 of file include/openthread/history_tracker.h

mLinkSecurity

bool otHistoryTrackerMessageInfo::mLinkSecurity

Indicates whether msg used link security.

Definition at line 156 of file include/openthread/history_tracker.h

mTxSuccess

bool otHistoryTrackerMessageInfo::mTxSuccess

Indicates TX success (e.g., ack received). Applicable for TX msg only.

Definition at line 157 of file include/openthread/history_tracker.h

mPriority

uint8_t otHistoryTrackerMessageInfo::mPriority

Message priority (OT_HISTORY_TRACKER_MSG_PRIORITY_* enumeration).

Definition at line 158 of file include/openthread/history_tracker.h

mRadioIeee802154

bool otHistoryTrackerMessageInfo::mRadioIeee802154

Indicates whether msg was sent/received over a 15.4 radio link.

Definition at line 159 of file include/openthread/history_tracker.h

mRadioTrelUdp6

bool otHistoryTrackerMessageInfo::mRadioTrelUdp6

Indicates whether msg was sent/received over a TREL radio link.

Definition at line 160 of file include/openthread/history_tracker.h

otHistoryTrackerNeighborInfo

761/962

otHistoryTrackerNeighborInfo

Represents a neighbor info.

Public Attributes

otExtAddress mExtAddress
Neighbor's Extended Address.

uint16_t mRloc16
Neighbor's RLOC16.

int8_t mAverageRssi
Average RSSI of rx frames from neighbor at the time of recording entry.

uint8_t mEvent
Indicates the event (OT_HISTORY_TRACKER_NEIGHBOR_EVENT_* enumeration).

bool mRxOnWhenIdle
Rx-on-when-idle .

bool mFullThreadDevice
Full Thread Device .

bool mFullNetworkData
Full Network Data.

bool mIsChild
Indicates whether or not the neighbor is a child.

Public Attribute Documentation

mExtAddress

otExtAddress otHistoryTrackerNeighborInfo::mExtAddress

Neighbor's Extended Address.

Definition at line 185 of file include/openthread/history_tracker.h

mRloc16

uint16_t otHistoryTrackerNeighborInfo::mRloc16

Neighbor's RLOC16.

Definition at line 186 of file include/openthread/history_tracker.h

mAverageRssi

int8_t otHistoryTrackerNeighborInfo::mAverageRssi

otHistoryTrackerNeighborInfo

762/962

Average RSSI of rx frames from neighbor at the time of recording entry.

Definition at line 187 of file include/openthread/history_tracker.h

mEvent

uint8_t otHistoryTrackerNeighborInfo::mEvent

Indicates the event (OT_HISTORY_TRACKER_NEIGHBOR_EVENT_* enumeration).

Definition at line 188 of file include/openthread/history_tracker.h

mRxOnWhenIdle

bool otHistoryTrackerNeighborInfo::mRxOnWhenIdle

Rx-on-when-idle.

Definition at line 189 of file include/openthread/history_tracker.h

mFullThreadDevice

bool otHistoryTrackerNeighborInfo::mFullThreadDevice

Full Thread Device.

Definition at line 190 of file include/openthread/history_tracker.h

mFullNetworkData

bool otHistoryTrackerNeighborInfo::mFullNetworkData

Full Network Data.

Definition at line 191 of file include/openthread/history_tracker.h

mIsChild

bool otHistoryTrackerNeighborInfo::mIsChild

Indicates whether or not the neighbor is a child.

Definition at line 192 of file include/openthread/history_tracker.h

otHistoryTrackerRouterInfo

763/962

otHistoryTrackerRouterInfo

Represents a router table entry event.

Public Attributes

uint8_t mEvent
Router entry event (OT_HISTORY_TRACKER_ROUTER_EVENT_* enumeration).

uint8_t mRouterId
Router ID.

uint8_t mNextHop
Next Hop Router ID - OT_HISTORY_TRACKER_NO_NEXT_HOP if no next hop.

uint8_t mOldPathCost
Old path cost - OT_HISTORY_TRACKER_INFINITE_PATH_COST if infinite or unknown.

uint8_t mPathCost
New path cost - OT_HISTORY_TRACKER_INFINITE_PATH_COST if infinite or unknown.

Public Attribute Documentation

mEvent

uint8_t otHistoryTrackerRouterInfo::mEvent

Router entry event (OT_HISTORY_TRACKER_ROUTER_EVENT_* enumeration).

Definition at line 217 of file include/openthread/history_tracker.h

mRouterId

uint8_t otHistoryTrackerRouterInfo::mRouterId

Router ID.

Definition at line 218 of file include/openthread/history_tracker.h

mNextHop

uint8_t otHistoryTrackerRouterInfo::mNextHop

Next Hop Router ID - OT_HISTORY_TRACKER_NO_NEXT_HOP if no next hop.

Definition at line 219 of file include/openthread/history_tracker.h

mOldPathCost

otHistoryTrackerRouterInfo

764/962

uint8_t otHistoryTrackerRouterInfo::mOldPathCost

Old path cost - OT_HISTORY_TRACKER_INFINITE_PATH_COST if infinite or unknown.

Definition at line 220 of file include/openthread/history_tracker.h

mPathCost

uint8_t otHistoryTrackerRouterInfo::mPathCost

New path cost - OT_HISTORY_TRACKER_INFINITE_PATH_COST if infinite or unknown.

Definition at line 221 of file include/openthread/history_tracker.h

otHistoryTrackerOnMeshPrefixInfo

765/962

otHistoryTrackerOnMeshPrefixInfo

Represent a Network Data on mesh prefix info.

Public Attributes

otBorderRouterC
onfig

mPrefix
The on mesh prefix entry.

otHistoryTrackerN
etDataEvent

mEvent
Indicates the event (added/removed).

Public Attribute Documentation

mPrefix

otBorderRouterConfig otHistoryTrackerOnMeshPrefixInfo::mPrefix

The on mesh prefix entry.

Definition at line 240 of file include/openthread/history_tracker.h

mEvent

otHistoryTrackerNetDataEvent otHistoryTrackerOnMeshPrefixInfo::mEvent

Indicates the event (added/removed).

Definition at line 241 of file include/openthread/history_tracker.h

otHistoryTrackerExternalRouteInfo

766/962

otHistoryTrackerExternalRouteInfo

Represent a Network Data extern route info.

Public Attributes

otExternalRouteC
onfig

mRoute
The external route entry.

otHistoryTrackerN
etDataEvent

mEvent
Indicates the event (added/removed).

Public Attribute Documentation

mRoute

otExternalRouteConfig otHistoryTrackerExternalRouteInfo::mRoute

The external route entry.

Definition at line 250 of file include/openthread/history_tracker.h

mEvent

otHistoryTrackerNetDataEvent otHistoryTrackerExternalRouteInfo::mEvent

Indicates the event (added/removed).

Definition at line 251 of file include/openthread/history_tracker.h

Jam Detection

767/962

Jam Detection

Jam Detection
This module includes functions for signal jamming detection feature.

The functions in this module are available when jam-detection feature (OPENTHREAD_CONFIG_JAM_DETECTION_ENABLE) is

enabled.

Typedefs

typedef void(* otJamDetectionCallback)(bool aJamState, void *aContext)
Po inter is called if signal jam detection is enabled and a jam is detected.

Functions

otError otJamDetectionSetRssiThreshold(otInstance *aInstance, int8_t aRssiThreshold)
Set the Jam Detection RSSI Thresho ld (in dBm).

int8_t otJamDetectionGetRssiThreshold(otInstance *aInstance)
Get the Jam Detection RSSI Thresho ld (in dBm).

otError otJamDetectionSetWindow(otInstance *aInstance, uint8_t aWindow)
Set the Jam Detection Detection Window (in seconds).

uint8_t otJamDetectionGetWindow(otInstance *aInstance)
Get the Jam Detection Detection Window (in seconds).

otError otJamDetectionSetBusyPeriod(otInstance *aInstance, uint8_t aBusyPeriod)
Set the Jam Detection Busy Period (in seconds).

uint8_t otJamDetectionGetBusyPeriod(otInstance *aInstance)
Get the Jam Detection Busy Period (in seconds)

otError otJamDetectionStart(otInstance *aInstance, otJamDetectionCallback aCallback, void *aContext)
Start the jamming detection.

otError otJamDetectionStop(otInstance *aInstance)
Stop the jamming detection.

bool otJamDetectionIsEnabled(otInstance *aInstance)
Get the Jam Detection Status (enabled/disabled)

bool otJamDetectionGetState(otInstance *aInstance)
Get the Jam Detection State .

uint64_t otJamDetectionGetHistoryBitmap(otInstance *aInstance)
Get the current history bitmap.

Typedef Documentation

otJamDetectionCallback

Jam Detection

768/962

typedef void(* otJamDetectionCallback) (bool aJamState, void *aContext))(bool aJamState, void *aContext)

Pointer is called if signal jam detection is enabled and a jam is detected.

Parameters

[in] aJamState Current jam state (true if jam is detected, false otherwise).

[in] aContext A pointer to application-specific context.

Definition at line 64 of file include/openthread/jam_detection.h

Function Documentation

otJamDetectionSetRssiThreshold

otError otJamDetectionSetRssiThreshold (otInstance *aInstance, int8_t aRssiThreshold)

Set the Jam Detection RSSI Threshold (in dBm).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aRssiThreshold The RSSI threshold.

Definition at line 75 of file include/openthread/jam_detection.h

otJamDetectionGetRssiThreshold

int8_t otJamDetectionGetRssiThreshold (otInstance *aInstance)

Get the Jam Detection RSSI Threshold (in dBm).

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Jam Detection RSSI Threshold.

Definition at line 84 of file include/openthread/jam_detection.h

otJamDetectionSetWindow

otError otJamDetectionSetWindow (otInstance *aInstance, uint8_t aWindow)

Set the Jam Detection Detection Window (in seconds).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aWindow The Jam Detection window (valid range is 1 to 63)

Jam Detection

769/962

Definition at line 96 of file include/openthread/jam_detection.h

otJamDetectionGetWindow

uint8_t otJamDetectionGetWindow (otInstance *aInstance)

Get the Jam Detection Detection Window (in seconds).

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Jam Detection Window.

Definition at line 106 of file include/openthread/jam_detection.h

otJamDetectionSetBusyPeriod

otError otJamDetectionSetBusyPeriod (otInstance *aInstance, uint8_t aBusyPeriod)

Set the Jam Detection Busy Period (in seconds).

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aBusyPeriod The Jam Detection busy period (should be non-zero and less than or equal to Jam Detection

Window)

The number of aggregate seconds within the detection window where the RSSI must be above threshold to trigger

detection.

Definition at line 122 of file include/openthread/jam_detection.h

otJamDetectionGetBusyPeriod

uint8_t otJamDetectionGetBusyPeriod (otInstance *aInstance)

Get the Jam Detection Busy Period (in seconds)

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Jam Detection Busy Period.

Definition at line 132 of file include/openthread/jam_detection.h

otJamDetectionStart

otError otJamDetectionStart (otInstance *aInstance, otJamDetectionCallback aCallback, void *aContext)

Start the jamming detection.

Jam Detection

770/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aCallback A pointer to a function called to notify of jamming state change.

[in] aContext A pointer to application-specific context.

Definition at line 145 of file include/openthread/jam_detection.h

otJamDetectionStop

otError otJamDetectionStop (otInstance *aInstance)

Stop the jamming detection.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Definition at line 156 of file include/openthread/jam_detection.h

otJamDetectionIsEnabled

bool otJamDetectionIsEnabled (otInstance *aInstance)

Get the Jam Detection Status (enabled/disabled)

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Jam Detection status (true if enabled, false otherwise).

Definition at line 166 of file include/openthread/jam_detection.h

otJamDetectionGetState

bool otJamDetectionGetState (otInstance *aInstance)

Get the Jam Detection State.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The Jam Detection state (true jam is detected, ‘false ’ otherwise).

Definition at line 176 of file include/openthread/jam_detection.h

otJamDetectionGetHistoryBitmap

uint64_t otJamDetectionGetHistoryBitmap (otInstance *aInstance)

Jam Detection

771/962

Get the current history bitmap.

Parameters

[in] aInstance A pointer to an OpenThread instance.

This value provides information about current state of jamming detection module for monitoring/debugging purpose. It

returns a 64-bit value where each bit corresponds to one second interval starting with bit 0 for the most recent interval

and bit 63 for the oldest intervals (63 sec earlier). The bit is set to 1 if the jamming detection module observed/detected

high signal level during the corresponding one second interval.

Returns

The current history bitmap.

Definition at line 193 of file include/openthread/jam_detection.h

Logging - Thread Stack

772/962

Logging - Thread Stack

Logging - Thread Stack
This module includes OpenThread logging related definitions.

Modules

otLogHexDumpInfo

Functions

otLogLevel otLoggingGetLevel(void)
Returns the current log level.

otError otLoggingSetLevel(otLogLevel aLogLevel)
Sets the log level.

void otLogCritPlat(const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1
Emits a log message at critical log level.

void void otLogWarnPlat(const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1
Emits a log message at warning log level.

void void void otLogNotePlat(const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1
Emits a log message at note log level.

void void void
void

otLogInfoPlat(const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1
Emits a log message at info log level.

void void void
void void

otLogDebgPlat(const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1
Emits a log message at debug log level.

void void void
void void void

otDumpCritPlat(const char *aText, const void *aData, uint16_t aDataLength)
Generates a memory dump at critical log level.

void otDumpWarnPlat(const char *aText, const void *aData, uint16_t aDataLength)
Generates a memory dump at warning log level.

void otDumpNotePlat(const char *aText, const void *aData, uint16_t aDataLength)
Generates a memory dump at note log level.

void otDumpInfoPlat(const char *aText, const void *aData, uint16_t aDataLength)
Generates a memory dump at info log level.

void otDumpDebgPlat(const char *aText, const void *aData, uint16_t aDataLength)
Generates a memory dump at debug log level.

void otLogPlat(otLogLevel aLogLevel, const char *aPlatModuleName, const char *aFormat,...)
OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�3
Emits a log message at given log level using a platform module name .

void void otLogPlatArgs(otLogLevel aLogLevel, const char *aPlatModuleName, const char *aFormat, va_list aArgs)
Emits a log message at given log level using a platform module name .

Logging - Thread Stack

773/962

void otLogCli(otLogLevel aLogLevel, const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�2
Emits a log message at a given log level.

otError otLogGenerateNextHexDumpLine(otLogHexDumpInfo *aInfo)
Generates the next hex dump line .

Macros

#define OT_LOG_HEX_DUMP_LINE_SIZE 73
Hex dump line string size .

Function Documentation

otLoggingGetLevel

otLogLevel otLoggingGetLevel (void)

Returns the current log level.

Parameters

N/A

If dynamic log level feature OPENTHREAD_CONFIG_LOG_LEVEL_DYNAMIC_ENABLE is enabled, this function returns the currently

set dynamic log level. Otherwise, this function returns the build-time configured log level.

Returns

The log level.

Definition at line 64 of file include/openthread/logging.h

otLoggingSetLevel

otError otLoggingSetLevel (otLogLevel aLogLevel)

Sets the log level.

Parameters

[in] aLogLevel The log level.

Note

This function requires OPENTHREAD_CONFIG_LOG_LEVEL_DYNAMIC_ENABLE=1 .

Definition at line 77 of file include/openthread/logging.h

otLogCritPlat

void otLogCritPlat (const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1

Emits a log message at critical log level.

Parameters

[in] aFormat The format string.

Logging - Thread Stack

774/962

[in] Arguments for the format specification.

Is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below critical,

this function does not emit any log message.

Definition at line 89 of file include/openthread/logging.h

otLogWarnPlat

void void otLogWarnPlat (const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1

Emits a log message at warning log level.

Parameters

[in] aFormat The format string.

[in] Arguments for the format specification.

Is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below warning,

this function does not emit any log message.

Definition at line 101 of file include/openthread/logging.h

otLogNotePlat

void void void otLogNotePlat (const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1

Emits a log message at note log level.

Parameters

[in] aFormat The format string.

[in] Arguments for the format specification.

Is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below note, this

function does not emit any log message.

Definition at line 113 of file include/openthread/logging.h

otLogInfoPlat

void void void void otLogInfoPlat (const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1

Emits a log message at info log level.

Parameters

[in] aFormat The format string.

[in] Arguments for the format specification.

Is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below info, this

function does not emit any log message.

Definition at line 125 of file include/openthread/logging.h

Logging - Thread Stack

775/962

otLogDebgPlat

void void void void void otLogDebgPlat (const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�1

Emits a log message at debug log level.

Parameters

[in] aFormat The format string.

[in] Arguments for the format specification.

Is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below debug,

this function does not emit any log message.

Definition at line 137 of file include/openthread/logging.h

otDumpCritPlat

void void void void void void otDumpCritPlat (const char *aText, const void *aData, uint16_t aDataLength)

Generates a memory dump at critical log level.

Parameters

[in] aText A string that is printed before the bytes.

[in] aData A pointer to the data buffer.

[in] aDataLength Number of bytes in aData .

If OPENTHREAD_CONFIG_LOG_PLATFORM or OPENTHREAD_CONFIG_LOG_PKT_DUMP is not set or the current log level is below

critical this function does not emit any log message.

Definition at line 150 of file include/openthread/logging.h

otDumpWarnPlat

void otDumpWarnPlat (const char *aText, const void *aData, uint16_t aDataLength)

Generates a memory dump at warning log level.

Parameters

[in] aText A string that is printed before the bytes.

[in] aData A pointer to the data buffer.

[in] aDataLength Number of bytes in aData .

If OPENTHREAD_CONFIG_LOG_PLATFORM or OPENTHREAD_CONFIG_LOG_PKT_DUMP is not set or the current log level is below

warning this function does not emit any log message.

Definition at line 163 of file include/openthread/logging.h

otDumpNotePlat

void otDumpNotePlat (const char *aText, const void *aData, uint16_t aDataLength)

Logging - Thread Stack

776/962

Generates a memory dump at note log level.

Parameters

[in] aText A string that is printed before the bytes.

[in] aData A pointer to the data buffer.

[in] aDataLength Number of bytes in aData .

If OPENTHREAD_CONFIG_LOG_PLATFORM or OPENTHREAD_CONFIG_LOG_PKT_DUMP is not set or the current log level is below

note this function does not emit any log message.

Definition at line 176 of file include/openthread/logging.h

otDumpInfoPlat

void otDumpInfoPlat (const char *aText, const void *aData, uint16_t aDataLength)

Generates a memory dump at info log level.

Parameters

[in] aText A string that is printed before the bytes.

[in] aData A pointer to the data buffer.

[in] aDataLength Number of bytes in aData .

If OPENTHREAD_CONFIG_LOG_PLATFORM or OPENTHREAD_CONFIG_LOG_PKT_DUMP is not set or the current log level is below

info this function does not emit any log message.

Definition at line 189 of file include/openthread/logging.h

otDumpDebgPlat

void otDumpDebgPlat (const char *aText, const void *aData, uint16_t aDataLength)

Generates a memory dump at debug log level.

Parameters

[in] aText A string that is printed before the bytes.

[in] aData A pointer to the data buffer.

[in] aDataLength Number of bytes in aData .

If OPENTHREAD_CONFIG_LOG_PLATFORM or OPENTHREAD_CONFIG_LOG_PKT_DUMP is not set or the current log level is below

debug this function does not emit any log message.

Definition at line 202 of file include/openthread/logging.h

otLogPlat

void otLogPlat (otLogLevel aLogLevel, const char *aPlatModuleName, const char *aFormat,...)
OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�3

Emits a log message at given log level using a platform module name.

Logging - Thread Stack

777/962

Parameters

[in] aLogLevel The log level.

[in] aPlatModuleName The platform sub-module name.

[in] aFormat The format string.

[in] Arguments for the format specification.

This is is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below

aLogLevel , this function does not emit any log message.

The aPlatModuleName name is used to determine the log module name in the emitted log message, following the P-

{PlatModuleName}--- format. This means that the prefix string "P-" is added to indicate that this is a platform sub-module,

followed by the next 12 characters of the PlatModuleName string, with padded hyphens - at the end to ensure that the

region name is 14 characters long.

Definition at line 221 of file include/openthread/logging.h

otLogPlatArgs

void void otLogPlatArgs (otLogLevel aLogLevel, const char *aPlatModuleName, const char *aFormat, va_list aArgs)

Emits a log message at given log level using a platform module name.

Parameters

[in] aLogLevel The log level.

[in] aPlatModuleName The platform sub-module name.

[in] aFormat The format string.

[in] aArgs Arguments for the format specification.

This is is intended for use by platform. If OPENTHREAD_CONFIG_LOG_PLATFORM is not set or the current log level is below

aLogLevel , this function does not emit any log message.

The aPlatModuleName name is used to determine the log module name in the emitted log message, following the P-

{PlatModuleName}--- format. This means that the prefix string "P-" is added to indicate that this is a platform sub-module,

followed by the next 12 characters of the PlatModuleName string, with padded hyphens - at the end to ensure that the

region name is 14 characters long.

Definition at line 241 of file include/openthread/logging.h

otLogCli

void otLogCli (otLogLevel aLogLevel, const char *aFormat,...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK�2

Emits a log message at a given log level.

Parameters

[in] aLogLevel The log level.

[in] aFormat The format string.

[in] Arguments for the format specification.

Is intended for use by CLI only. If OPENTHREAD_CONFIG_LOG_CLI is not set or the current log level is below the given log

level, this function does not emit any log message.

Logging - Thread Stack

778/962

Definition at line 254 of file include/openthread/logging.h

otLogGenerateNextHexDumpLine

otError otLogGenerateNextHexDumpLine (otLogHexDumpInfo *aInfo)

Generates the next hex dump line.

Parameters

[inout] aInfo A pointer to otLogHexDumpInfo to use to generate hex dump.

Can call this method back-to-back to generate the hex dump output line by line. On the first call the mIterator field in aInfo

MUST be set to zero.

Here is an example of the generated hex dump output:

"==========================[{mTitle} len=070]============================" "| 41 D8 87 34 12 FF FF 25 | 4C

57 DA F2 FB 2F 62 7F | A..4...%LW.../b. |" "| 3B 01 F0 4D 4C 4D 4C 54 | 4F 00 15 15 00 00 00 00 | ;..MLMLTO....... |" "| 00 00

00 01 80 DB 60 82 | 7E 33 72 3B CC B3 A1 84 |̀ .~3r;.... |" "| 3B E6 AD B2 0B 45 E7 45 | C5 B9 00 1A CB 2D 6D 1C |

;....E.E.....-m. |" "| 10 3E 3C F5 D3 70 | | .><..p |" "--"

Definition at line 293 of file include/openthread/logging.h

Macro Definition Documentation

OT_LOG_HEX_DUMP_LINE_SIZE

#define OT_LOG_HEX_DUMP_LINE_SIZE

Value:

73

Hex dump line string size.

Definition at line 256 of file include/openthread/logging.h

otLogHexDumpInfo

779/962

otLogHexDumpInfo

Represents information used for generating hex dump output.

Public Attributes

const uint8_t * mDataBytes
The data byes.

uint16_t mDataLength
The data length (number of bytes in mDataBytes)

const char * mTitle
Title string to add table header (MUST NOT be NULL).

char mLine
Buffer to output one line of generated hex dump.

uint16_t mIterator
Iterator used by OT stack. MUST be initialized to zero.

Public Attribute Documentation

mDataBytes

const uint8_t* otLogHexDumpInfo::mDataBytes

The data byes.

Definition at line 264 of file include/openthread/logging.h

mDataLength

uint16_t otLogHexDumpInfo::mDataLength

The data length (number of bytes in mDataBytes)

Definition at line 265 of file include/openthread/logging.h

mTitle

const char* otLogHexDumpInfo::mTitle

Title string to add table header (MUST NOT be NULL).

Definition at line 266 of file include/openthread/logging.h

mLine

otLogHexDumpInfo

780/962

char otLogHexDumpInfo::mLine[OT_LOG_HEX_DUMP_LINE_SIZE�

Buffer to output one line of generated hex dump.

Definition at line 267 of file include/openthread/logging.h

mIterator

uint16_t otLogHexDumpInfo::mIterator

Iterator used by OT stack. MUST be initialized to zero.

Definition at line 268 of file include/openthread/logging.h

Mesh Diagnostics

781/962

Mesh Diagnostics

Mesh Diagnostics
This module includes definitions and functions for Mesh Diagnostics.

The Mesh Diagnostics APIs require OPENTHREAD_CONFIG_MESH_DIAG_ENABLE and OPENTHREAD_FTD .

Modules

otMeshDiagDiscoverConfig

otMeshDiagRouterInfo

otMeshDiagChildInfo

otMeshDiagChildEntry

otMeshDiagRouterNeighborEntry

Typedefs

typedef struct
otMeshDiagDisco

verConfig

otMeshDiagDiscoverConfig
Represents the set of configurations used when discovering mesh topo logy indicating which items to discover.

typedef struct
otMeshDiagIp6Ad

drIterator

otMeshDiagIp6AddrIterator
An opaque iterator to iterate over list of IPv6 addresses of a router.

typedef struct
otMeshDiagChildIt

erator

otMeshDiagChildIterator
An opaque iterator to iterate over list of children of a router.

typedef struct
otMeshDiagRoute

rInfo

otMeshDiagRouterInfo
Represents information about a router in Thread mesh discovered using otMeshDiagDiscoverTopo logy() .

typedef struct
otMeshDiagChildI

nfo

otMeshDiagChildInfo
Represents information about a discovered child in Thread mesh using otMeshDiagDiscoverTopo logy() .

typedef void(* otMeshDiagDiscoverCallback)(otError aError, otMeshDiagRouterInfo *aRouterInfo, void *aContext)
Po inter type represents the callback used by otMeshDiagDiscoverTopo logy() to provide information about a

discovered router.

typedef struct
otMeshDiagChildE

ntry

otMeshDiagChildEntry
Represents information about a child entry from otMeshDiagQueryChildTable() .

typedef void(* otMeshDiagQueryChildTableCallback)(otError aError, const otMeshDiagChildEntry *aChildEntry, void
*aContext)
Represents the callback used by otMeshDiagQueryChildTable() to provide information about child table entries.

Mesh Diagnostics

782/962

typedef void(* otMeshDiagChildIp6AddrsCallback)(otError aError, uint16_t aChildRloc16, otMeshDiagIp6AddrIterator
*aIp6AddrIterator, void *aContext)
Represents the callback used by otMeshDiagQueryChildrenIp6Addrs() to provide information about an MTD child and

its list of IPv6 addresses.

typedef struct
otMeshDiagRoute
rNeighborEntry

otMeshDiagRouterNeighborEntry
Represents information about a router neighbor entry from otMeshDiagQueryRouterNeighborTable() .

typedef void(* otMeshDiagQueryRouterNeighborTableCallback)(otError aError, const otMeshDiagRouterNeighborEntry
*aNeighborEntry, void *aContext)
Represents the callback used by otMeshDiagQueryRouterNeighborTable() to provide information about neighbor

router table entries.

Functions

otError otMeshDiagDiscoverTopology(otInstance *aInstance, const otMeshDiagDiscoverConfig *aConfig,
otMeshDiagDiscoverCallback aCallback, void *aContext)
Starts network topo logy discovery.

void otMeshDiagCancel(otInstance *aInstance)
Cancels an ongo ing topo logy discovery if there is one , otherwise no action.

otError otMeshDiagGetNextIp6Address(otMeshDiagIp6AddrIterator *aIterator, otIp6Address *aIp6Address)
Iterates through the discovered IPv6 addresses of a router or an MTD child.

otError otMeshDiagGetNextChildInfo(otMeshDiagChildIterator *aIterator, otMeshDiagChildInfo *aChildInfo)
Iterates through the discovered children of a router.

otError otMeshDiagQueryChildTable(otInstance *aInstance, uint16_t aRloc16, otMeshDiagQueryChildTableCallback
aCallback, void *aContext)
Starts query for child table for a given router.

otError otMeshDiagQueryChildrenIp6Addrs(otInstance *aInstance, uint16_t aRloc16, otMeshDiagChildIp6AddrsCallback
aCallback, void *aContext)
Sends a query to a parent to retrieve the IPv6 addresses of all its MTD children.

otError otMeshDiagQueryRouterNeighborTable(otInstance *aInstance, uint16_t aRloc16,
otMeshDiagQueryRouterNeighborTableCallback aCallback, void *aContext)
Starts query for router neighbor table for a given router.

Macros

#define OT_MESH_DIAG_VERSION_UNKNOWN 0xffff
Specifies that Thread Version is unknown.

Typedef Documentation

otMeshDiagDiscoverConfig

typedef struct otMeshDiagDiscoverConfig otMeshDiagDiscoverConfig

Represents the set of configurations used when discovering mesh topology indicating which items to discover.

Definition at line 66 of file include/openthread/mesh_diag.h

otMeshDiagIp6AddrIterator

Mesh Diagnostics

783/962

typedef struct otMeshDiagIp6AddrIterator otMeshDiagIp6AddrIterator

An opaque iterator to iterate over list of IPv6 addresses of a router.

Pointers to instance of this type are provided in otMeshDiagRouterInfo .

Definition at line 74 of file include/openthread/mesh_diag.h

otMeshDiagChildIterator

typedef struct otMeshDiagChildIterator otMeshDiagChildIterator

An opaque iterator to iterate over list of children of a router.

Pointers to instance of this type are provided in otMeshDiagRouterInfo .

Definition at line 82 of file include/openthread/mesh_diag.h

otMeshDiagRouterInfo

typedef struct otMeshDiagRouterInfo otMeshDiagRouterInfo

Represents information about a router in Thread mesh discovered using otMeshDiagDiscoverTopo logy() .

Definition at line 142 of file include/openthread/mesh_diag.h

otMeshDiagChildInfo

typedef struct otMeshDiagChildInfo otMeshDiagChildInfo

Represents information about a discovered child in Thread mesh using otMeshDiagDiscoverTopo logy() .

Definition at line 155 of file include/openthread/mesh_diag.h

otMeshDiagDiscoverCallback

typedef void(* otMeshDiagDiscoverCallback) (otError aError, otMeshDiagRouterInfo *aRouterInfo, void *aContext))
(otError aError, otMeshDiagRouterInfo *aRouterInfo, void *aContext)

Pointer type represents the callback used by otMeshDiagDiscoverTopo logy() to provide information about a discovered

router.

Parameters

[in] aError OT_ERROR_PENDING Indicates there are more routers to be discovered. OT_ERROR_NONE Indicates

this is the last router and mesh discovery is done. OT_ERROR_RESPONSE_TIMEOUT Timed out waiting

for response from one or more routers.

[in] aRouterInfo The discovered router info (can be null if aError is OT_ERROR_RESPONSE_TIMEOUT).

[in] aContext Application-specific context.

Mesh Diagnostics

784/962

When aError is OT_ERROR_PENDING , it indicates that the discovery is not yet finished and there will be more routers to

discover and the callback will be invoked again.

Definition at line 171 of file include/openthread/mesh_diag.h

otMeshDiagChildEntry

typedef struct otMeshDiagChildEntry otMeshDiagChildEntry

Represents information about a child entry from otMeshDiagQueryChildTable() .

mSupportsErrRate indicates whether or not the error tracking feature is supported and mFrameErrorRate and

mMessageErrorRate values are valid. The frame error rate tracks frame tx errors (towards the child) at MAC layer, while

mMessageErrorRate tracks the IPv6 message error rate (above MAC layer and after MAC retries) when an IPv6 message is

dropped. For example, if the message is large and requires 6LoWPAN fragmentation, message tx is considered as failed if

one of its fragment frame tx fails (for example, never acked).

Definition at line 265 of file include/openthread/mesh_diag.h

otMeshDiagQueryChildTableCallback

typedef void(* otMeshDiagQueryChildTableCallback) (otError aError, const otMeshDiagChildEntry *aChildEntry, void
*aContext))(otError aError, const otMeshDiagChildEntry *aChildEntry, void *aContext)

Represents the callback used by otMeshDiagQueryChildTable() to provide information about child table entries.

Parameters

[in] aError OT_ERROR_PENDING Indicates there are more entries in the table. OT_ERROR_NONE Indicates the

table is finished. OT_ERROR_RESPONSE_TIMEOUT Timed out waiting for response.

[in] aChildEntry The child entry (can be null if aError is OT_ERROR_RESPONSE_TIMEOUT or OT_ERROR_NONE).

[in] aContext Application-specific context.

When aError is OT_ERROR_PENDING , it indicates that the table still has more entries and the callback will be invoked again.

Definition at line 280 of file include/openthread/mesh_diag.h

otMeshDiagChildIp6AddrsCallback

typedef void(* otMeshDiagChildIp6AddrsCallback) (otError aError, uint16_t aChildRloc16, otMeshDiagIp6AddrIterator
*aIp6AddrIterator, void *aContext))(otError aError, uint16_t aChildRloc16, otMeshDiagIp6AddrIterator *aIp6AddrIterator,
void *aContext)

Represents the callback used by otMeshDiagQueryChildrenIp6Addrs() to provide information about an MTD child and its list of

IPv6 addresses.

Parameters

[in] aError OT_ERROR_PENDING Indicates there are more children in the table. OT_ERROR_NONE Indicates

the table is finished. OT_ERROR_RESPONSE_TIMEOUT Timed out waiting for response.

[in] aChildRloc16 The RLOC16 of the child. 0xfffe is used on OT_ERROR_RESPONSE_TIMEOUT .

[in] aIp6AddrIterator An iterator to go through the IPv6 addresses of the child with aRloc using

otMeshDiagGetNextIp6Address() . Set to NULL on OT_ERROR_RESPONSE_TIMEOUT .

Mesh Diagnostics

785/962

[in] aContext Application-specific context.

When aError is OT_ERROR_PENDING , it indicates that there are more children and the callback will be invoked again.

Definition at line 320 of file include/openthread/mesh_diag.h

otMeshDiagRouterNeighborEntry

typedef struct otMeshDiagRouterNeighborEntry otMeshDiagRouterNeighborEntry

Represents information about a router neighbor entry from otMeshDiagQueryRouterNeighborTable() .

mSupportsErrRate indicates whether or not the error tracking feature is supported and mFrameErrorRate and

mMessageErrorRate values are valid. The frame error rate tracks frame tx errors (towards the child) at MAC layer, while

mMessageErrorRate tracks the IPv6 message error rate (above MAC layer and after MAC retries) when an IPv6 message is

dropped. For example, if the message is large and requires 6LoWPAN fragmentation, message tx is considered as failed if

one of its fragment frame tx fails (for example, never acked).

Definition at line 367 of file include/openthread/mesh_diag.h

otMeshDiagQueryRouterNeighborTableCallback

typedef void(* otMeshDiagQueryRouterNeighborTableCallback) (otError aError, const otMeshDiagRouterNeighborEntry
*aNeighborEntry, void *aContext))(otError aError, const otMeshDiagRouterNeighborEntry *aNeighborEntry, void
*aContext)

Represents the callback used by otMeshDiagQueryRouterNeighborTable() to provide information about neighbor router table

entries.

Parameters

[in] aError OT_ERROR_PENDING Indicates there are more entries in the table. OT_ERROR_NONE Indicates the

table is finished. OT_ERROR_RESPONSE_TIMEOUT Timed out waiting for response.

[in] aNeighborEntry The neighbor entry (can be null if aError is RESPONSE_TIMEOUT or NONE).

[in] aContext Application-specific context.

When aError is OT_ERROR_PENDING , it indicates that the table still has more entries and the callback will be invoked again.

Definition at line 383 of file include/openthread/mesh_diag.h

Function Documentation

otMeshDiagDiscoverTopology

otError otMeshDiagDiscoverTopology (otInstance *aInstance, const otMeshDiagDiscoverConfig *aConfig,
otMeshDiagDiscoverCallback aCallback, void *aContext)

Starts network topology discovery.

Parameters

[in] aInstance The OpenThread instance.

[in] aConfig The configuration to use for discovery (e.g., which items to discover).

[in] aCallback The callback to report the discovered routers.

Mesh Diagnostics

786/962

[in] aContext A context to pass in aCallback .

Definition at line 187 of file include/openthread/mesh_diag.h

otMeshDiagCancel

void otMeshDiagCancel (otInstance *aInstance)

Cancels an ongoing topology discovery if there is one, otherwise no action.

Parameters

N/A aInstance

When ongoing discovery is cancelled, the callback from otMeshDiagDiscoverTopo logy() will not be called anymore.

Definition at line 198 of file include/openthread/mesh_diag.h

otMeshDiagGetNextIp6Address

otError otMeshDiagGetNextIp6Address (otMeshDiagIp6AddrIterator *aIterator, otIp6Address *aIp6Address)

Iterates through the discovered IPv6 addresses of a router or an MTD child.

Parameters

[inout] aIterator The address iterator to use.

[out] aIp6Address A pointer to return the next IPv6 address (if any).

MUST be used

from the callback otMeshDiagDiscoverCallback() and use the mIp6AddrIterator from the aRouterInfo struct that is provided as

input to the callback, or

from the callback otMeshDiagChildIp6AddrsCallback() along with provided aIp6AddrIterator .

Definition at line 215 of file include/openthread/mesh_diag.h

otMeshDiagGetNextChildInfo

otError otMeshDiagGetNextChildInfo (otMeshDiagChildIterator *aIterator, otMeshDiagChildInfo *aChildInfo)

Iterates through the discovered children of a router.

Parameters

[inout] aIterator The address iterator to use.

[out] aChildInfo A pointer to return the child info (if any).

This function MUST be used from the callback otMeshDiagDiscoverCallback() and use the mChildIterator from the

aRouterInfo struct that is provided as input to the callback.

Definition at line 230 of file include/openthread/mesh_diag.h

otMeshDiagQueryChildTable

Mesh Diagnostics

787/962

otError otMeshDiagQueryChildTable (otInstance *aInstance, uint16_t aRloc16, otMeshDiagQueryChildTableCallback
aCallback, void *aContext)

Starts query for child table for a given router.

Parameters

[in] aInstance The OpenThread instance.

[in] aRloc16 The RLOC16 of router to query.

[in] aCallback The callback to report the queried child table.

[in] aContext A context to pass in aCallback .

Definition at line 299 of file include/openthread/mesh_diag.h

otMeshDiagQueryChildrenIp6Addrs

otError otMeshDiagQueryChildrenIp6Addrs (otInstance *aInstance, uint16_t aRloc16, otMeshDiagChildIp6AddrsCallback
aCallback, void *aContext)

Sends a query to a parent to retrieve the IPv6 addresses of all its MTD children.

Parameters

[in] aInstance The OpenThread instance.

[in] aRloc16 The RLOC16 of parent to query.

[in] aCallback The callback to report the queried child IPv6 address list.

[in] aContext A context to pass in aCallback .

Definition at line 340 of file include/openthread/mesh_diag.h

otMeshDiagQueryRouterNeighborTable

otError otMeshDiagQueryRouterNeighborTable (otInstance *aInstance, uint16_t aRloc16,
otMeshDiagQueryRouterNeighborTableCallback aCallback, void *aContext)

Starts query for router neighbor table for a given router.

Parameters

[in] aInstance The OpenThread instance.

[in] aRloc16 The RLOC16 of router to query.

[in] aCallback The callback to report the queried table.

[in] aContext A context to pass in aCallback .

Definition at line 402 of file include/openthread/mesh_diag.h

Macro Definition Documentation

OT_MESH_DIAG_VERSION_UNKNOWN

#define OT_MESH_DIAG_VERSION_UNKNOWN

Mesh Diagnostics

788/962

Value:

0xffff

Specifies that Thread Version is unknown.

This is used in otMeshDiagRouterInfo for mVersion property when device does not provide its version. This indicates that

device is likely running 1.3.0 (version value 4) or earlier.

Definition at line 91 of file include/openthread/mesh_diag.h

otMeshDiagDiscoverConfig

789/962

otMeshDiagDiscoverConfig

Represents the set of configurations used when discovering mesh topology indicating which items to discover.

Public Attributes

bool mDiscoverIp6Addresses
Whether or not to discover IPv6 addresses of every router.

bool mDiscoverChildTable
Whether or not to discover children of every router.

Public Attribute Documentation

mDiscoverIp6Addresses

bool otMeshDiagDiscoverConfig::mDiscoverIp6Addresses

Whether or not to discover IPv6 addresses of every router.

Definition at line 64 of file include/openthread/mesh_diag.h

mDiscoverChildTable

bool otMeshDiagDiscoverConfig::mDiscoverChildTable

Whether or not to discover children of every router.

Definition at line 65 of file include/openthread/mesh_diag.h

otMeshDiagRouterInfo

790/962

otMeshDiagRouterInfo

Represents information about a router in Thread mesh discovered using otMeshDiagDiscoverTopo logy() .

Public Attributes

otExtAddress mExtAddress
Extended MAC address.

uint16_t mRloc16
RLOC16.

uint8_t mRouterId
Router ID.

uint16_t mVersion
Thread Version. OT_MESH_DIAG_VERSION_UNKNOWN if unknown.

bool mIsThisDevice
Whether router is this device itself.

bool mIsThisDeviceParent
Whether router is parent of this device (when device is a child).

bool mIsLeader
Whether router is leader.

bool mIsBorderRouter
Whether router acts as a border router providing ext connectivity.

uint8_t mLinkQualities
Provides the link quality from this router to other routers, also indicating whether a link is established between the

routers.

otMeshDiagIp6Ad
drIterator *

mIp6AddrIterator
A po inter to an iterator to go through the list of IPv6 addresses of the router.

otMeshDiagChildIt
erator *

mChildIterator
A po inter to an iterator to go through the list of children of the router.

Public Attribute Documentation

mExtAddress

otExtAddress otMeshDiagRouterInfo::mExtAddress

Extended MAC address.

Definition at line 99 of file include/openthread/mesh_diag.h

mRloc16

uint16_t otMeshDiagRouterInfo::mRloc16

otMeshDiagRouterInfo

791/962

RLOC16.

Definition at line 100 of file include/openthread/mesh_diag.h

mRouterId

uint8_t otMeshDiagRouterInfo::mRouterId

Router ID.

Definition at line 101 of file include/openthread/mesh_diag.h

mVersion

uint16_t otMeshDiagRouterInfo::mVersion

Thread Version. OT_MESH_DIAG_VERSION_UNKNOWN if unknown.

Definition at line 102 of file include/openthread/mesh_diag.h

mIsThisDevice

bool otMeshDiagRouterInfo::mIsThisDevice

Whether router is this device itself.

Definition at line 103 of file include/openthread/mesh_diag.h

mIsThisDeviceParent

bool otMeshDiagRouterInfo::mIsThisDeviceParent

Whether router is parent of this device (when device is a child).

Definition at line 104 of file include/openthread/mesh_diag.h

mIsLeader

bool otMeshDiagRouterInfo::mIsLeader

Whether router is leader.

Definition at line 105 of file include/openthread/mesh_diag.h

mIsBorderRouter

bool otMeshDiagRouterInfo::mIsBorderRouter

Whether router acts as a border router providing ext connectivity.

otMeshDiagRouterInfo

792/962

Definition at line 106 of file include/openthread/mesh_diag.h

mLinkQualities

uint8_t otMeshDiagRouterInfo::mLinkQualities[OT_NETWORK_MAX_ROUTER_ID�1�

Provides the link quality from this router to other routers, also indicating whether a link is established between the routers.

The array is indexed based on Router ID. mLinkQualities[routerId] indicates the incoming link quality, the router sees to the

router with routerId . Link quality is a value in [0, 3]. Value zero indicates no link. Larger value indicate better link quality (as

defined by Thread specification).

Definition at line 117 of file include/openthread/mesh_diag.h

mIp6AddrIterator

otMeshDiagIp6AddrIterator* otMeshDiagRouterInfo::mIp6AddrIterator

A pointer to an iterator to go through the list of IPv6 addresses of the router.

The pointer is valid only while otMeshDiagRouterInfo is valid. It can be used in otMeshDiagGetNextIp6Address to iterate

through the IPv6 addresses.

The pointer can be NULL when there was no request to discover IPv6 addresses (in otMeshDiagDiscoverConfig) or if the

router did not provide the list.

Definition at line 129 of file include/openthread/mesh_diag.h

mChildIterator

otMeshDiagChildIterator* otMeshDiagRouterInfo::mChildIterator

A pointer to an iterator to go through the list of children of the router.

The pointer is valid only while otMeshDiagRouterInfo is valid. It can be used in otMeshDiagGetNextChildInfo to iterate through

the children of the router.

The pointer can be NULL when there was no request to discover children (in otMeshDiagDiscoverConfig) or if the router did

not provide the list.

Definition at line 141 of file include/openthread/mesh_diag.h

otMeshDiagChildInfo

793/962

otMeshDiagChildInfo

Represents information about a discovered child in Thread mesh using otMeshDiagDiscoverTopo logy() .

Public Attributes

uint16_t mRloc16
RLOC16.

otLinkModeConfig mMode
Device mode .

uint8_t mLinkQuality
Incoming link quality to child from parent.

bool mIsThisDevice
Whether child is this device itself.

bool mIsBorderRouter
Whether child acts as a border router providing ext connectivity.

Public Attribute Documentation

mRloc16

uint16_t otMeshDiagChildInfo::mRloc16

RLOC16.

Definition at line 150 of file include/openthread/mesh_diag.h

mMode

otLinkModeConfig otMeshDiagChildInfo::mMode

Device mode.

Definition at line 151 of file include/openthread/mesh_diag.h

mLinkQuality

uint8_t otMeshDiagChildInfo::mLinkQuality

Incoming link quality to child from parent.

Definition at line 152 of file include/openthread/mesh_diag.h

mIsThisDevice

otMeshDiagChildInfo

794/962

bool otMeshDiagChildInfo::mIsThisDevice

Whether child is this device itself.

Definition at line 153 of file include/openthread/mesh_diag.h

mIsBorderRouter

bool otMeshDiagChildInfo::mIsBorderRouter

Whether child acts as a border router providing ext connectivity.

Definition at line 154 of file include/openthread/mesh_diag.h

otMeshDiagChildEntry

795/962

otMeshDiagChildEntry

Represents information about a child entry from otMeshDiagQueryChildTable() .

mSupportsErrRate indicates whether or not the error tracking feature is supported and mFrameErrorRate and

mMessageErrorRate values are valid. The frame error rate tracks frame tx errors (towards the child) at MAC layer, while

mMessageErrorRate tracks the IPv6 message error rate (above MAC layer and after MAC retries) when an IPv6 message is

dropped. For example, if the message is large and requires 6LoWPAN fragmentation, message tx is considered as failed if

one of its fragment frame tx fails (for example, never acked).

Public Attributes

bool mRxOnWhenIdle
Is rx-on when idle (vs sleepy).

bool mDeviceTypeFtd
Is device FTD (vs MTD).

bool mFullNetData
Whether device gets full Network Data (vs stable sub-set).

bool mCslSynchronized
Is CSL capable and CSL synchronized.

bool mSupportsErrRate
mFrameErrorRate and mMessageErrorRate values are valid.

uint16_t mRloc16
RLOC16.

otExtAddress mExtAddress
Extended Address.

uint16_t mVersion
Version.

uint32_t mTimeout
Timeout in seconds.

uint32_t mAge
Seconds since last heard from the child.

uint32_t mConnectionTime
Seconds since child attach.

uint16_t mSupervisionInterval
Supervision interval in seconds. Zero to indicate not used.

uint8_t mLinkMargin
Link Margin in dB.

int8_t mAverageRssi
Average RSSI.

int8_t mLastRssi
RSSI of last received frame .

otMeshDiagChildEntry

796/962

uint16_t mFrameErrorRate
Frame error rate (0x0000->0%, 0xffff->100%).

uint16_t mMessageErrorRate
(IPv6) msg error rate (0x0000->0%, 0xffff->100%).

uint16_t mQueuedMessageCount
Number of queued messages for indirect tx to child.

uint16_t mCslPeriod
CSL Period in unit of 10-symbo ls-time . Zero indicates CSL is disabled.

uint32_t mCslTimeout
CSL Timeout in seconds.

uint8_t mCslChannel
CSL channel.

Public Attribute Documentation

mRxOnWhenIdle

bool otMeshDiagChildEntry::mRxOnWhenIdle

Is rx-on when idle (vs sleepy).

Definition at line 244 of file include/openthread/mesh_diag.h

mDeviceTypeFtd

bool otMeshDiagChildEntry::mDeviceTypeFtd

Is device FTD (vs MTD).

Definition at line 245 of file include/openthread/mesh_diag.h

mFullNetData

bool otMeshDiagChildEntry::mFullNetData

Whether device gets full Network Data (vs stable sub-set).

Definition at line 246 of file include/openthread/mesh_diag.h

mCslSynchronized

bool otMeshDiagChildEntry::mCslSynchronized

Is CSL capable and CSL synchronized.

Definition at line 247 of file include/openthread/mesh_diag.h

mSupportsErrRate

otMeshDiagChildEntry

797/962

bool otMeshDiagChildEntry::mSupportsErrRate

mFrameErrorRate and mMessageErrorRate values are valid.

Definition at line 248 of file include/openthread/mesh_diag.h

mRloc16

uint16_t otMeshDiagChildEntry::mRloc16

RLOC16.

Definition at line 249 of file include/openthread/mesh_diag.h

mExtAddress

otExtAddress otMeshDiagChildEntry::mExtAddress

Extended Address.

Definition at line 250 of file include/openthread/mesh_diag.h

mVersion

uint16_t otMeshDiagChildEntry::mVersion

Version.

Definition at line 251 of file include/openthread/mesh_diag.h

mTimeout

uint32_t otMeshDiagChildEntry::mTimeout

Timeout in seconds.

Definition at line 252 of file include/openthread/mesh_diag.h

mAge

uint32_t otMeshDiagChildEntry::mAge

Seconds since last heard from the child.

Definition at line 253 of file include/openthread/mesh_diag.h

mConnectionTime

otMeshDiagChildEntry

798/962

uint32_t otMeshDiagChildEntry::mConnectionTime

Seconds since child attach.

Definition at line 254 of file include/openthread/mesh_diag.h

mSupervisionInterval

uint16_t otMeshDiagChildEntry::mSupervisionInterval

Supervision interval in seconds. Zero to indicate not used.

Definition at line 255 of file include/openthread/mesh_diag.h

mLinkMargin

uint8_t otMeshDiagChildEntry::mLinkMargin

Link Margin in dB.

Definition at line 256 of file include/openthread/mesh_diag.h

mAverageRssi

int8_t otMeshDiagChildEntry::mAverageRssi

Average RSSI.

Definition at line 257 of file include/openthread/mesh_diag.h

mLastRssi

int8_t otMeshDiagChildEntry::mLastRssi

RSSI of last received frame.

Definition at line 258 of file include/openthread/mesh_diag.h

mFrameErrorRate

uint16_t otMeshDiagChildEntry::mFrameErrorRate

Frame error rate (0x0000->0%, 0xffff->100%).

Definition at line 259 of file include/openthread/mesh_diag.h

mMessageErrorRate

otMeshDiagChildEntry

799/962

uint16_t otMeshDiagChildEntry::mMessageErrorRate

(IPv6) msg error rate (0x0000->0%, 0xffff->100%).

Definition at line 260 of file include/openthread/mesh_diag.h

mQueuedMessageCount

uint16_t otMeshDiagChildEntry::mQueuedMessageCount

Number of queued messages for indirect tx to child.

Definition at line 261 of file include/openthread/mesh_diag.h

mCslPeriod

uint16_t otMeshDiagChildEntry::mCslPeriod

CSL Period in unit of 10-symbols-time. Zero indicates CSL is disabled.

Definition at line 262 of file include/openthread/mesh_diag.h

mCslTimeout

uint32_t otMeshDiagChildEntry::mCslTimeout

CSL Timeout in seconds.

Definition at line 263 of file include/openthread/mesh_diag.h

mCslChannel

uint8_t otMeshDiagChildEntry::mCslChannel

CSL channel.

Definition at line 264 of file include/openthread/mesh_diag.h

otMeshDiagRouterNeighborEntry

800/962

otMeshDiagRouterNeighborEntry

Represents information about a router neighbor entry from otMeshDiagQueryRouterNeighborTable() .

mSupportsErrRate indicates whether or not the error tracking feature is supported and mFrameErrorRate and

mMessageErrorRate values are valid. The frame error rate tracks frame tx errors (towards the child) at MAC layer, while

mMessageErrorRate tracks the IPv6 message error rate (above MAC layer and after MAC retries) when an IPv6 message is

dropped. For example, if the message is large and requires 6LoWPAN fragmentation, message tx is considered as failed if

one of its fragment frame tx fails (for example, never acked).

Public Attributes

bool mSupportsErrRate
mFrameErrorRate and mMessageErrorRate values are valid.

uint16_t mRloc16
RLOC16.

otExtAddress mExtAddress
Extended Address.

uint16_t mVersion
Version.

uint32_t mConnectionTime
Seconds since link establishment.

uint8_t mLinkMargin
Link Margin in dB.

int8_t mAverageRssi
Average RSSI.

int8_t mLastRssi
RSSI of last received frame .

uint16_t mFrameErrorRate
Frame error rate (0x0000->0%, 0xffff->100%).

uint16_t mMessageErrorRate
(IPv6) msg error rate (0x0000->0%, 0xffff->100%).

Public Attribute Documentation

mSupportsErrRate

bool otMeshDiagRouterNeighborEntry::mSupportsErrRate

mFrameErrorRate and mMessageErrorRate values are valid.

Definition at line 357 of file include/openthread/mesh_diag.h

mRloc16

otMeshDiagRouterNeighborEntry

801/962

uint16_t otMeshDiagRouterNeighborEntry::mRloc16

RLOC16.

Definition at line 358 of file include/openthread/mesh_diag.h

mExtAddress

otExtAddress otMeshDiagRouterNeighborEntry::mExtAddress

Extended Address.

Definition at line 359 of file include/openthread/mesh_diag.h

mVersion

uint16_t otMeshDiagRouterNeighborEntry::mVersion

Version.

Definition at line 360 of file include/openthread/mesh_diag.h

mConnectionTime

uint32_t otMeshDiagRouterNeighborEntry::mConnectionTime

Seconds since link establishment.

Definition at line 361 of file include/openthread/mesh_diag.h

mLinkMargin

uint8_t otMeshDiagRouterNeighborEntry::mLinkMargin

Link Margin in dB.

Definition at line 362 of file include/openthread/mesh_diag.h

mAverageRssi

int8_t otMeshDiagRouterNeighborEntry::mAverageRssi

Average RSSI.

Definition at line 363 of file include/openthread/mesh_diag.h

mLastRssi

otMeshDiagRouterNeighborEntry

802/962

int8_t otMeshDiagRouterNeighborEntry::mLastRssi

RSSI of last received frame.

Definition at line 364 of file include/openthread/mesh_diag.h

mFrameErrorRate

uint16_t otMeshDiagRouterNeighborEntry::mFrameErrorRate

Frame error rate (0x0000->0%, 0xffff->100%).

Definition at line 365 of file include/openthread/mesh_diag.h

mMessageErrorRate

uint16_t otMeshDiagRouterNeighborEntry::mMessageErrorRate

(IPv6) msg error rate (0x0000->0%, 0xffff->100%).

Definition at line 366 of file include/openthread/mesh_diag.h

Network Co-Processor

803/962

Network Co-Processor

Network Co-Processor
This module includes functions that control the Thread stack's execution.

Typedefs

typedef int(* otNcpHdlcSendCallback)(const uint8_t *aBuf, uint16_t aBufLength)
Po inter is called to send HDLC encoded NCP data.

typedef bool(* otNcpDelegateAllowPeekPoke)(uint32_t aAddress, uint16_t aCount)
Defines delegate (function po inter) type to contro l behavior of peek/poke operation.

Functions

void otNcpHdlcSendDone(void)
Is called after NCP send finished.

void otNcpHdlcReceive(const uint8_t *aBuf, uint16_t aBufLength)
Is called after HDLC encoded NCP data received.

void otNcpHdlcInit(otInstance *aInstance, otNcpHdlcSendCallback aSendCallback)
Initialize the NCP based on HDLC framing.

void otNcpSpiInit(otInstance *aInstance)
Initialize the NCP based on SPI framing.

otError otNcpStreamWrite(int aStreamId, const uint8_t *aDataPtr, int aDataLen)
Send data to the host via a specific stream.

void otNcpPlatLogv(otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat, va_list aArgs)
Writes OpenThread Log using otNcpStreamWrite .

void otNcpRegisterPeekPokeDelegates(otNcpDelegateAllowPeekPoke aAllowPeekDelegate,
otNcpDelegateAllowPeekPoke aAllowPokeDelegate)
Registers peek/poke delegate functions with NCP module .

Typedef Documentation

otNcpHdlcSendCallback

typedef int(* otNcpHdlcSendCallback) (const uint8_t *aBuf, uint16_t aBufLength))(const uint8_t *aBuf, uint16_t
aBufLength)

Pointer is called to send HDLC encoded NCP data.

Parameters

[in] aBuf A pointer to a buffer with an output.

[in] aBufLength A length of the output data stored in the buffer.

Returns

Network Co-Processor

804/962

Number of bytes processed by the callback.

Definition at line 66 of file include/openthread/ncp.h

otNcpDelegateAllowPeekPoke

typedef bool(* otNcpDelegateAllowPeekPoke) (uint32_t aAddress, uint16_t aCount))(uint32_t aAddress, uint16_t aCount)

Defines delegate (function pointer) type to control behavior of peek/poke operation.

Parameters

[in] aAddress Start address of memory region.

[in] aCount Number of bytes to peek or poke.

This delegate function is called to decide whether to allow peek or poke of a specific memory region. It is used if NCP

support for peek/poke commands is enabled.

Returns

TRUE to allow peek/poke of the given memory region, FALSE otherwise.

Definition at line 149 of file include/openthread/ncp.h

Function Documentation

otNcpHdlcSendDone

void otNcpHdlcSendDone (void)

Is called after NCP send finished.

Parameters

N/A

Definition at line 72 of file include/openthread/ncp.h

otNcpHdlcReceive

void otNcpHdlcReceive (const uint8_t *aBuf, uint16_t aBufLength)

Is called after HDLC encoded NCP data received.

Parameters

[in] aBuf A pointer to a buffer.

[in] aBufLength The length of the data stored in the buffer.

Definition at line 81 of file include/openthread/ncp.h

otNcpHdlcInit

void otNcpHdlcInit (otInstance *aInstance, otNcpHdlcSendCallback aSendCallback)

Network Co-Processor

805/962

Initialize the NCP based on HDLC framing.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aSendCallback The function pointer used to send NCP data.

Definition at line 90 of file include/openthread/ncp.h

otNcpSpiInit

void otNcpSpiInit (otInstance *aInstance)

Initialize the NCP based on SPI framing.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 98 of file include/openthread/ncp.h

otNcpStreamWrite

otError otNcpStreamWrite (int aStreamId, const uint8_t *aDataPtr, int aDataLen)

Send data to the host via a specific stream.

Parameters

[in] aStreamId A numeric identifier for the stream to write to. If set to '0', will default to the debug stream.

[in] aDataPtr A pointer to the data to send on the stream. If aDataLen is non-zero, this param MUST NOT be NULL.

[in] aDataLen The number of bytes of data from aDataPtr to send.

Attempts to send the given data to the host using the given aStreamId. This is useful for reporting error messages,

implementing debug/diagnostic consoles, and potentially other types of datastreams.

The write either is accepted in its entirety or rejected. Partial writes are not attempted.

Definition at line 122 of file include/openthread/ncp.h

otNcpPlatLogv

void otNcpPlatLogv (otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat, va_list aArgs)

Writes OpenThread Log using otNcpStreamWrite .

Parameters

[in] aLogLevel The log level.

[in] aLogRegion The log region.

[in] aFormat A pointer to the format string.

[in] aArgs va_list matching aFormat.

Definition at line 132 of file include/openthread/ncp.h

Network Co-Processor

806/962

otNcpRegisterPeekPokeDelegates

void otNcpRegisterPeekPokeDelegates (otNcpDelegateAllowPeekPoke aAllowPeekDelegate,
otNcpDelegateAllowPeekPoke aAllowPokeDelegate)

Registers peek/poke delegate functions with NCP module.

Parameters

[in] aAllowPeekDelegate Delegate function pointer for peek operation.

[in] aAllowPokeDelegate Delegate function pointer for poke operation.

The delegate functions are called by NCP module to decide whether to allow peek or poke of a specific memory region. If

the delegate pointer is set to NULL, it allows peek/poke operation for any address.

Definition at line 161 of file include/openthread/ncp.h

Network T ime Synchronization

807/962

Network Time Synchronization

Network Time Synchronization
This module includes functions that control network time synchronization service.

Enumerations

enum otNetworkTimeStatus {

OT_NETWORK_TIME_UNSYNCHRONIZED = �1
OT_NETWORK_TIME_RESYNC_NEEDED = 0
OT_NETWORK_TIME_SYNCHRONIZED = 1

}
Represents OpenThread time synchronization status.

Typedefs

typedef enum
otNetworkTimeSt

atus

otNetworkTimeStatus
Represents OpenThread time synchronization status.

typedef void(* otNetworkTimeSyncCallbackFn)(void *aCallbackContext)
Po inter is called when a network time sync or status change occurs.

Functions

otNetworkTimeSt
atus

otNetworkTimeGet(otInstance *aInstance, uint64_t *aNetworkTime)
Get the Thread network time .

otError otNetworkTimeSetSyncPeriod(otInstance *aInstance, uint16_t aTimeSyncPeriod)
Set the time synchronization period.

uint16_t otNetworkTimeGetSyncPeriod(otInstance *aInstance)
Get the time synchronization period.

otError otNetworkTimeSetXtalThreshold(otInstance *aInstance, uint16_t aXTALThreshold)
Set the time synchronization XTAL accuracy thresho ld for Router-Capable device .

uint16_t otNetworkTimeGetXtalThreshold(otInstance *aInstance)
Get the time synchronization XTAL accuracy thresho ld for Router.

void otNetworkTimeSyncSetCallback(otInstance *aInstance, otNetworkTimeSyncCallbackFn aCallbackFn, void
*aCallbackContext)
Set a callback to be called when a network time sync or status change occurs.

Macros

#define OT_TIME_SYNC_INVALID_SEQ 0
zero is considered as invalid time synchronization sequence .

Network T ime Synchronization

808/962

Enumeration Documentation

otNetworkTimeStatus

otNetworkTimeStatus

Represents OpenThread time synchronization status.

Enumerator

OT_NETWORK_TIME_UNSYNCHRONIZED The device hasn't attached to a network.

OT_NETWORK_TIME_RESYNC_NEEDED The device hasn’t received time sync for more than two periods time.

OT_NETWORK_TIME_SYNCHRONIZED The device network time is synchronized.

Definition at line 59 of file include/openthread/network_time.h

Typedef Documentation

otNetworkTimeStatus

typedef enum otNetworkTimeStatus otNetworkTimeStatus

Represents OpenThread time synchronization status.

Definition at line 64 of file include/openthread/network_time.h

otNetworkTimeSyncCallbackFn

typedef void(* otNetworkTimeSyncCallbackFn) (void *aCallbackContext))(void *aCallbackContext)

Pointer is called when a network time sync or status change occurs.

Definition at line 70 of file include/openthread/network_time.h

Function Documentation

otNetworkTimeGet

otNetworkTimeStatus otNetworkTimeGet (otInstance *aInstance, uint64_t *aNetworkTime)

Get the Thread network time.

Parameters

[in] aInstance The OpenThread instance structure.

[inout] aNetworkTime The Thread network time in microseconds.

Returns

The time synchronization status.

Definition at line 87 of file include/openthread/network_time.h

Network T ime Synchronization

809/962

otNetworkTimeSetSyncPeriod

otError otNetworkTimeSetSyncPeriod (otInstance *aInstance, uint16_t aTimeSyncPeriod)

Set the time synchronization period.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aTimeSyncPeriod The time synchronization period, in seconds.

Can only be called while Thread protocols are disabled.

Definition at line 101 of file include/openthread/network_time.h

otNetworkTimeGetSyncPeriod

uint16_t otNetworkTimeGetSyncPeriod (otInstance *aInstance)

Get the time synchronization period.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The time synchronization period.

Definition at line 111 of file include/openthread/network_time.h

otNetworkTimeSetXtalThreshold

otError otNetworkTimeSetXtalThreshold (otInstance *aInstance, uint16_t aXTALThreshold)

Set the time synchronization XTAL accuracy threshold for Router-Capable device.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aXTALThreshold The XTAL accuracy threshold for Router, in PPM.

Can only be called while Thread protocols are disabled.

Definition at line 125 of file include/openthread/network_time.h

otNetworkTimeGetXtalThreshold

uint16_t otNetworkTimeGetXtalThreshold (otInstance *aInstance)

Get the time synchronization XTAL accuracy threshold for Router.

Parameters

[in] aInstance The OpenThread instance structure.

Network T ime Synchronization

810/962

Returns

The XTAL accuracy threshold for Router, in PPM.

Definition at line 135 of file include/openthread/network_time.h

otNetworkTimeSyncSetCallback

void otNetworkTimeSyncSetCallback (otInstance *aInstance, otNetworkTimeSyncCallbackFn aCallbackFn, void
*aCallbackContext)

Set a callback to be called when a network time sync or status change occurs.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aCallbackFn The callback function to be called

[in] aCallbackContext The context to be passed to the callback function upon invocation

This callback shall be called only when the network time offset jumps by

OPENTHREAD_CONFIG_TIME_SYNC_JUMP_NOTIF_MIN_US or when the status changes.

Definition at line 148 of file include/openthread/network_time.h

Macro Definition Documentation

OT_TIME_SYNC_INVALID_SEQ

#define OT_TIME_SYNC_INVALID_SEQ

Value:

0

zero is considered as invalid time synchronization sequence.

Definition at line 76 of file include/openthread/network_time.h

Radio Statistics

811/962

Radio Statistics

Radio Statistics
This module includes functions for radio statistics.

Modules

otRadioTimeStats

Typedefs

typedef struct
otRadioTimeStats

otRadioTimeStats
Contains the statistics of radio.

Functions

const
otRadioTimeStats

*

otRadioTimeStatsGet(otInstance *aInstance)
Gets the radio statistics.

void otRadioTimeStatsReset(otInstance *aInstance)
Resets the radio statistics.

Typedef Documentation

otRadioTimeStats

typedef struct otRadioTimeStats otRadioTimeStats

Contains the statistics of radio.

Definition at line 67 of file include/openthread/radio_stats.h

Function Documentation

otRadioTimeStatsGet

const otRadioTimeStats * otRadioTimeStatsGet (otInstance *aInstance)

Gets the radio statistics.

Parameters

[in] aInstance A pointer to an OpenThread instance.

The radio statistics include the time when the radio is in TX/RX/S leep state. These times are in units of microseconds. All

times are calculated from the last reset of radio statistics.

Returns

Radio Statistics

812/962

A const pointer to the otRadioTimeStats struct that contains the data.

Definition at line 80 of file include/openthread/radio_stats.h

otRadioTimeStatsReset

void otRadioTimeStatsReset (otInstance *aInstance)

Resets the radio statistics.

Parameters

[in] aInstance A pointer to an OpenThread instance.

All times are reset to 0.

Definition at line 91 of file include/openthread/radio_stats.h

otRadioT imeStats

813/962

otRadioTimeStats

Contains the statistics of radio.

Public Attributes

uint64_t mDisabledTime
The total time that radio is in disabled state , in unit of microseconds.

uint64_t mSleepTime
The total time that radio is in sleep state , in unit of microseconds.

uint64_t mTxTime

uint64_t mRxTime

The total time that radio is do ing transmission, in unit of microseconds.

Public Attribute Documentation

mDisabledTime

uint64_t otRadioTimeStats::mDisabledTime

The total time that radio is in disabled state, in unit of microseconds.

Definition at line 63 of file include/openthread/radio_stats.h

mSleepTime

uint64_t otRadioTimeStats::mSleepTime

The total time that radio is in sleep state, in unit of microseconds.

Definition at line 64 of file include/openthread/radio_stats.h

mTxTime

uint64_t otRadioTimeStats::mTxTime

Definition at line 65 of file include/openthread/radio_stats.h

mRxTime

uint64_t otRadioTimeStats::mRxTime

otRadioT imeStats

814/962

The total time that radio is doing transmission, in unit of microseconds.

Definition at line 66 of file include/openthread/radio_stats.h

Random Number Generator

815/962

Random Number Generator

Random Number Generator

Modules

RNG Cryptographic

RNG Non-cryptographic

RNG Cryptographic

816/962

RNG Cryptographic

RNG Cryptographic
This module includes functions that generates cryptographic random numbers.

Functions

otError otRandomCryptoFillBuffer(uint8_t *aBuffer, uint16_t aSize)
Fills a given buffer with cryptographically secure random bytes.

Function Documentation

otRandomCryptoFillBuffer

otError otRandomCryptoFillBuffer (uint8_t *aBuffer, uint16_t aSize)

Fills a given buffer with cryptographically secure random bytes.

Parameters

[out] aBuffer A pointer to a buffer to fill with the random bytes.

[in] aSize S ize of buffer (number of bytes to fill).

Definition at line 63 of file include/openthread/random_crypto.h

RNG Non-cryptographic

817/962

RNG Non-cryptographic

RNG Non-cryptographic
This module includes functions that generates non cryptographic random numbers.

Functions

uint32_t otRandomNonCryptoGetUint32(void)
Generates and returns a random uint32_t value .

uint8_t otRandomNonCryptoGetUint8(void)
Generates and returns a random byte .

uint16_t otRandomNonCryptoGetUint16(void)
Generates and returns a random uint16_t value .

uint8_t otRandomNonCryptoGetUint8InRange(uint8_t aMin, uint8_t aMax)
Generates and returns a random uint8_t value within a given range [aMin, aMax) .

uint16_t otRandomNonCryptoGetUint16InRange(uint16_t aMin, uint16_t aMax)
Generates and returns a random uint16_t value within a given range [aMin, aMax) .

uint32_t otRandomNonCryptoGetUint32InRange(uint32_t aMin, uint32_t aMax)
Generates and returns a random uint32_t value within a given range [aMin, aMax) .

void otRandomNonCryptoFillBuffer(uint8_t *aBuffer, uint16_t aSize)
Fills a given buffer with random bytes.

uint32_t otRandomNonCryptoAddJitter(uint32_t aValue, uint16_t aJitter)
Adds a random jitter within a given range to a given value .

Function Documentation

otRandomNonCryptoGetUint32

uint32_t otRandomNonCryptoGetUint32 (void)

Generates and returns a random uint32_t value.

Parameters

N/A

Returns

A random uint32_t value.

Definition at line 60 of file include/openthread/random_noncrypto.h

otRandomNonCryptoGetUint8

uint8_t otRandomNonCryptoGetUint8 (void)

RNG Non-cryptographic

818/962

Generates and returns a random byte.

Parameters

N/A

Returns

A random uint8_t value.

Definition at line 68 of file include/openthread/random_noncrypto.h

otRandomNonCryptoGetUint16

uint16_t otRandomNonCryptoGetUint16 (void)

Generates and returns a random uint16_t value.

Parameters

N/A

Returns

A random uint16_t value.

Definition at line 76 of file include/openthread/random_noncrypto.h

otRandomNonCryptoGetUint8InRange

uint8_t otRandomNonCryptoGetUint8InRange (uint8_t aMin, uint8_t aMax)

Generates and returns a random uint8_t value within a given range [aMin, aMax) .

Parameters

[in] aMin A minimum value (this value can be included in returned random result).

[in] aMax A maximum value (this value is excluded from returned random result).

Returns

A random uint8_t value in the given range (i.e., aMin <= random value < aMax).

Definition at line 86 of file include/openthread/random_noncrypto.h

otRandomNonCryptoGetUint16InRange

uint16_t otRandomNonCryptoGetUint16InRange (uint16_t aMin, uint16_t aMax)

Generates and returns a random uint16_t value within a given range [aMin, aMax) .

Parameters

[in] aMin A minimum value (this value can be included in returned random result).

[in] aMax A maximum value (this value is excluded from returned random result).

Note

RNG Non-cryptographic

819/962

The returned random value can include the aMin value but excludes the aMax .

Returns

A random uint16_t value in the given range (i.e., aMin <= random value < aMax).

Definition at line 98 of file include/openthread/random_noncrypto.h

otRandomNonCryptoGetUint32InRange

uint32_t otRandomNonCryptoGetUint32InRange (uint32_t aMin, uint32_t aMax)

Generates and returns a random uint32_t value within a given range [aMin, aMax) .

Parameters

[in] aMin A minimum value (this value can be included in returned random result).

[in] aMax A maximum value (this value is excluded from returned random result).

Note

The returned random value can include the aMin value but excludes the aMax .

Returns

A random uint32_t value in the given range (i.e., aMin <= random value < aMax).

Definition at line 111 of file include/openthread/random_noncrypto.h

otRandomNonCryptoFillBuffer

void otRandomNonCryptoFillBuffer (uint8_t *aBuffer, uint16_t aSize)

Fills a given buffer with random bytes.

Parameters

[out] aBuffer A pointer to a buffer to fill with the random bytes.

[in] aSize S ize of buffer (number of bytes to fill).

Definition at line 120 of file include/openthread/random_noncrypto.h

otRandomNonCryptoAddJitter

uint32_t otRandomNonCryptoAddJitter (uint32_t aValue, uint16_t aJitter)

Adds a random jitter within a given range to a given value.

Parameters

[in] aValue A value to which the random jitter is added.

[in] aJitter Maximum jitter. Random jitter is selected from the range [-aJitter, aJitter] .

Returns

The given value with an added random jitter.

RNG Non-cryptographic

820/962

Definition at line 131 of file include/openthread/random_noncrypto.h

SNTP

821/962

SNTP

SNTP
This module includes functions that control SNTP communication.

Modules

otSntpQuery

Typedefs

typedef struct
otSntpQuery

otSntpQuery
Implements SNTP Query parameters.

typedef void(* otSntpResponseHandler)(void *aContext, uint64_t aTime, otError aResult)
Po inter is called when a SNTP response is received.

Functions

otError otSntpClientQuery(otInstance *aInstance, const otSntpQuery *aQuery, otSntpResponseHandler aHandler,
void *aContext)
Sends a SNTP query.

void otSntpClientSetUnixEra(otInstance *aInstance, uint32_t aUnixEra)
Sets the unix era number.

Macros

#define OT_SNTP_DEFAULT_SERVER_IP "2001�4860�4806�8��"
Defines default SNTP Server address - Google NTP Server.

#define OT_SNTP_DEFAULT_SERVER_PORT 123
Defines default SNTP Server port.

Typedef Documentation

otSntpQuery

typedef struct otSntpQuery otSntpQuery

Implements SNTP Query parameters.

Definition at line 66 of file include/openthread/sntp.h

otSntpResponseHandler

typedef void(* otSntpResponseHandler) (void *aContext, uint64_t aTime, otError aResult))(void *aContext, uint64_t
aTime, otError aResult)

SNTP

822/962

Pointer is called when a SNTP response is received.

Parameters

[in] aContext A pointer to application-specific context.

[in] aTime Specifies the time at the server when the response left for the client, in UNIX time.

[in] aResult A result of the SNTP transaction.

Definition at line 83 of file include/openthread/sntp.h

Function Documentation

otSntpClientQuery

otError otSntpClientQuery (otInstance *aInstance, const otSntpQuery *aQuery, otSntpResponseHandler aHandler, void
*aContext)

Sends a SNTP query.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aQuery A pointer to specify SNTP query parameters.

[in] aHandler A function pointer that shall be called on response reception or time-out.

[in] aContext A pointer to arbitrary context information.

Is available only if feature OPENTHREAD_CONFIG_SNTP_CLIENT_ENABLE is enabled.

Definition at line 96 of file include/openthread/sntp.h

otSntpClientSetUnixEra

void otSntpClientSetUnixEra (otInstance *aInstance, uint32_t aUnixEra)

Sets the unix era number.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aUnixEra Unix era number.

The default value of unix era is set to 0. The subsequent eras start after year 2106.

Definition at line 110 of file include/openthread/sntp.h

Macro Definition Documentation

OT_SNTP_DEFAULT_SERVER_IP

#define OT_SNTP_DEFAULT_SERVER_IP

Value:

"2001�4860�4806�8��"

SNTP

823/962

Defines default SNTP Server address - Google NTP Server.

Definition at line 56 of file include/openthread/sntp.h

OT_SNTP_DEFAULT_SERVER_PORT

#define OT_SNTP_DEFAULT_SERVER_PORT

Value:

123

Defines default SNTP Server port.

Definition at line 57 of file include/openthread/sntp.h

otSntpQuery

824/962

otSntpQuery

Implements SNTP Query parameters.

Public Attributes

const
otMessageInfo *

mMessageInfo
A reference to the message info related with SNTP Server.

Public Attribute Documentation

mMessageInfo

const otMessageInfo* otSntpQuery::mMessageInfo

A reference to the message info related with SNTP Server.

Definition at line 65 of file include/openthread/sntp.h

Platform Abstraction

825/962

Platform Abstraction

Platform Abstraction
This module includes the platform abstraction used by the OpenThread stack.

Modules

Alarm

Crypto - Platform

DNS - Platform

Entropy

Factory Diagnostics - Platform

Logging - Platform

Memory

Message Pool

Miscellaneous

Network S imulator

Radio

Settings

SPI S lave

Time Service

Toolchain

TREL - Platform

Infrastructure Interface

Alarm

826/962

Alarm

Alarm
This module includes the platform abstraction for the alarm service.

Functions

void otPlatAlarmMicroStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt)
Set the alarm to fire at aDt microseconds after aT0 .

void otPlatAlarmMicroStop(otInstance *aInstance)
Stop the alarm.

uint32_t otPlatAlarmMicroGetNow(void)
Get the current time .

void otPlatAlarmMicroFired(otInstance *aInstance)
Signal that the alarm has fired.

void otPlatAlarmMilliStartAt(otInstance *aInstance, uint32_t aT0, uint32_t aDt)
Set the alarm to fire at aDt milliseconds after aT0 .

void otPlatAlarmMilliStop(otInstance *aInstance)
Stop the alarm.

uint32_t otPlatAlarmMilliGetNow(void)
Get the current time .

void otPlatAlarmMilliFired(otInstance *aInstance)
Signal that the alarm has fired.

void otPlatDiagAlarmFired(otInstance *aInstance)
Signal diagnostics module that the alarm has fired.

Function Documentation

otPlatAlarmMicroStartAt

void otPlatAlarmMicroStartAt (otInstance *aInstance, uint32_t aT0, uint32_t aDt)

Set the alarm to fire at aDt microseconds after aT0 .

Parameters

[in] aInstance The OpenThread instance structure.

[in] aT0 The reference time.

[in] aDt The time delay in microseconds from aT0 .

For aT0 , the platform MUST support all values in [0, 2^32-1]. For aDt , the platform MUST support all values in [0, 2^31-1].

Definition at line 64 of file include/openthread/platform/alarm-micro.h

Alarm

827/962

otPlatAlarmMicroStop

void otPlatAlarmMicroStop (otInstance *aInstance)

Stop the alarm.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 72 of file include/openthread/platform/alarm-micro.h

otPlatAlarmMicroGetNow

uint32_t otPlatAlarmMicroGetNow (void)

Get the current time.

Parameters

N/A

The current time MUST represent a free-running timer. When maintaining current time, the time value MUST utilize the

entire range [0, 2^32-1] and MUST NOT wrap before 2^32.

Returns

The current time in microseconds.

Definition at line 83 of file include/openthread/platform/alarm-micro.h

otPlatAlarmMicroFired

void otPlatAlarmMicroFired (otInstance *aInstance)

S ignal that the alarm has fired.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 90 of file include/openthread/platform/alarm-micro.h

otPlatAlarmMilliStartAt

void otPlatAlarmMilliStartAt (otInstance *aInstance, uint32_t aT0, uint32_t aDt)

Set the alarm to fire at aDt milliseconds after aT0 .

Parameters

[in] aInstance The OpenThread instance structure.

[in] aT0 The reference time.

[in] aDt The time delay in milliseconds from aT0 .

For aT0 the platform MUST support all values in [0, 2^32-1]. For aDt , the platform MUST support all values in [0, 2^31-1].

Alarm

828/962

Definition at line 66 of file include/openthread/platform/alarm-milli.h

otPlatAlarmMilliStop

void otPlatAlarmMilliStop (otInstance *aInstance)

Stop the alarm.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 73 of file include/openthread/platform/alarm-milli.h

otPlatAlarmMilliGetNow

uint32_t otPlatAlarmMilliGetNow (void)

Get the current time.

Parameters

N/A

The current time MUST represent a free-running timer. When maintaining current time, the time value MUST utilize the

entire range [0, 2^32-1] and MUST NOT wrap before 2^32.

Returns

The current time in milliseconds.

Definition at line 83 of file include/openthread/platform/alarm-milli.h

otPlatAlarmMilliFired

void otPlatAlarmMilliFired (otInstance *aInstance)

S ignal that the alarm has fired.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 90 of file include/openthread/platform/alarm-milli.h

otPlatDiagAlarmFired

void otPlatDiagAlarmFired (otInstance *aInstance)

S ignal diagnostics module that the alarm has fired.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 97 of file include/openthread/platform/alarm-milli.h

Crypto - Platform

829/962

Crypto - Platform

Crypto - Platform
This module includes the platform abstraction for Crypto.

Modules

otCryptoKey

otCryptoContext

otPlatCryptoSha256Hash

otPlatCryptoEcdsaKeyPair

otPlatCryptoEcdsaPublicKey

otPlatCryptoEcdsaS ignature

Enumerations

enum otCryptoKeyType {

OT_CRYPTO_KEY_TYPE_RAW
OT_CRYPTO_KEY_TYPE_AES
OT_CRYPTO_KEY_TYPE_HMAC
OT_CRYPTO_KEY_TYPE_ECDSA

}
Defines the key types.

enum otCryptoKeyAlgorithm {

OT_CRYPTO_KEY_ALG_VENDOR
OT_CRYPTO_KEY_ALG_AES_ECB
OT_CRYPTO_KEY_ALG_HMAC_SHA_256
OT_CRYPTO_KEY_ALG_ECDSA

}
Defines the key algorithms.

enum �11 {

OT_CRYPTO_KEY_USAGE_NONE = 0
OT_CRYPTO_KEY_USAGE_EXPORT = 1 << 0
OT_CRYPTO_KEY_USAGE_ENCRYPT = 1 << 1
OT_CRYPTO_KEY_USAGE_DECRYPT = 1 << 2
OT_CRYPTO_KEY_USAGE_SIGN_HASH = 1 << 3
OT_CRYPTO_KEY_USAGE_VERIFY_HASH = 1 << 4

}
Defines the key usage flags.

enum otCryptoKeyStorage {

OT_CRYPTO_KEY_STORAGE_VOLATILE
OT_CRYPTO_KEY_STORAGE_PERSISTENT

}
Defines the key storage types.

Crypto - Platform

830/962

typedef uint32_t otCryptoKeyRef
This datatype represents the key reference .

typedef struct
otCryptoKey

otCryptoKey

typedef struct
otCryptoContext

otCryptoContext

typedef struct
otPlatCryptoSha2

56Hash

otPlatCryptoSha256Hash
Represents a SHA-256 hash.

typedef struct
otPlatCryptoEcds

aKeyPair

otPlatCryptoEcdsaKeyPair

typedef struct
otPlatCryptoEcds

aPublicKey

otPlatCryptoEcdsaPublicKey

typedef struct
otPlatCryptoEcds

aSignature

otPlatCryptoEcdsaSignature

Variables

OT_TOOL_PACKE
D_BEGIN struct

otPlatCryptoSha2
56Hash

OT_TOOL_PACKED_END

Functions

void otPlatCryptoInit(void)
Initialize the Crypto module .

otError otPlatCryptoImportKey(otCryptoKeyRef *aKeyRef, otCryptoKeyType aKeyType, otCryptoKeyAlgorithm
aKeyAlgorithm, int aKeyUsage, otCryptoKeyStorage aKeyPersistence, const uint8_t *aKey, size_t aKeyLen)
Import a key into PSA ITS.

otError otPlatCryptoExportKey(otCryptoKeyRef aKeyRef, uint8_t *aBuffer, size_t aBufferLen, size_t *aKeyLen)
Export a key stored in PSA ITS.

otError otPlatCryptoDestroyKey(otCryptoKeyRef aKeyRef)
Destroy a key stored in PSA ITS.

bool otPlatCryptoHasKey(otCryptoKeyRef aKeyRef)
Check if the key ref passed has an associated key in PSA ITS.

otError otPlatCryptoHmacSha256Init(otCryptoContext *aContext)
Initialize the HMAC operation.

otError otPlatCryptoHmacSha256Deinit(otCryptoContext *aContext)
Uninitialize the HMAC operation.

otError otPlatCryptoHmacSha256Start(otCryptoContext *aContext, const otCryptoKey *aKey)
Start HMAC operation.

otError otPlatCryptoHmacSha256Update(otCryptoContext *aContext, const void *aBuf, uint16_t aBufLength)
Update the HMAC operation with new input.

Crypto - Platform

831/962

otError otPlatCryptoHmacSha256Finish(otCryptoContext *aContext, uint8_t *aBuf, size_t aBufLength)
Complete the HMAC operation.

otError otPlatCryptoAesInit(otCryptoContext *aContext)
Initialise the AES operation.

otError otPlatCryptoAesSetKey(otCryptoContext *aContext, const otCryptoKey *aKey)
Set the key for AES operation.

otError otPlatCryptoAesEncrypt(otCryptoContext *aContext, const uint8_t *aInput, uint8_t *aOutput)
Encrypt the given data.

otError otPlatCryptoAesFree(otCryptoContext *aContext)
Free the AES context.

otError otPlatCryptoHkdfInit(otCryptoContext *aContext)
Initialise the HKDF context.

otError otPlatCryptoHkdfExpand(otCryptoContext *aContext, const uint8_t *aInfo, uint16_t aInfoLength, uint8_t
*aOutputKey, uint16_t aOutputKeyLength)
Perform HKDF Expand step.

otError otPlatCryptoHkdfExtract(otCryptoContext *aContext, const uint8_t *aSalt, uint16_t aSaltLength, const
otCryptoKey *aInputKey)
Perform HKDF Extract step.

otError otPlatCryptoHkdfDeinit(otCryptoContext *aContext)
Uninitialize the HKDF context.

otError otPlatCryptoSha256Init(otCryptoContext *aContext)
Initialise the SHA-256 operation.

otError otPlatCryptoSha256Deinit(otCryptoContext *aContext)
Uninitialize the SHA-256 operation.

otError otPlatCryptoSha256Start(otCryptoContext *aContext)
Start SHA-256 operation.

otError otPlatCryptoSha256Update(otCryptoContext *aContext, const void *aBuf, uint16_t aBufLength)
Update SHA-256 operation with new input.

otError otPlatCryptoSha256Finish(otCryptoContext *aContext, uint8_t *aHash, uint16_t aHashSize)
Finish SHA-256 operation.

void otPlatCryptoRandomInit(void)
Initialize cryptographically-secure pseudorandom number generator (CSPRNG).

void otPlatCryptoRandomDeinit(void)
Deinitialize cryptographically-secure pseudorandom number generator (CSPRNG).

otError otPlatCryptoRandomGet(uint8_t *aBuffer, uint16_t aSize)
Fills a given buffer with cryptographically secure random bytes.

otError otPlatCryptoEcdsaGenerateKey(otPlatCryptoEcdsaKeyPair *aKeyPair)
Generate and populate the output buffer with a new ECDSA key-pair.

otError otPlatCryptoEcdsaGetPublicKey(const otPlatCryptoEcdsaKeyPair *aKeyPair, otPlatCryptoEcdsaPublicKey
*aPublicKey)
Get the associated public key from the input context.

otError otPlatCryptoEcdsaSign(const otPlatCryptoEcdsaKeyPair *aKeyPair, const otPlatCryptoSha256Hash *aHash,
otPlatCryptoEcdsaSignature *aSignature)
Calculate the ECDSA signature for a hashed message using the private key from the input context.

Crypto - Platform

832/962

otError otPlatCryptoEcdsaVerify(const otPlatCryptoEcdsaPublicKey *aPublicKey, const otPlatCryptoSha256Hash
*aHash, const otPlatCryptoEcdsaSignature *aSignature)
Use the key from the input context to verify the ECDSA signature of a hashed message .

otError otPlatCryptoEcdsaSignUsingKeyRef(otCryptoKeyRef aKeyRef, const otPlatCryptoSha256Hash *aHash,
otPlatCryptoEcdsaSignature *aSignature)
Calculate the ECDSA signature for a hashed message using the Key reference passed.

otError otPlatCryptoEcdsaExportPublicKey(otCryptoKeyRef aKeyRef, otPlatCryptoEcdsaPublicKey *aPublicKey)
Get the associated public key from the key reference passed.

otError otPlatCryptoEcdsaGenerateAndImportKey(otCryptoKeyRef aKeyRef)
Generate and import a new ECDSA key-pair at reference passed.

otError otPlatCryptoEcdsaVerifyUsingKeyRef(otCryptoKeyRef aKeyRef, const otPlatCryptoSha256Hash *aHash,
const otPlatCryptoEcdsaSignature *aSignature)
Use the keyref to verify the ECDSA signature of a hashed message .

void otPlatCryptoPbkdf2GenerateKey(const uint8_t *aPassword, uint16_t aPasswordLen, const uint8_t *aSalt,
uint16_t aSaltLen, uint32_t aIterationCounter, uint16_t aKeyLen, uint8_t *aKey)
Perform PKCS#5 PBKDF2 using CMAC (AES-CMAC-PRF-128).

Macros

#define OT_CRYPTO_SHA256_HASH_SIZE 32
Length of SHA256 hash (in bytes).

#define OT_CRYPTO_ECDSA_MAX_DER_SIZE 125
Max buffer size (in bytes) for representing the EDCSA key-pair in DER format.

#define OT_CRYPTO_ECDSA_PUBLIC_KEY_SIZE 64
Buffer size (in bytes) for representing the EDCSA public key.

#define OT_CRYPTO_ECDSA_SIGNATURE_SIZE 64
Buffer size (in bytes) for representing the EDCSA signature .

#define OT_CRYPTO_PBDKF2_MAX_SALT_SIZE 30
Max PBKDF2 SALT length: salt prefix (6) + extended panid (8) + network name (16)

Enumeration Documentation

otCryptoKeyType

otCryptoKeyType

Defines the key types.

Enumerator

OT_CRYPTO_KEY_TYPE_RAW Key Type: Raw Data.

OT_CRYPTO_KEY_TYPE_AES Key Type: AES.

OT_CRYPTO_KEY_TYPE_HMAC Key Type: HMAC.

OT_CRYPTO_KEY_TYPE_ECDSA Key Type: ECDSA.

Definition at line 61 of file include/openthread/platform/crypto.h

otCryptoKeyAlgorithm

otCryptoKeyAlgorithm

Crypto - Platform

833/962

Defines the key algorithms.

Enumerator

OT_CRYPTO_KEY_ALG_VENDOR Key Algorithm: Vendor Defined.

OT_CRYPTO_KEY_ALG_AES_ECB Key Algorithm: AES ECB.

OT_CRYPTO_KEY_ALG_HMAC_SHA_256 Key Algorithm: HMAC SHA-256.

OT_CRYPTO_KEY_ALG_ECDSA Key Algorithm: ECDSA.

Definition at line 73 of file include/openthread/platform/crypto.h

�11

�11

Defines the key usage flags.

Enumerator

OT_CRYPTO_KEY_USAGE_NONE Key Usage: Key Usage is empty.

OT_CRYPTO_KEY_USAGE_EXPORT Key Usage: Key can be exported.

OT_CRYPTO_KEY_USAGE_ENCRYPT Key Usage: Encryption (vendor defined).

OT_CRYPTO_KEY_USAGE_DECRYPT Key Usage: AES ECB.

OT_CRYPTO_KEY_USAGE_SIGN_HASH Key Usage: S ign Hash.

OT_CRYPTO_KEY_USAGE_VERIFY_HASH Key Usage: Verify Hash.

Definition at line 85 of file include/openthread/platform/crypto.h

otCryptoKeyStorage

otCryptoKeyStorage

Defines the key storage types.

Enumerator

OT_CRYPTO_KEY_STORAGE_VOLATILE Key Persistence: Key is volatile.

OT_CRYPTO_KEY_STORAGE_PERSISTENT Key Persistence: Key is persistent.

Definition at line 99 of file include/openthread/platform/crypto.h

Typedef Documentation

otCryptoKeyRef

typedef uint32_t otCryptoKeyRef

This datatype represents the key reference.

Definition at line 109 of file include/openthread/platform/crypto.h

otCryptoKey

Crypto - Platform

834/962

typedef struct otCryptoKey otCryptoKey

Definition at line 122 of file include/openthread/platform/crypto.h

otCryptoContext

typedef struct otCryptoContext otCryptoContext

Definition at line 134 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Hash

typedef struct otPlatCryptoSha256Hash otPlatCryptoSha256Hash

Represents a SHA-256 hash.

Definition at line 158 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaKeyPair

typedef struct otPlatCryptoEcdsaKeyPair otPlatCryptoEcdsaKeyPair

Definition at line 178 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaPublicKey

typedef struct otPlatCryptoEcdsaPublicKey otPlatCryptoEcdsaPublicKey

Definition at line 200 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaSignature

typedef struct otPlatCryptoEcdsaSignature otPlatCryptoEcdsaSignature

Definition at line 223 of file include/openthread/platform/crypto.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otPlatCryptoEcdsaSignature OT_TOOL_PACKED_END

Definition at line 152 of file include/openthread/platform/crypto.h

Crypto - Platform

835/962

Function Documentation

otPlatCryptoInit

void otPlatCryptoInit (void)

Initialize the Crypto module.

Parameters

N/A

Definition at line 235 of file include/openthread/platform/crypto.h

otPlatCryptoImportKey

otError otPlatCryptoImportKey (otCryptoKeyRef *aKeyRef, otCryptoKeyType aKeyType, otCryptoKeyAlgorithm
aKeyAlgorithm, int aKeyUsage, otCryptoKeyStorage aKeyPersistence, const uint8_t *aKey, size_t aKeyLen)

Import a key into PSA ITS.

Parameters

[inout] aKeyRef Pointer to the key ref to be used for crypto operations.

[in] aKeyType Key Type encoding for the key.

[in] aKeyAlgorithm Key algorithm encoding for the key.

[in] aKeyUsage Key Usage encoding for the key (combinations of OT_CRYPTO_KEY_USAGE_*).

[in] aKeyPersistence Key Persistence for this key

[in] aKey Actual key to be imported.

[in] aKeyLen Length of the key to be imported.

Note

If OT_CRYPTO_KEY_STORAGE_PERSISTENT is passed for aKeyPersistence then aKeyRef is input and platform should use

the given aKeyRef and MUST not change it.

If OT_CRYPTO_KEY_STORAGE_VOLATILE is passed for aKeyPersistence then aKeyRef is output, the initial value does not

matter and platform API MUST update it to return the new key ref.

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 261 of file include/openthread/platform/crypto.h

otPlatCryptoExportKey

otError otPlatCryptoExportKey (otCryptoKeyRef aKeyRef, uint8_t *aBuffer, size_t aBufferLen, size_t *aKeyLen)

Export a key stored in PSA ITS.

Parameters

[in] aKeyRef The key ref to be used for crypto operations.

[out] aBuffer Pointer to the buffer where key needs to be exported.

[in] aBufferLen Length of the buffer passed to store the exported key.

Crypto - Platform

836/962

[out] aKeyLen Pointer to return the length of the exported key.

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 284 of file include/openthread/platform/crypto.h

otPlatCryptoDestroyKey

otError otPlatCryptoDestroyKey (otCryptoKeyRef aKeyRef)

Destroy a key stored in PSA ITS.

Parameters

[in] aKeyRef The key ref to be destroyed

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 297 of file include/openthread/platform/crypto.h

otPlatCryptoHasKey

bool otPlatCryptoHasKey (otCryptoKeyRef aKeyRef)

Check if the key ref passed has an associated key in PSA ITS.

Parameters

[in] aKeyRef The Key Ref to check.

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 310 of file include/openthread/platform/crypto.h

otPlatCryptoHmacSha256Init

otError otPlatCryptoHmacSha256Init (otCryptoContext *aContext)

Initialize the HMAC operation.

Parameters

[in] aContext Context for HMAC operation.

Note

The platform driver shall point the context to the correct object such as psa_mac_operation_t or mbedtls_md_context_t.

Definition at line 325 of file include/openthread/platform/crypto.h

otPlatCryptoHmacSha256Deinit

Crypto - Platform

837/962

otError otPlatCryptoHmacSha256Deinit (otCryptoContext *aContext)

Uninitialize the HMAC operation.

Parameters

[in] aContext Context for HMAC operation.

Definition at line 337 of file include/openthread/platform/crypto.h

otPlatCryptoHmacSha256Start

otError otPlatCryptoHmacSha256Start (otCryptoContext *aContext, const otCryptoKey *aKey)

Start HMAC operation.

Parameters

[in] aContext Context for HMAC operation.

[in] aKey Key material to be used for HMAC operation.

Definition at line 350 of file include/openthread/platform/crypto.h

otPlatCryptoHmacSha256Update

otError otPlatCryptoHmacSha256Update (otCryptoContext *aContext, const void *aBuf, uint16_t aBufLength)

Update the HMAC operation with new input.

Parameters

[in] aContext Context for HMAC operation.

[in] aBuf A pointer to the input buffer.

[in] aBufLength The length of aBuf in bytes.

Definition at line 364 of file include/openthread/platform/crypto.h

otPlatCryptoHmacSha256Finish

otError otPlatCryptoHmacSha256Finish (otCryptoContext *aContext, uint8_t *aBuf, size_t aBufLength)

Complete the HMAC operation.

Parameters

[in] aContext Context for HMAC operation.

[out] aBuf A pointer to the output buffer.

[in] aBufLength The length of aBuf in bytes.

Definition at line 378 of file include/openthread/platform/crypto.h

otPlatCryptoAesInit

Crypto - Platform

838/962

otError otPlatCryptoAesInit (otCryptoContext *aContext)

Initialise the AES operation.

Parameters

[in] aContext Context for AES operation.

Note

The platform driver shall point the context to the correct object such as psa_key_ id or mbedtls_aes_context_t.

Definition at line 394 of file include/openthread/platform/crypto.h

otPlatCryptoAesSetKey

otError otPlatCryptoAesSetKey (otCryptoContext *aContext, const otCryptoKey *aKey)

Set the key for AES operation.

Parameters

[in] aContext Context for AES operation.

[out] aKey Key to use for AES operation.

Definition at line 407 of file include/openthread/platform/crypto.h

otPlatCryptoAesEncrypt

otError otPlatCryptoAesEncrypt (otCryptoContext *aContext, const uint8_t *aInput, uint8_t *aOutput)

Encrypt the given data.

Parameters

[in] aContext Context for AES operation.

[in] aInput Pointer to the input buffer.

[in] aOutput Pointer to the output buffer.

Definition at line 421 of file include/openthread/platform/crypto.h

otPlatCryptoAesFree

otError otPlatCryptoAesFree (otCryptoContext *aContext)

Free the AES context.

Parameters

[in] aContext Context for AES operation.

Definition at line 433 of file include/openthread/platform/crypto.h

otPlatCryptoHkdfInit

Crypto - Platform

839/962

otError otPlatCryptoHkdfInit (otCryptoContext *aContext)

Initialise the HKDF context.

Parameters

[in] aContext Context for HKDF operation.

Note

The platform driver shall point the context to the correct object such as psa_key_derivation_operation_t or

HmacSha256::Hash

Definition at line 448 of file include/openthread/platform/crypto.h

otPlatCryptoHkdfExpand

otError otPlatCryptoHkdfExpand (otCryptoContext *aContext, const uint8_t *aInfo, uint16_t aInfoLength, uint8_t
*aOutputKey, uint16_t aOutputKeyLength)

Perform HKDF Expand step.

Parameters

[in] aContext Operation context for HKDF operation.

[in] aInfo Pointer to the Info sequence.

[in] aInfoLength Length of the Info sequence.

[out] aOutputKey Pointer to the output Key.

[in] aOutputKeyLength S ize of the output key buffer.

Definition at line 464 of file include/openthread/platform/crypto.h

otPlatCryptoHkdfExtract

otError otPlatCryptoHkdfExtract (otCryptoContext *aContext, const uint8_t *aSalt, uint16_t aSaltLength, const
otCryptoKey *aInputKey)

Perform HKDF Extract step.

Parameters

[in] aContext Operation context for HKDF operation.

[in] aSalt Pointer to the Salt for HKDF.

[in] aSaltLength Length of Salt.

[in] aInputKey Pointer to the input key.

Definition at line 482 of file include/openthread/platform/crypto.h

otPlatCryptoHkdfDeinit

otError otPlatCryptoHkdfDeinit (otCryptoContext *aContext)

Uninitialize the HKDF context.

Crypto - Platform

840/962

Parameters

[in] aContext Context for HKDF operation.

Definition at line 497 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Init

otError otPlatCryptoSha256Init (otCryptoContext *aContext)

Initialise the SHA-256 operation.

Parameters

[in] aContext Context for SHA-256 operation.

Note

The platform driver shall point the context to the correct object such as psa_hash_operation_t or mbedtls_sha256_context.

Definition at line 512 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Deinit

otError otPlatCryptoSha256Deinit (otCryptoContext *aContext)

Uninitialize the SHA-256 operation.

Parameters

[in] aContext Context for SHA-256 operation.

Definition at line 524 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Start

otError otPlatCryptoSha256Start (otCryptoContext *aContext)

Start SHA-256 operation.

Parameters

[in] aContext Context for SHA-256 operation.

Definition at line 536 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Update

otError otPlatCryptoSha256Update (otCryptoContext *aContext, const void *aBuf, uint16_t aBufLength)

Update SHA-256 operation with new input.

Parameters

[in] aContext Context for SHA-256 operation.

[in] aBuf A pointer to the input buffer.

Crypto - Platform

841/962

[in] aBufLength The length of aBuf in bytes.

Definition at line 550 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Finish

otError otPlatCryptoSha256Finish (otCryptoContext *aContext, uint8_t *aHash, uint16_t aHashSize)

Finish SHA-256 operation.

Parameters

[in] aContext Context for SHA-256 operation.

[in] aHash A pointer to the output buffer, where hash needs to be stored.

[in] aHashSize The length of aHash in bytes.

Definition at line 564 of file include/openthread/platform/crypto.h

otPlatCryptoRandomInit

void otPlatCryptoRandomInit (void)

Initialize cryptographically-secure pseudorandom number generator (CSPRNG).

Parameters

N/A

Definition at line 570 of file include/openthread/platform/crypto.h

otPlatCryptoRandomDeinit

void otPlatCryptoRandomDeinit (void)

Deinitialize cryptographically-secure pseudorandom number generator (CSPRNG).

Parameters

N/A

Definition at line 576 of file include/openthread/platform/crypto.h

otPlatCryptoRandomGet

otError otPlatCryptoRandomGet (uint8_t *aBuffer, uint16_t aSize)

Fills a given buffer with cryptographically secure random bytes.

Parameters

[out] aBuffer A pointer to a buffer to fill with the random bytes.

[in] aSize S ize of buffer (number of bytes to fill).

Crypto - Platform

842/962

Definition at line 588 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaGenerateKey

otError otPlatCryptoEcdsaGenerateKey (otPlatCryptoEcdsaKeyPair *aKeyPair)

Generate and populate the output buffer with a new ECDSA key-pair.

Parameters

[out] aKeyPair A pointer to an ECDSA key-pair structure to store the generated key-pair.

Definition at line 601 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaGetPublicKey

otError otPlatCryptoEcdsaGetPublicKey (const otPlatCryptoEcdsaKeyPair *aKeyPair, otPlatCryptoEcdsaPublicKey
*aPublicKey)

Get the associated public key from the input context.

Parameters

[in] aKeyPair A pointer to an ECDSA key-pair structure where the key-pair is stored.

[out] aPublicKey A pointer to an ECDSA public key structure to store the public key.

Definition at line 614 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaSign

otError otPlatCryptoEcdsaSign (const otPlatCryptoEcdsaKeyPair *aKeyPair, const otPlatCryptoSha256Hash *aHash,
otPlatCryptoEcdsaSignature *aSignature)

Calculate the ECDSA signature for a hashed message using the private key from the input context.

Parameters

[in] aKeyPair A pointer to an ECDSA key-pair structure where the key-pair is stored.

[in] aHash A pointer to a SHA-256 hash structure where the hash value for signature calculation is stored.

[out] aSignature A pointer to an ECDSA signature structure to output the calculated signature.

Uses the deterministic digital signature generation procedure from RFC 6979.

Definition at line 632 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaVerify

otError otPlatCryptoEcdsaVerify (const otPlatCryptoEcdsaPublicKey *aPublicKey, const otPlatCryptoSha256Hash *aHash,
const otPlatCryptoEcdsaSignature *aSignature)

Use the key from the input context to verify the ECDSA signature of a hashed message.

Parameters

[in] aPublicKey A pointer to an ECDSA public key structure where the public key for signature verification is stored.

Crypto - Platform

843/962

[in] aHash A pointer to a SHA-256 hash structure where the hash value for signature verification is stored.

[in] aSignature A pointer to an ECDSA signature structure where the signature value to be verified is stored.

Definition at line 652 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaSignUsingKeyRef

otError otPlatCryptoEcdsaSignUsingKeyRef (otCryptoKeyRef aKeyRef, const otPlatCryptoSha256Hash *aHash,
otPlatCryptoEcdsaSignature *aSignature)

Calculate the ECDSA signature for a hashed message using the Key reference passed.

Parameters

[in] aKeyRef Key Reference to the slot where the key-pair is stored.

[in] aHash A pointer to a SHA-256 hash structure where the hash value for signature calculation is stored.

[out] aSignature A pointer to an ECDSA signature structure to output the calculated signature.

Uses the deterministic digital signature generation procedure from RFC 6979.

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 674 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaExportPublicKey

otError otPlatCryptoEcdsaExportPublicKey (otCryptoKeyRef aKeyRef, otPlatCryptoEcdsaPublicKey *aPublicKey)

Get the associated public key from the key reference passed.

Parameters

[in] aKeyRef Key Reference to the slot where the key-pair is stored.

[out] aPublicKey A pointer to an ECDSA public key structure to store the public key.

The public key is stored differently depending on the crypto backend library being used

(OPENTHREAD_CONFIG_CRYPTO_LIB).

This API must make sure to return the public key as a byte sequence representation of an uncompressed curve point (RFC

6605 - sec 4)

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 697 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaGenerateAndImportKey

otError otPlatCryptoEcdsaGenerateAndImportKey (otCryptoKeyRef aKeyRef)

Generate and import a new ECDSA key-pair at reference passed.

Parameters

Crypto - Platform

844/962

[in] aKeyRef Key Reference to the slot where the key-pair is stored.

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 712 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaVerifyUsingKeyRef

otError otPlatCryptoEcdsaVerifyUsingKeyRef (otCryptoKeyRef aKeyRef, const otPlatCryptoSha256Hash *aHash, const
otPlatCryptoEcdsaSignature *aSignature)

Use the keyref to verify the ECDSA signature of a hashed message.

Parameters

[in] aKeyRef Key Reference to the slot where the key-pair is stored.

[in] aHash A pointer to a SHA-256 hash structure where the hash value for signature verification is stored.

[in] aSignature A pointer to an ECDSA signature structure where the signature value to be verified is stored.

Note

This API is only used by OT core when OPENTHREAD_CONFIG_PLATFORM_KEY_REFERENCES_ENABLE is enabled.

Definition at line 731 of file include/openthread/platform/crypto.h

otPlatCryptoPbkdf2GenerateKey

void otPlatCryptoPbkdf2GenerateKey (const uint8_t *aPassword, uint16_t aPasswordLen, const uint8_t *aSalt, uint16_t
aSaltLen, uint32_t aIterationCounter, uint16_t aKeyLen, uint8_t *aKey)

Perform PKCS#5 PBKDF2 using CMAC (AES-CMAC-PRF-128).

Parameters

[in] aPassword Password to use when generating key.

[in] aPasswordLen Length of password.

[in] aSalt Salt to use when generating key.

[in] aSaltLen Length of salt.

[in] aIterationCounter Iteration count.

[in] aKeyLen Length of generated key in bytes.

[out] aKey A pointer to the generated key.

Definition at line 747 of file include/openthread/platform/crypto.h

Macro Definition Documentation

OT_CRYPTO_SHA256_HASH_SIZE

#define OT_CRYPTO_SHA256_HASH_SIZE

Value:

Crypto - Platform

845/962

32

Length of SHA256 hash (in bytes).

Definition at line 140 of file include/openthread/platform/crypto.h

OT_CRYPTO_ECDSA_MAX_DER_SIZE

#define OT_CRYPTO_ECDSA_MAX_DER_SIZE

Value:

125

Max buffer size (in bytes) for representing the EDCSA key-pair in DER format.

Definition at line 164 of file include/openthread/platform/crypto.h

OT_CRYPTO_ECDSA_PUBLIC_KEY_SIZE

#define OT_CRYPTO_ECDSA_PUBLIC_KEY_SIZE

Value:

64

Buffer size (in bytes) for representing the EDCSA public key.

Definition at line 184 of file include/openthread/platform/crypto.h

OT_CRYPTO_ECDSA_SIGNATURE_SIZE

#define OT_CRYPTO_ECDSA_SIGNATURE_SIZE

Value:

64

Buffer size (in bytes) for representing the EDCSA signature.

Definition at line 206 of file include/openthread/platform/crypto.h

OT_CRYPTO_PBDKF2_MAX_SALT_SIZE

#define OT_CRYPTO_PBDKF2_MAX_SALT_SIZE

Value:

30

Max PBKDF2 SALT length: salt prefix (6) + extended panid (8) + network name (16)

Definition at line 229 of file include/openthread/platform/crypto.h

otCryptoKey

846/962

otCryptoKey

Represents the Key Material required for Crypto operations.

Public Attributes

const uint8_t * mKey
Po inter to the buffer containing key. NULL indicates to use mKeyRef .

uint16_t mKeyLength
The key length in bytes (applicable when mKey is not NULL).

uint32_t mKeyRef
The PSA key ref (requires mKey to be NULL).

Public Attribute Documentation

mKey

const uint8_t* otCryptoKey::mKey

Pointer to the buffer containing key. NULL indicates to use mKeyRef .

Definition at line 119 of file include/openthread/platform/crypto.h

mKeyLength

uint16_t otCryptoKey::mKeyLength

The key length in bytes (applicable when mKey is not NULL).

Definition at line 120 of file include/openthread/platform/crypto.h

mKeyRef

uint32_t otCryptoKey::mKeyRef

The PSA key ref (requires mKey to be NULL).

Definition at line 121 of file include/openthread/platform/crypto.h

otCryptoContext

847/962

otCryptoContext

Stores the context object for platform APIs.

Public Attributes

void * mContext
Po inter to the context.

uint16_t mContextSize
The length of the context in bytes.

Public Attribute Documentation

mContext

void* otCryptoContext::mContext

Pointer to the context.

Definition at line 132 of file include/openthread/platform/crypto.h

mContextSize

uint16_t otCryptoContext::mContextSize

The length of the context in bytes.

Definition at line 133 of file include/openthread/platform/crypto.h

otPlatCryptoSha256Hash

848/962

otPlatCryptoSha256Hash

Represents a SHA-256 hash.

Public Attributes

uint8_t m8
Hash bytes.

Public Attribute Documentation

m8

uint8_t otPlatCryptoSha256Hash::m8�OT_CRYPTO_SHA256_HASH_SIZE�

Hash bytes.

Definition at line 151 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaKeyPair

849/962

otPlatCryptoEcdsaKeyPair

Represents an ECDSA key pair (public and private keys).

The key pair is stored using Distinguished Encoding Rules (DER) format (per RFC 5915).

Public Attributes

uint8_t mDerBytes

uint8_t mDerLength

Public Attribute Documentation

mDerBytes

uint8_t otPlatCryptoEcdsaKeyPair::mDerBytes[OT_CRYPTO_ECDSA_MAX_DER_SIZE�

Definition at line 176 of file include/openthread/platform/crypto.h

mDerLength

uint8_t otPlatCryptoEcdsaKeyPair::mDerLength

Definition at line 177 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaPublicKey

850/962

otPlatCryptoEcdsaPublicKey

Represents a ECDSA public key.

The public key is stored as a byte sequence representation of an uncompressed curve point (RFC 6605 - sec 4).

Public Attributes

uint8_t m8

Public Attribute Documentation

m8

uint8_t otPlatCryptoEcdsaPublicKey::m8�OT_CRYPTO_ECDSA_PUBLIC_KEY_SIZE�

Definition at line 197 of file include/openthread/platform/crypto.h

otPlatCryptoEcdsaSignature

851/962

otPlatCryptoEcdsaSignature

Represents an ECDSA signature.

The signature is encoded as the concatenated binary representation of two MPIs r and s which are calculated during

signing (RFC 6605 - section 4).

Public Attributes

uint8_t m8

Public Attribute Documentation

m8

uint8_t otPlatCryptoEcdsaSignature::m8�OT_CRYPTO_ECDSA_SIGNATURE_SIZE�

Definition at line 220 of file include/openthread/platform/crypto.h

DNS - Platform

852/962

DNS - Platform

DNS - Platform
This module includes the platform abstraction for sending recursive DNS query to upstream DNS servers.

Typedefs

typedef struct
otPlatDnsUpstrea

mQuery

otPlatDnsUpstreamQuery
This opaque type represents an upstream DNS query transaction.

Functions

void otPlatDnsStartUpstreamQuery(otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn, const otMessage
*aQuery)
Starts an upstream query transaction.

void otPlatDnsCancelUpstreamQuery(otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn)
Cancels a transaction of upstream query.

void otPlatDnsUpstreamQueryDone(otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn, otMessage
*aResponse)
The platform calls this function to finish DNS query.

Typedef Documentation

otPlatDnsUpstreamQuery

typedef struct otPlatDnsUpstreamQuery otPlatDnsUpstreamQuery

This opaque type represents an upstream DNS query transaction.

Definition at line 60 of file include/openthread/platform/dns.h

Function Documentation

otPlatDnsStartUpstreamQuery

void otPlatDnsStartUpstreamQuery (otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn, const otMessage *aQuery)

Starts an upstream query transaction.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aTxn A pointer to the opaque DNS query transaction object.

[in] aQuery A message buffer of the DNS payload that should be sent to upstream DNS server.

DNS - Platform

853/962

In success case (and errors represented by DNS protocol messages), the platform is expected to call

otPlatDnsUpstreamQueryDone .

The OpenThread core may cancel a (possibly timeout) query transaction by calling otPlatDnsCancelUpstreamQuery , the

platform must not call otPlatDnsUpstreamQueryDone on a cancelled transaction.

Definition at line 76 of file include/openthread/platform/dns.h

otPlatDnsCancelUpstreamQuery

void otPlatDnsCancelUpstreamQuery (otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn)

Cancels a transaction of upstream query.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aTxn A pointer to the opaque DNS query transaction object.

The platform must call otPlatDnsUpstreamQueryDone to release the resources.

Definition at line 87 of file include/openthread/platform/dns.h

otPlatDnsUpstreamQueryDone

void otPlatDnsUpstreamQueryDone (otInstance *aInstance, otPlatDnsUpstreamQuery *aTxn, otMessage *aResponse)

The platform calls this function to finish DNS query.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aTxn A pointer to the opaque DNS query transaction object.

[in] aResponse A message buffer of the DNS response payload or nullptr to close a transaction without a response.

The transaction will be released, so the platform must not call on the same transaction twice. This function passes the

ownership of aResponse to OpenThread stack.

Platform can pass a nullptr to close a transaction without a response.

Definition at line 103 of file include/openthread/platform/dns.h

Entropy

854/962

Entropy

Entropy
This module includes the platform abstraction for entropy generation.

Functions

otError otPlatEntropyGet(uint8_t *aOutput, uint16_t aOutputLength)
Fill buffer with entropy.

Function Documentation

otPlatEntropyGet

otError otPlatEntropyGet (uint8_t *aOutput, uint16_t aOutputLength)

Fill buffer with entropy.

Parameters

[out] aOutput A pointer to where the true random values are placed. Must not be NULL.

[in] aOutputLength S ize of aBuffer .

MUST be implemented using a true random number generator (TRNG).

Definition at line 69 of file include/openthread/platform/entropy.h

Factory Diagnostics - Platform

855/962

Factory Diagnostics - Platform

Factory Diagnostics - Platform
This module includes the platform abstraction for diagnostics features.

Enumerations

enum otGpioMode {

OT_GPIO_MODE_INPUT = 0
OT_GPIO_MODE_OUTPUT = 1

}
Defines the gpio modes.

Functions

otError otPlatDiagProcess(otInstance *aInstance, uint8_t aArgsLength, char *aArgs[], char *aOutput, size_t
aOutputMaxLen)
Processes a factory diagnostics command line .

void otPlatDiagModeSet(bool aMode)
Enables/disables the factory diagnostics mode .

bool otPlatDiagModeGet(void)
Indicates whether or not factory diagnostics mode is enabled.

void otPlatDiagChannelSet(uint8_t aChannel)
Sets the channel to use for factory diagnostics.

void otPlatDiagTxPowerSet(int8_t aTxPower)
Sets the transmit power to use for factory diagnostics.

void otPlatDiagRadioReceived(otInstance *aInstance, otRadioFrame *aFrame, otError aError)
Processes the received radio frame .

void otPlatDiagAlarmCallback(otInstance *aInstance)
Processes the alarm event.

otError otPlatDiagGpioSet(uint32_t aGpio, bool aValue)
Sets the gpio value .

otError otPlatDiagGpioGet(uint32_t aGpio, bool *aValue)
Gets the gpio value .

otError otPlatDiagGpioSetMode(uint32_t aGpio, otGpioMode aMode)
Sets the gpio mode .

otError otPlatDiagGpioGetMode(uint32_t aGpio, otGpioMode *aMode)
Gets the gpio mode .

otError otPlatDiagRadioSetRawPowerSetting(otInstance *aInstance, const uint8_t *aRawPowerSetting, uint16_t
aRawPowerSettingLength)
Set the radio raw power setting for diagnostics module .

Factory Diagnostics - Platform

856/962

otError otPlatDiagRadioGetRawPowerSetting(otInstance *aInstance, uint8_t *aRawPowerSetting, uint16_t
*aRawPowerSettingLength)
Get the radio raw power setting for diagnostics module .

otError otPlatDiagRadioRawPowerSettingEnable(otInstance *aInstance, bool aEnable)
Enable/disable the platform layer to use the raw power setting set by otPlatDiagRadioSetRawPowerSetting() .

otError otPlatDiagRadioTransmitCarrier(otInstance *aInstance, bool aEnable)
Start/stop the platform layer to transmit continuous carrier wave .

otError otPlatDiagRadioTransmitStream(otInstance *aInstance, bool aEnable)
Start/stop the platform layer to transmit stream of characters.

otError otPlatDiagRadioGetPowerSettings(otInstance *aInstance, uint8_t aChannel, int16_t *aTargetPower, int16_t
*aActualPower, uint8_t *aRawPowerSetting, uint16_t *aRawPowerSettingLength)
Get the power settings for the given channel.

Enumeration Documentation

otGpioMode

otGpioMode

Defines the gpio modes.

Enumerator

OT_GPIO_MODE_INPUT Input mode without pull resistor.

OT_GPIO_MODE_OUTPUT Output mode.

Definition at line 63 of file include/openthread/platform/diag.h

Function Documentation

otPlatDiagProcess

otError otPlatDiagProcess (otInstance *aInstance, uint8_t aArgsLength, char *aArgs[], char *aOutput, size_t
aOutputMaxLen)

Processes a factory diagnostics command line.

Parameters

[in] aInstance The OpenThread instance for current request.

[in] aArgsLength The number of arguments in aArgs .

[in] aArgs The arguments of diagnostics command line.

[out] aOutput The diagnostics execution result.

[in] aOutputMaxLen The output buffer size.

The output of this function (the content written to aOutput) MUST terminate with \0 and the \0 is within the output

buffer.

Definition at line 86 of file include/openthread/platform/diag.h

otPlatDiagModeSet

Factory Diagnostics - Platform

857/962

void otPlatDiagModeSet (bool aMode)

Enables/disables the factory diagnostics mode.

Parameters

[in] aMode TRUE to enable diagnostics mode, FALSE otherwise.

Definition at line 98 of file include/openthread/platform/diag.h

otPlatDiagModeGet

bool otPlatDiagModeGet (void)

Indicates whether or not factory diagnostics mode is enabled.

Parameters

N/A

Returns

TRUE if factory diagnostics mode is enabled, FALSE otherwise.

Definition at line 106 of file include/openthread/platform/diag.h

otPlatDiagChannelSet

void otPlatDiagChannelSet (uint8_t aChannel)

Sets the channel to use for factory diagnostics.

Parameters

[in] aChannel The channel value.

Definition at line 114 of file include/openthread/platform/diag.h

otPlatDiagTxPowerSet

void otPlatDiagTxPowerSet (int8_t aTxPower)

Sets the transmit power to use for factory diagnostics.

Parameters

[in] aTxPower The transmit power value.

Definition at line 122 of file include/openthread/platform/diag.h

otPlatDiagRadioReceived

void otPlatDiagRadioReceived (otInstance *aInstance, otRadioFrame *aFrame, otError aError)

Factory Diagnostics - Platform

858/962

Processes the received radio frame.

Parameters

[in] aInstance The OpenThread instance for current request.

[in] aFrame The received radio frame.

[in] aError The received radio frame status.

Definition at line 132 of file include/openthread/platform/diag.h

otPlatDiagAlarmCallback

void otPlatDiagAlarmCallback (otInstance *aInstance)

Processes the alarm event.

Parameters

[in] aInstance The OpenThread instance for current request.

Definition at line 140 of file include/openthread/platform/diag.h

otPlatDiagGpioSet

otError otPlatDiagGpioSet (uint32_t aGpio, bool aValue)

Sets the gpio value.

Parameters

[in] aGpio The gpio number.

[in] aValue true to set the gpio to high level, or false otherwise.

Definition at line 155 of file include/openthread/platform/diag.h

otPlatDiagGpioGet

otError otPlatDiagGpioGet (uint32_t aGpio, bool *aValue)

Gets the gpio value.

Parameters

[in] aGpio The gpio number.

[out] aValue A pointer where to put gpio value.

Definition at line 170 of file include/openthread/platform/diag.h

otPlatDiagGpioSetMode

otError otPlatDiagGpioSetMode (uint32_t aGpio, otGpioMode aMode)

Sets the gpio mode.

Factory Diagnostics - Platform

859/962

Parameters

[in] aGpio The gpio number.

[out] aMode The gpio mode.

Definition at line 185 of file include/openthread/platform/diag.h

otPlatDiagGpioGetMode

otError otPlatDiagGpioGetMode (uint32_t aGpio, otGpioMode *aMode)

Gets the gpio mode.

Parameters

[in] aGpio The gpio number.

[out] aMode A pointer where to put gpio mode.

Definition at line 201 of file include/openthread/platform/diag.h

otPlatDiagRadioSetRawPowerSetting

otError otPlatDiagRadioSetRawPowerSetting (otInstance *aInstance, const uint8_t *aRawPowerSetting, uint16_t
aRawPowerSettingLength)

Set the radio raw power setting for diagnostics module.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aRawPowerSetting A pointer to the raw power setting byte array.

[in] aRawPowerSettingLength The length of the aRawPowerSetting .

Definition at line 215 of file include/openthread/platform/diag.h

otPlatDiagRadioGetRawPowerSetting

otError otPlatDiagRadioGetRawPowerSetting (otInstance *aInstance, uint8_t *aRawPowerSetting, uint16_t
*aRawPowerSettingLength)

Get the radio raw power setting for diagnostics module.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aRawPowerSetting A pointer to the raw power setting byte array.

[inout] aRawPowerSettingLength On input, a pointer to the size of aRawPowerSetting . On output, a pointer to the

length of the raw power setting data.

Definition at line 234 of file include/openthread/platform/diag.h

otPlatDiagRadioRawPowerSettingEnable

Factory Diagnostics - Platform

860/962

otError otPlatDiagRadioRawPowerSettingEnable (otInstance *aInstance, bool aEnable)

Enable/disable the platform layer to use the raw power setting set by otPlatDiagRadioSetRawPowerSetting() .

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnable TRUE to enable or FALSE to disable the raw power setting.

Definition at line 248 of file include/openthread/platform/diag.h

otPlatDiagRadioTransmitCarrier

otError otPlatDiagRadioTransmitCarrier (otInstance *aInstance, bool aEnable)

Start/stop the platform layer to transmit continuous carrier wave.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnable TRUE to enable or FALSE to disable the platform layer to transmit continuous carrier wave.

Definition at line 261 of file include/openthread/platform/diag.h

otPlatDiagRadioTransmitStream

otError otPlatDiagRadioTransmitStream (otInstance *aInstance, bool aEnable)

Start/stop the platform layer to transmit stream of characters.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnable TRUE to enable or FALSE to disable the platform layer to transmit stream.

Definition at line 274 of file include/openthread/platform/diag.h

otPlatDiagRadioGetPowerSettings

otError otPlatDiagRadioGetPowerSettings (otInstance *aInstance, uint8_t aChannel, int16_t *aTargetPower, int16_t
*aActualPower, uint8_t *aRawPowerSetting, uint16_t *aRawPowerSettingLength)

Get the power settings for the given channel.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The radio channel.

[out] aTargetPower The target power in 0.01 dBm.

[out] aActualPower The actual power in 0.01 dBm.

[out] aRawPowerSetting A pointer to the raw power setting byte array.

Factory Diagnostics - Platform

861/962

[inout] aRawPowerSettingLength On input, a pointer to the size of aRawPowerSetting . On output, a pointer to the

length of the raw power setting data.

Definition at line 294 of file include/openthread/platform/diag.h

Logging - Platform

862/962

Logging - Platform

Logging - Platform
This module includes the platform abstraction for the debug log service.

Enumerations

enum otLogRegion {

OT_LOG_REGION_API = 1
OT_LOG_REGION_MLE = 2
OT_LOG_REGION_ARP = 3
OT_LOG_REGION_NET_DATA = 4
OT_LOG_REGION_ICMP = 5
OT_LOG_REGION_IP6 = 6
OT_LOG_REGION_TCP = 7
OT_LOG_REGION_MAC = 8
OT_LOG_REGION_MEM = 9
OT_LOG_REGION_NCP = 10
OT_LOG_REGION_MESH_COP = 11
OT_LOG_REGION_NET_DIAG = 12
OT_LOG_REGION_PLATFORM = 13
OT_LOG_REGION_COAP = 14
OT_LOG_REGION_CLI = 15
OT_LOG_REGION_CORE = 16
OT_LOG_REGION_UTIL = 17
OT_LOG_REGION_BBR = 18
OT_LOG_REGION_MLR = 19
OT_LOG_REGION_DUA = 20
OT_LOG_REGION_BR = 21
OT_LOG_REGION_SRP = 22
OT_LOG_REGION_DNS = 23

}
Represents log regions.

Typedefs

typedef int otLogLevel
Represents the log level.

typedef enum
otLogRegion

otLogRegion
Represents log regions.

Functions

void otPlatLog(otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat,...)
Outputs logs.

void otPlatLogHandleLevelChanged(otLogLevel aLogLevel)
Handles OpenThread log level changes.

Macros

Logging - Platform

863/962

#define OT_LOG_LEVEL_NONE 0
Log level None .

#define OT_LOG_LEVEL_CRIT 1
Log level Critical.

#define OT_LOG_LEVEL_WARN 2
Log level Warning.

#define OT_LOG_LEVEL_NOTE 3
Log level Notice .

#define OT_LOG_LEVEL_INFO 4
Log level Informational.

#define OT_LOG_LEVEL_DEBG 5
Log level Debug.

Enumeration Documentation

otLogRegion

otLogRegion

Represents log regions.

The support for log region is removed and instead each core module can define its own name to appended to the logs.

However, the otLogRegion enumeration is still defined as before to help with platforms which we may be using it in their

otPlatLog() implementation. The OT core will always emit all logs with OT_LOG_REGION_CORE .

Enumerator

OT_LOG_REGION_API OpenThread API.

OT_LOG_REGION_MLE MLE.

OT_LOG_REGION_ARP EID-to-RLOC mapping.

OT_LOG_REGION_NET_DATA Network Data.

OT_LOG_REGION_ICMP ICMPv6.

OT_LOG_REGION_IP6 IPv6.

OT_LOG_REGION_TCP TCP.

OT_LOG_REGION_MAC IEEE 802.15.4 MAC.

OT_LOG_REGION_MEM Memory.

OT_LOG_REGION_NCP NCP.

OT_LOG_REGION_MESH_COP Mesh Commissioning Protocol.

OT_LOG_REGION_NET_DIAG Network Diagnostic.

OT_LOG_REGION_PLATFORM Platform.

OT_LOG_REGION_COAP CoAP.

OT_LOG_REGION_CLI CLI.

OT_LOG_REGION_CORE OpenThread Core.

OT_LOG_REGION_UTIL Utility module.

OT_LOG_REGION_BBR Backbone Router (available since Thread 1.2)

OT_LOG_REGION_MLR Multicast Listener Registration (available since Thread 1.2)

OT_LOG_REGION_DUA Domain Unicast Address (available since Thread 1.2)

Logging - Platform

864/962

OT_LOG_REGION_BR Border Router.

OT_LOG_REGION_SRP Service Registration Protocol (SRP)

OT_LOG_REGION_DNS DNS.

Definition at line 123 of file include/openthread/platform/logging.h

Typedef Documentation

otLogLevel

typedef int otLogLevel

Represents the log level.

Definition at line 113 of file include/openthread/platform/logging.h

otLogRegion

typedef enum otLogRegion otLogRegion

Represents log regions.

The support for log region is removed and instead each core module can define its own name to appended to the logs.

However, the otLogRegion enumeration is still defined as before to help with platforms which we may be using it in their

otPlatLog() implementation. The OT core will always emit all logs with OT_LOG_REGION_CORE .

Definition at line 148 of file include/openthread/platform/logging.h

Function Documentation

otPlatLog

void otPlatLog (otLogLevel aLogLevel, otLogRegion aLogRegion, const char *aFormat,...)

Outputs logs.

Parameters

[in] aLogLevel The log level.

[in] aLogRegion The log region.

[in] aFormat A pointer to the format string.

[in] Arguments for the format specification.

Note that the support for log region is removed. The OT core will always emit all logs with OT_LOG_REGION_CORE as

aLogRegion .

Definition at line 162 of file include/openthread/platform/logging.h

otPlatLogHandleLevelChanged

void otPlatLogHandleLevelChanged (otLogLevel aLogLevel)

Logging - Platform

865/962

Handles OpenThread log level changes.

Parameters

[in] aLogLevel The new OpenThread log level.

This platform function is called whenever the OpenThread log level changes. This platform function is optional since an

empty weak implementation has been provided.

Note

Only applicable when OPENTHREAD_CONFIG_LOG_LEVEL_DYNAMIC_ENABLE=1 .

Definition at line 175 of file include/openthread/platform/logging.h

Macro Definition Documentation

OT_LOG_LEVEL_NONE

#define OT_LOG_LEVEL_NONE

Value:

0

Log level None.

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 62 of file include/openthread/platform/logging.h

OT_LOG_LEVEL_CRIT

#define OT_LOG_LEVEL_CRIT

Value:

1

Log level Critical.

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 71 of file include/openthread/platform/logging.h

OT_LOG_LEVEL_WARN

#define OT_LOG_LEVEL_WARN

Value:

2

Log level Warning.

Logging - Platform

866/962

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 80 of file include/openthread/platform/logging.h

OT_LOG_LEVEL_NOTE

#define OT_LOG_LEVEL_NOTE

Value:

3

Log level Notice.

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 89 of file include/openthread/platform/logging.h

OT_LOG_LEVEL_INFO

#define OT_LOG_LEVEL_INFO

Value:

4

Log level Informational.

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 98 of file include/openthread/platform/logging.h

OT_LOG_LEVEL_DEBG

#define OT_LOG_LEVEL_DEBG

Value:

5

Log level Debug.

Note

Log Levels are defines so that embedded implementations can eliminate code at compile time via #if/#else/#endif.

Definition at line 107 of file include/openthread/platform/logging.h

Memory

867/962

Memory

Memory
This module includes the platform abstraction for dynamic memory allocation.

Functions

void * otPlatCAlloc(size_t aNum, size_t aSize)
Dynamically allocates new memory.

void otPlatFree(void *aPtr)
Frees memory that was dynamically allocated.

Function Documentation

otPlatCAlloc

void * otPlatCAlloc (size_t aNum, size_t aSize)

Dynamically allocates new memory.

Parameters

[in] aNum The number of blocks to allocate

[in] aSize The size of each block to allocate

On platforms that support it, should just redirect to calloc. For those that don't support calloc, should support the same

functionality:

"The calloc() function contiguously allocates enough space for count objects that are size bytes of memory each and

returns a pointer to the allocated memory. The allocated memory is filled with bytes of value zero."

Is required for OPENTHREAD_CONFIG_HEAP_EXTERNAL_ENABLE.

Definition at line 74 of file include/openthread/platform/memory.h

otPlatFree

void otPlatFree (void *aPtr)

Frees memory that was dynamically allocated.

Parameters

[in] aPtr A pointer the memory blocks to free. The pointer may be NULL.

Is required for OPENTHREAD_CONFIG_HEAP_EXTERNAL_ENABLE.

Definition at line 83 of file include/openthread/platform/memory.h

Message Pool

868/962

Message Pool

Message Pool
This module includes the platform abstraction for the message pool.

Modules

otMessageBuffer

Typedefs

typedef struct
otMessageBuffer

otMessageBuffer
Represents an OpenThread message buffer.

Functions

void otPlatMessagePoolInit(otInstance *aInstance, uint16_t aMinNumFreeBuffers, size_t aBufferSize)
Initialize the platform implemented message poo l.

otMessageBuffer
*

otPlatMessagePoolNew(otInstance *aInstance)
Allocate a buffer from the platform managed buffer poo l.

void otPlatMessagePoolFree(otInstance *aInstance, otMessageBuffer *aBuffer)
Is used to free a buffer back to the platform managed buffer poo l.

uint16_t otPlatMessagePoolNumFreeBuffers(otInstance *aInstance)
Get the number of free buffers.

Typedef Documentation

otMessageBuffer

typedef struct otMessageBuffer otMessageBuffer

Represents an OpenThread message buffer.

Definition at line 63 of file include/openthread/platform/messagepool.h

Function Documentation

otPlatMessagePoolInit

void otPlatMessagePoolInit (otInstance *aInstance, uint16_t aMinNumFreeBuffers, size_t aBufferSize)

Initialize the platform implemented message pool.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Message Pool

869/962

[in] aMinNumFreeBuffers An uint16 containing the minimum number of free buffers desired by OpenThread.

[in] aBufferSize The size in bytes of a buffer object.

Is used when OPENTHREAD_CONFIG_PLATFORM_MESSAGE_MANAGEMENT is enabled.

Definition at line 75 of file include/openthread/platform/messagepool.h

otPlatMessagePoolNew

otMessageBuffer * otPlatMessagePoolNew (otInstance *aInstance)

Allocate a buffer from the platform managed buffer pool.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Is used when OPENTHREAD_CONFIG_PLATFORM_MESSAGE_MANAGEMENT is enabled.

The returned buffer instance MUST have at least aBufferSize bytes (as specified in otPlatMessagePoo lInit()).

Returns

A pointer to the buffer or NULL if no buffers are available.

Definition at line 89 of file include/openthread/platform/messagepool.h

otPlatMessagePoolFree

void otPlatMessagePoolFree (otInstance *aInstance, otMessageBuffer *aBuffer)

Is used to free a buffer back to the platform managed buffer pool.

Parameters

[in] aInstance A pointer to the OpenThread instance.

[in] aBuffer The buffer to free.

Is used when OPENTHREAD_CONFIG_PLATFORM_MESSAGE_MANAGEMENT is enabled.

Definition at line 100 of file include/openthread/platform/messagepool.h

otPlatMessagePoolNumFreeBuffers

uint16_t otPlatMessagePoolNumFreeBuffers (otInstance *aInstance)

Get the number of free buffers.

Parameters

[in] aInstance A pointer to the OpenThread instance.

Is used when OPENTHREAD_CONFIG_PLATFORM_MESSAGE_MANAGEMENT is enabled.

Returns

The number of buffers currently free and available to OpenThread.

Message Pool

870/962

Definition at line 112 of file include/openthread/platform/messagepool.h

otMessageBuffer

871/962

otMessageBuffer

Represents an OpenThread message buffer.

Public Attributes

struct
otMessageBuffer

*

mNext
Po inter to the next buffer.

Public Attribute Documentation

mNext

struct otMessageBuffer* otMessageBuffer::mNext

Pointer to the next buffer.

Definition at line 62 of file include/openthread/platform/messagepool.h

Miscellaneous

872/962

Miscellaneous

Miscellaneous
This module includes platform abstractions for miscellaneous behaviors.

Enumerations

enum otPlatResetReason {

OT_PLAT_RESET_REASON_POWER_ON = 0
OT_PLAT_RESET_REASON_EXTERNAL = 1
OT_PLAT_RESET_REASON_SOFTWARE = 2
OT_PLAT_RESET_REASON_FAULT = 3
OT_PLAT_RESET_REASON_CRASH = 4
OT_PLAT_RESET_REASON_ASSERT = 5
OT_PLAT_RESET_REASON_OTHER = 6
OT_PLAT_RESET_REASON_UNKNOWN = 7
OT_PLAT_RESET_REASON_WATCHDOG = 8
OT_PLAT_RESET_REASON_COUNT

}
Enumeration of possible reset reason codes.

enum otPlatMcuPowerState {

OT_PLAT_MCU_POWER_STATE_ON = 0
OT_PLAT_MCU_POWER_STATE_LOW_POWER = 1
OT_PLAT_MCU_POWER_STATE_OFF = 2

}
Enumeration of micro-contro ller's power states.

Functions

void otPlatReset(otInstance *aInstance)
Performs a software reset on the platform, if supported.

otError otPlatResetToBootloader(otInstance *aInstance)
Performs a hardware reset on the platform to launch bootloader mode , if supported.

otPlatResetReaso
n

otPlatGetResetReason(otInstance *aInstance)
Returns the reason for the last platform reset.

void otPlatAssertFail(const char *aFilename, int aLineNumber)
Provides a platform specific implementation for assert.

void otPlatWakeHost(void)
Performs a platform specific operation to wake the host MCU.

otError otPlatSetMcuPowerState(otInstance *aInstance, otPlatMcuPowerState aState)
Sets the desired MCU power state .

otPlatMcuPowerS
tate

otPlatGetMcuPowerState(otInstance *aInstance)
Gets the current desired MCU power state .

Miscellaneous

873/962

Enumeration Documentation

otPlatResetReason

otPlatResetReason

Enumeration of possible reset reason codes.

These are in the same order as the Spinel reset reason codes.

Enumerator

OT_PLAT_RESET_REASON_POWER_ON

OT_PLAT_RESET_REASON_EXTERNAL

OT_PLAT_RESET_REASON_SOFTWARE

OT_PLAT_RESET_REASON_FAULT

OT_PLAT_RESET_REASON_CRASH

OT_PLAT_RESET_REASON_ASSERT

OT_PLAT_RESET_REASON_OTHER

OT_PLAT_RESET_REASON_UNKNOWN

OT_PLAT_RESET_REASON_WATCHDOG

OT_PLAT_RESET_REASON_COUNT

Definition at line 84 of file include/openthread/platform/misc.h

otPlatMcuPowerState

otPlatMcuPowerState

Enumeration of micro-controller's power states.

These values are used for NCP configuration when OPENTHREAD_CONFIG_NCP_ENABLE_MCU_POWER_STATE_CONTROL is

enabled.

The power state specifies the desired power state of NCP's micro-controller (MCU) when the underlying platform's

operating system enters idle mode (i.e., all active tasks/events are processed and the MCU can potentially enter a energy-

saving power state).

The power state primarily determines how the host should interact with the NCP and whether the host needs an external

trigger (a "poke") to NCP before it can communicate with the NCP or not.

After a reset, the MCU power state MUST be OT_PLAT_POWER_STATE_ON .

Enumerator

OT_PLAT_MCU_POWER_STATE_ON NCP's MCU stays on and active all the time.

OT_PLAT_MCU_POWER_STATE_LOW_POWER NCP's MCU can enter low-power (energy-saving) state.

OT_PLAT_MCU_POWER_STATE_OFF NCP is fully off.

Definition at line 138 of file include/openthread/platform/misc.h

Function Documentation

otPlatReset

void otPlatReset (otInstance *aInstance)

Miscellaneous

874/962

Performs a software reset on the platform, if supported.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 62 of file include/openthread/platform/misc.h

otPlatResetToBootloader

otError otPlatResetToBootloader (otInstance *aInstance)

Performs a hardware reset on the platform to launch bootloader mode, if supported.

Parameters

[in] aInstance The OpenThread instance structure.

Used when OPENTHREAD_CONFIG_PLATFORM_BOOTLOADER_MODE_ENABLE is enabled.

Definition at line 76 of file include/openthread/platform/misc.h

otPlatGetResetReason

otPlatResetReason otPlatGetResetReason (otInstance *aInstance)

Returns the reason for the last platform reset.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 105 of file include/openthread/platform/misc.h

otPlatAssertFail

void otPlatAssertFail (const char *aFilename, int aLineNumber)

Provides a platform specific implementation for assert.

Parameters

[in] aFilename The name of the file where the assert occurred.

[in] aLineNumber The line number in the file where the assert occurred.

Definition at line 114 of file include/openthread/platform/misc.h

otPlatWakeHost

void otPlatWakeHost (void)

Performs a platform specific operation to wake the host MCU.

Parameters

Miscellaneous

875/962

N/A

This is used only for NCP configurations.

Definition at line 121 of file include/openthread/platform/misc.h

otPlatSetMcuPowerState

otError otPlatSetMcuPowerState (otInstance *aInstance, otPlatMcuPowerState aState)

Sets the desired MCU power state.

Parameters

[in] aInstance A pointer to OpenThread instance.

[in] aState The new MCU power state.

This is only applicable and used for NCP configuration when OPENTHREAD_CONFIG_NCP_ENABLE_MCU_POWER_STATE_CONTROL

is enabled.

Definition at line 192 of file include/openthread/platform/misc.h

otPlatGetMcuPowerState

otPlatMcuPowerState otPlatGetMcuPowerState (otInstance *aInstance)

Gets the current desired MCU power state.

Parameters

[in] aInstance A pointer to OpenThread instance.

This is only applicable and used for NCP configuration when OPENTHREAD_CONFIG_NCP_ENABLE_MCU_POWER_STATE_CONTROL

is enabled.

After a reset, the power state MUST return OT_PLAT_POWER_STATE_ON . During operation, power state SHOULD only change

through an explicit successful call to otPlatSetMcuPowerState() .

Returns

The current power state.

Definition at line 208 of file include/openthread/platform/misc.h

Network Simulator

876/962

Network Simulator

Network Simulator
This module includes the platform abstraction for OTNS.

Functions

void otPlatOtnsStatus(const char *aStatus)
Exports status information to OTNS.

Function Documentation

otPlatOtnsStatus

void otPlatOtnsStatus (const char *aStatus)

Exports status information to OTNS.

Parameters

[in] aStatus The status string.

The status information is represented by a null-terminated string with format recognizable by OTNS. Each call to

otPlatOtnsStatus can send multiple statuses, separated by ';', e.x. "parid=577fbc37;lrid=5". Each status contains key and

value separated by '='. Status value can be further separated into multiple fields using ',', e.x.

"ping_request=fdde:ad00:beef:0:459e:d7b4:b65e:5480,4,112000".

New statuses should follow these conventions.

Currently, OTNS only supports virtual time simulation.

Definition at line 72 of file include/openthread/platform/otns.h

Radio

877/962

Radio

Radio
This module includes the platform abstraction for radio communication.

Modules

Radio Types

Radio Configuration

Radio Operation

Radio Extension

Radio Types

878/962

Radio Types

Radio Types
This module includes the platform abstraction for a radio frame.

Modules

otExtAddress

otMacKey

otMacKeyMaterial

otRadioIeInfo

otRadioFrame

otRadioCoexMetrics

otLinkMetrics

Enumerations

enum �12 {

OT_RADIO_FRAME_MAX_SIZE = 127
OT_RADIO_FRAME_MIN_SIZE = 3
OT_RADIO_SYMBOLS_PER_OCTET = 2
OT_RADIO_BIT_RATE = 250000
OT_RADIO_BITS_PER_OCTET = 8
OT_RADIO_SYMBOL_RATE = 62500
OT_RADIO_SYMBOL_TIME = 1000000 * 1 / OT_RADIO_SYMBOL_RATE
OT_RADIO_TEN_SYMBOLS_TIME = 10 * OT_RADIO_SYMBOL_TIME
OT_RADIO_LQI_NONE = 0
OT_RADIO_RSSI_INVALID = 127
OT_RADIO_POWER_INVALID = 127

}

enum �13 {

OT_RADIO_CHANNEL_PAGE_0 = 0
OT_RADIO_CHANNEL_PAGE_0_MASK = �1U << OT_RADIO_CHANNEL_PAGE_0�
OT_RADIO_CHANNEL_PAGE_2 = 2
OT_RADIO_CHANNEL_PAGE_2_MASK = �1U << OT_RADIO_CHANNEL_PAGE_2�

}
Defines the channel page .

enum �14 {

OT_RADIO_915MHZ_OQPSK_CHANNEL_MIN = 1
OT_RADIO_915MHZ_OQPSK_CHANNEL_MAX = 10
OT_RADIO_915MHZ_OQPSK_CHANNEL_MASK = 0�3ff << OT_RADIO_915MHZ_OQPSK_CHANNEL_MIN
OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN = 11
OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX = 26
OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MASK = 0xffff << OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN

}
Defines the frequency band channel range .

Radio Types

879/962

enum �15 {

OT_RADIO_CAPS_NONE = 0
OT_RADIO_CAPS_ACK_TIMEOUT = 1 << 0
OT_RADIO_CAPS_ENERGY_SCAN = 1 << 1
OT_RADIO_CAPS_TRANSMIT_RETRIES = 1 << 2
OT_RADIO_CAPS_CSMA_BACKOFF = 1 << 3
OT_RADIO_CAPS_SLEEP_TO_TX = 1 << 4
OT_RADIO_CAPS_TRANSMIT_SEC = 1 << 5
OT_RADIO_CAPS_TRANSMIT_TIMING = 1 << 6
OT_RADIO_CAPS_RECEIVE_TIMING = 1 << 7

}
Defines constants that are used to indicate different radio capabilities.

enum �16 {

OT_IE_HEADER_SIZE = 2
OT_CSL_IE_SIZE = 4
OT_ACK_IE_MAX_SIZE = 16
OT_ENH_PROBING_IE_DATA_MAX_SIZE = 2

}
Defines constants about size of header IE in ACK.

enum otRadioKeyType {

OT_KEY_TYPE_LITERAL_KEY = 0
OT_KEY_TYPE_KEY_REF = 1

}
Defines constants about key types.

enum otRadioState {

OT_RADIO_STATE_DISABLED = 0
OT_RADIO_STATE_SLEEP = 1
OT_RADIO_STATE_RECEIVE = 2
OT_RADIO_STATE_TRANSMIT = 3
OT_RADIO_STATE_INVALID = 255

}
Represents the state of a radio.

Typedefs

typedef uint8_t otRadioCaps
Represents radio capabilities.

typedef uint16_t otPanId
Represents the IEEE 802.15.4 PAN ID.

typedef uint16_t otShortAddress
Represents the IEEE 802.15.4 Short Address.

typedef struct
otExtAddress

otExtAddress
Represents the IEEE 802.15.4 Extended Address.

typedef struct
otMacKey

otMacKey
Represents a MAC Key.

typedef
otCryptoKeyRef

otMacKeyRef
Represents a MAC Key Ref used by PSA.

typedef struct
otMacKeyMaterial

otMacKeyMaterial

Radio Types

880/962

typedef struct
otRadioIeInfo

otRadioIeInfo
Represents the IEEE 802.15.4 Header IE (Information Element) related information of a radio frame .

typedef struct
otRadioFrame

otRadioFrame
Represents an IEEE 802.15.4 radio frame .

typedef enum
otRadioState

otRadioState
Represents the state of a radio.

typedef struct
otRadioCoexMetri

cs

otRadioCoexMetrics
The fo llowing are valid radio state transitions:

typedef struct
otLinkMetrics

otLinkMetrics
Represents what metrics are specified to query.

Variables

OT_TOOL_PACKE
D_BEGIN struct
otExtAddress

OT_TOOL_PACKED_END

Macros

#define OT_PANID_BROADCAST 0xffff
IEEE 802.15.4 Broadcast PAN ID.

#define OT_EXT_ADDRESS_SIZE 8
Size of an IEEE 802.15.4 Extended Address (bytes)

#define CSL_IE_HEADER_BYTES_LO 0�04
Fixed CSL IE header first byte .

#define CSL_IE_HEADER_BYTES_HI 0�0d
Fixed CSL IE header second byte .

#define OT_MAC_KEY_SIZE 16
Size of the MAC Key in bytes.

#define OT_TOOL_PACKED_END undefined
Compiler-specific indication at the end of a byte packed class or struct.

Enumeration Documentation

�12

�12

Enumerator

OT_RADIO_FRAME_MAX_SIZE aMaxPHYPacketS ize (IEEE 802.15.4-2006)

OT_RADIO_FRAME_MIN_SIZE Minimal size of frame FCS + CONTROL.

OT_RADIO_SYMBOLS_PER_OCTET 2.4 GHz IEEE 802.15.4-2006

OT_RADIO_BIT_RATE 2.4 GHz IEEE 802.15.4 (bits per second)

OT_RADIO_BITS_PER_OCTET Number of bits per octet.

OT_RADIO_SYMBOL_RATE The O-QPSK PHY symbol rate when operating in the 780MHz, 915MHz, 2380MHz,

2450MHz.

Radio Types

881/962

OT_RADIO_SYMBOL_TIME Symbol duration time in unit of microseconds.

OT_RADIO_TEN_SYMBOLS_TIME Time for 10 symbols in unit of microseconds.

OT_RADIO_LQI_NONE LQI measurement not supported.

OT_RADIO_RSSI_INVALID Invalid or unknown RSSI value.

OT_RADIO_POWER_INVALID Invalid or unknown power value.

Definition at line 69 of file include/openthread/platform/radio.h

�13

�13

Defines the channel page.

Enumerator

OT_RADIO_CHANNEL_PAGE_0 2.4 GHz IEEE 802.15.4-2006

OT_RADIO_CHANNEL_PAGE_0_MASK 2.4 GHz IEEE 802.15.4-2006

OT_RADIO_CHANNEL_PAGE_2 915 MHz IEEE 802.15.4-2006

OT_RADIO_CHANNEL_PAGE_2_MASK 915 MHz IEEE 802.15.4-2006

Definition at line 94 of file include/openthread/platform/radio.h

�14

�14

Defines the frequency band channel range.

Enumerator

OT_RADIO_915MHZ_OQPSK_CHANNEL_MIN 915 MHz IEEE 802.15.4-2006

OT_RADIO_915MHZ_OQPSK_CHANNEL_MAX 915 MHz IEEE 802.15.4-2006

OT_RADIO_915MHZ_OQPSK_CHANNEL_MASK 915 MHz IEEE 802.15.4-2006

OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MIN 2.4 GHz IEEE 802.15.4-2006

OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MAX 2.4 GHz IEEE 802.15.4-2006

OT_RADIO_2P4GHZ_OQPSK_CHANNEL_MASK 2.4 GHz IEEE 802.15.4-2006

Definition at line 106 of file include/openthread/platform/radio.h

�15

�15

Defines constants that are used to indicate different radio capabilities.

See otRadioCaps .

Enumerator

OT_RADIO_CAPS_NONE Radio supports no capability.

OT_RADIO_CAPS_ACK_TIMEOUT Radio supports AckTime event.

Radio Types

882/962

OT_RADIO_CAPS_ENERGY_SCAN Radio supports Energy Scans.

OT_RADIO_CAPS_TRANSMIT_RETRIES Radio supports tx retry logic with collision avoidance (CSMA).

OT_RADIO_CAPS_CSMA_BACKOFF Radio supports CSMA backoff for frame transmission (but no retry).

OT_RADIO_CAPS_SLEEP_TO_TX Radio supports direct transition from sleep to TX with CSMA.

OT_RADIO_CAPS_TRANSMIT_SEC Radio supports tx security.

OT_RADIO_CAPS_TRANSMIT_TIMING Radio supports tx at specific time.

OT_RADIO_CAPS_RECEIVE_TIMING Radio supports rx at specific time.

Definition at line 128 of file include/openthread/platform/radio.h

�16

�16

Defines constants about size of header IE in ACK.

Enumerator

OT_IE_HEADER_SIZE S ize of IE header in bytes.

OT_CSL_IE_SIZE S ize of CSL IE content in bytes.

OT_ACK_IE_MAX_SIZE Max length for header IE in ACK.

OT_ENH_PROBING_IE_DATA_MAX_SIZE Max length of Link Metrics data in Vendor-Specific IE.

Definition at line 161 of file include/openthread/platform/radio.h

otRadioKeyType

otRadioKeyType

Defines constants about key types.

Enumerator

OT_KEY_TYPE_LITERAL_KEY Use Literal Keys.

OT_KEY_TYPE_KEY_REF Use Reference to Key.

Definition at line 235 of file include/openthread/platform/radio.h

otRadioState

otRadioState

Represents the state of a radio.

Initially, a radio is in the Disabled state.

Enumerator

OT_RADIO_STATE_DISABLED

OT_RADIO_STATE_SLEEP

OT_RADIO_STATE_RECEIVE

OT_RADIO_STATE_TRANSMIT

OT_RADIO_STATE_INVALID

Radio Types

883/962

Definition at line 389 of file include/openthread/platform/radio.h

Typedef Documentation

otRadioCaps

typedef uint8_t otRadioCaps

Represents radio capabilities.

The value is a bit-field indicating the capabilities supported by the radio. See OT_RADIO_CAPS_* definitions.

Definition at line 122 of file include/openthread/platform/radio.h

otPanId

typedef uint16_t otPanId

Represents the IEEE 802.15.4 PAN ID.

Definition at line 147 of file include/openthread/platform/radio.h

otShortAddress

typedef uint16_t otShortAddress

Represents the IEEE 802.15.4 Short Address.

Definition at line 153 of file include/openthread/platform/radio.h

otExtAddress

typedef struct otExtAddress otExtAddress

Represents the IEEE 802.15.4 Extended Address.

Definition at line 188 of file include/openthread/platform/radio.h

otMacKey

typedef struct otMacKey otMacKey

Represents a MAC Key.

Definition at line 208 of file include/openthread/platform/radio.h

otMacKeyRef

typedef otCryptoKeyRef otMacKeyRef

Radio Types

884/962

Represents a MAC Key Ref used by PSA.

Definition at line 214 of file include/openthread/platform/radio.h

otMacKeyMaterial

typedef struct otMacKeyMaterial otMacKeyMaterial

Definition at line 229 of file include/openthread/platform/radio.h

otRadioIeInfo

typedef struct otRadioIeInfo otRadioIeInfo

Represents the IEEE 802.15.4 Header IE (Information Element) related information of a radio frame.

Definition at line 249 of file include/openthread/platform/radio.h

otRadioFrame

typedef struct otRadioFrame otRadioFrame

Represents an IEEE 802.15.4 radio frame.

Definition at line 383 of file include/openthread/platform/radio.h

otRadioState

typedef enum otRadioState otRadioState

Represents the state of a radio.

Initially, a radio is in the Disabled state.

Definition at line 396 of file include/openthread/platform/radio.h

otRadioCoexMetrics

typedef struct otRadioCoexMetrics otRadioCoexMetrics

The following are valid radio state transitions:

(Radio ON)

+-------—+ Enable() +----—+ Receive() +------—+ Transmit() +-------—+ | |--------—>| |--------—>| |-----------—>| | |

Disabled | | S leep | | Receive | | Transmit | | |<--------—| |<--------—| |<-----------—| | +-------—+ Disable() +----—+

S leep() +------—+ Receive() +-------—+ (Radio OFF) or signal TransmitDone

Radio Types

885/962

During the IEEE 802.15.4 data request command the transition S leep->Receive->Transmit can be shortened to direct

transition from S leep to Transmit if the platform supports the OT_RADIO_CAPS_SLEEP_TO_TX capability. Represents radio

coexistence metrics.

Definition at line 439 of file include/openthread/platform/radio.h

otLinkMetrics

typedef struct otLinkMetrics otLinkMetrics

Represents what metrics are specified to query.

Definition at line 452 of file include/openthread/platform/radio.h

Variable Documentation

OT_TOOL_PACKED_END

OT_TOOL_PACKED_BEGIN struct otMacKey OT_TOOL_PACKED_END

Definition at line 182 of file include/openthread/platform/radio.h

Macro Definition Documentation

OT_PANID_BROADCAST

#define OT_PANID_BROADCAST

Value:

0xffff

IEEE 802.15.4 Broadcast PAN ID.

Definition at line 141 of file include/openthread/platform/radio.h

OT_EXT_ADDRESS_SIZE

#define OT_EXT_ADDRESS_SIZE

Value:

8

S ize of an IEEE 802.15.4 Extended Address (bytes)

Definition at line 155 of file include/openthread/platform/radio.h

CSL_IE_HEADER_BYTES_LO

Radio Types

886/962

#define CSL_IE_HEADER_BYTES_LO

Value:

0x04

Fixed CSL IE header first byte.

Definition at line 169 of file include/openthread/platform/radio.h

CSL_IE_HEADER_BYTES_HI

#define CSL_IE_HEADER_BYTES_HI

Value:

0�0d

Fixed CSL IE header second byte.

Definition at line 170 of file include/openthread/platform/radio.h

OT_MAC_KEY_SIZE

#define OT_MAC_KEY_SIZE

Value:

16

S ize of the MAC Key in bytes.

Definition at line 190 of file include/openthread/platform/radio.h

OT_TOOL_PACKED_END

#define OT_TOOL_PACKED_END

Compiler-specific indication at the end of a byte packed class or struct.

Definition at line 178 of file include/openthread/platform/toolchain.h

otExtAddress

887/962

otExtAddress

Represents the IEEE 802.15.4 Extended Address.

Public Attributes

uint8_t m8
IEEE 802.15.4 Extended Address bytes.

Public Attribute Documentation

m8

uint8_t otExtAddress::m8�OT_EXT_ADDRESS_SIZE�

IEEE 802.15.4 Extended Address bytes.

Definition at line 181 of file include/openthread/platform/radio.h

otMacKey

888/962

otMacKey

Represents a MAC Key.

Public Attributes

uint8_t m8
MAC Key bytes.

Public Attribute Documentation

m8

uint8_t otMacKey::m8�OT_MAC_KEY_SIZE�

MAC Key bytes.

Definition at line 201 of file include/openthread/platform/radio.h

otMacKeyMaterial

889/962

otMacKeyMaterial

Represents a MAC Key.

Public Attributes

otMacKeyRef mKeyRef
Reference to the key stored.

otMacKey mKey
Key stored as literal.

union
otMacKeyMaterial

���17

mKeyMaterial

Public Attribute Documentation

mKeyRef

otMacKeyRef otMacKeyMaterial::mKeyRef

Reference to the key stored.

Definition at line 226 of file include/openthread/platform/radio.h

mKey

otMacKey otMacKeyMaterial::mKey

Key stored as literal.

Definition at line 227 of file include/openthread/platform/radio.h

mKeyMaterial

union otMacKeyMaterial::@17 otMacKeyMaterial::mKeyMaterial

Definition at line 228 of file include/openthread/platform/radio.h

otRadioIeInfo

890/962

otRadioIeInfo

Represents the IEEE 802.15.4 Header IE (Information Element) related information of a radio frame.

Public Attributes

int64_t mNetworkTimeOffset
The time offset to the Thread network time .

uint8_t mTimeIeOffset
The Time IE offset from the start of PSDU.

uint8_t mTimeSyncSeq
The Time sync sequence .

Public Attribute Documentation

mNetworkTimeOffset

int64_t otRadioIeInfo::mNetworkTimeOffset

The time offset to the Thread network time.

Definition at line 246 of file include/openthread/platform/radio.h

mTimeIeOffset

uint8_t otRadioIeInfo::mTimeIeOffset

The Time IE offset from the start of PSDU.

Definition at line 247 of file include/openthread/platform/radio.h

mTimeSyncSeq

uint8_t otRadioIeInfo::mTimeSyncSeq

The Time sync sequence.

Definition at line 248 of file include/openthread/platform/radio.h

otRadioFrame

891/962

otRadioFrame

Represents an IEEE 802.15.4 radio frame.

Public Attributes

uint8_t * mPsdu
The PSDU.

uint16_t mLength
Length of the PSDU.

uint8_t mChannel
Channel used to transmit/receive the frame .

uint8_t mRadioType
Radio link type - should be ignored by radio driver.

uint8_t mIid
Interface Id for the incoming/outgo ing radio packet.

const
otMacKeyMaterial

*

mAesKey
The key material used for AES-CCM frame security.

otRadioIeInfo * mIeInfo
The po inter to the Header IE(s) related information.

uint32_t mTxDelayBaseTime
The base time in microseconds for scheduled transmissions relative to the local radio clock, see otPlatRadioGetNow

and mTxDelay .

uint32_t mTxDelay
The delay time in microseconds for this transmission referenced to mTxDelayBaseTime .

uint8_t mMaxCsmaBackoffs
Maximum number of backoffs attempts before declaring CCA failure .

uint8_t mMaxFrameRetries
Maximum number of retries allowed after a transmission failure .

uint8_t mRxChannelAfterTxDone
The RX channel after frame TX is done (after all frame retries - ack received, or timeout, or abort).

bool mIsHeaderUpdated
Indicates whether frame counter and CSL IEs are properly updated in the header.

bool mIsARetx
Indicates whether the frame is a retransmission or not.

bool mCsmaCaEnabled
Set to true to enable CSMA-CA for this packet, false otherwise .

bool mCslPresent
Set to true if CSL header IE is present.

otRadioFrame

892/962

bool mIsSecurityProcessed
True if SubMac should skip the AES processing of this frame .

struct
otRadioFrame::@1

8���19

mTxInfo
Structure representing radio frame transmit information.

uint64_t mTimestamp
The time of the local radio clock in microseconds when the end of the SFD was present at the local antenna.

uint32_t mAckFrameCounter
ACK security frame counter (applicable when mAckedWithSecEnhAck is set).

uint8_t mAckKeyId
ACK security key index (applicable when mAckedWithSecEnhAck is set).

int8_t mRssi
Received signal strength indicator in dBm for received frames.

uint8_t mLqi
Link Quality Indicator for received frames.

bool mAckedWithFramePending
This indicates if this frame was acknowledged with frame pending set.

bool mAckedWithSecEnhAck
This indicates if this frame was acknowledged with secured enhance ACK.

struct
otRadioFrame::@1

8���20

mRxInfo
Structure representing radio frame receive information.

union
otRadioFrame::@1

8

mInfo
The union of transmit and receive information for a radio frame .

Public Attribute Documentation

mPsdu

uint8_t* otRadioFrame::mPsdu

The PSDU.

Definition at line 256 of file include/openthread/platform/radio.h

mLength

uint16_t otRadioFrame::mLength

Length of the PSDU.

Definition at line 258 of file include/openthread/platform/radio.h

mChannel

otRadioFrame

893/962

uint8_t otRadioFrame::mChannel

Channel used to transmit/receive the frame.

Definition at line 259 of file include/openthread/platform/radio.h

mRadioType

uint8_t otRadioFrame::mRadioType

Radio link type - should be ignored by radio driver.

Definition at line 261 of file include/openthread/platform/radio.h

mIid

uint8_t otRadioFrame::mIid

Interface Id for the incoming/outgoing radio packet.

This field is used by RCP when OPENTHREAD_CONFIG_MULTIPAN_RCP_ENABLE is enabled. If not enabled, this field

defaults to zero.

Incoming packets are marked with the correct IID to deliver to the appropriate host. RCP determines the IID value based on

the destination PAN ID of the received packet. The IID value of zero indicates the broadcast packet, which will send it to all

the hosts.

For outgoing packets, IID is used to format the transmit done callback for the appropriate host. RCP extracts the IID value

while processing the received spinel frame from the spinel header.

Definition at line 278 of file include/openthread/platform/radio.h

mAesKey

const otMacKeyMaterial* otRadioFrame::mAesKey

The key material used for AES-CCM frame security.

Definition at line 290 of file include/openthread/platform/radio.h

mIeInfo

otRadioIeInfo* otRadioFrame::mIeInfo

The pointer to the Header IE(s) related information.

Definition at line 291 of file include/openthread/platform/radio.h

mTxDelayBaseTime

otRadioFrame

894/962

uint32_t otRadioFrame::mTxDelayBaseTime

The base time in microseconds for scheduled transmissions relative to the local radio clock, see otPlatRadioGetNow and

mTxDelay .

Definition at line 298 of file include/openthread/platform/radio.h

mTxDelay

uint32_t otRadioFrame::mTxDelay

The delay time in microseconds for this transmission referenced to mTxDelayBaseTime .

Note: mTxDelayBaseTime + mTxDelay SHALL point to the point in time when the end of the SFD will be present at the local

antenna, relative to the local radio clock.

Definition at line 308 of file include/openthread/platform/radio.h

mMaxCsmaBackoffs

uint8_t otRadioFrame::mMaxCsmaBackoffs

Maximum number of backoffs attempts before declaring CCA failure.

Definition at line 310 of file include/openthread/platform/radio.h

mMaxFrameRetries

uint8_t otRadioFrame::mMaxFrameRetries

Maximum number of retries allowed after a transmission failure.

Definition at line 311 of file include/openthread/platform/radio.h

mRxChannelAfterTxDone

uint8_t otRadioFrame::mRxChannelAfterTxDone

The RX channel after frame TX is done (after all frame retries - ack received, or timeout, or abort).

Radio platforms can choose to fully ignore this. OT stack will make sure to call otPlatRadioReceive() with the desired RX

channel after a frame TX is done and signaled in otPlatRadioTxDone() callback. Radio platforms that don't provide

OT_RADIO_CAPS_TRANSMIT_RETRIES must always ignore this.

This is intended for situations where there may be delay in interactions between OT stack and radio, as an example this is

used in RCP/host architecture to make sure RCP switches to PAN channel more quickly. In particular, this can help with CSL

tx to a sleepy child, where the child may use a different channel for CSL than the PAN channel. After frame tx, we want the

radio/RCP to go back to the PAN channel quickly to ensure that parent does not miss tx from child afterwards, e.g., child

responding to the earlier CSL transmitted frame from parent using PAN channel while radio still staying on CSL channel.

The switch to the RX channel MUST happen after the frame TX is fully done, i.e., after all retries and when ack is received

(when "Ack Request" flag is set on the TX frame) or ack timeout. Note that ack is expected on the same channel that

otRadioFrame

895/962

frame is sent on.

Definition at line 332 of file include/openthread/platform/radio.h

mIsHeaderUpdated

bool otRadioFrame::mIsHeaderUpdated

Indicates whether frame counter and CSL IEs are properly updated in the header.

If the platform layer does not provide OT_RADIO_CAPS_TRANSMIT_SEC capability, it can ignore this flag.

If the platform provides OT_RADIO_CAPS_TRANSMIT_SEC capability, then platform is expected to handle tx security processing

and assignment of frame counter. In this case the following behavior is expected:

When mIsHeaderUpdated is set, it indicates that OpenThread core has already set the frame counter and CSL IEs (if

security is enabled) in the prepared frame. The counter is ensured to match the counter value from the previous attempts

of the same frame. The platform should not assign or change the frame counter (but may still need to perform security

processing depending on mIsSecurityProcessed flag).

If mIsHeaderUpdated is not set, then the frame counter and key CSL IE not set in the frame by OpenThread core and it is

the responsibility of the radio platform to assign them. The platform must update the frame header (assign counter and CSL

IE values) before sending the frame over the air, however if the the transmission gets aborted and the frame is never sent

over the air (e.g., channel access error) the platform may choose to not update the header. If the platform updates the

header, it must also set this flag before passing the frame back from the otPlatRadioTxDone() callback.

Definition at line 355 of file include/openthread/platform/radio.h

mIsARetx

bool otRadioFrame::mIsARetx

Indicates whether the frame is a retransmission or not.

Definition at line 356 of file include/openthread/platform/radio.h

mCsmaCaEnabled

bool otRadioFrame::mCsmaCaEnabled

Set to true to enable CSMA-CA for this packet, false otherwise.

Definition at line 357 of file include/openthread/platform/radio.h

mCslPresent

bool otRadioFrame::mCslPresent

Set to true if CSL header IE is present.

Definition at line 358 of file include/openthread/platform/radio.h

otRadioFrame

896/962

mIsSecurityProcessed

bool otRadioFrame::mIsSecurityProcessed

True if SubMac should skip the AES processing of this frame.

Definition at line 359 of file include/openthread/platform/radio.h

mTxInfo

struct otRadioFrame::@18���19 otRadioFrame::mTxInfo

Structure representing radio frame transmit information.

Definition at line 360 of file include/openthread/platform/radio.h

mTimestamp

uint64_t otRadioFrame::mTimestamp

The time of the local radio clock in microseconds when the end of the SFD was present at the local antenna.

Definition at line 371 of file include/openthread/platform/radio.h

mAckFrameCounter

uint32_t otRadioFrame::mAckFrameCounter

ACK security frame counter (applicable when mAckedWithSecEnhAck is set).

Definition at line 373 of file include/openthread/platform/radio.h

mAckKeyId

uint8_t otRadioFrame::mAckKeyId

ACK security key index (applicable when mAckedWithSecEnhAck is set).

Definition at line 374 of file include/openthread/platform/radio.h

mRssi

int8_t otRadioFrame::mRssi

Received signal strength indicator in dBm for received frames.

Definition at line 375 of file include/openthread/platform/radio.h

mLqi

otRadioFrame

897/962

uint8_t otRadioFrame::mLqi

Link Quality Indicator for received frames.

Definition at line 376 of file include/openthread/platform/radio.h

mAckedWithFramePending

bool otRadioFrame::mAckedWithFramePending

This indicates if this frame was acknowledged with frame pending set.

Definition at line 379 of file include/openthread/platform/radio.h

mAckedWithSecEnhAck

bool otRadioFrame::mAckedWithSecEnhAck

This indicates if this frame was acknowledged with secured enhance ACK.

Definition at line 380 of file include/openthread/platform/radio.h

mRxInfo

struct otRadioFrame::@18���20 otRadioFrame::mRxInfo

Structure representing radio frame receive information.

Definition at line 381 of file include/openthread/platform/radio.h

mInfo

union otRadioFrame::@18 otRadioFrame::mInfo

The union of transmit and receive information for a radio frame.

Definition at line 382 of file include/openthread/platform/radio.h

otRadioCoexMetrics

898/962

otRadioCoexMetrics

The following are valid radio state transitions:

(Radio ON)

+-------—+ Enable() +----—+ Receive() +------—+ Transmit() +-------—+ | |--------—>| |--------—>| |-----------—>| | |

Disabled | | S leep | | Receive | | Transmit | | |<--------—| |<--------—| |<-----------—| | +-------—+ Disable() +----—+
S leep() +------—+ Receive() +-------—+ (Radio OFF) or signal TransmitDone

During the IEEE 802.15.4 data request command the transition S leep->Receive->Transmit can be shortened to direct

transition from S leep to Transmit if the platform supports the OT_RADIO_CAPS_SLEEP_TO_TX capability. Represents radio

coexistence metrics.

Public Attributes

uint32_t mNumGrantGlitch
Number of grant glitches.

uint32_t mNumTxRequest
Number of tx requests.

uint32_t mNumTxGrantImmediate
Number of tx requests while grant was active .

uint32_t mNumTxGrantWait
Number of tx requests while grant was inactive .

uint32_t mNumTxGrantWaitActivated
Number of tx requests while grant was inactive that were ultimately granted.

uint32_t mNumTxGrantWaitTimeout
Number of tx requests while grant was inactive that timed out.

uint32_t mNumTxGrantDeactivatedDuringRequest
Number of tx that were in progress when grant was deactivated.

uint32_t mNumTxDelayedGrant
Number of tx requests that were not granted within 50us.

uint32_t mAvgTxRequestToGrantTime
Average time in usec from tx request to grant.

uint32_t mNumRxRequest
Number of rx requests.

uint32_t mNumRxGrantImmediate
Number of rx requests while grant was active .

uint32_t mNumRxGrantWait
Number of rx requests while grant was inactive .

uint32_t mNumRxGrantWaitActivated
Number of rx requests while grant was inactive that were ultimately granted.

otRadioCoexMetrics

899/962

uint32_t mNumRxGrantWaitTimeout
Number of rx requests while grant was inactive that timed out.

uint32_t mNumRxGrantDeactivatedDuringRequest
Number of rx that were in progress when grant was deactivated.

uint32_t mNumRxDelayedGrant
Number of rx requests that were not granted within 50us.

uint32_t mAvgRxRequestToGrantTime
Average time in usec from rx request to grant.

uint32_t mNumRxGrantNone
Number of rx requests that completed without receiving grant.

bool mStopped
Stats co llection stopped due to saturation.

Public Attribute Documentation

mNumGrantGlitch

uint32_t otRadioCoexMetrics::mNumGrantGlitch

Number of grant glitches.

Definition at line 420 of file include/openthread/platform/radio.h

mNumTxRequest

uint32_t otRadioCoexMetrics::mNumTxRequest

Number of tx requests.

Definition at line 421 of file include/openthread/platform/radio.h

mNumTxGrantImmediate

uint32_t otRadioCoexMetrics::mNumTxGrantImmediate

Number of tx requests while grant was active.

Definition at line 422 of file include/openthread/platform/radio.h

mNumTxGrantWait

uint32_t otRadioCoexMetrics::mNumTxGrantWait

Number of tx requests while grant was inactive.

Definition at line 423 of file include/openthread/platform/radio.h

mNumTxGrantWaitActivated

otRadioCoexMetrics

900/962

uint32_t otRadioCoexMetrics::mNumTxGrantWaitActivated

Number of tx requests while grant was inactive that were ultimately granted.

Definition at line 424 of file include/openthread/platform/radio.h

mNumTxGrantWaitTimeout

uint32_t otRadioCoexMetrics::mNumTxGrantWaitTimeout

Number of tx requests while grant was inactive that timed out.

Definition at line 425 of file include/openthread/platform/radio.h

mNumTxGrantDeactivatedDuringRequest

uint32_t otRadioCoexMetrics::mNumTxGrantDeactivatedDuringRequest

Number of tx that were in progress when grant was deactivated.

Definition at line 426 of file include/openthread/platform/radio.h

mNumTxDelayedGrant

uint32_t otRadioCoexMetrics::mNumTxDelayedGrant

Number of tx requests that were not granted within 50us.

Definition at line 427 of file include/openthread/platform/radio.h

mAvgTxRequestToGrantTime

uint32_t otRadioCoexMetrics::mAvgTxRequestToGrantTime

Average time in usec from tx request to grant.

Definition at line 428 of file include/openthread/platform/radio.h

mNumRxRequest

uint32_t otRadioCoexMetrics::mNumRxRequest

Number of rx requests.

Definition at line 429 of file include/openthread/platform/radio.h

mNumRxGrantImmediate

otRadioCoexMetrics

901/962

uint32_t otRadioCoexMetrics::mNumRxGrantImmediate

Number of rx requests while grant was active.

Definition at line 430 of file include/openthread/platform/radio.h

mNumRxGrantWait

uint32_t otRadioCoexMetrics::mNumRxGrantWait

Number of rx requests while grant was inactive.

Definition at line 431 of file include/openthread/platform/radio.h

mNumRxGrantWaitActivated

uint32_t otRadioCoexMetrics::mNumRxGrantWaitActivated

Number of rx requests while grant was inactive that were ultimately granted.

Definition at line 432 of file include/openthread/platform/radio.h

mNumRxGrantWaitTimeout

uint32_t otRadioCoexMetrics::mNumRxGrantWaitTimeout

Number of rx requests while grant was inactive that timed out.

Definition at line 433 of file include/openthread/platform/radio.h

mNumRxGrantDeactivatedDuringRequest

uint32_t otRadioCoexMetrics::mNumRxGrantDeactivatedDuringRequest

Number of rx that were in progress when grant was deactivated.

Definition at line 434 of file include/openthread/platform/radio.h

mNumRxDelayedGrant

uint32_t otRadioCoexMetrics::mNumRxDelayedGrant

Number of rx requests that were not granted within 50us.

Definition at line 435 of file include/openthread/platform/radio.h

mAvgRxRequestToGrantTime

otRadioCoexMetrics

902/962

uint32_t otRadioCoexMetrics::mAvgRxRequestToGrantTime

Average time in usec from rx request to grant.

Definition at line 436 of file include/openthread/platform/radio.h

mNumRxGrantNone

uint32_t otRadioCoexMetrics::mNumRxGrantNone

Number of rx requests that completed without receiving grant.

Definition at line 437 of file include/openthread/platform/radio.h

mStopped

bool otRadioCoexMetrics::mStopped

Stats collection stopped due to saturation.

Definition at line 438 of file include/openthread/platform/radio.h

otLinkMetrics

903/962

otLinkMetrics

Represents what metrics are specified to query.

Public Attributes

bool mPduCount
Pdu count.

bool mLqi
Link Quality Indicator.

bool mLinkMargin
Link Margin.

bool mRssi
Received Signal Strength Indicator.

bool mReserved
Reserved, this is for reference device .

Public Attribute Documentation

mPduCount

bool otLinkMetrics::mPduCount

Pdu count.

Definition at line 447 of file include/openthread/platform/radio.h

mLqi

bool otLinkMetrics::mLqi

Link Quality Indicator.

Definition at line 448 of file include/openthread/platform/radio.h

mLinkMargin

bool otLinkMetrics::mLinkMargin

Link Margin.

Definition at line 449 of file include/openthread/platform/radio.h

mRssi

otLinkMetrics

904/962

bool otLinkMetrics::mRssi

Received S ignal Strength Indicator.

Definition at line 450 of file include/openthread/platform/radio.h

mReserved

bool otLinkMetrics::mReserved

Reserved, this is for reference device.

Definition at line 451 of file include/openthread/platform/radio.h

Radio Configuration

905/962

Radio Configuration

Radio Configuration
This module includes the platform abstraction for radio configuration.

Functions

otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
Get the radio capabilities.

const char * otPlatRadioGetVersionString(otInstance *aInstance)
Get the radio version string.

int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
Get the radio receive sensitivity value .

void otPlatRadioGetIeeeEui64(otInstance *aInstance, uint8_t *aIeeeEui64�
Gets the factory-assigned IEEE EUI-64 for this interface .

void otPlatRadioSetPanId(otInstance *aInstance, otPanId aPanId)
Set the PAN ID for address filtering.

void otPlatRadioSetExtendedAddress(otInstance *aInstance, const otExtAddress *aExtAddress)
Set the Extended Address for address filtering.

void otPlatRadioSetShortAddress(otInstance *aInstance, otShortAddress aShortAddress)
Set the Short Address for address filtering.

otError otPlatRadioGetTransmitPower(otInstance *aInstance, int8_t *aPower)
Get the radio 's transmit power in dBm.

otError otPlatRadioSetTransmitPower(otInstance *aInstance, int8_t aPower)
Set the radio 's transmit power in dBm.

otError otPlatRadioGetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t *aThreshold)
Get the radio 's CCA ED thresho ld in dBm measured at antenna connector per IEEE 802.15.4 - 2015 section 10.1.4.

otError otPlatRadioSetCcaEnergyDetectThreshold(otInstance *aInstance, int8_t aThreshold)
Set the radio 's CCA ED thresho ld in dBm measured at antenna connector per IEEE 802.15.4 - 2015 section 10.1.4.

otError otPlatRadioGetFemLnaGain(otInstance *aInstance, int8_t *aGain)
Gets the external FEM's Rx LNA gain in dBm.

otError otPlatRadioSetFemLnaGain(otInstance *aInstance, int8_t aGain)
Sets the external FEM's Rx LNA gain in dBm.

bool otPlatRadioGetPromiscuous(otInstance *aInstance)
Get the status of promiscuous mode .

void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
Enable or disable promiscuous mode .

Radio Configuration

906/962

void otPlatRadioSetMacKey(otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId, const otMacKeyMaterial
*aPrevKey, const otMacKeyMaterial *aCurrKey, const otMacKeyMaterial *aNextKey, otRadioKeyType
aKeyType)
Update MAC keys and key index.

void otPlatRadioSetMacFrameCounter(otInstance *aInstance, uint32_t aMacFrameCounter)
Sets the current MAC frame counter value .

void otPlatRadioSetMacFrameCounterIfLarger(otInstance *aInstance, uint32_t aMacFrameCounter)
Sets the current MAC frame counter value only if the new given value is larger than the current value .

uint64_t otPlatRadioGetNow(otInstance *aInstance)
Get the current time in microseconds referenced to a continuous monotonic local radio clock (64 bits width).

uint32_t otPlatRadioGetBusSpeed(otInstance *aInstance)
Get the bus speed in bits/second between the host and the radio chip.

Function Documentation

otPlatRadioGetCaps

otRadioCaps otPlatRadioGetCaps (otInstance *aInstance)

Get the radio capabilities.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The radio capability bit vector (see OT_RADIO_CAP_* definitions).

Definition at line 477 of file include/openthread/platform/radio.h

otPlatRadioGetVersionString

const char * otPlatRadioGetVersionString (otInstance *aInstance)

Get the radio version string.

Parameters

[in] aInstance The OpenThread instance structure.

This is an optional radio driver platform function. If not provided by platform radio driver, OpenThread uses the OpenThread

version instead (See Also

otGetVersionString()).

Returns

A pointer to the OpenThread radio version.

Definition at line 490 of file include/openthread/platform/radio.h

otPlatRadioGetReceiveSensitivity

int8_t otPlatRadioGetReceiveSensitivity (otInstance *aInstance)

Radio Configuration

907/962

Get the radio receive sensitivity value.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The radio receive sensitivity value in dBm.

Definition at line 500 of file include/openthread/platform/radio.h

otPlatRadioGetIeeeEui64

void otPlatRadioGetIeeeEui64 (otInstance *aInstance, uint8_t *aIeeeEui64�

Gets the factory-assigned IEEE EUI-64 for this interface.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aIeeeEui64 A pointer to the factory-assigned IEEE EUI-64.

Definition at line 509 of file include/openthread/platform/radio.h

otPlatRadioSetPanId

void otPlatRadioSetPanId (otInstance *aInstance, otPanId aPanId)

Set the PAN ID for address filtering.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aPanId The IEEE 802.15.4 PAN ID.

Definition at line 518 of file include/openthread/platform/radio.h

otPlatRadioSetExtendedAddress

void otPlatRadioSetExtendedAddress (otInstance *aInstance, const otExtAddress *aExtAddress)

Set the Extended Address for address filtering.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aExtAddress A pointer to the IEEE 802.15.4 Extended Address stored in little-endian byte order.

Definition at line 528 of file include/openthread/platform/radio.h

otPlatRadioSetShortAddress

void otPlatRadioSetShortAddress (otInstance *aInstance, otShortAddress aShortAddress)

Radio Configuration

908/962

Set the Short Address for address filtering.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aShortAddress The IEEE 802.15.4 Short Address.

Definition at line 537 of file include/openthread/platform/radio.h

otPlatRadioGetTransmitPower

otError otPlatRadioGetTransmitPower (otInstance *aInstance, int8_t *aPower)

Get the radio's transmit power in dBm.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aPower The transmit power in dBm.

Note

The transmit power returned will be no larger than the power specified in the max power table for the current channel.

Definition at line 553 of file include/openthread/platform/radio.h

otPlatRadioSetTransmitPower

otError otPlatRadioSetTransmitPower (otInstance *aInstance, int8_t aPower)

Set the radio's transmit power in dBm.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aPower The transmit power in dBm.

Note

The real transmit power will be no larger than the power specified in the max power table for the current channel.

Definition at line 568 of file include/openthread/platform/radio.h

otPlatRadioGetCcaEnergyDetectThreshold

otError otPlatRadioGetCcaEnergyDetectThreshold (otInstance *aInstance, int8_t *aThreshold)

Get the radio's CCA ED threshold in dBm measured at antenna connector per IEEE 802.15.4 - 2015 section 10.1.4.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aThreshold The CCA ED threshold in dBm.

Definition at line 581 of file include/openthread/platform/radio.h

Radio Configuration

909/962

otPlatRadioSetCcaEnergyDetectThreshold

otError otPlatRadioSetCcaEnergyDetectThreshold (otInstance *aInstance, int8_t aThreshold)

Set the radio's CCA ED threshold in dBm measured at antenna connector per IEEE 802.15.4 - 2015 section 10.1.4.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aThreshold The CCA ED threshold in dBm.

Definition at line 594 of file include/openthread/platform/radio.h

otPlatRadioGetFemLnaGain

otError otPlatRadioGetFemLnaGain (otInstance *aInstance, int8_t *aGain)

Gets the external FEM's Rx LNA gain in dBm.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aGain The external FEM's Rx LNA gain in dBm.

Definition at line 607 of file include/openthread/platform/radio.h

otPlatRadioSetFemLnaGain

otError otPlatRadioSetFemLnaGain (otInstance *aInstance, int8_t aGain)

Sets the external FEM's Rx LNA gain in dBm.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aGain The external FEM's Rx LNA gain in dBm.

Definition at line 619 of file include/openthread/platform/radio.h

otPlatRadioGetPromiscuous

bool otPlatRadioGetPromiscuous (otInstance *aInstance)

Get the status of promiscuous mode.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 630 of file include/openthread/platform/radio.h

otPlatRadioSetPromiscuous

Radio Configuration

910/962

void otPlatRadioSetPromiscuous (otInstance *aInstance, bool aEnable)

Enable or disable promiscuous mode.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnable TRUE to enable or FALSE to disable promiscuous mode.

Definition at line 639 of file include/openthread/platform/radio.h

otPlatRadioSetMacKey

void otPlatRadioSetMacKey (otInstance *aInstance, uint8_t aKeyIdMode, uint8_t aKeyId, const otMacKeyMaterial
*aPrevKey, const otMacKeyMaterial *aCurrKey, const otMacKeyMaterial *aNextKey, otRadioKeyType aKeyType)

Update MAC keys and key index.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aKeyIdMode The key ID mode.

[in] aKeyId Current MAC key index.

[in] aPrevKey A pointer to the previous MAC key.

[in] aCurrKey A pointer to the current MAC key.

[in] aNextKey A pointer to the next MAC key.

[in] aKeyType Key Type used.

Is used when radio provides OT_RADIO_CAPS_TRANSMIT_SEC capability.

Definition at line 655 of file include/openthread/platform/radio.h

otPlatRadioSetMacFrameCounter

void otPlatRadioSetMacFrameCounter (otInstance *aInstance, uint32_t aMacFrameCounter)

Sets the current MAC frame counter value.

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMacFrameCounter The MAC frame counter value.

Is used when radio provides OT_RADIO_CAPS_TRANSMIT_SEC capability.

Definition at line 672 of file include/openthread/platform/radio.h

otPlatRadioSetMacFrameCounterIfLarger

void otPlatRadioSetMacFrameCounterIfLarger (otInstance *aInstance, uint32_t aMacFrameCounter)

Sets the current MAC frame counter value only if the new given value is larger than the current value.

Radio Configuration

911/962

Parameters

[in] aInstance A pointer to an OpenThread instance.

[in] aMacFrameCounter The MAC frame counter value.

Is used when radio provides OT_RADIO_CAPS_TRANSMIT_SEC capability.

Definition at line 683 of file include/openthread/platform/radio.h

otPlatRadioGetNow

uint64_t otPlatRadioGetNow (otInstance *aInstance)

Get the current time in microseconds referenced to a continuous monotonic local radio clock (64 bits width).

Parameters

[in] aInstance A pointer to an OpenThread instance.

The radio clock SHALL NOT wrap during the device's uptime. Implementations SHALL therefore identify and compensate for

internal counter overflows. The clock does not have a defined epoch and it SHALL NOT introduce any continuous or

discontinuous adjustments (e.g. leap seconds). Implementations SHALL compensate for any sleep times of the device.

Implementations MAY choose to discipline the radio clock and compensate for sleep times by any means (e.g. by combining

a high precision/low power RTC with a high resolution counter) as long as the exposed combined clock provides continuous

monotonic microsecond resolution ticks within the accuracy limits announced by otPlatRadioGetCslAccuracy.

Returns

The current time in microseconds. UINT64_MAX when platform does not support or radio time is not ready.

Definition at line 707 of file include/openthread/platform/radio.h

otPlatRadioGetBusSpeed

uint32_t otPlatRadioGetBusSpeed (otInstance *aInstance)

Get the bus speed in bits/second between the host and the radio chip.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Returns

The bus speed in bits/second between the host and the radio chip. Return 0 when the MAC and above layer and Radio layer

resides on the same chip.

Definition at line 718 of file include/openthread/platform/radio.h

Radio Operation

912/962

Radio Operation

Radio Operation
This module includes the platform abstraction for radio operations.

Functions

otRadioState otPlatRadioGetState(otInstance *aInstance)
Get current state of the radio.

otError otPlatRadioEnable(otInstance *aInstance)
Enable the radio.

otError otPlatRadioDisable(otInstance *aInstance)
Disable the radio.

bool otPlatRadioIsEnabled(otInstance *aInstance)
Check whether radio is enabled or not.

otError otPlatRadioSleep(otInstance *aInstance)
Transition the radio from Receive to Sleep (turn off the radio).

otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
Transition the radio from Sleep to Receive (turn on the radio).

otError otPlatRadioReceiveAt(otInstance *aInstance, uint8_t aChannel, uint32_t aStart, uint32_t aDuration)
Schedule a radio reception window at a specific time and duration.

void otPlatRadioReceiveDone(otInstance *aInstance, otRadioFrame *aFrame, otError aError)
The radio driver calls this method to notify OpenThread of a received frame .

void otPlatDiagRadioReceiveDone(otInstance *aInstance, otRadioFrame *aFrame, otError aError)
The radio driver calls this method to notify OpenThread diagnostics module of a received frame .

otRadioFrame * otPlatRadioGetTransmitBuffer(otInstance *aInstance)
Get the radio transmit frame buffer.

otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aFrame)
Begin the transmit sequence on the radio.

void otPlatRadioTxStarted(otInstance *aInstance, otRadioFrame *aFrame)
The radio driver calls this method to notify OpenThread that the transmission has started.

void otPlatRadioTxDone(otInstance *aInstance, otRadioFrame *aFrame, otRadioFrame *aAckFrame, otError
aError)
The radio driver calls this function to notify OpenThread that the transmit operation has completed, providing both the

transmitted frame and, if applicable , the received ack frame .

void otPlatDiagRadioTransmitDone(otInstance *aInstance, otRadioFrame *aFrame, otError aError)
The radio driver calls this method to notify OpenThread diagnostics module that the transmission has completed.

int8_t otPlatRadioGetRssi(otInstance *aInstance)
Get the most recent RSSI measurement.

Radio Operation

913/962

otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)
Begin the energy scan sequence on the radio.

void otPlatRadioEnergyScanDone(otInstance *aInstance, int8_t aEnergyScanMaxRssi)
The radio driver calls this method to notify OpenThread that the energy scan is complete .

void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
Enable/Disable source address match feature .

otError otPlatRadioAddSrcMatchShortEntry(otInstance *aInstance, otShortAddress aShortAddress)
Add a short address to the source address match table .

otError otPlatRadioAddSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
Add an extended address to the source address match table .

otError otPlatRadioClearSrcMatchShortEntry(otInstance *aInstance, otShortAddress aShortAddress)
Remove a short address from the source address match table .

otError otPlatRadioClearSrcMatchExtEntry(otInstance *aInstance, const otExtAddress *aExtAddress)
Remove an extended address from the source address match table .

void otPlatRadioClearSrcMatchShortEntries(otInstance *aInstance)
Clear all short addresses from the source address match table .

void otPlatRadioClearSrcMatchExtEntries(otInstance *aInstance)
Clear all the extended/long addresses from source address match table .

uint32_t otPlatRadioGetSupportedChannelMask(otInstance *aInstance)
Get the radio supported channel mask that the device is allowed to be on.

uint32_t otPlatRadioGetPreferredChannelMask(otInstance *aInstance)
Gets the radio preferred channel mask that the device prefers to form on.

otError otPlatRadioSetCoexEnabled(otInstance *aInstance, bool aEnabled)
Enable the radio coex.

bool otPlatRadioIsCoexEnabled(otInstance *aInstance)
Check whether radio coex is enabled or not.

otError otPlatRadioGetCoexMetrics(otInstance *aInstance, otRadioCoexMetrics *aCoexMetrics)
Get the radio coexistence metrics.

otError otPlatRadioEnableCsl(otInstance *aInstance, uint32_t aCslPeriod, otShortAddress aShortAddr, const
otExtAddress *aExtAddr)
Enable or disable CSL receiver.

void otPlatRadioUpdateCslSampleTime(otInstance *aInstance, uint32_t aCslSampleTime)
Update CSL sample time in radio driver.

uint8_t otPlatRadioGetCslAccuracy(otInstance *aInstance)
Get the current estimated worst case accuracy (maximum ± deviation from the nominal frequency) of the local radio

clock in units of PPM.

uint8_t otPlatRadioGetCslUncertainty(otInstance *aInstance)
The fixed uncertainty (i.e .

otError otPlatRadioSetChannelMaxTransmitPower(otInstance *aInstance, uint8_t aChannel, int8_t aMaxPower)
Set the max transmit power for a specific channel.

otError otPlatRadioSetRegion(otInstance *aInstance, uint16_t aRegionCode)
Set the region code .

Radio Operation

914/962

otError otPlatRadioGetRegion(otInstance *aInstance, uint16_t *aRegionCode)
Get the region code .

otError otPlatRadioConfigureEnhAckProbing(otInstance *aInstance, otLinkMetrics aLinkMetrics, otShortAddress
aShortAddress, const otExtAddress *aExtAddress)
Enable/disable or update Enhanced-ACK Based Probing in radio for a specific Initiator.

otError otPlatRadioAddCalibratedPower(otInstance *aInstance, uint8_t aChannel, int16_t aActualPower, const uint8_t
*aRawPowerSetting, uint16_t aRawPowerSettingLength)
Add a calibrated power of the specified channel to the power calibration table .

otError otPlatRadioClearCalibratedPowers(otInstance *aInstance)
Clear all calibrated powers from the power calibration table .

otError otPlatRadioSetChannelTargetPower(otInstance *aInstance, uint8_t aChannel, int16_t aTargetPower)
Set the target power for the given channel.

otError otPlatRadioGetRawPowerSetting(otInstance *aInstance, uint8_t aChannel, uint8_t *aRawPowerSetting,
uint16_t *aRawPowerSettingLength)
Get the raw power setting for the given channel.

Function Documentation

otPlatRadioGetState

otRadioState otPlatRadioGetState (otInstance *aInstance)

Get current state of the radio.

Parameters

[in] aInstance The OpenThread instance structure.

Is not required by OpenThread. It may be used for debugging and/or application-specific purposes.

Note

This function may be not implemented. It does not affect OpenThread.

Returns

Current state of the radio.

Definition at line 747 of file include/openthread/platform/radio.h

otPlatRadioEnable

otError otPlatRadioEnable (otInstance *aInstance)

Enable the radio.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 758 of file include/openthread/platform/radio.h

otPlatRadioDisable

otError otPlatRadioDisable (otInstance *aInstance)

Radio Operation

915/962

Disable the radio.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 769 of file include/openthread/platform/radio.h

otPlatRadioIsEnabled

bool otPlatRadioIsEnabled (otInstance *aInstance)

Check whether radio is enabled or not.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

TRUE if the radio is enabled, FALSE otherwise.

Definition at line 779 of file include/openthread/platform/radio.h

otPlatRadioSleep

otError otPlatRadioSleep (otInstance *aInstance)

Transition the radio from Receive to S leep (turn off the radio).

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 791 of file include/openthread/platform/radio.h

otPlatRadioReceive

otError otPlatRadioReceive (otInstance *aInstance, uint8_t aChannel)

Transition the radio from S leep to Receive (turn on the radio).

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The channel to use for receiving.

Definition at line 803 of file include/openthread/platform/radio.h

otPlatRadioReceiveAt

otError otPlatRadioReceiveAt (otInstance *aInstance, uint8_t aChannel, uint32_t aStart, uint32_t aDuration)

Schedule a radio reception window at a specific time and duration.

Radio Operation

916/962

Parameters

[in] aInstance The radio channel on which to receive.

[in] aChannel The receive window start time relative to the local radio clock, see otPlatRadioGetNow . The radio

receiver SHALL be on and ready to receive the first symbol of a frame's SHR at the window start time.

[in] aStart The receive window duration, in microseconds, as measured by the local radio clock. The radio SHOULD

be turned off (or switched to TX mode if an ACK frame needs to be sent) after that duration unless it is

still actively receiving a frame. In the latter case the radio SHALL be kept in reception mode until frame

reception has either succeeded or failed.

N/A aDuration

Definition at line 824 of file include/openthread/platform/radio.h

otPlatRadioReceiveDone

void otPlatRadioReceiveDone (otInstance *aInstance, otRadioFrame *aFrame, otError aError)

The radio driver calls this method to notify OpenThread of a received frame.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aFrame A pointer to the received frame or NULL if the receive operation failed.

[in] aError OT_ERROR_NONE when successfully received a frame, OT_ERROR_ABORT when reception was aborted

and a frame was not received, OT_ERROR_NO_BUFS when a frame could not be received due to lack of

rx buffer space.

Definition at line 836 of file include/openthread/platform/radio.h

otPlatDiagRadioReceiveDone

void otPlatDiagRadioReceiveDone (otInstance *aInstance, otRadioFrame *aFrame, otError aError)

The radio driver calls this method to notify OpenThread diagnostics module of a received frame.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aFrame A pointer to the received frame or NULL if the receive operation failed.

[in] aError OT_ERROR_NONE when successfully received a frame, OT_ERROR_ABORT when reception was aborted

and a frame was not received, OT_ERROR_NO_BUFS when a frame could not be received due to lack of

rx buffer space.

Is used when diagnostics is enabled.

Definition at line 850 of file include/openthread/platform/radio.h

otPlatRadioGetTransmitBuffer

otRadioFrame * otPlatRadioGetTransmitBuffer (otInstance *aInstance)

Get the radio transmit frame buffer.

Parameters

Radio Operation

917/962

[in] aInstance The OpenThread instance structure.

OpenThread forms the IEEE 802.15.4 frame in this buffer then calls otPlatRadioTransmit() to request transmission.

Returns

A pointer to the transmit frame buffer.

Definition at line 862 of file include/openthread/platform/radio.h

otPlatRadioTransmit

otError otPlatRadioTransmit (otInstance *aInstance, otRadioFrame *aFrame)

Begin the transmit sequence on the radio.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aFrame A pointer to the frame to be transmitted.

The caller must form the IEEE 802.15.4 frame in the buffer provided by otPlatRadioGetTransmitBuffer() before requesting

transmission. The channel and transmit power are also included in the otRadioFrame structure.

The transmit sequence consists of:

 Transitioning the radio to Transmit from one of the following states:

Receive if RX is on when the device is idle or OT_RADIO_CAPS_SLEEP_TO_TX is not supported

S leep if RX is off when the device is idle and OT_RADIO_CAPS_SLEEP_TO_TX is supported.

 Transmits the psdu on the given channel and at the given transmit power.

Definition at line 883 of file include/openthread/platform/radio.h

otPlatRadioTxStarted

void otPlatRadioTxStarted (otInstance *aInstance, otRadioFrame *aFrame)

The radio driver calls this method to notify OpenThread that the transmission has started.

Parameters

[in] aInstance A pointer to the OpenThread instance structure.

[in] aFrame A pointer to the frame that is being transmitted.

Note

This function should be called by the same thread that executes all of the other OpenThread code. It should not be called

by ISR or any other task.

Definition at line 895 of file include/openthread/platform/radio.h

otPlatRadioTxDone

void otPlatRadioTxDone (otInstance *aInstance, otRadioFrame *aFrame, otRadioFrame *aAckFrame, otError aError)

Radio Operation

918/962

The radio driver calls this function to notify OpenThread that the transmit operation has completed, providing both the

transmitted frame and, if applicable, the received ack frame.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aFrame A pointer to the frame that was transmitted.

[in] aAckFrame A pointer to the ACK frame, NULL if no ACK was received.

[in] aError OT_ERROR_NONE when the frame was transmitted, OT_ERROR_NO_ACK when the frame was

transmitted but no ACK was received, OT_ERROR_CHANNEL_ACCESS_FAILURE tx could not take place

due to activity on the channel, OT_ERROR_ABORT when transmission was aborted for other reasons.

When radio provides OT_RADIO_CAPS_TRANSMIT_SEC capability, radio platform layer updates aFrame with the security frame

counter and key index values maintained by the radio.

Definition at line 913 of file include/openthread/platform/radio.h

otPlatDiagRadioTransmitDone

void otPlatDiagRadioTransmitDone (otInstance *aInstance, otRadioFrame *aFrame, otError aError)

The radio driver calls this method to notify OpenThread diagnostics module that the transmission has completed.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aFrame A pointer to the frame that was transmitted.

[in] aError OT_ERROR_NONE when the frame was transmitted, OT_ERROR_CHANNEL_ACCESS_FAILURE tx could

not take place due to activity on the channel, OT_ERROR_ABORT when transmission was aborted for

other reasons.

Is used when diagnostics is enabled.

Definition at line 927 of file include/openthread/platform/radio.h

otPlatRadioGetRssi

int8_t otPlatRadioGetRssi (otInstance *aInstance)

Get the most recent RSSI measurement.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The RSSI in dBm when it is valid. 127 when RSSI is invalid.

Definition at line 937 of file include/openthread/platform/radio.h

otPlatRadioEnergyScan

otError otPlatRadioEnergyScan (otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)

Radio Operation

919/962

Begin the energy scan sequence on the radio.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aScanChannel The channel to perform the energy scan on.

[in] aScanDuration The duration, in milliseconds, for the channel to be scanned.

Is used when radio provides OT_RADIO_CAPS_ENERGY_SCAN capability.

Definition at line 953 of file include/openthread/platform/radio.h

otPlatRadioEnergyScanDone

void otPlatRadioEnergyScanDone (otInstance *aInstance, int8_t aEnergyScanMaxRssi)

The radio driver calls this method to notify OpenThread that the energy scan is complete.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnergyScanMaxRssi The maximum RSSI encountered on the scanned channel.

Is used when radio provides OT_RADIO_CAPS_ENERGY_SCAN capability.

Definition at line 964 of file include/openthread/platform/radio.h

otPlatRadioEnableSrcMatch

void otPlatRadioEnableSrcMatch (otInstance *aInstance, bool aEnable)

Enable/Disable source address match feature.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aEnable Enable/disable source address match feature.

The source address match feature controls how the radio layer decides the "frame pending" bit for acks sent in response to

data request commands from children.

If disabled, the radio layer must set the "frame pending" on all acks to data request commands.

If enabled, the radio layer uses the source address match table to determine whether to set or clear the "frame pending"

bit in an ack to a data request command.

The source address match table provides the list of children for which there is a pending frame. Either a short address or an

extended/long address can be added to the source address match table.

Definition at line 984 of file include/openthread/platform/radio.h

otPlatRadioAddSrcMatchShortEntry

otError otPlatRadioAddSrcMatchShortEntry (otInstance *aInstance, otShortAddress aShortAddress)

Add a short address to the source address match table.

Radio Operation

920/962

Parameters

[in] aInstance The OpenThread instance structure.

[in] aShortAddress The short address to be added.

Definition at line 996 of file include/openthread/platform/radio.h

otPlatRadioAddSrcMatchExtEntry

otError otPlatRadioAddSrcMatchExtEntry (otInstance *aInstance, const otExtAddress *aExtAddress)

Add an extended address to the source address match table.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aExtAddress The extended address to be added stored in little-endian byte order.

Definition at line 1008 of file include/openthread/platform/radio.h

otPlatRadioClearSrcMatchShortEntry

otError otPlatRadioClearSrcMatchShortEntry (otInstance *aInstance, otShortAddress aShortAddress)

Remove a short address from the source address match table.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aShortAddress The short address to be removed.

Definition at line 1020 of file include/openthread/platform/radio.h

otPlatRadioClearSrcMatchExtEntry

otError otPlatRadioClearSrcMatchExtEntry (otInstance *aInstance, const otExtAddress *aExtAddress)

Remove an extended address from the source address match table.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aExtAddress The extended address to be removed stored in little-endian byte order.

Definition at line 1032 of file include/openthread/platform/radio.h

otPlatRadioClearSrcMatchShortEntries

void otPlatRadioClearSrcMatchShortEntries (otInstance *aInstance)

Clear all short addresses from the source address match table.

Parameters

Radio Operation

921/962

[in] aInstance The OpenThread instance structure.

Definition at line 1040 of file include/openthread/platform/radio.h

otPlatRadioClearSrcMatchExtEntries

void otPlatRadioClearSrcMatchExtEntries (otInstance *aInstance)

Clear all the extended/long addresses from source address match table.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 1048 of file include/openthread/platform/radio.h

otPlatRadioGetSupportedChannelMask

uint32_t otPlatRadioGetSupportedChannelMask (otInstance *aInstance)

Get the radio supported channel mask that the device is allowed to be on.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The radio supported channel mask.

Definition at line 1058 of file include/openthread/platform/radio.h

otPlatRadioGetPreferredChannelMask

uint32_t otPlatRadioGetPreferredChannelMask (otInstance *aInstance)

Gets the radio preferred channel mask that the device prefers to form on.

Parameters

[in] aInstance The OpenThread instance structure.

Returns

The radio preferred channel mask.

Definition at line 1068 of file include/openthread/platform/radio.h

otPlatRadioSetCoexEnabled

otError otPlatRadioSetCoexEnabled (otInstance *aInstance, bool aEnabled)

Enable the radio coex.

Parameters

Radio Operation

922/962

[in] aInstance The OpenThread instance structure.

[in] aEnabled TRUE to enable the radio coex, FALSE otherwise.

Is used when feature OPENTHREAD_CONFIG_PLATFORM_RADIO_COEX_ENABLE is enabled.

Definition at line 1082 of file include/openthread/platform/radio.h

otPlatRadioIsCoexEnabled

bool otPlatRadioIsCoexEnabled (otInstance *aInstance)

Check whether radio coex is enabled or not.

Parameters

[in] aInstance The OpenThread instance structure.

Is used when feature OPENTHREAD_CONFIG_PLATFORM_RADIO_COEX_ENABLE is enabled.

Returns

TRUE if the radio coex is enabled, FALSE otherwise.

Definition at line 1094 of file include/openthread/platform/radio.h

otPlatRadioGetCoexMetrics

otError otPlatRadioGetCoexMetrics (otInstance *aInstance, otRadioCoexMetrics *aCoexMetrics)

Get the radio coexistence metrics.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aCoexMetrics A pointer to the coexistence metrics structure.

Is used when feature OPENTHREAD_CONFIG_PLATFORM_RADIO_COEX_ENABLE is enabled.

Definition at line 1107 of file include/openthread/platform/radio.h

otPlatRadioEnableCsl

otError otPlatRadioEnableCsl (otInstance *aInstance, uint32_t aCslPeriod, otShortAddress aShortAddr, const otExtAddress
*aExtAddr)

Enable or disable CSL receiver.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aCslPeriod CSL period, 0 for disabling CSL. CSL period is in unit of 10 symbols.

[in] aShortAddr The short source address of CSL receiver's peer.

[in] aExtAddr The extended source address of CSL receiver's peer.

Note

Radio Operation

923/962

Platforms should use CSL peer addresses to include CSL IE when generating enhanced acks.

Definition at line 1124 of file include/openthread/platform/radio.h

otPlatRadioUpdateCslSampleTime

void otPlatRadioUpdateCslSampleTime (otInstance *aInstance, uint32_t aCslSampleTime)

Update CSL sample time in radio driver.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aCslSampleTime The next sample time, in microseconds. It is the time when the first symbol of the MHR of the

frame is expected.

Sample time is stored in radio driver as a copy to calculate phase when sending ACK with CSL IE. The CSL sample (window)

of the CSL receiver extends before and after the sample time. The CSL sample time marks a timestamp in the CSL sample

window when a frame should be received in "ideal conditions" if there would be no inaccuracy/clock-drift.

Definition at line 1143 of file include/openthread/platform/radio.h

otPlatRadioGetCslAccuracy

uint8_t otPlatRadioGetCslAccuracy (otInstance *aInstance)

Get the current estimated worst case accuracy (maximum ± deviation from the nominal frequency) of the local radio clock

in units of PPM.

Parameters

[in] aInstance A pointer to an OpenThread instance.

This is the clock used to schedule CSL operations.

Note

Implementations MAY estimate this value based on current operating conditions (e.g. temperature).

In case the implementation does not estimate the current value but returns a fixed value, this value MUST be the worst-

case accuracy over all possible foreseen operating conditions (temperature, pressure, etc) of the implementation.

Returns

The current CSL rx/tx scheduling drift, in PPM.

Definition at line 1163 of file include/openthread/platform/radio.h

otPlatRadioGetCslUncertainty

uint8_t otPlatRadioGetCslUncertainty (otInstance *aInstance)

The fixed uncertainty (i.e.

Parameters

[in] aInstance A pointer to an OpenThread instance.

Radio Operation

924/962

random jitter) of the arrival time of CSL transmissions received by this device in units of 10 microseconds.

This designates the worst case constant positive or negative deviation of the actual arrival time of a transmission from the

transmission time calculated relative to the local radio clock independent of elapsed time. In addition to uncertainty

accumulated over elapsed time, the CSL channel sample ("RX window") must be extended by twice this deviation such that

an actual transmission is guaranteed to be detected by the local receiver in the presence of random arrival time jitter.

Returns

The CSL Uncertainty in units of 10 us.

Definition at line 1182 of file include/openthread/platform/radio.h

otPlatRadioSetChannelMaxTransmitPower

otError otPlatRadioSetChannelMaxTransmitPower (otInstance *aInstance, uint8_t aChannel, int8_t aMaxPower)

Set the max transmit power for a specific channel.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The radio channel.

[in] aMaxPower The max power in dBm, passing OT_RADIO_RSSI_INVALID will disable this channel.

Definition at line 1197 of file include/openthread/platform/radio.h

otPlatRadioSetRegion

otError otPlatRadioSetRegion (otInstance *aInstance, uint16_t aRegionCode)

Set the region code.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aRegionCode The radio region code. The aRegionCode >> 8 is first ascii char and the aRegionCode & 0xff is the

second ascii char.

The radio region format is the 2-bytes ascii representation of the ISO 3166 alpha-2 code.

Definition at line 1214 of file include/openthread/platform/radio.h

otPlatRadioGetRegion

otError otPlatRadioGetRegion (otInstance *aInstance, uint16_t *aRegionCode)

Get the region code.

Parameters

[in] aInstance The OpenThread instance structure.

[out] aRegionCode The radio region.

The radio region format is the 2-bytes ascii representation of the ISO 3166 alpha-2 code.

Radio Operation

925/962

Definition at line 1231 of file include/openthread/platform/radio.h

otPlatRadioConfigureEnhAckProbing

otError otPlatRadioConfigureEnhAckProbing (otInstance *aInstance, otLinkMetrics aLinkMetrics, otShortAddress
aShortAddress, const otExtAddress *aExtAddress)

Enable/disable or update Enhanced-ACK Based Probing in radio for a specific Initiator.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aLinkMetrics This parameter specifies what metrics to query. Per spec 4.11.3.4.4.6, at most 2 metrics can be

specified. The probing would be disabled if `aLinkMetrics` is bitwise 0.

[in] aShortAddress The short address of the Probing Initiator.

[in] aExtAddress The extended source address of the Probing Initiator. aExtAddr MUST NOT be NULL .

After Enhanced-ACK Based Probing is configured by a specific Probing Initiator, the Enhanced-ACK sent to that node

should include Vendor-Specific IE containing Link Metrics data. This method informs the radio to start/stop to collect Link

Metrics data and include Vendor-Specific IE that containing the data in Enhanced-ACK sent to that Probing Initiator.

Definition at line 1254 of file include/openthread/platform/radio.h

otPlatRadioAddCalibratedPower

otError otPlatRadioAddCalibratedPower (otInstance *aInstance, uint8_t aChannel, int16_t aActualPower, const uint8_t
*aRawPowerSetting, uint16_t aRawPowerSettingLength)

Add a calibrated power of the specified channel to the power calibration table.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The radio channel.

[in] aActualPower The actual power in 0.01dBm.

[in] aRawPowerSetting A pointer to the raw power setting byte array.

[in] aRawPowerSettingLength The length of the aRawPowerSetting .

Note

This API is an optional radio platform API. It's up to the platform layer to implement it.

The aActualPower is the actual measured output power when the parameters of the radio hardware modules are set to the

aRawPowerSetting .

The raw power setting is an opaque byte array. OpenThread doesn't define the format of the raw power setting. Its format

is radio hardware related and it should be defined by the developers in the platform radio driver. For example, if the radio

hardware contains both the radio chip and the FEM chip, the raw power setting can be a combination of the radio power

register and the FEM gain value.

Definition at line 1285 of file include/openthread/platform/radio.h

otPlatRadioClearCalibratedPowers

otError otPlatRadioClearCalibratedPowers (otInstance *aInstance)

Radio Operation

926/962

Clear all calibrated powers from the power calibration table.

Parameters

[in] aInstance The OpenThread instance structure.

Note

This API is an optional radio platform API. It's up to the platform layer to implement it.

Definition at line 1302 of file include/openthread/platform/radio.h

otPlatRadioSetChannelTargetPower

otError otPlatRadioSetChannelTargetPower (otInstance *aInstance, uint8_t aChannel, int16_t aTargetPower)

Set the target power for the given channel.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The radio channel.

[in] aTargetPower The target power in 0.01dBm. Passing INT16_MAX will disable this channel to use the target power.

Note

This API is an optional radio platform API. It's up to the platform layer to implement it. If this API is implemented, the function

otPlatRadioSetTransmitPower() should be disabled.

The radio driver should set the actual output power to be less than or equal to the target power and as close as possible to

the target power.

Definition at line 1323 of file include/openthread/platform/radio.h

otPlatRadioGetRawPowerSetting

otError otPlatRadioGetRawPowerSetting (otInstance *aInstance, uint8_t aChannel, uint8_t *aRawPowerSetting, uint16_t
*aRawPowerSettingLength)

Get the raw power setting for the given channel.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aChannel The radio channel.

[out] aRawPowerSetting A pointer to the raw power setting byte array.

[inout] aRawPowerSettingLength On input, a pointer to the size of aRawPowerSetting . On output, a pointer to the

length of the raw power setting data.

Note

OpenThread src/core/utils implements a default implementation of the API otPlatRadioAddCalibratedPower() ,

otPlatRadioClearCalibratedPowers() and otPlatRadioSetChannelTargetPower() . This API is provided by the default implementation

to get the raw power setting for the given channel. If the platform doesn't use the default implementation, it can ignore this

API.

Radio Operation

927/962

Platform radio layer should parse the raw power setting based on the radio layer defined format and set the parameters of

each radio hardware module.

Definition at line 1348 of file include/openthread/platform/radio.h

Radio Extension

928/962

Radio Extension

Radio Extension
This module includes the S ilicon Labs extension to the openthread platform radio interface.

The functions in this modules provide an API that can be called from SoC or host based openthread applications.

Note

Many of the functions defined in this module are wrappers on top of the S ilicon Labs RAIL API. For additional information on

the RAIl API please refer to the Silicon Labs RAIL API Reference Guide . Those functions that are wrappers to RAIL functions

include a reference to the underlying RAIL function.

Enumerations

enum otPlatRadioExtensionCoexEvent_t {

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_REQUESTED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_REQUESTED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_DENIED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_DENIED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_TX_ABORTED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_TX_ABORTED
OT_PLAT_RADIO_EXTENSION_COEX_EVENT_COUNT

}
This enumeration defines the coex event counters and can be used as an index into the aCoexCounters table

returned in a call to otPlatRadioExtensionGetCoexCounters.

Functions

otError otPlatRadioExtensionGetTxAntennaMode(uint8_t *aMode)
Get the antenna diversity transmit antenna mode .

otError otPlatRadioExtensionSetTxAntennaMode(uint8_t aMode)
Set the antenna diversity transmit antenna mode .

otError otPlatRadioExtensionGetRxAntennaMode(uint8_t *aMode)
Get the antenna diversity receive antenna mode .

otError otPlatRadioExtensionSetRxAntennaMode(uint8_t aMode)
Set the antenna diversity receive antenna mode .

otError otPlatRadioExtensionGetActivePhy(uint8_t *aActivePhy)
Get the antenna diversity active phy state .

otError otPlatRadioExtensionGetDpState(uint8_t *aDpPulse)
Get the coexistence directional priority state and pulse width.

otError otPlatRadioExtensionSetDpState(uint8_t aDpPulse)
Set the coexistence directional priority state and pulse width.

otError otPlatRadioExtensionGetGpioInputOverride(uint8_t aGpioIndex, bool *aEnabled)
Get the override input value of a GPIO.

Radio Extension

929/962

otError otPlatRadioExtensionSetGpioInputOverride(uint8_t aGpioIndex, bool aEnabled)
Set the override input value of a GPIO.

otError otPlatRadioExtensionGetActiveRadio(uint8_t *aActivePhy)
Get the coexistence active phy state .

otError otPlatRadioExtensionGetPhySelectTimeout(uint8_t *aTimeout)
Get the coexistence phy select state and timeout.

otError otPlatRadioExtensionSetPhySelectTimeout(uint8_t aTimeout)
Set the coexistence phy select state and timeout.

otError otPlatRadioExtensionGetCoexOptions(uint32_t *aPtaOptions)
Get the coexistence bitmask of features.

otError otPlatRadioExtensionSetCoexOptions(uint32_t aPtaOptions)
Set the coexistence bitmask of features.

otError otPlatRadioExtensionGetCoexConstantOptions(uint32_t *aPtaOptions)
Get the coexistence bitmask of constant PTA features that can not be modified using public APIs.

otError otPlatRadioExtensionIsCoexEnabled(bool *aPtaState)
Get the coexistence enabled status.

otError otPlatRadioExtensionSetCoexEnable(bool aPtaState)
Set the coexistence enabled status.

otError otPlatRadioExtensionGetRequestPwmArgs(uint8_t *aPwmReq, uint8_t *aPwmDutyCycle, uint8_t
*aPwmPeriodHalfMs)
Get the coexistence PWM configuration.

otError otPlatRadioExtensionSetRequestPwmArgs(uint8_t aPwmReq, uint8_t aPwmDutyCycle, uint8_t
aPwmPeriodHalfMs)
Set the coexistence PWM configuration.

otError otPlatRadioExtensionClearCoexCounters(void)
Clear the coexistence counters.

otError otPlatRadioExtensionGetCoexCounters(uint8_t aNumEntries, uint32_t aCoexCounters[])
Get the coexistence counters.

otError otPlatRadioExtensionSetRadioHoldoff(bool aEnabled)
Set the coexistence radio ho ldoff status.

otError otPlatRadioExtensionGetRadioCounters(efr32RadioCounters *aCounters)
Get RAIL debug counter values.

otError otPlatRadioExtensionClearRadioCounters(void)
Clear the RAIL debug counters.

Enumeration Documentation

otPlatRadioExtensionCoexEvent_t

otPlatRadioExtensionCoexEvent_t

This enumeration defines the coex event counters and can be used as an index into the aCoexCounters table returned in a

call to otPlatRadioExtensionGetCoexCounters.

Enumerator

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_REQUESTED Low priority request initiated.

Radio Extension

930/962

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_REQUESTED High priority request initiated.

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_DENIED Low priority request denied.

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_DENIED High priority request denied.

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_LO_PRI_TX_ABORTED Low priority transmission aborted mid packet.

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_HI_PRI_TX_ABORTED High priority transmission aborted mid packet.

OT_PLAT_RADIO_EXTENSION_COEX_EVENT_COUNT Number of coexistence events.

Definition at line 633 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

Function Documentation

otPlatRadioExtensionGetTxAntennaMode

otError otPlatRadioExtensionGetTxAntennaMode (uint8_t *aMode)

Get the antenna diversity transmit antenna mode.

Parameters

[out] aMode A pointer to the location where the current transmit antenna mode will be returned. Antenna modes are

defined by the RAIL sl_rail_util_antenna_mode_t enumeration.

Requires the ot_ant_div component.

See Also

RAIL API: sl_rail_util_ant_div_get_tx_antenna_mode()

Returns

Error code indicating success of the function call.

Definition at line 97 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetTxAntennaMode

otError otPlatRadioExtensionSetTxAntennaMode (uint8_t aMode)

Set the antenna diversity transmit antenna mode.

Parameters

[in] aMode The antenna mode to use for transmit. Antenna modes are defined by the RAIL sl_rail_util_antenna_mode_t

enumeration.

Requires the ot_ant_div component.

See Also

RAIL API: sl_rail_util_ant_div_set_tx_antenna_mode()

Returns

Error code indicating success of the function call.

Radio Extension

931/962

Definition at line 119 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetRxAntennaMode

otError otPlatRadioExtensionGetRxAntennaMode (uint8_t *aMode)

Get the antenna diversity receive antenna mode.

Parameters

[out] aMode A pointer to the location where the current receive antenna mode will be returned. Antenna modes are

defined by the RAIL sl_rail_util_antenna_mode_t enumeration.

Requires the ot_ant_div component.

See Also

RAIL API: sl_rail_util_ant_div_get_rx_antenna_mode()

Returns

Error code indicating success of the function call.

Definition at line 142 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetRxAntennaMode

otError otPlatRadioExtensionSetRxAntennaMode (uint8_t aMode)

Set the antenna diversity receive antenna mode.

Parameters

[in] aMode The antenna mode to use for receive. Antenna modes are defined by the RAIL sl_rail_util_antenna_mode_t

enumeration.

Requires the ot_ant_div component.

See Also

RAIL API: sl_rail_util_ant_div_set_rx_antenna_mode()

Returns

Error code indicating success of the function call.

Definition at line 164 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetActivePhy

otError otPlatRadioExtensionGetActivePhy (uint8_t *aActivePhy)

Get the antenna diversity active phy state.

Parameters

Radio Extension

932/962

[out] aActivePhy A pointer to the location where the current phy state will be returned. Phy states are defined by the

RAIL sl_rail_util_ieee802154_radio_config_t enumeration.

Requires the ot_ant_div component.

See Also

RAIL API: sl_rail_util_ieee802154_get_active_radio_config()

Returns

Error code indicating success of the function call.

Definition at line 187 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetDpState

otError otPlatRadioExtensionGetDpState (uint8_t *aDpPulse)

Get the coexistence directional priority state and pulse width.

Parameters

[out] aDpPulse A pointer to the location where the current directional priority state will be returned. If aDpPulse is 0

then directional priority is disabled. If aDpPulse is not 0 then directional priority is enabled and the value

is the pulse width in microseconds.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_directional_priority_pulse_width()

Returns

Error code indicating success of the function call.

Definition at line 211 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetDpState

otError otPlatRadioExtensionSetDpState (uint8_t aDpPulse)

Set the coexistence directional priority state and pulse width.

Parameters

[in] aDpPulse The directional priority state to set. If aDpPulse is 0 then directional priority will be disabled. If aDpPulse

is not 0 then directional priority will be enabled and the value will be the pulse width to use in

microseconds.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_directional_priority_pulse_width()

Returns

Radio Extension

933/962

Error code indicating success of the function call.

Definition at line 234 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetGpioInputOverride

otError otPlatRadioExtensionGetGpioInputOverride (uint8_t aGpioIndex, bool *aEnabled)

Get the override input value of a GPIO.

Parameters

[in] aGpioIndex The GPIO index

0x00 = Radio Holdoff GPIO index

0x01 = Request GPIO index

0x02 = Grant GPIO index

0x03 = PHY Select index

[out] aEnabled A pointer to the location where the boolean override input value will be returned. A TRUE value

indicating the override input value is enabled, FALSE disabled. The return is inverted if the selected

GPIO is active low.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_gpio_input_override()

Returns

Error code indicating success of the function call.

Definition at line 262 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetGpioInputOverride

otError otPlatRadioExtensionSetGpioInputOverride (uint8_t aGpioIndex, bool aEnabled)

Set the override input value of a GPIO.

Parameters

[in] aGpioIndex The GPIO index

0x00 = Radio Holdoff GPIO index

0x01 = Request GPIO index

0x02 = Grant GPIO index

0x03 = PHY Select index

[in] aEnabled The boolean override input value. A TRUE value indicating the override input value is enabled, FALSE

disabled.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_gpio_input_override()

Radio Extension

934/962

Returns

Error code indicating success of the function call.

Definition at line 289 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetActiveRadio

otError otPlatRadioExtensionGetActiveRadio (uint8_t *aActivePhy)

Get the coexistence active phy state.

Parameters

[out] aActivePhy A pointer to the location where the current phy state will be returned. Phy states are defined by the

RAIL sl_rail_util_ieee802154_radio_config_t enumeration.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_ieee802154_get_active_radio_config()

Returns

Error code indicating success of the function call.

Definition at line 312 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetPhySelectTimeout

otError otPlatRadioExtensionGetPhySelectTimeout (uint8_t *aTimeout)

Get the coexistence phy select state and timeout.

Parameters

[out] aTimeout A pointer to the location where the current phy select state will be returned. If aTimeout is 0 then phy

select is disabled. If aTimeout is not 0 then phy select is enabled and the value is the timeout in

milliseconds.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_phy_select_timeout()

Returns

Error code indicating success of the function call.

Definition at line 336 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetPhySelectTimeout

otError otPlatRadioExtensionSetPhySelectTimeout (uint8_t aTimeout)

Radio Extension

935/962

Set the coexistence phy select state and timeout.

Parameters

[in] aTimeout The phy select state to set. If aTimeout is 0 then phy select will be disabled. If aTimeout is not 0 then

phy select will be enabled and the value will be the timeout to use in milliseconds.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_phy_select_timeout()

Returns

Error code indicating success of the function call.

Definition at line 359 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetCoexOptions

otError otPlatRadioExtensionGetCoexOptions (uint32_t *aPtaOptions)

Get the coexistence bitmask of features.

Parameters

[out] aPtaOptions A pointer to the location where the coexistence feature bitmask will be returned. The feature

bitmask is defined by the set of macros making up the RAIL sl_rail_util_coex_options_t type.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_options()

Returns

Error code indicating success of the function call.

Definition at line 382 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetCoexOptions

otError otPlatRadioExtensionSetCoexOptions (uint32_t aPtaOptions)

Set the coexistence bitmask of features.

Parameters

[in] aPtaOptions The coexistence feature bitmask to set. The feature bitmask is defined by the set of macros making

up the RAIL sl_rail_util_coex_options_t type.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_options()

Radio Extension

936/962

Returns

Error code indicating success of the function call.

Definition at line 405 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetCoexConstantOptions

otError otPlatRadioExtensionGetCoexConstantOptions (uint32_t *aPtaOptions)

Get the coexistence bitmask of constant PTA features that can not be modified using public APIs.

Parameters

[out] aPtaOptions A pointer to the location where the coexistence constant PTA feature bitmask will be returned. The

feature bitmask is defined by the set of macros making up the RAIL sl_rail_util_coex_options_t type.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_constant_options()

Returns

Error code indicating success of the function call.

Definition at line 428 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionIsCoexEnabled

otError otPlatRadioExtensionIsCoexEnabled (bool *aPtaState)

Get the coexistence enabled status.

Parameters

[out] aPtaState A pointer to the location where the coexistence enabled status will be returned.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_is_enabled()

Returns

Error code indicating success of the function call.

Definition at line 449 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetCoexEnable

otError otPlatRadioExtensionSetCoexEnable (bool aPtaState)

Set the coexistence enabled status.

Radio Extension

937/962

Parameters

[in] aPtaState The coexistence enabled status.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_enable()

Returns

Error code indicating success of the function call.

Definition at line 469 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetRequestPwmArgs

otError otPlatRadioExtensionGetRequestPwmArgs (uint8_t *aPwmReq, uint8_t *aPwmDutyCycle, uint8_t
*aPwmPeriodHalfMs)

Get the coexistence PWM configuration.

Parameters

[out] aPwmReq A pointer to the location where the coexistence PWM request is returned. The value is

defined as a bitmap using shift values from the RAIL COEX_Req_t enumeration.

[out] aPwmDutyCycle A pointer to the location where the coexistence PWM duty cycle value is returned.

[out] aPwmPeriodHalfMs A pointer to the location where the coexistence PWM period half MS value is returned.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_get_request_pwm_args()

Returns

Error code indicating success of the function call.

Definition at line 497 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetRequestPwmArgs

otError otPlatRadioExtensionSetRequestPwmArgs (uint8_t aPwmReq, uint8_t aPwmDutyCycle, uint8_t aPwmPeriodHalfMs)

Set the coexistence PWM configuration.

Parameters

[in] aPwmReq The coexistence PWM request. The value is defined as a bitmap using shift values from the

RAIL COEX_Req_t enumeration.

[in] aPwmDutyCycle The coexistence PWM duty cycle.

[in] aPwmPeriodHalfMs The coexistencec PWM period half MS.

Requires the ot_coex component.

See Also

Radio Extension

938/962

RAIL API: sl_rail_util_coex_set_request_pwm()

Returns

Error code indicating success of the function call.

Definition at line 521 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionClearCoexCounters

otError otPlatRadioExtensionClearCoexCounters (void)

Clear the coexistence counters.

Parameters

N/A

Requires the ot_coex component.

Returns

Error code indicating success of the function call.

Definition at line 537 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetCoexCounters

otError otPlatRadioExtensionGetCoexCounters (uint8_t aNumEntries, uint32_t aCoexCounters[])

Get the coexistence counters.

Parameters

[in] aNumEntries The number of entries in aCoexCounters array where counters will be returned.

[out] aCoexCounters A pointer to an array where the coexistence counters will be returned. See

otPlatRadioExtensionCoexEvent_t which defines what coexistence counter each array element

stores.

Requires the ot_coex component.

Returns

Error code indicating success of the function call.

Definition at line 562 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionSetRadioHoldoff

otError otPlatRadioExtensionSetRadioHoldoff (bool aEnabled)

Set the coexistence radio holdoff status.

Parameters

Radio Extension

939/962

[in] aEnabled The coexistence radio holdoff status.

Requires the ot_coex component.

See Also

RAIL API: sl_rail_util_coex_set_radio_holdoff()

Returns

Error code indicating success of the function call.

Definition at line 582 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionGetRadioCounters

otError otPlatRadioExtensionGetRadioCounters (efr32RadioCounters *aCounters)

Get RAIL debug counter values.

Parameters

[out] aCounters Pointer to struct to store counter values.

Requires the ot_efr32_custom_cli component.

Returns

Error code indicating success of the function call.

Definition at line 666 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

otPlatRadioExtensionClearRadioCounters

otError otPlatRadioExtensionClearRadioCounters (void)

Clear the RAIL debug counters.

Parameters

N/A

Requires the ot_efr32_custom_cli component.

Returns

Error code indicating success of the function call.

Definition at line 681 of file /mnt/raid/workspaces/ws.QBNpfqGmL/overlay/gsdk/protocol/openthread/platform-
abstraction/include/radio_extension.h

Settings

940/962

Settings

Settings
This module includes the platform abstraction for non-volatile storage of settings.

Enumerations

enum �21 {

OT_SETTINGS_KEY_ACTIVE_DATASET = 0�0001
OT_SETTINGS_KEY_PENDING_DATASET = 0�0002
OT_SETTINGS_KEY_NETWORK_INFO = 0�0003
OT_SETTINGS_KEY_PARENT_INFO = 0�0004
OT_SETTINGS_KEY_CHILD_INFO = 0�0005
OT_SETTINGS_KEY_SLAAC_IID_SECRET_KEY = 0�0007
OT_SETTINGS_KEY_DAD_INFO = 0�0008
OT_SETTINGS_KEY_SRP_ECDSA_KEY = 0�000b
OT_SETTINGS_KEY_SRP_CLIENT_INFO = 0�000c
OT_SETTINGS_KEY_SRP_SERVER_INFO = 0�000d
OT_SETTINGS_KEY_BR_ULA_PREFIX = 0�000f
OT_SETTINGS_KEY_BR_ON_LINK_PREFIXES = 0�0010
OT_SETTINGS_KEY_BORDER_AGENT_ID = 0�0011
OT_SETTINGS_KEY_VENDOR_RESERVED_MIN = 0�8000
OT_SETTINGS_KEY_VENDOR_RESERVED_MAX = 0xffff

}
Defines the keys of settings.

Functions

void otPlatSettingsInit(otInstance *aInstance, const uint16_t *aSensitiveKeys, uint16_t aSensitiveKeysLength)
Performs any initialization for the settings subsystem, if necessary.

void otPlatSettingsDeinit(otInstance *aInstance)
Performs any de-initialization for the settings subsystem, if necessary.

otError otPlatSettingsGet(otInstance *aInstance, uint16_t aKey, int aIndex, uint8_t *aValue, uint16_t *aValueLength)
Fetches the value of a setting.

otError otPlatSettingsSet(otInstance *aInstance, uint16_t aKey, const uint8_t *aValue, uint16_t aValueLength)
Sets or replaces the value of a setting.

otError otPlatSettingsAdd(otInstance *aInstance, uint16_t aKey, const uint8_t *aValue, uint16_t aValueLength)
Adds a value to a setting.

otError otPlatSettingsDelete(otInstance *aInstance, uint16_t aKey, int aIndex)
Removes a setting from the setting store .

void otPlatSettingsWipe(otInstance *aInstance)
Removes all settings from the setting store .

Enumeration Documentation

�21

Settings

941/962

�21

Defines the keys of settings.

Note: When adding a new settings key, if the settings corresponding to the key contains security sensitive information, the

developer MUST add the key to the array aSensitiveKeys which is passed in otPlatSettingsInit() .

Enumerator

OT_SETTINGS_KEY_ACTIVE_DATASET Active Operational Dataset.

OT_SETTINGS_KEY_PENDING_DATASET Pending Operational Dataset.

OT_SETTINGS_KEY_NETWORK_INFO Thread network information.

OT_SETTINGS_KEY_PARENT_INFO Parent information.

OT_SETTINGS_KEY_CHILD_INFO Child information.

OT_SETTINGS_KEY_SLAAC_IID_SECRET_KEY SLAAC key to generate semantically opaque IID.

OT_SETTINGS_KEY_DAD_INFO Duplicate Address Detection (DAD) information.

OT_SETTINGS_KEY_SRP_ECDSA_KEY SRP client ECDSA public/private key pair.

OT_SETTINGS_KEY_SRP_CLIENT_INFO The SRP client info (selected SRP server address).

OT_SETTINGS_KEY_SRP_SERVER_INFO The SRP server info (UDP port).

OT_SETTINGS_KEY_BR_ULA_PREFIX BR ULA prefix.

OT_SETTINGS_KEY_BR_ON_LINK_PREFIXES BR local on-link prefixes.

OT_SETTINGS_KEY_BORDER_AGENT_ID Unique Border Agent/Router ID.

OT_SETTINGS_KEY_VENDOR_RESERVED_MIN

OT_SETTINGS_KEY_VENDOR_RESERVED_MAX

Definition at line 62 of file include/openthread/platform/settings.h

Function Documentation

otPlatSettingsInit

void otPlatSettingsInit (otInstance *aInstance, const uint16_t *aSensitiveKeys, uint16_t aSensitiveKeysLength)

Performs any initialization for the settings subsystem, if necessary.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aSensitiveKeys A pointer to an array containing the list of sensitive keys. May be NULL only if

aSensitiveKeysLength is 0, which means that there is no sensitive keys.

[in] aSensitiveKeysLength The number of entries in the aSensitiveKeys array.

Also sets the sensitive keys that should be stored in the secure area.

Note that the memory pointed by aSensitiveKeys MUST not be released before aInstance is destroyed.

Definition at line 103 of file include/openthread/platform/settings.h

otPlatSettingsDeinit

void otPlatSettingsDeinit (otInstance *aInstance)

Settings

942/962

Performs any de-initialization for the settings subsystem, if necessary.

Parameters

[in] aInstance The OpenThread instance structure.

Definition at line 111 of file include/openthread/platform/settings.h

otPlatSettingsGet

otError otPlatSettingsGet (otInstance *aInstance, uint16_t aKey, int aIndex, uint8_t *aValue, uint16_t *aValueLength)

Fetches the value of a setting.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aKey The key associated with the requested setting.

[in] aIndex The index of the specific item to get.

[out] aValue A pointer to where the value of the setting should be written. May be set to NULL if just testing

for the presence or length of a setting.

[inout] aValueLength A pointer to the length of the value. When called, this pointer should point to an integer

containing the maximum value size that can be written to aValue . At return, the actual length of

the setting is written. This may be set to NULL if performing a presence check.

Fetches the value of the setting identified by aKey and write it to the memory pointed to by aValue. It then writes the

length to the integer pointed to by aValueLength . The initial value of aValueLength is the maximum number of bytes to be

written to aValue .

Can be used to check for the existence of a key without fetching the value by setting aValue and aValueLength to NULL.

You can also check the length of the setting without fetching it by setting only aValue to NULL.

Note that the underlying storage implementation is not required to maintain the order of settings with multiple values. The

order of such values MAY change after ANY write operation to the store.

Definition at line 147 of file include/openthread/platform/settings.h

otPlatSettingsSet

otError otPlatSettingsSet (otInstance *aInstance, uint16_t aKey, const uint8_t *aValue, uint16_t aValueLength)

Sets or replaces the value of a setting.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aKey The key associated with the setting to change.

[in] aValue A pointer to where the new value of the setting should be read from. MUST NOT be NULL if

aValueLength is non-zero.

[in] aValueLength The length of the data pointed to by aValue. May be zero.

Sets or replaces the value of a setting identified by aKey .

Calling this function successfully may cause unrelated settings with multiple values to be reordered.

Settings

943/962

OpenThread stack guarantees to use otPlatSettingsSet() method for a aKey that was either previously set using

otPlatSettingsSet() (i.e., contains a single value) or is empty and/or fully deleted (contains no value).

Platform layer can rely and use this fact for optimizing its implementation.

Definition at line 176 of file include/openthread/platform/settings.h

otPlatSettingsAdd

otError otPlatSettingsAdd (otInstance *aInstance, uint16_t aKey, const uint8_t *aValue, uint16_t aValueLength)

Adds a value to a setting.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aKey The key associated with the setting to change.

[in] aValue A pointer to where the new value of the setting should be read from. MUST NOT be NULL if

aValueLength is non-zero.

[in] aValueLength The length of the data pointed to by aValue . May be zero.

Adds the value to a setting identified by aKey , without replacing any existing values.

Note that the underlying implementation is not required to maintain the order of the items associated with a specific key.

The added value may be added to the end, the beginning, or even somewhere in the middle. The order of any pre-existing

values may also change.

Calling this function successfully may cause unrelated settings with multiple values to be reordered.

OpenThread stack guarantees to use otPlatSettingsAdd() method for a aKey that was either previously managed by

otPlatSettingsAdd() (i.e., contains one or more items) or is empty and/or fully deleted (contains no value).

Platform layer can rely and use this fact for optimizing its implementation.

Definition at line 212 of file include/openthread/platform/settings.h

otPlatSettingsDelete

otError otPlatSettingsDelete (otInstance *aInstance, uint16_t aKey, int aIndex)

Removes a setting from the setting store.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aKey The key associated with the requested setting.

[in] aIndex The index of the value to be removed. If set to -1, all values for this aKey will be removed.

Deletes a specific value from the setting identified by aKey from the settings store.

Note that the underlying implementation is not required to maintain the order of the items associated with a specific key.

Definition at line 233 of file include/openthread/platform/settings.h

otPlatSettingsWipe

Settings

944/962

void otPlatSettingsWipe (otInstance *aInstance)

Removes all settings from the setting store.

Parameters

[in] aInstance The OpenThread instance structure.

Deletes all settings from the settings store, resetting it to its initial factory state.

Definition at line 243 of file include/openthread/platform/settings.h

SPI Slave

945/962

SPI Slave

SPI Slave
This module includes the platform abstraction for SPI slave communication.

Typedefs

typedef bool(* otPlatSpiSlaveTransactionCompleteCallback)(void *aContext, uint8_t *aOutputBuf, uint16_t aOutputBufLen,
uint8_t *aInputBuf, uint16_t aInputBufLen, uint16_t aTransactionLength)
Indicates that a SPI transaction has completed with the given length.

typedef void(* otPlatSpiSlaveTransactionProcessCallback)(void *aContext)
Invoked after a transaction complete callback is called and returns TRUE to do any further processing required.

Functions

otError otPlatSpiSlaveEnable(otPlatSpiSlaveTransactionCompleteCallback aCompleteCallback,
otPlatSpiSlaveTransactionProcessCallback aProcessCallback, void *aContext)
Initialize the SPI slave interface .

void otPlatSpiSlaveDisable(void)
Shutdown and disable the SPI slave interface .

otError otPlatSpiSlavePrepareTransaction(uint8_t *aOutputBuf, uint16_t aOutputBufLen, uint8_t *aInputBuf, uint16_t
aInputBufLen, bool aRequestTransactionFlag)
Prepare data for the next SPI transaction.

Typedef Documentation

otPlatSpiSlaveTransactionCompleteCallback

typedef bool(* otPlatSpiSlaveTransactionCompleteCallback) (void *aContext, uint8_t *aOutputBuf, uint16_t
aOutputBufLen, uint8_t *aInputBuf, uint16_t aInputBufLen, uint16_t aTransactionLength))(void *aContext, uint8_t
*aOutputBuf, uint16_t aOutputBufLen, uint8_t *aInputBuf, uint16_t aInputBufLen, uint16_t aTransactionLength)

Indicates that a SPI transaction has completed with the given length.

Parameters

[in] aContext Context pointer passed into otPlatSpiSlaveEnable() .

[in] aOutputBuf Value of aOutputBuf from last call to otPlatSpiSlavePrepareTransaction() .

[in] aOutputBufLen Value of aOutputBufLen from last call to otPlatSpiSlavePrepareTransaction() .

[in] aInputBuf Value of aInputBuf from last call to otPlatSpiSlavePrepareTransaction() .

[in] aInputBufLen Value of aInputBufLen from last call to otPlatSpiSlavePrepareTransaction()

[in] aTransactionLength Length of the completed transaction, in bytes.

The data written to the slave has been written to the pointer indicated by the aInputBuf argument to the previous call to

otPlatSpiSlavePrepareTransaction() .

SPI Slave

946/962

Once this function is called, otPlatSpiSlavePrepareTransaction() is invalid and must be called again for the next transaction to

be valid.

Note that this function is always called at the end of a transaction, even if otPlatSpiSlavePrepareTransaction() has not yet

been called. In such cases, aOutputBufLen and aInputBufLen will be zero.

This callback can be called from ISR context. The return value from this function indicates if any further processing is

required. If TRUE is returned the platform spi-slave driver implementation must invoke the transaction process callback

(aProcessCallback set in otPlatSpiSlaveEnable()) which unlike this callback must be called from the same OS context that

any other OpenThread API/callback is called.

Returns

TRUE if after this call returns the platform should invoke the process callback aProcessCallback , FALSE if there is nothing to

process and no need to invoke the process callback.

Definition at line 82 of file include/openthread/platform/spi-slave.h

otPlatSpiSlaveTransactionProcessCallback

typedef void(* otPlatSpiSlaveTransactionProcessCallback) (void *aContext))(void *aContext)

Invoked after a transaction complete callback is called and returns TRUE to do any further processing required.

Parameters

[in] aContext Context pointer passed into otPlatSpiSlaveEnable() .

Unlike otPlatSpiSlaveTransactionCompleteCallback which can be called from any OS context (e.g., ISR), this callback MUST be

called from the same OS context as any other OpenThread API/callback.

Definition at line 97 of file include/openthread/platform/spi-slave.h

Function Documentation

otPlatSpiSlaveEnable

otError otPlatSpiSlaveEnable (otPlatSpiSlaveTransactionCompleteCallback aCompleteCallback,
otPlatSpiSlaveTransactionProcessCallback aProcessCallback, void *aContext)

Initialize the SPI slave interface.

Parameters

[in] aCompleteCallback Pointer to transaction complete callback.

[in] aProcessCallback Pointer to process callback.

[in] aContext Context pointer to be passed to callbacks.

Note that SPI slave is not fully ready until a transaction is prepared using otPlatSPISlavePrepareTransaction() .

If otPlatSPISlavePrepareTransaction() is not called before the master begins a transaction, the resulting SPI transaction will send

all 0xFF` bytes and discard all received bytes.

Definition at line 116 of file include/openthread/platform/spi-slave.h

otPlatSpiSlaveDisable

SPI Slave

947/962

void otPlatSpiSlaveDisable (void)

Shutdown and disable the SPI slave interface.

Parameters

N/A

Definition at line 123 of file include/openthread/platform/spi-slave.h

otPlatSpiSlavePrepareTransaction

otError otPlatSpiSlavePrepareTransaction (uint8_t *aOutputBuf, uint16_t aOutputBufLen, uint8_t *aInputBuf, uint16_t
aInputBufLen, bool aRequestTransactionFlag)

Prepare data for the next SPI transaction.

Parameters

[in] aOutputBuf Data to be written to MISO pin

[in] aOutputBufLen S ize of the output buffer, in bytes

[in] aInputBuf Data to be read from MOSI pin

[in] aInputBufLen S ize of the input buffer, in bytes

[in] aRequestTransactionFlag Set to true if host interrupt should be set

Data pointers MUST remain valid until the transaction complete callback is called by the SPI slave driver, or until after the

next call to otPlatSpiSlavePrepareTransaction() .

May be called more than once before the SPI master initiates the transaction. Each successful call to this function will

cause the previous values from earlier calls to be discarded.

Not calling this function after a completed transaction is the same as if this function was previously called with both buffer

lengths set to zero and aRequestTransactionFlag set to false .

Once aOutputBufLen bytes of aOutputBuf has been clocked out, the MISO pin shall be set high until the master finishes the

SPI transaction. This is the functional equivalent of padding the end of aOutputBuf with 0xFF bytes out to the length of

the transaction.

Once aInputBufLen bytes of aInputBuf have been clocked in from MOSI, all subsequent values from the MOSI pin are

ignored until the SPI master finishes the transaction.

Note that even if aInputBufLen or aOutputBufLen (or both) are exhausted before the SPI master finishes a transaction, the

ongoing size of the transaction must still be kept track of to be passed to the transaction complete callback. For example,

if aInputBufLen is equal to 10 and aOutputBufLen equal to 20 and the SPI master clocks out 30 bytes, the value 30 is

passed to the transaction complete callback.

If a NULL pointer is passed in as aOutputBuf or aInputBuf it means that that buffer pointer should not change from its

previous/current value. In this case, the corresponding length argument should be ignored. For example,

otPlatSpiSlavePrepareTransaction(NULL, 0, aInputBuf, aInputLen, false) changes the input buffer pointer and its length but keeps

the output buffer pointer same as before.

Any call to this function while a transaction is in progress will cause all of the arguments to be ignored and the return value

to be OT_ERROR_BUSY .

Definition at line 166 of file include/openthread/platform/spi-slave.h

T ime Service

948/962

Time Service

Time Service
This module includes the platform abstraction for the time service.

Functions

uint64_t otPlatTimeGet(void)
Get the current platform time in microseconds referenced to a continuous monotonic local clock (64 bits width).

uint16_t otPlatTimeGetXtalAccuracy(void)
Get the current estimated worst case accuracy (maximum ± deviation from the nominal frequency) of the local platform

clock in units of PPM.

Function Documentation

otPlatTimeGet

uint64_t otPlatTimeGet (void)

Get the current platform time in microseconds referenced to a continuous monotonic local clock (64 bits width).

Parameters

N/A

The clock SHALL NOT wrap during the device's uptime. Implementations SHALL therefore identify and compensate for

internal counter overflows. The clock does not have a defined epoch and it SHALL NOT introduce any continuous or

discontinuous adjustments (e.g. leap seconds). Implementations SHALL compensate for any sleep times of the device.

Implementations MAY choose to discipline the platform clock and compensate for sleep times by any means (e.g. by

combining a high precision/low power RTC with a high resolution counter) as long as the exposed combined clock provides

continuous monotonic microsecond resolution ticks within the accuracy limits announced by otPlatTimeGetXtalAccuracy.

Returns

The current time in microseconds.

Definition at line 73 of file include/openthread/platform/time.h

otPlatTimeGetXtalAccuracy

uint16_t otPlatTimeGetXtalAccuracy (void)

Get the current estimated worst case accuracy (maximum ± deviation from the nominal frequency) of the local platform

clock in units of PPM.

Parameters

N/A

Note

T ime Service

949/962

Implementations MAY estimate this value based on current operating conditions (e.g. temperature).

In case the implementation does not estimate the current value but returns a fixed value, this value MUST be the worst-

case accuracy over all possible foreseen operating conditions (temperature, pressure, etc) of the implementation.

Returns

The current platform clock accuracy, in PPM.

Definition at line 90 of file include/openthread/platform/time.h

Toolchain

950/962

Toolchain

Toolchain
This module defines a toolchain abstraction layer through macros.

Usage:

typedef

OT_TOOL_PACKED_BEGIN

struct

{

 char mField1;

 union

{

 char mField2;

 long mField3;

} OT_TOOL_PACKED_FIELD;

} OT_TOOL_PACKED_END packed_struct_t;

Macros

#define OT_MUST_USE_RESULT undefined
Compiler-specific indication that a class or enum must be used when it is the return value of a function.

#define OT_TOOL_PACKED_BEGIN undefined
Compiler-specific indication that a class or struct must be byte packed.

#define OT_TOOL_PACKED_FIELD undefined
Indicate to the compiler a nested struct or union to be packed within byte packed class or struct.

#define OT_TOOL_WEAK undefined
Compiler-specific weak symbo l modifier.

#define OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK (aFmtIndex, aStartIndex)
Specifies that a function or method takes printf style arguments and should be type-checked against a format string.

#define OT_UNUSED_VARIABLE �VARIABLE�
Suppress unused variable warning in specific too lchains.

#define OT_UNREACHABLE_CODE �CODE�
Suppress Unreachable code warning in specific too lchains.

#define OT_APPLE_IGNORE_GNU_FOLDING_CONSTANT (...)

#define OT_FALL_THROUGH undefined
Suppress fall through warning in specific compiler.

Macro Definition Documentation

OT_MUST_USE_RESULT

Toolchain

951/962

#define OT_MUST_USE_RESULT

Compiler-specific indication that a class or enum must be used when it is the return value of a function.

Note

This is currently only available with clang (C++17 implements it as attribute [[nodiscard]]).

To suppress the 'unused-result' warning/error, please use the '-Wno-unused-result' compiler option.

Definition at line 81 of file include/openthread/platform/toolchain.h

OT_TOOL_PACKED_BEGIN

#define OT_TOOL_PACKED_BEGIN

Compiler-specific indication that a class or struct must be byte packed.

Definition at line 176 of file include/openthread/platform/toolchain.h

OT_TOOL_PACKED_FIELD

#define OT_TOOL_PACKED_FIELD

Indicate to the compiler a nested struct or union to be packed within byte packed class or struct.

Definition at line 177 of file include/openthread/platform/toolchain.h

OT_TOOL_WEAK

#define OT_TOOL_WEAK

Compiler-specific weak symbol modifier.

Definition at line 179 of file include/openthread/platform/toolchain.h

OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK

#define OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK

Specifies that a function or method takes printf style arguments and should be type-checked against a format string.

Must be added after the function/method declaration. For example:

vo id MyPrintf(vo id *aObject, const char *aFormat, ...) OT_TOOL_PRINTF_STYLE_FORMAT_ARG_CHECK(2, 3);

The two argument index values indicate format string and first argument to check against it. They start at index 1 for the

first parameter in a function and at index 2 for the first parameter in a method.

Definition at line 181 of file include/openthread/platform/toolchain.h

Toolchain

952/962

OT_UNUSED_VARIABLE

#define OT_UNUSED_VARIABLE

Value:

0 do \
0 { \
0 (vo id)(VARIABLE�; \
0 } while (false)

Suppress unused variable warning in specific toolchains.

Definition at line 252 of file include/openthread/platform/toolchain.h

OT_UNREACHABLE_CODE

#define OT_UNREACHABLE_CODE

Value:

�CODE�

Suppress Unreachable code warning in specific toolchains.

Definition at line 258 of file include/openthread/platform/toolchain.h

OT_APPLE_IGNORE_GNU_FOLDING_CONSTANT

#define OT_APPLE_IGNORE_GNU_FOLDING_CONSTANT

Value:

(...)

Definition at line 284 of file include/openthread/platform/toolchain.h

OT_FALL_THROUGH

#define OT_FALL_THROUGH

Value:

0 do \
0 { \
0 } while (false) /* fallthrough */

Suppress fall through warning in specific compiler.

Definition at line 300 of file include/openthread/platform/toolchain.h

TREL - Platform

953/962

TREL - Platform

TREL - Platform
This module includes the platform abstraction for Thread Radio Encapsulation Link (TREL) using DNS-SD and UDP/IPv6.

Modules

otPlatTrelPeerInfo

Typedefs

typedef struct
otPlatTrelPeerInfo

otPlatTrelPeerInfo
Represents a TREL peer info discovered using DNS-SD browse on the service name "_trel._udp".

Functions

void otPlatTrelEnable(otInstance *aInstance, uint16_t *aUdpPort)
Initializes and enables TREL platform layer.

void otPlatTrelDisable(otInstance *aInstance)
Disables TREL platform layer.

void otPlatTrelHandleDiscoveredPeerInfo(otInstance *aInstance, const otPlatTrelPeerInfo *aInfo)
This is a callback function from platform layer to report a discovered TREL peer info.

void otPlatTrelRegisterService(otInstance *aInstance, uint16_t aPort, const uint8_t *aTxtData, uint8_t aTxtLength)
Registers a new service to be advertised using DNS-SD [RFC6763].

void otPlatTrelSend(otInstance *aInstance, const uint8_t *aUdpPayload, uint16_t aUdpPayloadLen, const
otSockAddr *aDestSockAddr)
Requests a TREL UDP packet to be sent to a given destination.

void otPlatTrelHandleReceived(otInstance *aInstance, uint8_t *aBuffer, uint16_t aLength)
Is a callback from platform to notify of a received TREL UDP packet.

Typedef Documentation

otPlatTrelPeerInfo

typedef struct otPlatTrelPeerInfo otPlatTrelPeerInfo

Represents a TREL peer info discovered using DNS-SD browse on the service name "_trel._udp".

Definition at line 133 of file include/openthread/platform/trel.h

Function Documentation

otPlatTrelEnable

TREL - Platform

954/962

void otPlatTrelEnable (otInstance *aInstance, uint16_t *aUdpPort)

Initializes and enables TREL platform layer.

Parameters

[in] aInstance The OpenThread instance.

[out] aUdpPort A pointer to return the selected port number by platform layer.

Upon this call, the platform layer MUST perform the following:

1) TREL platform layer MUST open a UDP socket to listen for and receive TREL messages from peers. The socket is bound

to an ephemeral port number chosen by the platform layer. The port number MUST be returned in aUdpPort . The socket is

also bound to network interface(s) on which TREL is to be supported. The socket and the chosen port should stay valid

while TREL is enabled.

2) Platform layer MUST initiate an ongoing DNS-SD browse on the service name "_trel._udp" within the local browsing

domain to discover other devices supporting TREL. The ongoing browse will produce two different types of events: "add"

events and "remove" events. When the browse is started, it should produce an "add" event for every TREL peer currently

present on the network. Whenever a TREL peer goes offline, a "remove" event should be produced. "remove" events are

not guaranteed, however. When a TREL service instance is discovered, a new ongoing DNS-SD query for an AAAA record

should be started on the hostname indicated in the SRV record of the discovered instance. If multiple host IPv6 addressees

are discovered for a peer, one with highest scope among all addresses MUST be reported (if there are multiple address at

same scope, one must be selected randomly).

TREL platform MUST signal back the discovered peer info using otPlatTrelHandleDiscoveredPeerInfo() callback. This callback

MUST be invoked when a new peer is discovered, when there is a change in an existing entry (e.g., new TXT record or new

port number or new IPv6 address), or when the peer is removed.

Definition at line 87 of file include/openthread/platform/trel.h

otPlatTrelDisable

void otPlatTrelDisable (otInstance *aInstance)

Disables TREL platform layer.

Parameters

N/A aInstance

After this call, the platform layer MUST stop DNS-SD browse on the service name "_trel._udp", stop advertising the TREL

DNS-SD service (from otPlatTrelRegisterService()) and MUST close the UDP socket used to receive TREL messages.

@pram[in] aInstance The OpenThread instance.

Definition at line 98 of file include/openthread/platform/trel.h

otPlatTrelHandleDiscoveredPeerInfo

void otPlatTrelHandleDiscoveredPeerInfo (otInstance *aInstance, const otPlatTrelPeerInfo *aInfo)

This is a callback function from platform layer to report a discovered TREL peer info.

Parameters

[in] aInstance The OpenThread instance.

TREL - Platform

955/962

[in] aInfo A pointer to the TREL peer info.

Note

The aInfo structure and its content (e.g., the mTxtData buffer) does not need to persist after returning from this call.

OpenThread code will make a copy of all the info it needs.

Definition at line 145 of file include/openthread/platform/trel.h

otPlatTrelRegisterService

void otPlatTrelRegisterService (otInstance *aInstance, uint16_t aPort, const uint8_t *aTxtData, uint8_t aTxtLength)

Registers a new service to be advertised using DNS-SD [RFC6763].

Parameters

[in] aInstance The OpenThread instance.

[in] aPort The port number to include in the SRV record of the advertised service.

[in] aTxtData A pointer to the TXT record data (encoded) to be include in the advertised service.

[in] aTxtLength The length of aTxtData (number of bytes).

The service name is "_trel._udp". The platform should use its own hostname, which when combined with the service name

and the local DNS-SD domain name will produce the full service instance name, for example "example-host._trel._udp.local.".

The domain under which the service instance name appears will be 'local' for mDNS, and will be whatever domain is used

for service registration in the case of a non-mDNS local DNS-SD service.

A subsequent call to this function updates the previous service. It is used to update the TXT record data and/or the port

number.

The aTxtData buffer is not persisted after the return from this function. The platform layer MUST NOT keep the pointer and

instead copy the content if needed.

Definition at line 170 of file include/openthread/platform/trel.h

otPlatTrelSend

void otPlatTrelSend (otInstance *aInstance, const uint8_t *aUdpPayload, uint16_t aUdpPayloadLen, const otSockAddr
*aDestSockAddr)

Requests a TREL UDP packet to be sent to a given destination.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aUdpPayload A pointer to UDP payload.

[in] aUdpPayloadLen The payload length (number of bytes).

[in] aDestSockAddr The destination socket address.

Definition at line 181 of file include/openthread/platform/trel.h

otPlatTrelHandleReceived

void otPlatTrelHandleReceived (otInstance *aInstance, uint8_t *aBuffer, uint16_t aLength)

TREL - Platform

956/962

Is a callback from platform to notify of a received TREL UDP packet.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aBuffer A buffer containing the received UDP payload.

[in] aLength UDP payload length (number of bytes).

Note

The buffer content (up to its specified length) may get changed during processing by OpenThread core (e.g., decrypted in

place), so the platform implementation should expect that after returning from this function the aBuffer content may have

been altered.

Definition at line 198 of file include/openthread/platform/trel.h

otPlatTrelPeerInfo

957/962

otPlatTrelPeerInfo

Represents a TREL peer info discovered using DNS-SD browse on the service name "_trel._udp".

Public Attributes

bool mRemoved
This boo lean flag indicates whether the entry is being removed or added.

const uint8_t * mTxtData
The TXT record data (encoded as specified by DNS-SD) from the SRV record of the discovered TREL peer service

instance .

uint16_t mTxtLength
Number of bytes in mTxtData buffer.

otSockAddr mSockAddr
The TREL peer socket address (IPv6 address and port number).

Public Attribute Documentation

mRemoved

bool otPlatTrelPeerInfo::mRemoved

This boolean flag indicates whether the entry is being removed or added.

TRUE indicates that peer is removed.

FALSE indicates that it is a new entry or an update to an existing entry.

Definition at line 113 of file include/openthread/platform/trel.h

mTxtData

const uint8_t* otPlatTrelPeerInfo::mTxtData

The TXT record data (encoded as specified by DNS-SD) from the SRV record of the discovered TREL peer service

instance.

Definition at line 120 of file include/openthread/platform/trel.h

mTxtLength

uint16_t otPlatTrelPeerInfo::mTxtLength

Number of bytes in mTxtData buffer.

Definition at line 122 of file include/openthread/platform/trel.h

mSockAddr

otPlatTrelPeerInfo

958/962

otSockAddr otPlatTrelPeerInfo::mSockAddr

The TREL peer socket address (IPv6 address and port number).

The port number is determined from the SRV record of the discovered TREL peer service instance. The IPv6 address is

determined from the DNS-SD query for AAAA records on the hostname indicated in the SRV record of the discovered

service instance. If multiple host IPv6 addressees are discovered, one with highest scope is used.

Definition at line 132 of file include/openthread/platform/trel.h

Infrastructure Interface

959/962

Infrastructure Interface

Infrastructure Interface
This module includes the platform abstraction for the adjacent infrastructure network interface.

Functions

bool otPlatInfraIfHasAddress(uint32_t aInfraIfIndex, const otIp6Address *aAddress)
Tells whether an infra interface has the given IPv6 address assigned.

otError otPlatInfraIfSendIcmp6Nd(uint32_t aInfraIfIndex, const otIp6Address *aDestAddress, const uint8_t *aBuffer,
uint16_t aBufferLength)
Sends an ICMPv6 Neighbor Discovery message on given infrastructure interface .

void otPlatInfraIfRecvIcmp6Nd(otInstance *aInstance, uint32_t aInfraIfIndex, const otIp6Address *aSrcAddress,
const uint8_t *aBuffer, uint16_t aBufferLength)
The infra interface driver calls this method to notify OpenThread that an ICMPv6 Neighbor Discovery message is

received.

otError otPlatInfraIfStateChanged(otInstance *aInstance, uint32_t aInfraIfIndex, bool aIsRunning)
The infra interface driver calls this method to notify OpenThread of the interface state changes.

otError otPlatInfraIfDiscoverNat64Prefix(uint32_t aInfraIfIndex)
Send a request to discover the NAT64 prefix on the infrastructure interface with aInfraIfIndex .

void otPlatInfraIfDiscoverNat64PrefixDone(otInstance *aInstance, uint32_t aInfraIfIndex, const otIp6Prefix
*aIp6Prefix)
The infra interface driver calls this method to notify OpenThread that the discovery of NAT64 prefix is done .

Function Documentation

otPlatInfraIfHasAddress

bool otPlatInfraIfHasAddress (uint32_t aInfraIfIndex, const otIp6Address *aAddress)

Tells whether an infra interface has the given IPv6 address assigned.

Parameters

[in] aInfraIfIndex The index of the infra interface.

[in] aAddress The IPv6 address.

Returns

TRUE if the infra interface has given IPv6 address assigned, FALSE otherwise.

Definition at line 68 of file include/openthread/platform/infra_if.h

otPlatInfraIfSendIcmp6Nd

otError otPlatInfraIfSendIcmp6Nd (uint32_t aInfraIfIndex, const otIp6Address *aDestAddress, const uint8_t *aBuffer,
uint16_t aBufferLength)

Infrastructure Interface

960/962

Sends an ICMPv6 Neighbor Discovery message on given infrastructure interface.

Parameters

[in] aInfraIfIndex The index of the infrastructure interface this message is sent to.

[in] aDestAddress The destination address this message is sent to.

[in] aBuffer The ICMPv6 message buffer. The ICMPv6 checksum is left zero and the platform should do the

checksum calculate.

[in] aBufferLength The length of the message buffer.

See RFC 4861: https://tools.ietf.org/html/rfc4861.

Note

Per RFC 4861, the implementation should send the message with IPv6 link-local source address of interface aInfraIfIndex and

IP Hop Limit 255.

Definition at line 88 of file include/openthread/platform/infra_if.h

otPlatInfraIfRecvIcmp6Nd

void otPlatInfraIfRecvIcmp6Nd (otInstance *aInstance, uint32_t aInfraIfIndex, const otIp6Address *aSrcAddress, const
uint8_t *aBuffer, uint16_t aBufferLength)

The infra interface driver calls this method to notify OpenThread that an ICMPv6 Neighbor Discovery message is received.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aInfraIfIndex The index of the infrastructure interface on which the ICMPv6 message is received.

[in] aSrcAddress The source address this message is received from.

[in] aBuffer The ICMPv6 message buffer.

[in] aBufferLength The length of the ICMPv6 message buffer.

See RFC 4861: https://tools.ietf.org/html/rfc4861.

Note

Per RFC 4861, the caller should enforce that the source address MUST be a IPv6 link-local address and the IP Hop Limit

MUST be 255.

Definition at line 109 of file include/openthread/platform/infra_if.h

otPlatInfraIfStateChanged

otError otPlatInfraIfStateChanged (otInstance *aInstance, uint32_t aInfraIfIndex, bool aIsRunning)

The infra interface driver calls this method to notify OpenThread of the interface state changes.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aInfraIfIndex The index of the infrastructure interface.

[in] aIsRunning A boolean that indicates whether the infrastructure interface is running.

https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4861

Infrastructure Interface

961/962

It is fine for the platform to call to method even when the running state of the interface hasn't changed. In this case, the

Routing Manager state is not affected.

Definition at line 134 of file include/openthread/platform/infra_if.h

otPlatInfraIfDiscoverNat64Prefix

otError otPlatInfraIfDiscoverNat64Prefix (uint32_t aInfraIfIndex)

Send a request to discover the NAT64 prefix on the infrastructure interface with aInfraIfIndex .

Parameters

[in] aInfraIfIndex The index of the infrastructure interface to discover the NAT64 prefix.

OpenThread will call this method periodically to monitor the presence or change of NAT64 prefix.

Definition at line 147 of file include/openthread/platform/infra_if.h

otPlatInfraIfDiscoverNat64PrefixDone

void otPlatInfraIfDiscoverNat64PrefixDone (otInstance *aInstance, uint32_t aInfraIfIndex, const otIp6Prefix *aIp6Prefix)

The infra interface driver calls this method to notify OpenThread that the discovery of NAT64 prefix is done.

Parameters

[in] aInstance The OpenThread instance structure.

[in] aInfraIfIndex The index of the infrastructure interface on which the NAT64 prefix is discovered.

[in] aIp6Prefix A pointer to NAT64 prefix.

Is expected to be invoked after calling otPlatInfraIfDiscoverNat64Prefix. If no NAT64 prefix is discovered, aIp6Prefix shall

point to an empty prefix with zero length.

Definition at line 161 of file include/openthread/platform/infra_if.h

Infrastructure Interface

962/962

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Developing with OpenThread
	Getting Started
	Overview

	Fundamentals
	Overview

	OpenThread Developer's Guide
	Overview
	Developing and Debugging
	Overview
	Configuring Sleepy Devices
	Sleepy End Devices (SED)
	Synchronized Sleepy End Devices (SSED)
	SSED Use Cases
	Building And Using Silicon Labs Sleepy End Device Demo Applications

	OpenThread Border Router
	Overview

	Coexistence
	Overview

	Multiprotocol
	Overview

	Bootloading
	Overview

	Non-Volatile Memory Use
	Overview

	Security
	Overview

	Performance
	Overview

	API Reference Guide
	OpenThread Modules
	API Reference
	Error
	Execution
	Instance
	Tasklets

	IPv6 Networking
	DNS
	otDnsTxtEntry
	otDnsTxtEntryIterator
	otDnsQueryConfig
	otDnsServiceInfo

	DNS-SD Server
	otDnssdServiceInstanceInfo
	otDnssdHostInfo
	otDnssdCounters

	ICMPv6
	otIcmp6Header
	otIcmp6Header::OT_TOOL_PACKED_FIELD

	otIcmp6Handler

	IPv6
	otIp6InterfaceIdentifier
	otIp6InterfaceIdentifier::OT_TOOL_PACKED_FIELD

	otIp6NetworkPrefix
	otIp6AddressComponents
	otIp6Address
	otIp6Address::OT_TOOL_PACKED_FIELD

	otIp6Prefix
	otNetifAddress
	otNetifMulticastAddress
	otSockAddr
	otMessageInfo
	otIp6AddressInfo
	otPacketsAndBytes
	otBorderRoutingCounters

	NAT64
	otIp4Address
	otIp4Address::OT_TOOL_PACKED_FIELD

	otIp4Cidr
	otNat64Counters
	otNat64ProtocolCounters
	otNat64ErrorCounters
	otNat64AddressMapping
	otNat64AddressMappingIterator

	SRP
	otSrpClientHostInfo
	otSrpClientService
	otSrpClientBuffersServiceEntry
	otSrpServerTtlConfig
	otSrpServerLeaseConfig
	otSrpServerLeaseInfo
	otSrpServerResponseCounters

	Ping Sender
	otPingSenderReply
	otPingSenderStatistics
	otPingSenderConfig

	TCP
	TCP
	otLinkedBuffer
	otTcpEndpoint
	otTcpEndpointInitializeArgs
	otTcpListener
	otTcpListenerInitializeArgs

	TCP Abstractions
	otTcpCircularSendBuffer
	otTcpEndpointAndCircularSendBuffer

	UDP
	UDP
	otUdpReceiver
	otUdpSocket

	UDP Forward

	Link
	Link
	otThreadLinkInfo
	otMacFilterEntry
	otMacCounters
	otActiveScanResult
	otEnergyScanResult

	Link Metrics
	otLinkMetricsValues
	otLinkMetricsSeriesFlags

	Raw Link

	Message
	otMessageSettings
	otMessageQueue
	otMessageQueueInfo
	otBufferInfo

	Multi Radio Link
	otRadioLinkInfo
	otMultiRadioNeighborInfo

	TREL - Thread Stack
	otTrelPeer

	Thread
	Backbone Router
	otBackboneRouterConfig
	otBackboneRouterMulticastListenerInfo
	otBackboneRouterNdProxyInfo

	Border Agent
	otBorderAgentId

	Border Router
	Border Routing Manager
	otBorderRoutingPrefixTableIterator
	otBorderRoutingPrefixTableEntry

	Commissioner
	otSteeringData
	otCommissioningDataset
	otJoinerPskd
	otJoinerInfo

	General
	otBorderRouterConfig
	otLowpanContextInfo
	otExternalRouteConfig
	otServerConfig
	otServiceConfig
	otNetworkDiagConnectivity
	otNetworkDiagRouteData
	otNetworkDiagRoute
	otNetworkDiagMacCounters
	otNetworkDiagMleCounters
	otNetworkDiagChildEntry
	otNetworkDiagTlv
	otLinkModeConfig
	otNeighborInfo
	otLeaderData
	otRouterInfo
	otIpCounters
	otMleCounters
	otThreadParentResponseInfo
	otThreadDiscoveryRequestInfo

	Joiner
	otJoinerDiscerner

	Operational Dataset
	otNetworkKey
	otNetworkName
	otExtendedPanId
	otPskc
	otSecurityPolicy
	otOperationalDatasetComponents
	otTimestamp
	otOperationalDataset
	otOperationalDatasetTlvs

	Router/Leader
	otChildInfo
	otCacheEntryInfo
	otCacheEntryIterator
	otDeviceProperties
	otNeighborTableEntryInfo

	Server

	Add-Ons
	Channel Manager
	Channel Monitoring
	Child Supervision
	CoAP
	CoAP
	otCoapOption
	otCoapOptionIterator
	otCoapResource
	otCoapBlockwiseResource
	otCoapTxParameters

	CoAP Secure

	Command Line Interface
	otCliCommand

	Crypto - Thread Stack
	Factory Diagnostics - Thread Stack
	Heap
	History Tracker
	otHistoryTrackerIterator
	otHistoryTrackerNetworkInfo
	otHistoryTrackerUnicastAddressInfo
	otHistoryTrackerMulticastAddressInfo
	otHistoryTrackerMessageInfo
	otHistoryTrackerNeighborInfo
	otHistoryTrackerRouterInfo
	otHistoryTrackerOnMeshPrefixInfo
	otHistoryTrackerExternalRouteInfo

	Jam Detection
	Logging - Thread Stack
	otLogHexDumpInfo

	Mesh Diagnostics
	otMeshDiagDiscoverConfig
	otMeshDiagRouterInfo
	otMeshDiagChildInfo
	otMeshDiagChildEntry
	otMeshDiagRouterNeighborEntry

	Network Co-Processor
	Network Time Synchronization
	Radio Statistics
	otRadioTimeStats

	Random Number Generator
	RNG Cryptographic
	RNG Non-cryptographic

	SNTP
	otSntpQuery

	Platform Abstraction
	Alarm
	Crypto - Platform
	otCryptoKey
	otCryptoContext
	otPlatCryptoSha256Hash
	otPlatCryptoEcdsaKeyPair
	otPlatCryptoEcdsaPublicKey
	otPlatCryptoEcdsaSignature

	DNS - Platform
	Entropy
	Factory Diagnostics - Platform
	Logging - Platform
	Memory
	Message Pool
	otMessageBuffer

	Miscellaneous
	Network Simulator
	Radio
	Radio Types
	otExtAddress
	otMacKey
	otMacKeyMaterial
	otRadioIeInfo
	otRadioFrame
	otRadioCoexMetrics
	otLinkMetrics

	Radio Configuration
	Radio Operation
	Radio Extension

	Settings
	SPI Slave
	Time Service
	Toolchain
	TREL - Platform
	otPlatTrelPeerInfo

	Infrastructure Interface

