
Simplicity Studio 5 Users Guide

1/335

Simplicity Studio 5 Users Guide

Overview

New Features

Known Issues

For Users of Previous Versions

Getting Started

Prerequisites

Install SSv5 and Software

Explore SSv5

Start a Project

Install SDK Extensions

Upgrade a Project to a New Software Version

Project Migration

About the Launcher

Welcome and Device Tabs

Debug Adapters

My Products

Menu

Toolbar

About the Simplicity IDE

User Interface Review

Import and Export

Code Editing

Developing for 32�Bit Devices

Overview

Developing with Project Configurator

Project Configurator

Component Editor

Pin Tool

Bluetooth GATT Configurator

Bluetooth Mesh Configurator

Proprietary Radio Configurator

Wi-SUN Configurator

ZCL Advanced Platform

Solutions

Memory Editor

Developing with AppBuilder

Configuring a Project

Configuring Peripherals

Simplicity Studio 5 Users Guide

2/335

Developing for 8�Bit Devices

About Projects

Using Hardware Configurator

Building and Flashing

Building

Post-Build Editor

Flashing

Testing and Debugging

Overview and Resources

Using the Debugger

Using Wireshark

Companion IDEs: VS Code

Using the Tools

Tools Overview

Bluetooth NCP Commander

Energy Profiler

Starting an Energy Analysis Session

User Interface

Energy Statistics

Play and Record Data Control

Freeze and Record Triggers

Search Capability

Profiling with Code Correlation

Debugging with the Logic Analyzer

Energy Profiler and Network Analyzer

Network Analyzer

Network Analyzer Interface

Capturing Data and Managing Sessions

Viewing Data in Editors

Filtering Captured Data

Multinetwork Considerations

Custom Decoders

Network Analyzer Preferences

Bluetooth Direction Finding Tools

Additional Information

Tips and Tricks

Revision History

Overview

3/335

Overview

Simplicity Studio® 5 User's Guide
S implicity Studio is the core development environment designed to support the S ilicon Labs IoT portfolio of system-on-

chips (SoCs) and modules. It provides access to target device-specific web and SDK resources; software and hardware

configuration tools; an integrated development environment (IDE) featuring industry-standard code editors, compilers and

debuggers; and advanced, value-add tools for network analysis and code-correlated energy profiling.

S implicity Studio is designed to simplify developer workflow. It intelligently recognizes all evaluation and development kit

parts released by S ilicon Labs and, based on the selected development target, presents appropriate software development

kits (SDKs) and other development resources.

S implicity Studio 5 (SSv5) focuses on developer experience, leveraging feedback from customers, employees and

competitive reviews. Developers of all experience levels will benefit from an optimized workflow that supports them

through the development journey and produces quicker project progression and device configuration.

The Simplicity Studio 5 User's Guide pages are organized into the following groups.

Getting Started describes how to install SSv5 and the relevant development resources, and provides general overviews of

using the SSv5 interface and of developing projects in SSv5. If you are new to SSv5, start here.

About the Launcher is a reference guide to the features and functions available when you first open SSv5. This is a general

reference, although some items may not be applicable to all devices.

About the S implicity IDE is a reference guide to the features and functions in the S implicity integrated development

environment. This is a general reference, although some items may not be applicable to all devices.

Developing for 32-Bit Devices provides instructions and reference material for 32-bit device development in the two

development environments: Project Configurator and AppBuilder.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-32bit-devices-overview

Overview

4/335

Developing for 8-Bit Devices provides instructions and reference material for 8-bit device development using the Hardware

Configurator.

Building and Flashing describes how to compile and flash images to various device types.

Companion IDEs: Visual Studio Code discusses how to generate project code in S implicity Studio 5 to then be used in the VS

Code IDE.

Testing and Debugging outlines tools and strategies for testing your applications on S ilicon Labs devices.

Using the Tools is a reference guide to the various tools packaged with SSv5. Not all tools are applicable to every

development path. Their specific use is described in the individual Developing for pages.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-for-8bit-devices
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-vscode-ide
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-overview

New Features

5/335

New Features

New Features

Simplicity Studio® 5 version 5.8.0.0 released December 13, 2023

This release includes the following key features:

Two new project generators have been officially released.

Visual Studio Code Project (utilizing CMake and Ninja)

CMake

Matter Provisioning Tool 1.0.0 (Beta) has been released.

Requires GSDK 4.4 and Matter Extension 2.2 or newer

Documentation will be coming in a future patch release

Improvements for computers using MAC M1 Hardware.

Simplicity Studio® 5 version 5.7.0.0 released June 7, 2023

This release includes the following key features:

Amazon S idewalk: Can now be installed as an extension directly in S implicity Studio.

Amazon S idewalk: Protocol Configurator released.

Pin Tool: Now supports Analog pin configuration.

Simplicity Studio® 5 version 5.6.3.0 released March 10, 2023

This release includes the following key features:

Solutions: Enhanced support for TrustZone applications.

Post-Build Editor: Removes the requirements for manually editing the yaml output files.

Simplicity Studio® 5 version 5.6.2.0 released February 14, 2023

This release includes the following key features:

Pin Tool: The user interface is redesigned.

Bluetooth NCP Commander: Updates in support of Bluetooth mesh functionality.

Simplicity Studio® 5 version 5.6.0.0 released December 14, 2022

This release includes the following key features:

Project Configuration Report Generator: Provides a report including

Target hardware device

Target hardware device pin mapping

Target SDK

Software extensions used in the build

Installed application, utility, and platform software components

Post-Build Editor: Allows for ease of post-build image creation:

YAML file is modified to include steps.

YAML file can be provided to S implicity Commander to create an OTA upgrade image.

Support for Visual Studio Code as a Companion IDE: Basic IDE functionality within VS Code using a S ilicon Labs Extension.

Build

Flash

https://www.silabs.com/ecosystems/extend-iot-device-range-with-amazon-sidewalk?guide-tab=start_configure
https://www.silabs.com/ecosystems/extend-iot-device-range-with-amazon-sidewalk?guide-tab=start_configure
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/pin-tool
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-solutions
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/post-build-editor
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/pin-tool
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-bluetooth-ncp-commander/
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-start-a-project#project-configurator-projects
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/post-build-editor
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-vscode-ide

New Features

6/335

Debug

Extended Matter Enablement Package support to cover example project configuration, build, and debug.

Simplicity Studio® 5 version 5.5.0.0 released September 7, 2022

This release includes the following key features:

Introduction of Matter Support:

Pre-built Matter demos now supported within the S implicity Studio Launcher perspective.

Matter Enablement Package now available from the Installation Manager.

Integrated Wireshark Launching from the Debug Adapters view.

Usability improvements to the Package Manager.

Simplicity Studio® 5 version 5.4.2.0 released August 17, 2022

Support for the EFR32xG24 Explorer K it.

Simplicity Studio® 5 version 5.4.0.0 released June 8, 2022

This release includes the following key features:

Eclipse upgraded to v4.23, featuring several bug fixes and improvements, including improved support for the latest MacOS

versions.

Logic Analyzer view added to Energy Profiler for use with the general-purpose logic analyzer input pins of the Wireless Pro

K it mainboard (e.g. xG24-PK6009A featuring BRD4002A).

New Wi-SUN Configurator tool available, providing easy graphical configuration of the main Wi-SUN application settings.

New filters added to Launcher -> Example Projects & Demos view to help users filter by wireless technology, device type,

level/difficulty, quality, and more.

New "Quick Links" view added to the SLC Project Configurator.

Bluetooth Direction Finding (AoA) tool suite update with new playback and visualization features.

Support for SDK Extensions as defined by the SLC Specification.

Improvements to the Linux installation dependencies and scripts.

Simplicity Studio® 5 version 5.3.0.0 released December 15, 2021

This release includes the following key features:

NCP Commander enhancements

Bluetooth LE Direction Finding tools suite v1.0

Installation of GSDKs published on G itHub

Dynamic GATT Configuration

IDE Dark Theme improvements

Multi-Project Solutions

Simplicity Studio® 5 version 5.2.0.0 released June 16, 2021

This release includes the following key features:

Support for upgrading SLC projects to a newer SDK

NCP Commander updates:

Advertiser improvements including ability to build custom advertisement data packets, fine tune the TX Power, and export

to incorporate settings into firmware.

Devices discovery improvements: ability to favorite devices and new filter by device name, address, RSSI, raw advertising

data or favorite devices.

RF Regulatory Tests: ability to add CTE to DTM packets

Standalone version with access to all system COM ports may be launched through Tools dialog or Compatible Tools tab

(see the Bluetooth NCP Commander page for more information)

Bluetooth Mesh Configurator updates

New warnings if Device Composition Data does not comply with the specification

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/install-sdk-extensions
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/using-wireshark
https://www.eclipse.org/eclipse/news/4.23/
https://www.silabs.com/development-tools/wireless/efr32xg24-pro-kit-10-dbm
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/wi-sun-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher/welcome-and-device-tabs#example-projects-demos-tab
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-configurator
https://siliconlabs.github.io/slc-specification
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-solutions
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-bluetooth-ncp-commander

New Features

7/335

Various bug fixes and improvements to validate model rules

Upgrade to support integrations with IAR Embedded Workbench v8.50.9

Upgraded default GCC compiler to version Arm GCC v10.2

Simplicity Studio® 5 version 5.1.0.0 released December 9, 2020

This release includes the following key features:

Beta release of GNU Debugger (GDB) support

S implicity Studio 5.1 includes Beta-level support for a GDB client and SEGGER's GDB server.

G itHub integration for access to software example repositories

Starting in S implicity Studio 5.1, developers may clone sample projects from within the Gecko SDK or within compatible

G itHub repos.

Bluetooth Mesh support

Starting in S implicity Studio 5.1 and Gecko SDK 3.1, Bluetooth Mesh is supported in the new Project Configurator workflow.

Studio 5.1 introduces the all-new Bluetooth Mesh Configurator tool for configuring a Bluetooth Mesh node's Device

Composition Data (DCD).

Bluetooth NCP Commander

Bluetooth NCP Commander is a new S implicity Studio 5 interactive console tool for sending BGAPI commands to a Bluetooth

NCP application connected to a development host machine.

Simplicity Studio® 5 version 5.0.0.0 released July 29, 2020

The initial release of SSv5 includes the following key features:

Launcher

Fresh, clean user interface

Automatic detection of connected development boards

Context-aware development board and target device developer resources

SDK download and update manager

Easy programming of pre-built demo apps

S imple cloning of software examples

Quick access to software and hardware documentation with search and filter capabilities

Software creation & management tools

Support for Gecko SDK Suite 3.0 and later

Creation of projects for

The integrated S implicity Studio IDE

IAR Embedded Workbench

Command-line GNU toolchain (GNU makefiles)

Searchable library of device-relevant software making it easy to add software components to projects

Configure software components in a GUI or text (C source) editor

Configurable peripheral initialization, drivers, middleware, kernels and utilities

Built-in software configuration error-checking

Software dependency manager simplifies porting from

SDK to SDK

S ilicon Labs development kits to custom hardware designs

Graphical configuration tools

Pin tool to assign pin and peripheral hardware resources

Proprietary radio configurator tool

Editor for Bluetooth LE Generic Attribute Profile (GATT)

Source/Project management and revision control

Option to copy or link SDK source

No hard-coded paths

Clear separation between SDK and customer source code

Easy transfer of projects (share/import/export of projects)

Source code management and software engineering workflows

Development Tools

Powerful integrated development environment (IDE)

Built on latest Eclipse framework (v4.14 and newer)

C/C++ Development Tooling (CDT, v9.10 and newer)

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/using-the-debugger
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher/welcome-and-device-tabs#example-projects-demos-tab
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/bluetooth-mesh-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-bluetooth-ncp-commander

New Features

8/335

Eclipse marketplace to enhance and customize

Valuable insights with S ilicon Labs analysis tools

Wireless network traffic capture and analysis

Test and analyze the traffic of your wireless devices and networks

Data collected directly from devices under test

Includes signal strength, LQI (Link Quality Indicator) and filtering information (unique to S ilicon Labs)

Capture and display energy usage

Monitor single device or multiple nodes on a wireless network

Code-correlated energy data – identify where your embedded application is consuming energy and design power-

optimized applications

Advanced trigger and search functions locate power events

Known Issues

9/335

Known Issues

Known Issues

Simplicity Studio® Version 5.8.0

ID Issue Workaround

758963 The Navigation Buttons (back,

forward, etc) will not be

displayed if S implicity Studio

starts up on the S implicity IDE

perspective.

Change to a different perspective such as the Launcher perspective and

then back to the S implicity IDE perspective.

1095792 Changing the Target Part in

Project Configurator does not

work correctly on customer

hardware.

Either create a new software example for the desired target part and port in

code changes or manually change the component ID in the .slcp and .slps

files with a text editor and then open the Project configurator and do a Force

Generation.

1113960 GDB Debug Session Launch

fails with "Error in final launch

sequence" popup.

Typically, the debug session will launch successfully the next time or after a

S implicity Studio restart. If the issue persists, edit the debug configuration

Run > Debug configurations… and uncheck the 'Continue' box on the Startup

tab. The debug session will stop before main() , but clicking Resume will run

to main() .

1156776 Custom Network Analyzer

Decoders no longer work

starting with version 5.7.0.0.

JavaScript custom decoders need to be converted to LUA decoders. See

Custom Decoders.

1209674 IAR Toolchain linker command

line length can exceed

Windows line limit.

When the IAR toolchain is used to compile projects from the S implicity Studio

IDE under Windows, it is possible to get linker errors if the linker line length

exceeds the Windows limit of 30,000 characters.

The work around is to edit the project properties [C/C++ Build] > [Settings] >

[IAR Linker for ARM] [Expert settings] and to use this command line:

@echo "$(OBJS) $(USER_OBJS)" > linker_file .xcl; ${COMMAND} -f linker_file .xcl $(LIBS)

${OUTPUT_FLAG}${OUTPUT_PREFIX}${OUTPUT} ${FLAGS}

1225683 Blank Project Wizard or Log In

windows seen with MacOS

Ventura or later.

When running S implicity Studio under MacOS Ventura or later, if blank

windows are seen for the new project wizard, login page or other windows,

the internal browser used by S implicity Studio might not have permissions to

make changes to the system.

The work around is to go to the MacOS System Settings -> Privacy &

Security -> App Management and to add S implicity Studio as an application

that can update or delete other applications.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-network-analyzer/project-upgrade-new-gsdk-version

For Users of Previous Versions

10/335

For Users of Previous Versions

For Users of Previous Versions
If you are migrating from S implicity Studio 4 to SSv5, or if you are transitioning from AppBuilder projects to the component-

based architecture, see Project Migration for additional information.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/migrate-from-ss-4

Getting Started

11/335

Getting Started

Getting Started
To get started with S implicity Studio® 5 (SSv5):

 Install SSv5 and development software

 Explore the main features of SSv5

 Start a project

You do not need hardware to install SSv5 and the relevant software packages or, for 32-bit devices, to explore the project

configuration interface for a particular SDK. However, having your target hardware connected during installation ensures

that your SSv5 installation is configured precisely for your environment.

You should also have an account set up in the S ilicon Labs Customer Support Portal. Access to some software packages is

controlled by your customer profile.

See Prerequisites for more information.

Prerequisites

12/335

Prerequisites

Prerequisites
To streamline your S implicity Studio® 5 (SSv5) installation:

Connect development hardware to your PC

Log in to your customer account

SSv5 System Requirements

Operating Systems

Operating System Version

Windows Windows 10 (64-bit), Windows 11

macOS 10.14 Mojave, 10.15 Catalina, 11.x Big Sur, 12.x Monterey

Linux Ubuntu 20.04 LTS

Hardware

Hardware Component Item

CPU 1 GHZ or better

Memory 1 GB RAM minimum, 8 GB recommended for Wireless Protocol development

Disk Space 600 MB disk space for minimum FFD installation; 7 GB for Wireless Dynamic Protocol support

Hardware

A S ilicon Labs development kit is not required to get started with S implicity Studio. However, if S implicity Studio detects an

official development kit, it can be used to help select the appropriate software and tools for installation. If you don't have a

development kit, you can explore the available options here.

EFR32 Kits

If you have a S ilicon Labs Wireless Starter K it (WSTK) or Pro K it, mount a radio board on the mainboard and connect the

mainboard to your PC using the USB cable supplied with the kit.

Note: For best performance in SSv5, be sure that the power switch on the mainboard is in the Advanced Energy Monitoring

or “AEM” position.

https://www.silabs.com/development-tools.p-microcontrollers.p-wireless

Prerequisites

13/335

Customer Account

If you do not already have one, create an account on the S ilicon Labs Customer Support portal. Be sure to record your

account username and password as you will use it to log in through SSv5. Your account properties determine not only what

software components you can download, but also what notifications you will receive.

To review or change your notification subscriptions, log in to the portal, click HOME to go to the portal home page and then

click the Manage Notifications tile. Make sure that Software/Security Advisory Notices & Product Change Notices (PCNs) is

checked, and that you are subscribed at minimum for your platform and protocol. S ilicon Labs strongly recommends that

you receive these notifications. Click Save to save any changes.

Install SSv5 and Software

14/335

Install SSv5 and Software

Install SSv5 and Software
This section discusses how to install SSv5 and, once SSv5 is installed, how to install software.

NOTE: Depending on your corporate environment, you may encounter installation problems. For example, if you cannot log

in to S implicity Studio® 5 (SSv5) but know you are entering your Customer Account username and password correctly, or if

you get an error about connecting to the update server and your computer is definitely connected to the Internet, see

SDK installation or updates are not working for possible causes and solutions.

Install SSv5

Instructions for installation on Windows and MacOS and on Linux are provided.

On Windows and MacOS

 Download the SSv5 installation package from the S ilicon Labs website. The Windows package is an '.iso' disk image. After

the package finishes downloading, double-click it to mount the iso image as a drive and then double-click the setup.exe file

inside the drive to launch the installer.

 When the SSv5 installer first launches, it presents a S implicity Studio License Agreement dialog. Accept the terms of the

agreement and click Next >.

 Choose a destination location, click Next >, and then click Install.

 When SSv5 launches, you are presented with one or more additional license agreements. You can accept them individually or

all at once. Click DONE when finished.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tips-and-tricks#sdk-installation-or-updates-are-not-working

Install SSv5 and Software

15/335

 Next, you are invited to log in. Log in using your S ilicon Labs account username and password. NOTE: Although you can skip

log in here, you must be logged in to access some restricted access software packages.

 Before login completes, you must agree to Experience Tracking. You can change the status later in SSv5 Preferences >>

S implicity Studio >> User Experience.

Install SSv5 and Software

16/335

 If you have hardware connected, depending on your operating system and security settings, you may need to allow SSv5 to

make changes to your system. SSv5 prompts you to install the Device Inspector. Click Yes.

On Linux

S implicity Studio for Linux® OS is only officially supported on Ubuntu® LTS distributions. S implicity Studio might work on

other distributions, but it is only tested and verified to work with Ubuntu® LTS.

The base S implicity Studio platform (not an installer) is delivered in a tar file that should be expanded into the desired

installation directory. The recommended installation directory is the user's root directory

(/home/USERNAME/SimplicityStudio_v5). This directory must be one that can be updated without root permissions.

Before launching S implicity Studio the first time, execute the following:

sudo apt-get update

sudo apt-get upgrade

cd SimplicityStudio_v5

sudo ./setup.sh

See Notices for more information on the setup.sh script.

When the S implicity Studio executable 'studio' is launched, it starts a first-time installation process to add support either by

a connected debug adapter or by technology type.

Notices

setup.sh will:

 Attempt to install dev rules for USB device connectivity

 Install missing packages (libraries) through your system's package manager.

setup.sh will only install required external Linux® packages on Ubuntu® distributions. For other distributions, the setup.sh

script should be examined for a list of possible packages that will need to be installed for S implicity Studio to work.

If the Wayland display protocol is being used, start S implicity Studio from a terminal window with ./studiowayland.sh .

JxBrowser: S implicity Studio uses the third party product JxBrowser to render several windows, including the installation

window, Launcher perspective and Project Configurator windows. By default JxBrowser expands the Chromium browser into

the /tmp folder. If this is not a good option because of file permissions of the /tmp folder, the location can be changed by

adding a line to the studio.ini file specifying a different path such as: -Djxbrowser.chromium.dir=/home/USERNAME/.jxbrowser

Install SSv5 and Software

17/335

Install Software

After SSv5 installation is complete, you are prompted to install software packages, such as the Gecko SDK (GSDK). SSv5

offers two options:

Install by Connecting Device(s)

Install by Technology Type

You do not need to have a target device connected to install by Technology Type.

Install Software by Connecting Devices

 Make sure you have a device connected and click Install by Connecting Devices. The connected devices are shown.

If you do not see a connected device, or if you connect a device after this dialog is presented, click Refresh. If you do not

have a device connected you cannot continue.

Install SSv5 and Software

18/335

 Select the device(s) to use. If you select more than one device with different software compatibilities, Studio will download

any package that is compatible with any of the devices. Click NEXT.

 You have two installation options, Auto and Advanced.

Select Auto to have SSv5 automatically download all packages that are compatible with the connected hardware and

to which you have permissions based on your login.

Select Advanced to select which packages you want to install or to specify an installation location for the Gecko SDK.

If you selected Advanced, all 'Required' packages must be installed. NOTE: Do not exclude packages unless you understand

the full effect of the decision. Click Read More to see release notes for each item. Optionally change the default installation

location for the Gecko SDK (GSDK). The GSDK installs as a clone of a G itHub repository. Do not select an existing folder

with other content already in it, as your cloned repository will no longer be clean. The Matter Enablement Package is

automatically selected when you select the GSDK.

Install SSv5 and Software

19/335

 Before package installation begins, accept one or more software license agreements.

 Once you click NEXT, installation begins.

Install SSv5 and Software

20/335

Depending upon your selections, installation may take some time. The progress bar may pause at points where large files are

being installed, but will resume as they complete. If there is a problem during installation, SSv5 displays an error. You must

restart SSv5 to resume.

 When installation is complete, click CLOSE.

 Click RESTART to begin working with projects.

Install SSv5 and Software

21/335

Install Software by Technology Type

 Click Install by Technology Type

 Select the technology(s) to install and click NEXT. To install the Gecko SDK Suite, select 32-Bit and Wireless MCUs. The

Matter Enablement Package is automatically selected when you select the GSDK.

 You have two installation options, Auto and Advanced.

Install SSv5 and Software

22/335

Select Auto to have SSv5 automatically download all packages related to the selected technologies and to which you

have permissions based on your login.

Select Advanced to select which packages you want to install.

If you selected Advanced, all 'Required' packages must be installed. NOTE: Do not exclude packages unless you understand

the full effect of the decision. Click Read More to see release notes for each item. Optionally change the default installation

location for the Gecko SDK. The GSDK installs as a clone of a G itHub repository. Do not select an existing folder with other

content already in it, as your cloned repository will no longer be clean. The Matter Enablement Package is automatically

selected when you select the GSDK.

Install SSv5 and Software

23/335

 Before installation begins, accept one or more software license agreements.

.

 Once you click NEXT, installation begins.

Depending upon your selections, installation may take some time. The progress bar may pause at points where large files are

being installed, but will resume as they complete. If there is a problem during installation, SSv5 displays an error. You must

restart SSv5 to resume.

 When installation is complete, click CLOSE.

Install SSv5 and Software

24/335

 Click RESTART to begin working with projects.

Explore SSv5

25/335

Explore SSv5

Explore SSv5
When S implicity Studio® 5 (SSv5) opens, the first screen is the Welcome page within the Launcher perspective. A

"perspective" is an Eclipse term for an arrangement of views and an editor area. This page provides an overview of the

Launcher perspective's main parts. A detailed reference to all of the functions accessed through the Launcher perspective

can be found in the About the Launcher reference section.

1 - Editor. The editor begins in Welcome mode. Here you get started by selecting a part, and then find resources and

create projects based on that part. Note that, when you drop down the Learn and Support area, you have access to

technical support, the S ilicon Labs Community, and educational resources.

2 - Debug Adapters view: Shows devices physically connected to your computer with a debug adapter, or detected on a

local network. Select a device to begin a project

3 - My Product view: Here you can add devices, boards, or kits and select them just like a connected kit. You can then

explore resources or create and configure projects for the selected (target) device.

4 - Menu and Toolbar: Many of the main functions of interest are provided on the toolbar.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher

Explore SSv5

26/335

Welcome returns you to the Launcher Welcome page.

Recent shows you a list of recent projects. Select one to go to that project in the S implicity IDE Project Explorer view.

Tools provides a list of available tools.

Install brings you to a menu where you can install or uninstall software packages and tools, or review available updates.

Preferences is a shortcut to the list of preferences also available through the menu selection Window > Preferences.

Throughout SSv5, the contents of the launcher and other perspectives depends on the device you have selected as your

development target, as well as your software environment. When you first open SSv5, the Launcher perspective does not

have a target device context. When you connect a kit, it appears both in the the Debug Adapters view and in the device

selector in the Get Started editor area.

If you don’t have a S ilicon Labs kit to connect, but would like to explore more of SSv5’s functions, click All Products, and

enter a part number for a kit, board, or device. As you type you will be presented with a list. Use the checkboxes to filter

the list.

You can also add products to the My Products view, and select a target device there. If you have added a product under

Get Started, once you click Start the selected product is added to the My Products view for easy access in the Welcome

page or other Launcher perspective views.

Once you have connected or selected a target device, click Start to move to the Launcher perspective's OVERVIEW tab,

showing the details about that device.

Explore SSv5

27/335

You'll find several "cards" on the OVERVIEW tab. The first is the General Information card where you can update the debug

adapter firmware of your S ilicon Labs kits, change the mode of the debug adapter, manage the security settings of the

target device (if applicable), and change the active/preferred SDK.

The Recommended Quick Start Guides card highlights some of the getting-started resources available for the selected

target device. Click All Quick-Start Guides to quickly go to the DOCUMENTATION tab, pre-filtered for quick-start guides.

Cards are also available for each board and device of the selected target. The View Documents drop-down list on each

hardware card provides a filtered view of hardware documentation for that item.

You can start a project with the Create New Project control. See Start a Project for an introduction to creating projects.

The EXAMPLE PROJECTS & DEMOS tab shows a list of example projects and demos compatible with the selected device.

A demo is a prebuilt software example that can be loaded into a compatible device and used to show and test application

functionality. Every demo comes with an associated example project. See the Quick Start Guide for your SDK for more

information about the examples and demos provided.

Use the checkboxes and search box to filter the list. A number of different filter categories are available. The categories

and filters displayed depend on your selected device. Click RUN on any demo to install it on a target device. Click CREATE

on any project to create it. This is equivalent to creating a project from the OVERVIEW tab, except that the project is

already selected.

Explore SSv5

28/335

The DOCUMENTATION tab shows all documentation compatible with the selected device. Use the checkboxes or text filter

field to find a resource of interest. The technology filter corresponding to your development environment will show you

most software documents relevant to that environment.

The COMPATIBLE TOOLS tab shows the tools compatible with the selected device. The Tools button on the toolbar shows

all tools unfiltered.

Explore SSv5

29/335

Start a Project

30/335

Start a Project

Start a Project
S implicity Studio® 5 (SSv5) supports several different project types, which can be created through File > New. These

include:

S ilicon Labs Project Wizard (creates Project Configurator projects, as described in this section)

Solution... (creates a combination of two or more projects)

Project... (opens the New Project Wizards dialog)

Other (combines all of the above selections with other, rarely used options)

Select Files > New > Project to open the New Project Wizards dialog.

Most notably:

S ilicon Labs Project Wizard (two instances) and also S ilicon Labs MCU Project Wizard: Creates Project Configurator projects,

as described in this section.

AppBuilder Project Wizard: Creates a legacy AppBuilder Project

This page focuses on Project Configurator (*.slcp) projects, as well as Solutions, or combinations of Project Configurator

projects. On this page:

Configurator Project Creation

Target, SDK, and Toolchain Selection

Examples

Configuration

About Project Configurator Projects

Pin Tool

Bluetooth GATT Configurator

Bluetooth Mesh Configurator

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder

Start a Project

31/335

Proprietary Radio Configurator

Wi-SUN Configurator

ZCL Advanced Platform

About Solutions

About AppBuilder Projects

Project Creation

New S implicity Studio® 5 (SSv5) projects are created through a sequence of three dialogs:

Target, SDK, and Toolchain

Examples

Configuration

An indicator at the top of the dialog shows you where you are.

You can start a project from three different locations in the Launcher Perspective. Where you start determines which of

the three dialogs you will land on. Click BACK to move to an earlier dialog, if you need to make a change.

From the OVERVIEW tab: Click Create New Project. Starts on the Examples dialog.

From the EXAMPLE PROJECTS tab: Use the filters as needed, select a project, and click CREATE. Starts on the Project

Configuration dialog.

From the file menu: Select New >> S ilicon Labs Project Wizard. Starts on the Target, SDK, and Toolchain Selection dialog.

While you are getting started, you can leave the default values in place.

Target, SDK, and Toolchain Selection

If you have connected or selected a target, all information is pre-populated. Otherwise you can select target parts here.

Click NEXT.

Start a Project

32/335

IDE / Toolchain has several options, not all of which are used within the S implicity IDE. In those cases the project still shows

up in the S implicity IDE Project Explorer view, but you use the IDE for which the project was created to build and debug the

project.

S implicity IDE / GNU ARM vn.n.n - This is the default toolchain used when S implicity Studio is first installed. The S implicity IDE

is used for all project operations - editing source files, building the project, debugging the project. If multiple version of the

GNU ARM Toolchain are installed, there are options for each version.

S implicity IDE / IAR ARM vn.n.n.n - S imilar to the first option, but builds use the IAR ARM toolchain. The IAR ARM toolchain

requires installation of IAR Embedded Workbench (EW) external to S implicity Studio and a license for IAR EW must be

purchased from IAR. All project operations are still performed inside the S implicity IDE.

Makefile IDE (use S implicity Studio tools to configure and, with a manual step, to debug the project but use 'make' to build

the project) - This option creates a project without a S implicity IDE build configuration and [No toolchain] will be reported.

Instead, PROJECTNAME.Makefile and PROJECTNAME.project.mak files are created. They are used from a command prompt

or terminal prompt with 'make -f PROJECTNAME.Makefile' to build the project. The Project Configurator (.slcp file) can be

used to add / configure / remove software components and the various Advanced Configurators, such as Pintool, Bluetooth

Gatt Configurator, or ZCL Advanced Platform, can also be used to configure and generate the project. It just cannot be built

from within S implicity Studio. Also the project cannot be automatically debugged within S implicity Studio. You must manually

create a debug configuration that points to the build .out file.

Visual Studio Code - This option allows you to use Visual Studio Code in combination with S implicity Studio. Use S implicity

Studio to create the initial project and to make project changes with the Component Editor and various Advanced

Configurators. Then do all editing, building, and debugging of the project in VS Code. See the Visual Studio Code page for

more information.

CMake - This option creates both the S implicity Studio .slcp file and a CMake file during project generation. The Project

Configurator (.slcp file) can be used to add / configure / remove software components and the various Advanced

Configurators, such as Pintool, Bluetooth Gatt Configurator, or ZCL Advanced Platform, can also be used to configure and

generate the project.

IAR Embedded Workbench (use S implicity Studio tools to configure the project but IAR EW to build and debug the project) -

This option creates a project with the IAR EW projects files but without a S implicity IDE build configuration and [No

toolchain] will be reported. As with the Makefile IDE, the Project Configurator (.slcp file) can be used to add / configure /

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-vscode-ide

Start a Project

33/335

remove software components and the various Advanced Configurators can also be used to configure and generate the

project. After that, double-click the .eww file to launch IAR EW for building and debugging the project. Project options should

be set in IAR EW. You cannot use the S implicity IDE and IAR EW interchangeably. All operations except project configuration

should be done in IAR EW.

Examples

Use the checkboxes or keywords to find the example of interest, then select it and click NEXT.

Configuration

Rename your project if you want. The three selections under "With project files" control which sources are copied and

which are linked. If a linked source is modified, the changes apply to any other project linking to that source.

Link to sources: The project links both to the SDK files and to project files such as app.c.

Link SDK and copy project sources (default): Project sources are copied to your workspace. Note that the SDK folder

structure is created but if you drill down you will see that all folders are empty.

Copy contents: Both project files and the SDK files are copied to your workspace.

Click FINISH.

Start a Project

34/335

Once you finish project creation, the S implicity IDE perspective opens. There may be a slight delay for initial configuration.

For details on all the features and functions available in this perspective, see About the S implicity IDE.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide

Start a Project

35/335

1 - Editor area (depends on the project).

2 - Project Explorer view: Lists the projects and solutions available in your workspace.

3 - Debug Adapters view: Lists the kits or SEGGER J-Links connected to your computer via USB or detected on a local

network.

4 - Developer views: A set of views of use during the development process.

The editor in the S implicity IDE perspective depends on the project:

Project Configurator: Used for all Gecko SDK protocols and tools beginning with Gecko SDK 4.0; Project files end in .slcp.

8-bit Hardware Configurator: Used for 8-bit device applications.

AppBuilder: Legacy tool used for Zigbee EmberZNet and Gecko Bootloader in Gecko SDK 3.2 and lower; Project files end in

.isc.

Project Configurator Projects

As well as introducing Project Configurator projects, this page also introduces

The Pin Tool

Bluetooth and Bluetooth Mesh SDK 's GATT Configurator

Bluetooth Mesh SDK 's Bluetooth Mesh Configurator

Proprietary SDK 's Radio Configurator

Zigbee EmberZNet and Matter SDK 's ZCL Advanced Platform

Wi-SUN SDK 's Wi-SUN Configurator

Project Configurator projects are defined in .slcp (S ilicon Labs Configurator project) files. Users can modify the project by

adding, removing, and configuring components on the Software Components tab. See Developing with Project Configurator

for details.

NOTE: Beginning with S implicity Studio version 5.3, you can create a project in the S implicity IDE by importing an .slcp file.

See Import and Export for more information.

The project opens, generally either on a README tab containing an example project description, or on an OVERVIEW tab.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-for-8bit-devices/using-hardware-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide/import-and-export

Start a Project

36/335

The OVERVIEW tab has three cards with information, some with settings that may be changed:

Target and Tool Settings, where you can change your development target, SDK, and project generators. Scroll down and

click Change Target/SDK/Generators to edit these settings. The Project Generators configuration determines the IDE or

build system project files that SSv5 generates as you configure your project. (Note: The compiler / toolchain used by

S implicity IDE is configurable in Project > Build Configurations. The default IDE is configurable in Preferences > Simplicity

Studio > Preferred IDE.)

Project Details, where you can rename the project, change the project source import mode, generate a project report and, if

necessary, force the generation of project and source files (in the autogen folder).
Generate Project Report creates a PDF, available through a link immediately above the control, that provides details on:

Target hardware device

Target hardware device pin mapping

Target SDK

Software extensions used in the build

Installed application, utility, and platform software components

Import mode controls which resources are copied and which are linked. If you modify a linked source, your changes apply

to any other project linking to that source.

Force Generation (available through the ... drop-down menu) can be used in rare cases when auto-generation is not

triggered, usually because of some change made outside of SSv5 such as editing the .slcp file.

Quick Links provides links to the tools commonly used to modify the project or lower-level configurations such as radio or

peripheral connections. The links vary based on the SDK and target device.

To configure the project through the component library, click the SOFTWARE COMPONENTS tab. A number of filters as well

as a keyword search are available to help you explore the various component categories. The SDK Extensions filter is only

enabled if you have an extension installed. Note that components for all installed SDKs are presented.

Start a Project

37/335

Expand a component category\subcategory to see individual components. Components installed in the project are checked

(1), and can be uninstalled. Configurable components are indicated by a gear symbol (2).

Click the gear symbol next to the component name or Configure in the configurable component description to open the

Component Editor. Here you can change parameters or edit the component source directly. You can also go from the

component to the Pin Tool

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/pin-tool

Start a Project

38/335

Changes are autosaved in the Component Editor.

As you make changes in the Project Configurator, for example installing or uninstalling a component, project output files are

autogenerated. Progress is shown in the lower right of the Perspective.

Speed varies depending on your system. Be sure that generation is complete before building the application image.

Build the application image and flash it to your target device as described in Building and Flashing.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing

Start a Project

39/335

A CONFIGURATION TOOLS tab provides an easy way to open a tool when the tool's tab is not already open, as an

alternative to the Quick Links card on the general tab. It shows configuration tools relevant to the project type. For

example, a Bluetooth Mesh project shows a number of tools, while an OpenThread project might only show the Pin Tool.

Click Open on the tool's card to open it in a separate tab.

Pin Tool

The Pin Tool lets you modify the target device's pin use and parameters. As well as opening the Pin Tool through the

CONFIGURATION TOOLS tab, you can also double-click the <project>.pintool file in the Project Explorer view.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/pin-tool

Start a Project

40/335

Double-click a Software Component to open the Component Editor and configure that function. Pin Tool does not

autosave.

Bluetooth GATT Configurator

Bluetooth and Bluetooth Mesh projects are also configured with the Bluetooth GATT Configurator.

The Bluetooth GATT configurator menu allows you to add and remove services and characteristics.

 Add an item.

 Duplicate the selected item.

 Move the selected item up.

 Move the selected item down.

 Import a Bluetooth GATT database.

 Add Predefined.

 Delete the selected item.

To add a custom service, click Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic, select a

service and then click Add (1). To add a predefined service/characteristic click Add Predefined (6).

Bluetooth Mesh Configurator

Bluetooth Mesh project Device Composition Data is configured through the Bluetooth Mesh Configurator. The Device

Composition Data is presented in three areas: device information, elements, and models.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/bluetooth-mesh-configurator

Start a Project

41/335

Device information is determined by the company selected in the first field.

Each node has at minimum a primary element. To add more elements click the green + symbol in the bottom right.

The Bluetooth Mesh Configurator has editors for both SIG-adopted models and vendor models. SIG-adopted model

components are provided but cannot be edited. You can, however, delete those models, and then add models to meet your

needs. To delete a model, select it and click the red X symbol. To add a SIG-adopted model, drag the model from the left

model pool to the SIG Models table in the correct element. A list of all the SIG-adopted models is displayed, and you can

choose the one you want.

Start a Project

42/335

Vendor models give you more flexibility when developing products not covered by the SIG-adopted models. Vendors can

define their own specification in these vendor models, including states, messages, and the associated behaviors. The

vendor model editor is shown in the following figure.

Proprietary Radio Configurator

The Radio Configurator is provided as part of the Proprietary SDK. Use the Radio Configurator to create standard or custom

radio configurations for your RAIL-based radio applications.

The parameters in the Radio Configurator are arranged in cards, some of which are grouped together. Different radio profiles

offer different views and parameter sets.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/proprietary-radio-configurator

Start a Project

43/335

 In the General Settings card, select a radio profile in the Select radio profile drop-down menu. A radio profile may be any

supported radio link technology. These technologies can be bound by standards (for example the S igfox or WMBus

protocols) or can be fully customized. The fully customizable profile is called the "Base Profile".

 Select a radio PHY (radio configuration) in the Select a radio PHY dropdown list. Each profile has "built-in" configurations

ready to use.

 Review and update the profile options. By default, no changes are allowed; fields are grayed out. To enable customization,

use the Customized switch on the General Settings card. This allows access to all the parameters defined by the profile.

Wi-SUN Configurator

The Wi-SUN Configurator is provided as part of the Wi-SUN SDK. Use it to configure the main settings of the Wi-SUN

application through three panels: Application, Security, and Radio. For some projects only the Radio panel is available. The

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/wi-sun-configurator

Start a Project

44/335

Wi-SUN Configurator tab is available when a project is created or can be displayed by opening the project file

/config/wisun/wisun_settings.wisunconf.

ZCL Advanced Platform

The ZCL Advanced Platform (ZAP) is provided as a configuration tool for both Zigbee and Matter projects. Use it to manage

endpoints, clusters, and commands.

The interface, which differs slightly for Matter and Zigbee, is based on adding or modifying endpoints. Click an endpoint to

open the configuration editor.

You can add and configure clusters as needed. Configuration changes made through the Zigbee Cluster Configurator for a

Zigbee project are saved to <project-folder>\config\zcl\zcl_config.zap. For a Matter project the configuration is saved to

<project-folder>\config\zap\<name>.zap. When you save the file, the Zigbee Cluster Configurator not only saves the .zap

file into your project, but also automatically generates all the files required for your application.

Solutions

A Solution is a combinations of projects that can be compiled, debugged, and flashed together. Solutions are also called

workspaces in some contexts. The projects in a solution can be configured individually. When the solution is built, the Post-

Build Editor is used to combine the project images into a single downloadable .s37 image. Applications that make use of the

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/zigbee-cluster-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-solutions
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/post-build-editor

Start a Project

45/335

Series 2 TrustZone feature use solutions to combined the secure and non-secure TrustZone projects. Solutions can also be

used to debug an application and its bootloader together.

The Memory Editor is a graphical tool for editing the flash and RAM memory layout of the applications in a solution. Not all

example projects have default settings included at this time, which results in a warning when you open the editor. Save the

default values that the tool calculates as your starting point.

AppBuilder Projects

AppBuilder Projects are configured by modifying parameters in various tabs, especially the PLUGINS tab. See Developing

with AppBuilder for details.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/memory-editor
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder

Start a Project

46/335

When you have configured the project, click Generate to create project files. Build the application image and flash it to your

target device as in Building and Flashing.

To modify the target device's pin use and parameters, use the Hardware Configurator available on the HAL tab. Note that,

although the interface is similar to the 8-bit Hardware Configurator, this is a different tool.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder/configuring-peripherals

Start a Project

47/335

Changes made through the Hardware Configurator are stored in a board-specific .hwconf file.

Install SDK Extensions

48/335

Install SDK Extensions

Install SDK Extensions
An SDK Extension is an entity specific to developing for 32-bit devices using Project Configurator and other S ilicon Labs

Configurator (SLC)-based tools. It is a collection of components and other items, such as example files. The SDK extension

has dependencies on the parent SDK, which must be installed first. SDK extensions can be used to control access to

certain functions, or to contain customer-created components and other items to be maintained separately from the S ilicon

Labs SDK.

SDK extensions are installed as part of the GSDK through the standard installation dialog.

If you already have a GSDK installed but did not installed the extension, you can install it by clicking Install on the toolbar,

and then clicking Manage Installed Packages. Open the SDK tab, and click Install next to the extension name.

Install SDK Extensions

49/335

See update information in About the Launcher for additional details.

Once you have added an SDK extension, SSv5 treats it like any other SDK, such as showing it in the filter for example

projects.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher/toolbar#install

Install SDK Extensions

50/335

If you have been given an extension package that is not yet part of the standard installation, you can install it using using

the following procedure.

 Open Preferences > S implicity Studio > SDKs either from Preferences on the toolbar or by selecting Manage SDKs from the

Launcher perspective OVERVIEW tab. Select the parent SDK and click Add Extensions.

 In the Add SDK Extensions dialog, browse to the extension directory. If it has a valid SDK extension, SSv5 detects it. Click

OK.

 You may be asked to trust the SDK extension. If you do, click Trust.

Install SDK Extensions

51/335

 The extension is now displayed under the GSDK, and in the list of GSDK components. Click Apply and Close.

Upgrade a Project to a New Software Version

52/335

Upgrade a Project to a New Software Version

Upgrading a Project to a New Software Version

Upgrading to a New GSDK

If a project was created with an older GSDK, and a new GSDK version is installed, the upgrade process starts differently

depending on if the existing GSDK itself was upgraded to the latest version or if the latest GSDK was installed as a

separate GSDK instance.

 If a parallel instance of the new GSDK was installed, then the project upgrade must be started from the Project Configurator

Overview tab, Target and Tool Settings card. Click Change Target/SDK/Generators. Click the CHANGE SDK drop down and

select the desired GSDK.

A Verify SDK dialog is displayed.

 If the GSDK was upgraded to the latest version, when the project's .slcp file is opened the Verify SDK dialog is displayed

immediately.

Upgrade a Project to a New Software Version

53/335

From this point the process is the same. The displayed preferred Gecko SDK is the latest version. Click Verify. The Gecko

SDK and Advanced configurator upgrade scripts (if any exist) are run and then a dialog something like the following is

displayed. The dialog may include additional messages and warnings.

Click Upgrade. The results of the upgrade are displayed. After the upgrade finishes, build the project and then manually

resolve any issues that occur due to SDK changes. Reviewing the release notes for the SDK and Gecko Platform is

recommended to see what new features are available. These are available through the Launcher perspective's

Documentation tab (filter on Release Notes) or on silabs.com at https://www.silabs.com/developers/gecko-software-

development-kit.

Upgrading to a New Extension

S implicity Studio also checks if there are any missing extensions required by the project. If so, S implicity Studio presents a

similar dialog to the GSDK verify dialog with either an available upgradeable extension or an error if no upgradeable

extension can be found.

Extensions can be upgraded independently of the GSDK. All available extensions will appear in the Software Components

tab. When viewing a newer extension, S implicity Studio will check if you can upgrade to it and presents an Upgrade

Extension notification instead of the standard Install Extension. If selected, this will launch the Extension Upgrade dialog.

https://www.silabs.com/developers/gecko-software-development-kit

Upgrade a Project to a New Software Version

54/335

If you click UPGRADE EXTENSION, a verification dialog is displayed similar to that for the SDK.

Project Migration

55/335

Project Migration

Project Migration

Moving to the Component-Based Architecture

In SSv5 version 5.3, the Gecko Bootloader, Zigbee, and Z-Wave changed to the S ilicon Labs Configurator component-

based architecture. For more information on transitioning these projects from earlier versions of SSv5 see:

Zigbee AN1301: Transitioning from Zigbee EmberZNet SDK 6.x to SDK 7.x

Gecko Bootloader AN1326: Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher

Migrate from Simplicity Studio 4 to Simplicity Studio 5

The process to migrate a project from S implicity Studio® 4 (SSv4) to SSv5 depends on the type of project.

If you are migrating a Bootloader, EFM32, or EFM8 project, use the Migrate Project tool. If you are migrating a Z-Wave ,

Bluetooth/Bluetooth Mesh, Proprietary Flex, or Zigbee project, follow the instructions in the specified documents.

Bootloader, EFM32, and EFM8 Projects

Bootloader note: Use this procedure as a first step in migration.

Click the Tools toolbar button to open the Tools dialog. Select Migrate Projects and click OK. Select the project to be

migrated and click Next.

Verify the information displayed and click Next.

https://www.silabs.com/documents/public/application-notes/an1301-zigbee-v6x-to-v7x-transition-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf

Project Migration

56/335

Decide if you want to copy the project (recommended) and click Finish.

The project is migrated from SSv4 to SSv5.

Project Migration

57/335

Z�Wave Projects

(Through S implicity Studio 5.2) Follow the instructions in the knowledge base article Migrating a Z-Wave project from GSDK

2.7.6 to GSDK 3.0.0.

Zigbee, Flex, and Bluetooth/Bluetooth Mesh Projects

These projects cannot be migrated using the tool. Instead, refer to the following documents:

Zigbee (Through S implicity Studio 5.2): QSG106: Getting Started with EmberZNet PRO

Flex: AN1254: Transitioning from the v2.x to the v3.x Proprietary Flex SDK

Bluetooth: AN1255: Transitioning from the v2.x to the v3.x Bluetooth SDK

Bluetooth Mesh: AN1298: Transitioning from the v1.x to the v2.x Bluetooth Mesh SDK

If you try using the tool, in most cases the tool will point you to the documentation for the migration process.

https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2020/07/17/migrating_a_z-waveprojectfromgsdk276togsdk-opdc
https://www.silabs.com/documents/public/quick-start-guides/qsg106-efr32-zigbee-pro.pdf
https://www.silabs.com/documents/public/application-notes/an1254-transitioning-from-proprietary-flex-sdk-v2-to-v3.pdf
https://www.silabs.com/documents/public/application-notes/an1255-transitioning-from-bluetooth-sdk-v2-to-v3.pdf
https://www.silabs.com/documents/public/application-notes/an1298-transitioning-from-bluetooth-mesh-1x-to-2x.pdf

About the Launcher

58/335

About the Launcher

About the Launcher
This section provides a reference to the functionality available in S implicity Studio® 5 (SSv5) when you first open the

application. This first perspective is called the Launcher perspective. A "perspective" is an Eclipse term for an initial

arrangement of views and an editor area.

1 - Welcome and Device-Specific Tabs: The Welcome page includes a Get Started section to help with target kit, board, or

device selection. The Learn and Support section may be expanded to show some of the reference and support resources

available. Once a device is connected and/or selected, device-specific tabs provide access to example projects,

documentation, and so on.

2 - Debug Adapters: S ilicon Labs kits and supported debug adapters (for example, SEGGER J-Link products). The icon to

the left of the debug adapter item indicates if it is connected over USB or Ethernet.

3 - My Products: Shows an editable list of products that you may want to use as target devices to set the Launcher's

context. Use this view to select target devices when you don't have a kit available.

4 - A top-level menu provides access to a number of functions, including configuration options and help. A toolbar offers

access to tools and functions on the left and shortcuts to different perspectives on the right.

5 - The Launcher perspective also provides additional functions across the bottom of the perspective:

About the Launcher

59/335

Log in menu. Here you can:

Log in or out

Register a software development kit.

Change users

Clear stored credentials

Garbage collection status and clear function. Click the trash can to run the garbage collector. This releases memory that may

not have been released automatically. You should not need to use this function during normal operation. To turn the display

off, go to Preferences > General and uncheck Show heap status.

6 - A perspectives tool bar in the top right shows open perspectives and allows you to open others.

Click Open Perspective to see a list of available perspectives. The perspectives list is similar to that available through the

Window > Perspective menu selection.

Right-click an open perspective to see the context menu. While you can customize the perspective through the Customize

menu option (see Help > Help Contents > Workbench User Guide for more information), you can also customize a

perspective by dragging views and opening and closing views. These changes are persistent and survive closing and

reopening a perspective. Click Reset to restore the perspective to its default settings.

Not all functions available through the Launcher perspective are relevant to developing for all target devices. The

Developing for ... pages highlight the key pieces for each device category.

Welcome and Device Tabs

60/335

Welcome and Device Tabs

Welcome and Device Tabs
This page describes the functionality available on the Welcome page and the tabbed interface that is displayed once you

connect or selected a devices. Tabs include:

Overview

Example Projects & Demos

Documentation

Compatible Tools

Welcome

S implicity Studio® 5 (SSv5) opens to a Welcome page.

To return to the Welcome page at any time, click Welcome on the tool bar.

On the Welcome Page you can:

Welcome and Device Tabs

61/335

Start a new project

Access educational and support resources

Select a Target Device

SSv5’s purpose is to provide a development environment directed toward a specific target device. Therefore, one of the

first things to do is to define that target device. Once a target device is selected, a tabbed interface to features specific to

that device is available, starting on the Overview tab. The device can be a physical piece of hardware, or a virtual part.

Physical If you have one or more devices physically connected, either on a development kit or on customer hardware with

a supported debug adapter, they are displayed in the Debug Adapters view, where you can get started simply by clicking a

device to selected it.

They are also displayed in the Get Started area’s Connected Devices drop down. Clicking a device to select it, then click

Start.

Virtual If you do not have a physical device, but would like to explore some of SSv5’s functions, or get started with

developing for a part you will receive later, select a virtual device either in the My Products view or in the Get Started area.

In the My Products view, start typing a product name and select the product of interest.

Under Get Started, click All Products. Use the checkboxes to limit the search list to kits, boards, or parts. Click in the

search products field and start typing. When you see the target, select it and click Start. The next time you return to the

Welcome page, that device will be shown in the My Products view.

Start a New Project

You can start a new project from the Welcome page, but you must immediately select a target device. See Start a Project

for more information.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-6/start-a-project

Welcome and Device Tabs

62/335

Learn and Support

Expand the Learn and Support section for access to a variety of resources related to developing for a S ilicon Labs target.

Device-Specific Tabs

Device-Specific tabs include:

Overview

Example Projects

Documentation

Compatible Tools

Overview Tab

Once you have selected a target device, the Launcher perspective editor area changes to the OVERVIEW tab specific to

that part. For a physically-connected device you have general device information, as well as details about the hardware

components. Each hardware component is pictured in a card and has a View Documents drop down where you can see

related hardware documentation. Finally, links to recommended quick start guides from compatible protocol SDKs are

provided.

Welcome and Device Tabs

63/335

SSv5 displays similar information for virtual devices (selected in the My Products view) and devices connected to a

supported debug adapter (for example, SEGGER J-Link or a Wireless Starter K it mainboard in debug OUT mode). The

settings in the General Information card vary depending on the target device.

General Device Information

Welcome and Device Tabs

64/335

Configure Connection

Device Connection shows how the device is connected to SSv5. Click Configure to explore or modify connection

parameters. If your device firmware is not up to date, you will be invited to update it.

If you are targeting an EFR32-based S ilicon Labs kit, you will almost certainly also see the following question:

The CTUNE value is used to tune the external crystal capacitors to hit the exact frequency they are intended to hit.

Because this varies from board to board, in production S ilicon Labs measures it during board tests and programs a unique

CTUNE value for each board into the EEPROM. Each SDK also has a default CTUNE value programmed in a manufacturing

token. This message asks if you want to overwrite the default CTUNE value with the one found in the EEPROM. Because

the EEPROM value is more accurate, S ilicon Labs recommends you click Yes. The default CTUNE value will also work, but

could under some circumstances, such as temperature extremes, bring the radio frequency out of spec.

Debug Mode

The Debug Mode controls the interface to the wireless starter kit mainboard onboard debugger. Changing Debug Mode

opens the Adapter Configuration tab of the J-Link Configuration tool. The debug modes are:

Onboard Device (MCU) (default): The debugger built into the development board is connected to the on-board target

device.

External Device (OUT): The on-board debugger is configured for connection to an external device such as your custom

hardware.

External Debugger (IN): An external debugger is connected to the device on the development board.

See your kit's User’s Guide for more information on the debug modes available.

Welcome and Device Tabs

65/335

Adapter Firmware

This shows the firmware version running on the debug controller of your S ilicon Labs development kit and whether or not

an update is available. S ilicon Labs strongly recommends that you update adapter firmware to the current version. The

Changelog shows the firmware release notes.

When you update adapter firmware SSv5 will ask you to confirm before proceeding. When firmware is up to date the

interface says Latest.

Welcome and Device Tabs

66/335

Secure Firmware

Series 2 devices contain a Secure Element, a tamper-resistant component used to securely store sensitive data and keys,

and to execute cryptographic functions and secure services. The Secure Element firmware can also be updated. When you

have a Series 2 device connected, the General Information card includes a Secure FW line. This shows the firmware version

running on the Secure Element and whether or not an update is available. S ilicon Labs strongly recommends that you

update firmware to the current version. The Changelog shows the firmware release notes.

When you update, you are warned that user software, including any factory-installed applications such as RangeTest, will be

deleted.

After upgrade, the installed and available versions are the same.

Preferred SDK

Some developers may have more than one GSDK version installed. The preferred SDK shows the currently selected SDK.

Click Manage SDKs to see other options.

Welcome and Device Tabs

67/335

The options shown are those selected in Preferences > S implicity Studio > SDKs. To add an installed SDK to the list, click

Add SDK and browse to the installed location. SSv5 autodetects SDKs in the location folder. Select the SDK to add, and

click OK. Make sure the new SDK is selected in the list, and click Apply and Close. You should now be able to select it in

the Preferred SDK list.

The same dialog is used to install SDK extensions.

Example Projects & Demos Tab

The EXAMPLE PROJECTS & DEMOS tab shows a list of example projects and demos compatible with the selected device.

A demo is a prebuilt software example that can be loaded into a compatible device and used to show and test application

functionality. Every demo comes with an associated example project. See the Quick Start Guide for your SDK for more

information about the examples and demos provided.

Click RUN on any demo to install it on a target device. Click CREATE on any project to create it. This is equivalent to

creating a project from the OVERVIEW tab, except that the project is already selected. By default, the tab enables showing

both demos and examples. Demos have a blue tag in the upper left of the card. To see only one type of file, disable the

other type.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/install-sdk-extensions.md

Welcome and Device Tabs

68/335

Use the switches, checkboxes and search box to filter the list. Note: Solutions are combinations of projects on which

certain operations can be performed at the same time. This is a new feature and support is still being added for it. No

example solutions are provided in this release, but you can create your own. See Solutions for more information.

The checkboxes displayed depend on your selected device. Checkbox categories include:

Wireless Technology

Device Type

MCU

Capability

Project Difficulty

Quality

Provider

Provider includes the checkbox Peripheral Examples. These examples are provided from the S ilicon Labs G itHub repository

peripheral-examples, are specific to your connected or selected board, and allow you to exercise various peripheral

functions.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-solutions

Welcome and Device Tabs

69/335

SSv5 allows you to add other G itHub repositories containing examples. To add a G itHub repository, go to Preferences >

Simplicity Studio > External Repos. Here you can add, edit, and delete repos, and select from repos that are already added.

Adding a repo is done in two steps: cloning and then selecting the branch, tag, or commit to add. The default branch is

Master. application_examples and peripheral_examples are official S ilicon Labs repos and may not be edited or deleted.

You must be connected to the Internet to create a project from an example in a remote G itHub repository. Projects

created from G itHub repositories are created in the location specified in the project creation dialog. The cloned project

does not have any G it-related information in it. You cannot sync/checkout/pull code from G it.

If you specify a repository installed locally, SSv5 will not synchronize the repo and all G it-related interface items will not be

presented.

Welcome and Device Tabs

70/335

Documentation Tab

The DOCUMENTATION tab shows all documentation compatible with the selected part. Use the checkboxes or text filter

field to find a resource of interest. The technology filter corresponding to your development environment will show you

most software documents relevant to that environment.

Compatible Tools Tab

The COMPATIBLE TOOLS tab shows the tools compatible with the selected product. The Tools button on the toolbar

shows all tools unfiltered.

Welcome and Device Tabs

71/335

Debug Adapters

72/335

Debug Adapters

Debug Adapters
The S implicity Studio® 5 (SSv5) Debug Adapters view shows connected hardware adapters and displays kits, board, and

devices.

The Debug Adapters view menu functions are:

Refresh the list of detected kits and debuggers

Clear and refresh the list of detected kits and debuggers

Create a group to help organize multiple adapters

Rename a group

Delete a group

Device Configuration (equivalent to Configure Connection)

Preferences (provides shortcuts to three of the options available in Preferences from the toolbar or Window > Preferences.

Device Manager (S implicity Studio > Device Manager)

Discovery (S implicity Studio > Device Manager > TCP/IP Adapters)

Stack (Network Analyzer > Decoding > Stack Versions)

Toggle properties (shows or hides the adapter properties)

Debug Adapters

73/335

Toggle device label detail

Collapse all

Expand all

Finally, right-clicking on a debug adapter brings up a menu of functions. The availability varies depending on the context.

My Products

74/335

My Products

My Products
The S implicity Studio® 5 (SSv5) My Products view provides you with a convenient way to save and organize a list of kits,

boards, and devices for quick access. Use the search function to locate and add products to the view. Products selected

here set the target device context and allow you to explore the relevant resources and to start projects.

Start typing a part number or key word to see kits, boards, and parts. Once you select an item, it is added to a folder called

'My Products 1'.

The My Products view menu provides functions to help manage parts selected in this view.

Make a new folder (rename a folder by right-clicking it)

Add a product (opens a dialog where you can add and remove more than one part at a time)

My Products

75/335

Remove the selected part

Remove all content

Collapse all

Expand all

Menu

76/335

Menu

Menu
The perspective menu is available on all S implicity Studio® 5 (SSv5) perspectives. The options available under each vary

depending on the context.

Toolbar

77/335

Toolbar

Toolbar
The S implicity Studio toolbar contains functions that are generally useful throughout S implicity Studio® 5 (SSv5).

Welcome returns you to the Launcher Welcome configuration.

Recent shows you a list of recent projects. Select one to go to that project in the S implicity IDE Project Explorer view.

Tools provides a list of available tools. This list may have more selections than are available in the Launcher perspective

Tools tab.

Install brings you to a menu where you can install or uninstall software packages and review available updates.

Preferences is a shortcut to the list of preferences also available through the menu selection Window > Preferences.

In addition, the section About Update Frequency describes how to manage the frequency with which S implicity Studio

checks for updates.

Tools

The Tools button opens a dialog where you can select a tool to open it, and also add and remove tools.

The Add/Remove Tools link opens the Installation Manager. Click Manage Installed Packages and go to the Tools tab,

where you can add and remove tools.

Toolbar

78/335

Install

The Install button (red when updates are available) opens the Installation Manager.

Because available items are often controlled through your S ilicon Labs account, it is recommended that you be logged in

while using the Installation Manager. Install by connecting device(s) and Install by technology type are both described in

Install SSv5 and Software. This section describes the Manage installed packages functionality.

Click Manage installed packages to open a tabbed interface where you can install and uninstall a variety of SSv5

components. Note that you can have more than one instance of some items, such as SDKs. You can use the Installation

Manager to install additional instances as well as updates.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/install-ss-5-and-software

Toolbar

79/335

The interface opens on the Product Updates tab. Updates are grouped by type. If Product Updates are available these

typically must be installed before you can install a new SDK.

The SDKs tab supports installing and uninstalling SDKs and extensions.

Click Add ... to install another version or instance of the SDK. The dialog displays what is available as well as what is

currently installed. Click Browse to select an installation location other than the default. Click Default to select the default

Toolbar

80/335

location (\Users\USERNAME\S implicityStudio\SDKs\gecko_sdk<_n>, where _n is added for the second and incremented for

subsequent installations). Hover over the release notes to get a scroll control.

Click ... next to an SDK version to install an update to it, change the version, or uninstall that version.

The Early Access tab is used to provide limited access for some customers, usually for beta testing.

The Tools tab shows available and installed tools, regardless of your connected or selected hardware. Summary release

notes are provided.

Toolbar

81/335

The Toolchains tab shows available and installed toolchains.

Toolbar

82/335

The Assets tab shows available assets. Assets include items such as documents, photographs, code, and so on. Check the

item(s) of interest and click Install. The default view is filtered by connected product.

The unfiltered view provides a much larger set of options.

Toolbar

83/335

After you install or uninstall items, for example as a result of an update or because you want to manage your SDK

installations, SSv5 determines if a restart is required.

About Update Frequency

By default, SSv5 checks for updates when you first open it. You can manage update frequency through Preferences >

Install/Update > Automatic Updates.

Automatically find new updates and notify me (default: On): When selected, SSv5 automatically searches for update, as

defined by the update schedule.

Update schedule (default: On startup): Look for updates on each startup, or once a day or some day a week, at a predefined

time.

Download options (default: Search and Notify): Choose if SSv5 will search for updates and notify you of them once they are

available or automatically download new updates and ask you to install them.

When updates are found (default: Once): Choose to be notified about new updates only once, or to receive reminders until

the updates are installed.

If you have turned automatic updates off, you can check for updates by clicking Install on the toolbar, then Manage

Installed Packages, and then Check for Updates on the Product Updates tab.

Preferences

The Preferences button is a shortcut to the Windows > Preferences dialog (App menu on macOS).

Toolbar

84/335

Frequently used preferences are discussed in context of their use cases. Context-sensitive help is available for most

preferences.

The arrow controls in the upper-right enable navigation through previously viewed pages. To return to a page after viewing

several pages, click the drop-down arrow to display a list of recently viewed pages.

If you have made changes in preferences and wish to move them to a different installation, use the Import and Export

controls in the lower left.

About the Simplicity IDE

85/335

About the Simplicity IDE

About the Simplicity IDE
The S implicity Studio® 5 (SSv5) Simplicity Integrated Development Environment (IDE) perspective is designed to support

code editing, downloading, and debugging for EFR32 devices and modules and EFM32, EFM8, and 8051 devices.

These pages review the S implicity IDE User Interface, discuss how to import and export projects, and explore the features

supporting code editing.

User Interface Review

86/335

User Interface Review

User Interface Review
The S implicity IDE perspective is made up of three views areas, the editor area, and a toolbar.

 Project Explorer View

 Debug Adapters View

 Other Views

 Toolbar

 Editor area

The Editor area is populated with whatever tool is appropriate for the device and project, such as Project Configurator or

the 8-bit device Hardware Configurator.

Project Explorer View

The Project Explorer view shows project files in the current workspace.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-for-8bit-devices

User Interface Review

87/335

A workspace is a directory that includes some hidden metadata, and must be created through SSv5. The default Windows

workspace is:

\Users\<username>\S implicityStudio\v5_workspace\

Maintaining separate workspaces for different GSDK versions or compiler versions may be necessary in some cases or may

help improve SSv5 Performance. See Tips and Tricks for more information.

Each SSv5 session has a single default workspace. To change workspaces or to create a new workspace, use the File >

Switch Workspace function. To create a new workspace click Browse and add a new directory. After you add or switch,

SSv5 restarts.

Right-click a project directory for a context menu of project-level functions.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tips-and-tricks/#use-different-workspaces-for-different-gsdk-versions-or-compilers

User Interface Review

88/335

The Filter functionality available through the view toolbar can be used to limit the files shown.

User Interface Review

89/335

Debug Adapters View

The debug adapters tab in this view is the same as that in the Launcher perspective.

When the adapter is disconnected, an Upload application option is available. This has the advantage of allowing you to

flash both an application image and a bootloader image at the same time, and also to see the various pre-compiled images

available based on the installed SDKs, along with their compatible hardware.

When you connect to an adapter, the icons turn blue.

User Interface Review

90/335

Once you have connected, Start capture and Start capture with options open the Network Analyzer interface for that

device. For many devices, Launch console opens up a console in the editor area, where you can interact with the device.

This option is not available with EFM8 / C8051 starter or development kits (STKs or DKs).

Other Views

Other views are available in the pane below the editor area.

User Interface Review

91/335

Problems shows any problems detected in an open file or a process.

Search shows the results of the most recent search. The toolbar allows you to retrieve previous searches.

Call Hierarchy shows the results of Open Call Hierarchy when using the IDE for code development.

Console shows activity such as flashing an image to the device and build results.

Toolbar

The S implicity IDE toolbar offers debug and other code and file options.

1 Debug builds an image in debug mode, flashes it, and opens the debugger.

2 Profile as opens the Energy Profiler.

3 New opens a menu where you can create a variety of items, including a new project (equivalent to File > New > Project).

4 Save saves a changed file.

5 Save all saves all changed files.

6 Mode allows change between debug and release mode for the applicable toolchain.

7 Build builds the selected project file in the default mode (debug or release).

When working with code files, 8 Next and 9 Previous annotation allow you to select the type of annotation and move to

them.

10 Edit last location opens the last file you had selected.

11 Back and 12 Forward to file allow you to move to the previous or next file, or to select a file from a list.

13 Pin editor links the selection in the Project Explorer view to its editor tab.

14 Flash programmer opens the Flash programmer tool, also available through the Tools menu.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/using-the-debugger
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-energy-profiler
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/flashing

Import and Export

92/335

Import and Export

Import and Export
S implicity Studio® 5 (SSv5) File > Import allows you to import a project from Keil® µVision4®, IAR Embedded Workbench, or

the 8-bit S ilicon Labs IDE into S implicity IDE. You can also import a S ilicon Labs Configurator project (.slcp) file to create a

project in the S implicity IDE, or a S ilicon Labs export (.sls) file to import a project or a solution.

File > Export allows you to export a project or solution in a variety of formats.

Import

Place the file to be imported in a folder.

Select File > Import, and locate the folder with the project or solution to be imported.

Select the project and click Next. If anything about the project is unresolved you can resolve it.

Import and Export

93/335

Import and Export

94/335

If you are importing a solution, you can see the projects that are included in the solution.

Import and Export

95/335

Click Next. Name the project or solution and click Finish.

Export

Select File > Export, and select the file(s) and/or solution(s) to be exported.

Import and Export

96/335

The default export format is an .sls file, which can easily be re-imported into SSv5. However, other options are available.

Click More export options... and select a wizard.

Code Editing

97/335

Code Editing

Code Editing
S implicity Studio® 5 (SSv5)'s S implicity IDE is a code editing and development environment. The editor includes context

highlighting, reference searching, and standard features found in any modern editor.

Note that the Outline view tab in the Debug Adapters area provides a code outline and a toolbar to control what shows in

the Outline view.

This page includes information on:

Open Declaration

Content Assist

Link with Editor

Symbol Expansion

Task View

Quick-Access Console

Call Hierarchy

Open Declaration

In addition to the basic features, S implicity IDE supports many advanced code-editing features. For example, the IDE

automatically indexes all code within the project to support symbol lookup. The code does not have to build completely for

the indexer to work, though certain features may not be available if, for example, the main() routine is not declared.

Code Editing

98/335

In this example, the Open Declaration (F3 shortcut) feature quickly finds symbol declarations.

 Open the file of interest by double-clicking it in the Project Explorer view.

 Right-click the desired symbol to display the context menu.

 Click Open Declaration to quickly navigate to the definition of the symbol.

 SSv5 automatically opens the file and highlights the line containing the declaration of the symbol.

Content Assist

S implicity Studio also supports code completion, a feature called Content Assist. Content Assist requires that the

appropriate header files be included in the file so that the symbols are available. To use Content Assist, type the first few

letters of a symbol or include file and press Ctrl+Space to display a list of symbols that match. For example, to use

[Content Assist] to display a list of symbols starting with the characters PC:

 Type PC and press Ctrl-Space to display the Content Assist list.

 Use the arrow keys or page up and down keys to look through the list of matching symbols.

 Press Enter to replace the typed characters with the selected symbol.

Code Editing

99/335

Link with Editor

In the Project Explorer view, click Link with Editor in the toolbar. Then, if you have multiple files open, selecting a file in

Project Explorer makes the associated editor tab active.

Symbol Expansion

Hover over a function or macro in the editor to display a hover window with expanded information.

Code Editing

100/335

Task View

The Tasks view automatically picks up any comments with TODO or FIXME in the line. For example:

 Type TODO in a comment line with the desired text and save the file

 Select Window > Show View > Other , type Tasks , and press Open.

The TODO or FIXME lines are highlighted by a clipboard icon to the left of the line in the editor. Double-click on a line in the

Tasks view to open the relevant file with that line selected.

Note: To reset the perspective to its original layout, right-click the perspective button in the toolbar and select Reset.

Quick-Access Console

Press Ctrl+3 to open a quick-access console for locating any menu or view within the IDE. For example, press Ctrl+3 and

type Preferences . This lists all of the Preferences menus available within SSv5. Then, select an option to open the menu.

Code Editing

101/335

Call Hierarchy

The IDE includes a call hierarchy that can help find where functions are called. To find the call hierarchy for a function in

development mode, right-click the function and select Open Call Hierarchy.

Overview

102/335

Overview

Developing For 32�Bit Devices - Overview
These pages describe how to customize projects developed in S implicity Studio® 5 (SSv5) for 32-bit target devices.

If you have not yet installed SSv5 or are not familiar with its features, Getting Started guides you through installing SSv5

and your S ilicon Labs protocol software development kit (SDK). This section assumes you have installed studio, have your

development hardware connected, and are generally familiar with the SSv5 Launcher Perspective and with the S implicity

IDE.

Each S ilicon Labs SDK comes with example projects. The easiest way to start development is to modify the configuration

of an example project. The various paths to creating a project based on an example are described in Start a Project.

The development tools you will use depend on the example chosen as a starting point. The most commonly used tools are

described in Developing with Project Configurator. In general, Project Configurator is used with Gecko Bootloader and all

other protocol projects created with GSDK version 4.0 and higher, as well as Bluetooth, Bluetooth Mesh, OpenThread, Wi-

SUN, and Proprietary applications created with Gecko SDK 3.x. These projects share a common infrastructure, called S ilicon

Labs Configurator (SLC). As of SSv5 version 5.3, a legacy tool called AppBuilder is only used with Zigbee EmberZNet and

Gecko Bootloader projects that were created with GSDKs version 3.2 and lower.

After you have created your project files, compile an application image and flash it to your device as described in Building

and Flashing.

When you are ready to test your project, whether on S ilicon Labs hardware or your own custom device, SSv5 provides a

number of tools to help with testing and debugging. An overview is provided in Testing and Debugging.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/start-a-project
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging

Developing with Project Configurator

103/335

Developing with Project Configurator

Developing with Project Configurator
S implicity Studio® 5 (SSv5) introduced new and improved tools for configuring project code, designed to work on the

project's component-based architecture. SSv5 includes project configuration tools that provide an enhanced level of

software component discoverability, configurability, and dependency management. These include:

Project Configurator to install and uninstall components,

Component Editor to change component parameters,

Pin Tool to configure peripherals.

Other tools are protocol-specific:

For Bluetooth and Bluetooth Mesh projects, use the Bluetooth GATT Configurator to customize the Bluetooth GATT

database.

For Bluetooth Mesh projects, use the Bluetooth Mesh Configurator to customize a node's Device Configuration Data (DCD).

For Proprietary RAIL projects, use the Radio Configurator to define and manage proprietary radio protocols and channel

groups

For Wi-SUN projects, use the Wi-SUN Configurator to configure application settings, security, and radio.

For Zigbee and Matter projects, use the ZCL Advanced Platform (ZAP) to manage and configure endpoints.

Once you have finishing customizing your project, build and flash it and test and debug it.

Beginning with S implicity Studio 5.3, you can combine projects into solutions. Solutions can be built, debugged, and flashed

together.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/overview-and-resources
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging

Project Configurator

104/335

Project Configurator

Project Configurator
When you create a component-based project (.slcp), the Project Configurator automatically opens an OVERVIEW tab in the

Editor area of the S implicity IDE perspective. A SOFTWARE COMPONENTS tab provides access to a library of software

components and their configuration functions. A CONFIGURATION TOOLS tab allows for quick access to project-specific

tools.

Open the Project Configurator for an existing project by double-clicking the <project>.slcp file in the Project Explorer view.

Overview Tab

The OVERVIEW tab has three cards:

Target and Tool Settings, where you can change your development target, SDK, and project generators.

Project Details, where you can rename the project, change the Import mode and, in rare cases, force generation.

Quick Links, where you can change the files SSv5 generates for your project.

Target and Tool Settings

Click Change Target/SDK/Generators to change the device for which the project is developed, the SDK version to be used

in development, or the files that will be generated for the project. Changes made here do not apply to the project until you

save changes.

Project Configurator

105/335

Search for target hardware by part number. If you select a different part, it replaces the part already selected, or you can

delete the part and then add a new one.

If you have more than one Gecko SDK Suite (GSDK) version installed, you can select it here. If you do not see a version

that you expect to see, click Manage SDKs to open the SDK Preferences.

Project Configurator

106/335

Here you can search for SDKs that might be installed outside of SSv5. Note that, if you have more than one SDK protocol

installed in the same GSDK version, for example Bluetooth and Zigbee, you cannot change between them. You can only

choose among GSDK versions.

The options for the files that are generated by Project Configurator are:

GCC Makefile

Visual Studio Code Compatible Project (Beta)

IAR Embedded Workbench Project

S implicity IDE project

The options that are available for selection and the default vary depending on the SDK and toolchain you selected when

you created the project.

Note that changing the project generator does not change the project toolchain. The compiler / toolchain used by S implicity

IDE is configurable in Project > Build Configurations. The default IDE is configurable in Preferences > Simplicity Studio >

Preferred IDE.

Project Details

Project details include a description of the example on which the project is based, the category of the example, the

versions of SDK included in the currently selected GSDK version, and the import mode. Here you can:

Edit the project name

Change the import mode

Generate a project report

(If necessary) Force project generation

Click the pen icon to edit the project name.

The import mode determines what resources are copied into your project and what are linked. If you change the import

mode, the change is autosaved and your project files are regenerated.

Link to sources means all project and SDK resources are linked. Only generated files are saved with the project.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-vscode-ide

Project Configurator

107/335

Link SDK and copy project sources (default) means that all the example project sources are copied, but SDK libraries are

linked. If you update the SDK and regenerate the project files, the project will change.

Copy contents means that all resources are copied with the project. You can update SDK or load an updated example

project and your project will not change.

Generate Project Report creates a PDF, available through a link immediately above the control, that provides details on:

Target hardware device

Target hardware device pin mapping

Target SDK

Software extensions used in the build

Installed application, utility, and platform software components

Force Generation, available through the ... menu, is used only in rare cases when autogeneration is not triggered, usually

because of some change made outside of SSv5. It will run all available generators (slcp, radio config, gatt, and so on).

Note for S implicity Studio 4/AppBuilder users: Because many project configurator files are autogenerated, Project

Configurator does not include a Generate control like the one in AppBuilder. Force Generation is not a replacement for that

control.

Quick Links

Quick links are shortcuts to tools and other information of interest while developing a project of this type. The links available

vary based on the protocol and device. For example, a Connect project includes a Radio Configurator quick link.

Project Configurator

108/335

Software Components Tab

Projects are configured by installing and uninstalling components, and configuring installed components. The SOFTWARE

COMPONENTS tab displays categories of components on the left, and details about the selected component on the right.

Project Configurator

109/335

A number of filters as well as a keyword search are available to help you explore the various component categories. Note

that components for all installed SDKs are presented. Expand a component category\subcategory to see individual

components. Select a component to see its details. Components that were included in the original project or installed by

the user are checked (1), and can be uninstalled. Configurable components are indicated by a gear symbol (2). Configurable

components must be installed before their configuration can be changed.

For any component you can see see the components on which this component depends, and components dependent on it.

You can also link to additional documentation, if available.

When you install a component, the installation process will:

 Copy the corresponding SDK files from the SDK folder into the project folder.

 Copy all the dependencies of the given component into the project folder.

 Add new include directories to the project settings.

 Copy the configurations files into the /config folder.

 Modify the corresponding auto-generated files (in the autogen folder) to integrate the component into the application.

Additionally, "init" type software components will implement the initialization code for a given component, utilizing their

corresponding configuration file as input. Some software components will fully integrate into the application to perform a

specific task without the need of any additional code, while other components provide an API to be used in the application.

Configuration Tools Tab

This tab provides an easy way to open a tool when the tool's tab is not open. The tab shows configuration tools relevant

to the project type. A Bluetooth Mesh project shows a number of tools, while an OpenThread project might only show the

Pin Tool. Click Open on the tool's card to open it in a separate tab.

Project Configurator

110/335

Component Editor

111/335

Component Editor

Component Editor
Click the gear symbol next to an installed configurable component name, or Configure on the component description to

open the Component Editor.

The Component Editor opens in a new tab. The changes you can make depend on the component.

Changes made here are autosaved in native source format in the associated source files.

Component Editor

112/335

Click View Source to open an editor on the configuration file. If a component has multiple configuration files, the control is

View Source Files

Pin Tool

113/335

Pin Tool

Pin Tool
S implicity Studio® 5 (SSv5) offers a Pin tool that allows you to easily configure new peripherals or change the properties of

existing ones. In the Project Configurator, open the CONFIGURATION TOOLS tab and open the Pin Tool. Alternatively,

double-click the file <project>.pintool in the Project Explorer view. The graphical view differs based on the chip.

For more complex layouts, you can use the zoom controls above the graphic to see detail and the rotate controls to rotate

the image.

Pin Tool

114/335

Right-click anywhere on the image or click the Additional Functions icon in the upper right of the image to open a menu

where you can:

Save Diagram as Picture: Saves the graphic as a .png file

Module Configuration Report: Produces an .htm file showing modules with signals assigned to pins. If a module has a signal

assigned to a pin, the module and signal/pin assignment appear in the report.

Pin Configuration Report: Produces an .htm file showing all the user modifiable pins of the chip and the current signal

assignment, if any.

Click a pin on the graphic to select it. The corresponding row is checked in the right pane's tabbed interface.

The pin, function, and peripheral tabs in the configuration pane provide different modes of access. A search function also

provided

Pin Tool

115/335

Pin Tool

116/335

Modifying Pin Configurations

Use the Pin Tool to modify the pin configuration of the device. Software components control behavior in the project but

must be associated with a peripheral, and generally need pin or function assignments. These pin or function assignments are

most easily edited in the Component Editor for that component. The Pin Tool allows you to assign functions to pins. On all

three dialogs, click EDIT next to a software component to go directly to the Component Editor for that component. Click

NEW to go to the Project Configurator's SOFTWARE COMPONENTS tab, where you can install a component in the project

so that it can be selected in the dialog.

When you are finished with the configuration, click APPLY or APPLY AND CLOSE to save changes. Configuration code

changes are automatically generated.

The Pins Tab

Click on any pin's row to open the Edit Pin dialog.

The function assigned to the pin: To apply a function or change a function, drop down the function list and select.

The Custom Pin Name (optional): Add or edit the custom pin name.

The Software Component: The component associated with the function is shown.

Pin Tool

117/335

The Functions Tab

Click on any function's row to open the Edit Function dialog.

The pin to which the function is assigned: Select a pin, or disable.

The Custom Pin Name (optional): Add or edit the custom pin name.

The Software Component: The component associated with the function is shown. A pin must be selected.

The Peripherals Tab

Click on any peripheral's row to open the Edit Peripherals dialog.

The Custom Peripheral Name: Add or edit the custom peripheral name.

The Software Component: The component associated with the peripheral.

Bluetooth GATT Configurator

118/335

Bluetooth GATT Configurator

Bluetooth GATT Configurator
The S implicity Studio® 5 (SSv5) Bluetooth GATT Configurator is a simple-to-use tool to help build a customized Bluetooth

GATT database for Bluetooth projects. It is accessed through the Advanced Configurators software component group on

the Project Configurator SOFTWARE COMPONENTS tab, or by double-clicking the project file config > btconf >
gatt_configuration.btconf.

The Bluetooth GATT Configurator is composed of a Custom GATT editor on the left, showing a list of project

Profiles/Services/Characteristics/Descriptors, and a Settings editor on the right. A SIG selector allows you to add standard

elements to the profile. An options menu is provided at the top of the Custom GATT editor.

The Custom GATT editor is always visible, and the Settings editor opens by default.

The Bluetooth GATT Configurator menu is:

 Add an item.

 Duplicate the selected item.

Bluetooth GATT Configurator

119/335

 Move the selected item up.

 Move the selected item down.

 Import a Bluetooth GATT database.

 Add Predefined (opens the SIG editor).

 Delete the selected item.

SIG Selector

Click the Add Predefined menu button (6) to open the SIG selector. The SIG Selector displays a list of predefined Profiles,

Services, Characteristics, and Descriptors. These items can be filtered, using the filter pane. Tabs allow you to switch

between different lists. As shown in the following figure, the pane on the right side of the list displays textual information

about the latest selection. To add an item to the Custom GATT editor, mouse over it and click + on the right. The item can

then be edited in the Settings section. The selected SIG service/characteristic/descriptor will be added under the

highlighted profile/service/characteristic. Click < BACK to return to the Setting Editor. Click View Manual to see more

information about Bluetooth GATT database items.

The GATT Configurator does not automatically save changes. An asterisk next to the configuration file name indicates

unsaved changes in the configuration. Database generation happens automatically when the configuration is saved. The

generated source files can be found in the autogen directory:

Bluetooth GATT Configurator

120/335

Custom GATT Editor

The Custom GATT Editor in the right pane of the GATT Configurator displays the items present in the current configuration

file. This includes a Custom GATT Profile, Services, Characteristics, and Descriptors displayed as a hierarchical list. The order

of items shown reflects the order in which they exist in the GATT database. When the Settings Editor is open, you can

select an item to see its properties and configuration.

Note: The Generic Attribute Service is not listed in the Custom GATT database structure. This is a special service that is

maintained by the stack, and can be added by enabling the Generic Attribute Service slider in the settings of the Custom

BLE GATT profile. Once enabled, the service will be part of the database. It still will not appear in the Custom GATT

database structure or on iOS devices, as iOS hides this service, but you may see it on Android devices for example.

Bluetooth GATT Configurator

121/335

Some services are listed in the configurator as "contributed items". This means that their content is defined in other

components, and they cannot be edited from this view.

Settings Editor

The Settings editor allows you to configure the properties of items such as Profiles, Services, Characteristics and

Descriptors that are present in the Custom GATT editor. Selecting an item populates the relevant configuration options such

as the name, ID, properties and capabilities. Any changes made in this section are reflected immediately for the selected

item. You can minimize the Custom GATT editor while working in the Settings editor, as shown in the following figure. All

Characteristics for a Service are included in the same Settings editor pane.

Additional Information

For more information on specific use cases in the GATT Configurator, see UG438: GATT Configurator User's Guide in
Bluetooth SDK 3.x.

Bluetooth Mesh Configurator

122/335

Bluetooth Mesh Configurator

Bluetooth Mesh Configurator
The Bluetooth Mesh Configurator provides access to a Bluetooth Mesh node's Device Composition Data (DCD). This

contains information about the elements it includes and the supported models. DCD exposes the node information to a

configuration client so that it knows the potential functionalities the node supports and, based on that, can configure the

node.

Configuring DCD through the Bluetooth Mesh Configurator is only one part of configuring a Bluetooth Mesh node. For

details see UG472: Bluetooth® Mesh Node Configurator User's Guide for SDK v2.x.

When you create a Bluetooth Mesh project in S implicity Studio 5, three tabs open automatically: the GATT Configurator

(gatt_configuration.btconf), .the slcp or Project Configurator <projectname>.slcp, and the Bluetooth Mesh Configurator

(dcd_config.btmeshconf). If the example has documentation, the project opens on a readme tab.

Click the dcd_config.btmeshconf tab to open the Bluetooth Mesh Configurator. If the tab is closed, you can open it from

the Project Configurator's CONFIGURATION TOOLS tab. The Device Composition Data is presented in three areas: device

information, elements, and models.

Device Information

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/project-configurator

Bluetooth Mesh Configurator

123/335

The device information card contains four fields. Changing the Company changes the next three fields.

Device configuration information includes:

Company: Selected from a list of company names.

Company ID: 16-bit company identifier assigned by the Bluetooth SIG. A list of companies and their identifiers may be found

on the Bluetooth SIG site.

Product ID: 16-bit vendor-assigned product identifier, vendor-specific.

Version Number: 16-bit vendor-assigned product version identifier, vendor-specific.

Elements

An element is an addressable entity within a node. Each node can have one or more elements, the first called the primary

element and the others called secondary elements. Each element is assigned a unicast address during provisioning so that it

can be used to identify which node is transmitting or receiving a message. The primary element is addressed using the first

unicast address assigned to the node, and the secondary elements are addressed using the subsequent addresses. Both

primary and secondary elements have a dedicated card, such as that shown in the following figure, through which they can

be configured. Click the green plus symbol to add an element or select an element and click the red X symbol to remove it.

Models

https://www.bluetooth.com/specifications/assigned-numbers/company-Identifiers

Bluetooth Mesh Configurator

124/335

A model defines the basic functionality of a node, and a node may include multiple models. A model defines the required

states, the messages that act upon those states, and any associated behaviors.

Models may be defined and adopted by the Bluetooth SIG and may also be defined by vendors. Models defined by the

Bluetooth SIG are known as SIG-adopted models, and models defined by vendors are known as vendor models. SIG-

adopted models are identified by a 16-bit model identifier and vendor models are identified by a 16-bit vendor identifier and

a 16-bit model identifier.

Model specifications are designed to be very small and self-contained. At specification definition time, a model can require

other models that must also be instantiated within the same node. This is called extending, which means a model adds

functionality on top of other models.

Models that do not extend other models are referred to as root models. Model specifications are immutable. In other words,

it is not possible to remove or add behavior to a model, whether the desired behavior is optional behavior or mandatory.

Models are not versioned and have no feature bits. If additional behavior is required in a model, then a new extended model

is defined that exposes the required behavior and can be implemented alongside the original model.

Therefore, knowledge of the models supported by an element determines the exact behavior exposed by that element.

The Bluetooth Mesh Configurator supports configuring both SIG-adopted models and vendor models through separate

editors.

SIG�Adopted Model Editor

If you are using the provided model components that automatically bring in the source/header files, libraries, and

configurations to the project, and also contribute the model to the DCD, you cannot edit or delete the model from the DCD

manually. The model is greyed out, as shown in the following figure. In this case, all the model implementations will be

generated to the project. You can modify the callbacks to adjust the application to your use case.

The drawback to using components is that you cannot edit the DCD and model information, because the models added by

components are greyed out. If you want to build the DCD from scratch, for example to add a specific model to an element,

uninstall all the model components. Then you can edit the DCD manually.

To delete a model, select it and click the red X symbol. To add a SIG-adopted model, drag the model from the left model

pool to the SIG Models table in the correct element. A list of all the SIG-adopted models is displayed, and you can choose

the one you want, as shown in the following figure. Note that, although all the SIG-adopted models are listed, not all of

Bluetooth Mesh Configurator

125/335

them are currently supported by the Bluetooth Mesh SDK. For the information on the supported models, see the SDK

release notes.

Due to the extension mechanism of models mentioned above, attention is needed when adding models to your project.

See UG472: Bluetooth® Mesh Node Configurator User's Guide for SDK v2.x for more information.

Vendor Models Editor

Vendor models give you more flexibility when developing products not covered by the SIG-adopted models. Vendors can

define their own specification in these vendor models, including states, messages, and the associated behaviors. The

vendor model editor is shown in the following figure. The ID field contains the 32-bit vendor identifier and model identifier.

The two least significant bytes of the ID are the vendor ID and the two most significant bytes are the model ID. In the

following figure, 0x02FF is the vendor ID for S ilicon Labs, and 0x0021 and 0x0022 is the model ID. Click the plus symbol to

add a vendor model, or select a model and click the red X symbol to remove it.

Proprietary Radio Configurator

126/335

Proprietary Radio Configurator

Proprietary Radio Configurator
The S implicity Studio® 5 (SSv5) Radio Configurator is provided as part of the Proprietary SDK. Use the Radio Configurator

to create standard or custom radio configurations for your RAIL-based radio applications. The Radio Configurator is

accessed through the through the Platform group's Custom Radio Configuration for simple rail singlephy application

component, on the Project Configurator SOFTWARE COMPONENTS tab and can be accessed on the CONFIGURATION

TOOLS tab. (For some examples, the Radio Configurator might open on project creation). All radio configurator settings are

stored in config/rail/radio_settings.radioconf. Changes made with Radio Configurator are not automatically saved.

All the parameters in the Radio Configurator are arranged in cards, some of which are grouped together. Each card contains

entries that logically go together. Different radio profiles (as described under Protocol) offer different views and parameter

sets, as a profile is a high-level view of the parameter set valid for and describing a given radio link.

Proprietary Radio Configurator

127/335

A radio configuration has two hierarchical levels: Protocol level and Channel Group level. A radio configuration can contain

multiple protocols and a protocol can have multiple channel groups defined.

Protocol

Protocols are complete radio configurations that can be switched using the RAIL_ConfigChannels() API, or can be used in

Dynamic Multiprotocol applications. For Channel Group definitions see Channel Groups.

To configure a protocol, first select a predefined PHY configuration, then customize it to meet your needs.

First, look at the General Settings card. Select a radio profile in the Select radio profile drop-down menu. A radio profile

may be any supported radio link technology. These technologies can be bound by standards (for example the S igfox or

WMBus protocols) or can be fully customized. The fully customizable profile is called the "Base Profile".

Once the radio profile has been selected, the next step is to select a radio PHY (radio configuration) in the Select a radio

PHY dropdown list. Each profile has "built-in" configurations ready to use.

Once the radio profile and radio PHY have been selected, users can review the profile options. By default, no changes are

allowed, fields are grayed out. To enable customization, use the Customized switch on the General Settings card. This

allows access to all the parameters defined by the profile.

Proprietary Radio Configurator

128/335

Important notes:

 If you select a "built-in" PHY, and then switch to "Customized", the Radio Configurator retains the property values of the

"built-in" PHY. You can edit the values, but can also revert to the defaults.

 If you switch to “Customized” mode, S ilicon Labs recommends unchecking all "Advanced" properties, as those are fine-

tuned for the "built-in" PHY, and may not be the optimal choice for the modified PHY. This way those parameters get auto-

calculated, and you can experiment with the fine tuning starting with the calculated values. To keep the improved

performance achieved by the original optimization, only minor changes should be made. For example, <100 MHz change in

carrier frequency, or a different frame length configuration.

 If you switch customization off, your modifications will be reverted to the property values of the "built-in" PHY.

 Each menu item in the Navigation pane (on the left) is represented by a card in the main editor panel (on the right). Cards

can be hidden by clicking the corresponding "eye" icon on the Navigation panel.

Based on the selected radio profile, customizable options may be restricted. For example, if a radio profile is selected that

is bound by a standard, the profile options only allow users to set the base frequency. All other options are preset

according to the standard.

Channel Groups

Each protocol configuration includes one or more channel group configurations. Channel groups define one or more

(sequential) channels, with a constant channel spacing between them. Channel groups can differ in the radio configuration

both from each other and from the parent protocol. By default, a channel group configuration includes only the General

Settings and Channel Configuration cards. Additional parameters defined by the Protocol can be accessed for

customization on a channel group basis by sliding the Customized switch on the corresponding card. Channel groups can

also be completely overridden to a predefined PHY by checking the Select radio PHY box.

Proprietary Radio Configurator

129/335

RAIL automatically detects when hopping to a new channel requires hopping between channel groups. The configured

property values defined by the channel group will be applied automatically for the new channel. This enables users to

define virtual channels to the same physical frequency, but with different configuration settings.

The order of the channel groups will be the same in the RAIL_ChannelConfigEntry_t array as shown in the Radio Configurator.

Channel group order can be used to override channels in channel groups, as RAIL will always load the channel from the first

channel group in which it is defined.

For more on Multi-PHY configuration, see the example in AN1253: EFR32 Radio Configurator Guide for S implicity Studio 5.

Finalizing a Configuration

When a parameter is modified from its pre-loaded value, small pictograms show up next to the property field on the card.

These pictograms symbolize the differences against the originally selected PHY configurations. A "C" means a difference

from the original Channel Group property, and a "P" means a difference from the original Protocol Configuration.

Each input field has an Information icon next to it, which opens the embedded version of AN1253: EFR32 Radio

Configurator Guide for S implicity Studio 5 at the relevant section. You can also reach the documentation by clicking View

Manual in the top right corner of the perspective.

https://www.silabs.com/documents/public/application-notes/an1253-efr32-radio-configurator-guide-for-ssv5.pdf
https://www.silabs.com/documents/public/application-notes/an1253-efr32-radio-configurator-guide-for-ssv5.pdf

Proprietary Radio Configurator

130/335

On save the Radio Configurator generates rail_config.c and rail_config.h in the project's autogen directory. These files are

also generated when a project is created.

Wi-SUN Configurator

131/335

Wi-SUN Configurator

Wi-SUN Configurator
When you create a new Wi-SUN project, a Wi-SUN Configurator is added to it by default. The Wi-SUN Configurator

provides an interface to the Wi-SUN application's main settings through three panels: Application, Security, and Radio. For

some examples, the Wi-SUN Configurator only displays the Radio panel. These examples do not have the application and

security infrastructure.

The Wi-SUN Configurator tab can be displayed by opening /config/wisun/wisun_settings.wisunconf. For more information,

click View Manual.

Application Panel

The Application panel exposes multiple Wi-SUN stack settings associated with the application, such as:

The network name the device will try to connect to

The network size setting

The device ’s TX output power

The unicast dwell interval

The MAC address filtering feature provides a way to force a topology on a Wi-SUN network. It is a simpler alternative to

spacing out the Wi-SUN devices to achieve the desired topology. A device either does or does not interact with other Wi-

SUN devices on the list, depending on the allow/deny option.

Security Panel

Wi-SUN Configurator

132/335

The Security panel displays the private key and certificates used by the device to authenticate itself when connecting to a

Wi-SUN network. By default, it uses the S ilicon Labs demonstration samples. They can be modified to use a distinct

certificate infrastructure aligned with the border router or authenticator certificate.

Radio Panel

The Radio panel is an interface to configure the radio profiles included in a Wi-SUN application. It provides a user interface

to access any specified Wi-SUN FAN 1.0 or FAN 1.1 PHY. A radio button allows the user to choose between the FAN 1.0 or

FAN 1.1 context.

The complete list can be filtered to help you find the right PHY configuration. An application can embed several PHYs from

different regions and different specification versions.

Wi-SUN Configurator

133/335

The Application’s Default PHY input defines the PHY that the application starts with. The default value depends on the

EFR32 radio board used to create the project. For example, a BRD4163A radio board supporting the 868 MHz band defaults

to the mandatory Wi-SUN PHY for the European region (that is, Wi-SUN FAN EU - 1 – 1a). On the other hand, a BRD4164A

radio board supporting the 915 MHz band defaults to the North America mandatory Wi-SUN PHY (that is, Wi-SUN FAN NA -

1 – 1b). The user can always open the dropdown list and select another default PHY.

Every selected Wi-SUN PHY can be edited in the Radio Configurator by clicking the pen icon. This action opens the Radio

Configurator user interface on the selected Wi-SUN PHY. Moreover, non Wi-SUN FAN PHY are listed under “Other Custom

Profile” for information.

ZCL Advanced Platform

134/335

ZCL Advanced Platform

ZCL Advanced Platform �ZAP�
The ZCL Advanced Platform (ZAP) is a tool used to configure endpoints for Zigbee and Matter. When you open ZAP, it

launches in a new tab next to the <project>.slcp tab. A Zigbee or Matter application can have multiple endpoints. Each

endpoint contains a device configuration made up of Clusters on that end-point. The cluster groups differ depending on

whether you re configuring a Zigbee or a Matter project, and the interface differs slightly.

ZAP for Zigbee:

ZAP for Matter:

ZCL Advanced Platform

135/335

This section is illustrated with a Zigbee project, but the information applies to Matter as well. For more details about using

ZAP with Matter, see Matter References: Using ZAP, the ZCL Advanced Platform.

At any point click Tutorial in the menu for an interactive tutorial.

Click ADD ENDPOINT to add a new endpoint.

In the next dialog, select a device type for the endpoint, and optionally change the endpoint number. Click CREATE to

create the endpoint.

https://docs.silabs.com/matter/latest/matter-references/matter-zap

ZCL Advanced Platform

136/335

To modify an endpoint, select it in the left panel.

The Filter dropdown in the upper right filters the clusters shown. To see only clusters that are enabled on the endpoint,

select 'Enabled Clusters'.

ZCL Advanced Platform

137/335

Settings in the Enable column enable either the Client or Server (or both) sides of a cluster. Depending on the changes you

make, you may be notified that components have been added to your project. To remove the cluster entirely from the

configuration, select 'Not Enabled'.

Click the Gear icon next to a cluster to enable or disable attributes, manage how they are stored, manage attribute

reporting, and also manage the handling of commands on that cluster. The cluster configuration interface consists of three

tabs:

Attributes

Attribute Reporting

Commands

ZCL Advanced Platform

138/335

Configuration changes made through the Zigbee Cluster Configurator for a Zigbee project are saved to <project-

folder>\config\zcl\zcl_config.zap. For a Matter project the configuration is saved to <project-folder>\config\zap\

<name>.zap. The .zap file is the backing data file for the Zigbee Cluster Configurator configuration for your application.

When you save the file, the Zigbee Cluster Configurator not only saves the .zap file into your project, but also automatically

generates all the files required for your application. For Zigbee, the files are placed in the project's autogen folder and all
start with the 'zap' prefix. For Matter, the files are placed in the project's autogen > zap-generated folder.

For additional details about cluster configuration and adding a custom cluster, see the Zigbee-focused AN1325: Zigbee
Cluster Configurator User's Guide.

Solutions

139/335

Solutions

Solutions
A solution is a construct that combines two or more projects such that they can be compiled, debugged, and flashed

together. The solution is defined by a metadata .solutions file. Solutions can be local or shared. In a local solution, the

.solutions file is stored in the S implicity Studio Workspace. In a shared solution, the file is stored in the project specified

when the shared solution is created. Shared solutions are easier to place under source control, and they can be exported

to other Workspaces.

Solution examples are available on the Example Projects and Demos tab or you can create your own through File > New >

Solution or Projects > Manage Solutions > New. The resulting dialog shows available projects in the current Workspace.

Name the solution, select the projects to be included in it, and click Finish.

Note: The generic term for the construct that combines multiple projects is a workspace. However, in Simplicity Studio a

Workspace is a special directory into which projects (and solutions) are created. Therefore, whenever possible, Simplicity

Studio documentation uses the term 'solution' for this construct.

Create a Solution from an Example

When you create a solution based on an example, the configuration dialog allows you to edit the name of the projects in

the solution as well as the solution.

Solutions

140/335

Each project in the solution then opens individually. Project Explorer view shows the solution as a separate folder, and

projects in the Workspace folder that are not included in the solution as 'Other Projects'.

Configure the projects in the solution as you would other project. Select the solution folder and click Build to build all

projects in the solution. Project- and solution-level post-build script files (.slpb) are provided with the examples, and will

combine the individual projects into a downloadable .s37 image. Double-click an *.slpb file to open the Post-Build Editor to

see how the script is configured.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/post-build-editor

Solutions

141/335

While the default memory use in the example solutions is fine for development and debugging, you can use Memory Editor

to finalize the application memory layouts. Rebuild the solution to update the memory configurations.

Solutions are required for applications to take advantage of the EFR32 Series 2 TrustZone security feature. See AN1374:

Series 2 TrustZone for a discussion of both the feature and how solutions are used to implement it.

Manage Solutions

Right-click the Solution in Project Explorer view, and click Solutions on the context menu to open the Manage Solutions

dialog, set the active Configuration or sync solution configurations.

With Manage Solutions (also available on the Project menu) you can create, edit, and remove solutions.

Click Edit... to rename a solution, add or remove projects from a solution, or save a local solution as a shared solution. You

must specify the project to contain the solution metadata.

If the projects have multiple build configurations and the solution also has multiple build configurations, click Sync Solution

Configuration to set the active build configuration of each project to match the solution's active build configuration.

https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf

Memory Editor

142/335

Memory Editor

Memory Editor
The Memory Editor is a graphical tool for editing the flash and RAM memory layout of the applications in a solution. It can be

opened from the Project Configurator Configuration Tools tab or the Quick Links card on the Overview tab. Memory Editor

shows the Flash and RAM memory map for the projects in the solution. The default memory settings in the example

solutions are good enough for software development and debugging, but with the Memory Editor you can fine-tune

memory use based on your needs.

Memory Editor

143/335

When you alter memory used by changing either or both applications' start or end location or size and save the changes,

Memory Editor updates the linker file in the project autogen folder with the custom settings. Rebuild the projects to use the

new memory configurations in the linker files.

Memory Editor displays a warning if your changes cause the applications' memory use to overlap.

This is a beta implementation. Not all example projects have default settings included at this time, which results in a warning

when you open the editor. Save the default values that the tool calculates as your starting point.

Developing with AppBuilder

144/335

Developing with AppBuilder

Developing with AppBuilder
S implicity Studio® 5 (SSv5)'s AppBuilder is a graphical tool used to create configurations and build Application Framework

files. The AppBuilder configuration files indicate which features and functions you would like for your compiled binary image.

By using AppBuilder along with an application framework, you can quickly create an application that includes all of the

required functionality for the image's purpose.

AppBuilder must be used in conjunction with one of the S ilicon Labs application frameworks, which are shipped as part of

the SDK. All of the code that will be compiled into the binary image is included in the SDK distribution. AppBuilder creates

configuration and build files that tell the application framework which portions of the code to include in, and which to

exclude from, the compiled binary image.

With the exception of a few header (.h) files, AppBuilder does not generate the C source code for the application. All of the

source code that ultimately will be included in the binary image is provided in the Application Framework.

In general, to develop an application using AppBuilder:

 Create an application based on one of the AppBuilder examples, such as Z3Switch.

 Customize the application on the various AppBuilder tabs. Functions can be added by enabling and configuring plugins.

 Click Generate to create application files.

 Optionally, add your own code to the application.

Once you have finishing customizing your project, build and flash it, and then test and debug it.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/overview-and-resources

Configuring a Project

145/335

Configuring a Project

Configuring a Project
S implicity Studio® 5 (SSv5)'s AppBuilder provides a tabbed interface. Each tab provides customization options.

General - Configure global values for your application like the Device Name and Generation Directory

ZCL Clusters - Choose the specific combination of clusters to include

Zigbee Stack - Configure stack-specific settings

Printing and CLI - Configure debug printing and CLI options

HAL - Configure bootloader and board header file options, and access the Hardware Configurator tool to manage peripheral

configurations

Plugins - Include or exclude plugins, where a plugin is a specific implementation of a cluster or some other functionality

Callbacks - Select from a set of predefined callbacks

Includes - Include any external files into the generated project

Other Options - Configure PHY support, plugin services, and other options

Bluetooth GATT - For use with dynamic multiprotocol applications, provides a direct interface to the GATT configurator

General

The General tab provides information about the example used as a foundation for the project, and lets you change project

level information, such as the toolchain used.

Generation directory shows where project files will be generated. By default this is a <project name> directory in the

default SSv5 workspace.

Configuring a Project

146/335

Click Edit Architecture to change the target device or the toolchain.

ZCL Clusters

The ZCL Clusters tab provides functionality to manage endpoints and their cluster configuration.

Multiple Endpoint Configuration Table

The Multiple Endpoint Configuration Table allows you to configure the endpoints on your device. Click New to add an

endpoint.

Endpoint: Change the endpoint on which your device will be hosted by clicking the number in the Endpoint column. The

number field becomes editable. Change the endpoint to any of the valid Zigbee endpoints available.

Configuration: Each endpoint implements a specific configuration. The configuration is not a Zigbee construct. It is a name

created for S implicity Studio AppBuilder so that multiple endpoints that implement the same application can share the

metadata associated with that application. This conserves the use of flash within the device. By default, each new endpoint

will implement the configuration named "Primary." Change the configuration by selecting the endpoint row and then clicking

on the "Configuration" column. A button appears to the right of the Configuration name. Click the button to launch the

Configuring a Project

147/335

configuration dialog. Once you have created a new configuration, the application for that configuration can be implemented

on as many endpoints as you like without using any more memory on your device for metadata storage. Each endpoint still

needs to have its own attribute storage to contain the endpoint-specific values. AppBuilder and the application framework

take care of this for you.

Network: By default, the first endpoint belongs to the network named "Primary." When new endpoints are created, they will

belong to the same network as the first endpoint. On platforms that support multi-network, you may choose the network

for a specific endpoint. New networks can be created and configured in the Zigbee Stack tab.

ZCL Device Type: Select from a set of pre-defined ZCL Device Types. AppBuilder then populates the cluster table with the

clusters appropriate to that device type as defined by the Zigbee Cluster Library specification. In addition to these pre-

defined device types, you also have the option to create a custom device type. With this option, you can choose from any

of the available Zigbee clusters included within the Application Framework.

Cluster Table

The Cluster Table displays which clusters will be included as part of each endpoint type.In the case of a custom device

implemented on any endpoint, you have the option to choose the clusters to include and their client/server role.

Attribute Table

When you click a specific cluster, its attributes display in the Attribute Table. Configure the device's behavior by configuring

the attributes in this table.

External Attribute storage: By default, all attributes are stored in a RAM buffer provided by the application framework.

Storing some attributes may not make sense, however, since they are either already stored somewhere else in the system

or are not stored at all but read from some external piece of hardware. In this case you may indicate that the attribute is

externally stored. When the application framework needs to interact with the attribute it will use the external attribute

callbacks. By implementing these callbacks and marking the attribute as externally stored, the attribute storage is removed

from the framework and placed into the domain of the application. The metadata used to represent the attribute on the

network is still stored inside the framework so that the framework can respond to ZDO requests and so on.

Persistent attribute storage: By default, all attributes are stored in RAM. As a result, attribute data does not survive a

reboot of the device. If you want to maintain state for an attribute across reboots, the attribute must be stored in

persistent memory on the device. To store a specific attribute in persistent memory, check the checkbox in the F column.

Singleton attribute storage: Most attributes are stored as a separate value for each endpoint on which they are

implemented. This does not make sense for some attributes that may exist across endpoints. For instance, it makes little

Configuring a Project

148/335

sense to store multiple copies of the Basic Cluster's ZCL Version since the version pertains to the entire application and not

to each individual endpoint. Attribute values may be shared across endpoints by indicating that the attribute is a "singleton."

Bounding attributes to their Min and Max values: By default, the application framework allows you to write any value (within

the limits of the size of the attribute) into the attribute table. However, you may request that the application framework

reject any attribute value outside the Min and Max defined by the Zigbee specification by checking the checkbox in the B

column. The application framework then stores the min and max values for the chosen attribute in the attribute table and

rejects any write request, whether from the CLI or an external device, that is outside the attribute value range.

Zigbee Stack

Here you can configure networks and add custom clusters.

Printing and CLI

Here you can enable and configure debug printing, and enable/disable CLI functionality.

Configuring a Project

149/335

Debug printing

The application framework can output application and stack debug information over the serial port. To choose the

information to include in the debug output, select from the serial printing checkboxes. If you are not concerned with debug

output, and/or would prefer to conserve the flash and RAM associated with debugging, turn off the serial printing options by

deselecting them.

Command Line Interface (CLI) Options

AppBuilder can output either a "Legacy" or "Generated" command line interface.

Use Legacy CLI: If checked, AppBuilder uses the hard coded CLI interface included in the application framework. Otherwise

AppBuilder generates a Command Line Interface along with other generated files based on the CLI interface options

selected in the CLI configuration window.

Add Custom CLI Sub-menu: Adds the ability to include user-defined CLI commands into the Command Line Interface.

Include Command and ...: Includes a description for each command or argument into the Command Line Interface. Turning

this on will increase the size of your application but will make it easier to use the Command Line Interface since all

commands will be self-described when a command is not recognized by the application.

Use Command Set: Makes it possible to turn the command line interface on and off and choose a pre-defined subset of

the CLI for use in your application

CLI Configuration Table: Select exactly what CLI commands are supported in the application. By default, the Full command

line interface command set selects all General commands and all cluster and plugin commands supported by clusters and

plugins included in the application.

HAL

Use the HAL tab to configure hardware-specific options for your device.

Configuring a Project

150/335

For EFR32 devices, most hardware configuration is done through the Hardware Configurator. Under Hardware Configurator

Interface click Open Hardware Configurator.

Bootloader - Select the type of bootloader to use. See UG103.6: Bootloader Fundamentals as a starting point to learn

more about bootloaders.

Plugins

Use the Plugins tab to include, exclude, and configure the functional implementations called plugins.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf

Configuring a Project

151/335

Include/exclude plugins by checking/unchecking them. Select a plugin to see information about it and configurable

parameters, if any.

Some plugins provide access to the Hardware Configurator peripheral settings. These plugins have a Hardware Configurator

Dependent Options pane. You may need to scroll down in that pane to see all options. Enabling/disabling plugins can also

enable and disable Hardware Configurator modules and their dependent peripherals. When a plugin with Hardware

Configurator dependencies is enabled/disabled, a pop-up dialog box shows which Hardware Configurator modules and

peripherals are being enabled/disabled. Also, when a plugin that shares Hardware Configurator modules/peripherals with

another plugin is enabled/disabled, a similar warning shows which peripherals are being affected behind the scenes in the

Hardware Configurator. See Configuring Peripherals for information on using the Hardware Configurator directly. For more

details on both plugin and tool access, see AN1115: Configuring Peripherals for 32-Bit Devices using Hardware Configurator.

Callbacks

Use the Callbacks tab to add or remove callbacks, and to see the callbacks that are required by plugins or other code.

Select a callback to see its code and other information about it.

https://www.silabs.com/documents/public/application-notes/an1115-32-bit-device-peripheral-configuration-in-simplicity-studio.pdf

Configuring a Project

152/335

Enabled callbacks must be implemented in application code, otherwise you will get linker errors.

Callbacks are grouped into logical sections in the callbacks tab for ease of navigation. Callbacks implemented by an included

plugin have the plug symbol. All of the custom application framework callbacks are included in the "Non-cluster related"

section. All of the other callbacks are grouped by cluster. Many of the cluster-specific callbacks are intended for command

handling.

When a command comes in, it is passed off to a cluster-specific callback for processing. If the callback returns TRUE then

the internal handler for that command will not be called. Cluster-related callbacks are also only implemented for those client

and server clusters that are included in the application. If a cluster is not included, the application is not expected to parse

that cluster's commands. The application framework returns a default response of UNSUPPORTED_COMMAND.

Callback generation: The first time you generate your application from AppBuilder, it automatically generates a callbacks.c

file with the name <project name>_callbacks.c. When you regenerate files in the future, AppBuilder protects your generated

callbacks file from being overwritten by asking if you want to overwrite it. By default, AppBuilder will not overwrite any

previously created callbacks file. If you choose to overwrite the file, AppBuilder backs up the previous version to the file

<project name>_callbacks.bak.

Includes

Use the includes tab to manage information included in the application.

Configuring a Project

153/335

Additional .c and .h files

When you generate a project file from AppBuilder, you often need to modify the project to include your own source files

into the application image. This is a problem if the project file needs to be re-generated, since the newly generated project

file will overwrite the old one, thereby removing any files that have been included.

Any files that you would like to compile along with your application can be included in the file include table. To include a

new file, click New. Navigate to the location of the file you wish to include and click OK. The file will be included inside the

generated project file with an absolute path to the location of the file.

Token Configuration

To implement attributes in tokens, the application framework places its own token file into the generated

APPLICATION_TOKEN_HEADER #define within the generated project file.

The application framework's token header file, located at app/framework/util/tokens.h, includes a spot where you may place

a relative path to your own token header. The token header files are chained off one another with the application

framework's token header at the top of the chain. To include your own token header within your application, provide

absolute or relative path inside the appropriate Token Configuration path field.

Additional Macros

Much of the configuration for the application framework and the stack is done using macros documented within the API.

Any additional macros that you wish to define, either for compile time or for run time, should be provided here.

Compile-time macros should include the "-D" option. These macros will be included in the compiler and linker definition

sections in the generated project file. Any macros which do not include the "-D" option will be included in the generated

application header file.

Event Configuration

You can include custom application events into the application framework's event system. These events are run in the

same manner as the application framework's own events as well as all cluster events implemented by the cluster plugins.

Configuring a Project

154/335

To include a custom event, click Add New. Your custom event will be automatically included in the event configuration

section of the generated endpoint_configuration.c file. Stubs for your event function and event control will be generated

into the callbacks.c file. You may also change the name of the generated event control value and function to whatever you

desire.

For more information on how events work UG391: Zigbee Application Framework Developer’s Guide .

Other Options

Use the Other Options tab to configure PHY support, stack protection, and to manage plugin-provided services.

Bluetooth GATT

For Dynamic Multiprotocol applications, use the Bluetooth GATT tab to configure the GATT database for the Bluetooth

application.

https://www.silabs.com/documents/public/user-guides/ug391-zigbee-app-framework-dev-guide.pdf

Configuring a Project

155/335

For more information about Bluetooth GATT database configuration see UG365: GATT Configurator User's Guide for

Bluetooth SDK v2.x.

https://www.silabs.com/documents/public/user-guides/ug365-gatt-configurator-users-guide.pdf

Configuring Peripherals

156/335

Configuring Peripherals

Configuring Peripherals
S implicity Studio® 5 (SSv5)'s AppBuilder HAL tab provides access to a Hardware Configurator that you can use to

configure pins and peripherals. Access to specific configuration options is also available through various peripheral plugins.

To open the Hardware Configurator for an open project, double-click the .hwconf file in Project Explorer, click Open

Hardware Configurator on the HAL tab, or select Hardware Configurator from the Tools menu and then select the target

project. The Hardware Configurator has two views, accessed through the two DefaultMode tabs at the bottom of the

center pane:

Port I/O: Used to configure the pin locations and port pins

Peripherals: Used to configure modules such as Timers, USARTs, and HAL peripherals. Most configuration changes can be

made through this tab.

Port I/O

The Port I/O tab displays a package drawing for the selected device. This drawing updates to display changed pin

assignments. Hover the cursor over a pin to see its definition. White = unused, blue = assigned, orange = two or more

signals going to the pin, conflict allowed, and red = two or more signals going to the pin, conflict not allowed. While you can

Configuring Peripherals

157/335

make some changes to the peripheral associated with a given pin, S ilicon Labs recommends changing peripheral

configuration through the Peripheral tab. Use this configuration for pin customizations such as renaming the pin.

Some changes must be made in both the Port I/O and Peripherals tab. For example:

A route can be selected in Port I/O and an APORT channel can be selected in the peripherals properties.

ACMP output can be selected on the Port IO route selection and ACMP inputs can be configured in the Peripherals section.

A printable report can be generated by right-clicking on the pinout diagram and selecting Pin Configuration Report. This

opens a report as a webpage in a browser that can be saved, printed, or archived. The Module Configuration Report option

generates a similar set of tables organized by module rather than by pin order.

Note: To share information about the hardware configurations for a device S ilicon Labs recommends sharing the .hwconf

file itself.

Peripherals

The Peripherals tab contains boxes, each of which represents either a hardware peripheral or a software concept that is

HAL-related but not physically on the chip. Peripheral boxes are organized into groups. Collapse or expand a group by

clicking the arrow icon on the upper right of the group. Hover your cursor over a box to see information about the

peripheral.

Click on a box to see its properties in the Properties pane. Properties can either have a drop-down menu with the available

selections or a text input box for a numeric or text field. After making a selection for a property, click away from the

property or press Enter to ensure the property value change occurs. If you cannot disable a peripheral it may be owned by

another peripheral. Go to the settings for that peripheral to free up any dependent peripherals.

Note: The defines for the peripheral are only generated if the checkbox on the peripheral box is checked. For example, the

interface for a project based on the S ilicon Labs Zigbee Z3LightSoc example has a HAL group with a Button peripheral.

Click on that peripheral to see its properties.

Configuring Peripherals

158/335

Developing for 8�Bit Devices

159/335

Developing for 8�Bit Devices

Developing for 8‑Bit Devices
Hardware Configurator (Configurator) for 8-bit devices is part of S implicity Studio® 5 (SSv5) and greatly simplifies EFM8

and C8051 MCU peripheral initialization by presenting peripherals and peripheral properties in a graphical user interface.

The 8051 SDK contains an extensive and nearly comprehensive set of examples for 8-bit MCU peripherals for each

supported device family. These examples show simple use cases for each peripheral, and can be used as building blocks for

larger systems incorporating multiple peripherals, or as a starting place for applications requiring each peripheral. Projects

based on these examples are customized by changing code as described in About Projects and by updating peripheral

configuration using the 8-bit Hardware Configurator.

In Hardware Configurator, most of the initialization firmware can be generated by selecting peripherals and property values

from combo boxes or entering register values in text boxes. Some peripherals provide calculators, such as baud rate, timer

overflow rate, and SPI clock rate, that can be used to automatically confirm the necessary reload register value to

generate the specified clock rate. Hardware Configurator also provides real-time property validation to ensure that a

configuration is valid before downloading code to the MCU.

About Projects

160/335

About Projects

About Projects
Create a S implicity Studio® 5 (SSv5) project for an 8-bit target by selecting a target device, and then selecting an example,

as described in Project Creation. An extensive list of examples is provided for most S ilicon Labs EFM8 and C8051 devices.

These examples contain configurations specific to each target device.

The S implicity IDE perspective opens with the project directory highlighted in Project Explorer view. Expand the directory

and double-click the project source to see or modify the code.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/start-a-project#project-creation
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide

About Projects

161/335

Open Hardware Configurator by double-clicking the .hwconf file in Project Explorer, or by selecting Hardware Configurator

from the Tools menu, and selecting the project.

Use Hardware Configurator to customize the configuration and functionality as desired. Modifications to the device

configuration can be saved to the .hwconf file. Hardware Configurator generates output in the form of generated code in

multiple files, as described in Using Hardware Configurator.

Build and debug the application as described in Building and Using the Debugger.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing/building
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/using-the-debugger

Using Hardware Configurator

162/335

Using Hardware Configurator

Using Hardware Configurator
S implicity Studio® 5 (SSv5)'s Hardware Configurator for 8-bit devices uses the Configurator perspective. This perspective

is tailored specifically for use with Hardware Configurator to initialize MCU peripherals. Special views in this perspective

allow peripheral registers to be configured.

The available editors in a Configurator project are as follows:

Peripherals: Used to configure hardware peripherals such as ADCs, Timers, LEUART, PCAs, and so on.

Port I/O: Used to configure the pin locations, crossbar, and port pins. This editor is open by default for a new project.

Mode Transitions: Used to define different MCU peripheral initialization states, such as DefaultMode, RESET, and other

optional modes (example: LowPower mode). This editor can also be used to define transitions between states.

The Hardware Configurator automatically validates register configuration values. Occasionally changes to the configuration

can cause errors or warnings. These clear as soon as the cause is addressed.

Peripherals

Use the Peripherals tab to configure hardware peripherals like the ADC, comparators, or timers. To configure a peripheral,

click the peripheral icon. This selects the peripheral and opens it in the Properties view. Properties can either have a drop-

down menu with the available selections or a text input box for a numeric or text field. Properties that are grayed out are

read-only. These properties typically provide more information about the configuration of a peripheral. After making a

selection for a property, click away from the property or press Enter to ensure the property value change occurs.

Using Hardware Configurator

163/335

For example, click the Timers peripheral to display the timer properties in a tabbed view. The Timer 3 tab has several

properties that can be modified, like Clock Source, Mode, and Target Overflow Frequency. Modifying any of these

properties will update the Timer Reload Overflow Period and Timer Reload Overflow Frequency read-only properties,

which display the calculated overflow time based on the Target Overflow Frequency and the Clock Source settings. These

read-only fields and calculators depend on the Mode and Run Control state. Calculators for reload value are for auto-reload

mode.

Using Hardware Configurator

164/335

Note: Peripherals will not have code generation enabled unless the peripheral checkbox is checked.

Port I/O

The Port I/O tab displays a package drawing for the selected device. This drawing updates to display pin assignments as

peripherals are enabled on the crossbar or peripherals with fixed pin assignments are enabled. For fixed pin assignments, the

associated peripheral must be enabled in order for the fixed pin function to appear on the Port I/O tab. Changes are shown

in blue until the file is saved.

For example, on the Peripherals tab make sure the ADC0 module is checked. On the port I/O tab, in the Outline view select

ADC0, in Properties change Enable ADC to Enabled , and select a Positive Input pin (in this example P1.3). This displays the

ADC_IN fixed signal on the selected pin in the drawing.

Using Hardware Configurator

165/335

To enable a peripheral on the crossbar, on the Peripherals tab enable a peripheral for code generation (in this case Clock

Control). On the Port I/O tab, in the Outline view click CROSSBAR0, and in the Port I/O Mapping view check the

corresponding signal. This changes the corresponding property to Enabled .

To configure a pin’s properties, click the pin in the package drawing and select the desired pin property settings. If

configuring a device with a crossbar, a pin can be skipped by right-clicking the pin and selecting Skip in the context menu or

Using Hardware Configurator

166/335

changing the Skip property setting.

S imilarly, I/O mode can be selected by right-clicking the pin and selecting IOMode or changing the IOMode property setting.

On all devices, multiple pins can be selected by holding Ctrl or Shift and selecting the desired pins or holding the left mouse

button and dragging over a group of pins. With multiple pins selected, the property changes made in the Properties view or

context menu apply to all pins. To reset a pin to its default state, right-click the pin and select Reset.

Mode Transitions

Modes define different states of peripheral configurations. For example, an application may use two configurations of the

ADC and Timer 2 with different input pins and sampling rates. These two configurations can be treated as separate modes

with separate initialization sequences. The movements between these modes are called transitions. By default, each

project contains one DefaultMode mode. The reset state exists only to indicate the transition from RESET to DefaultMode

and is not a full mode.

Using Hardware Configurator

167/335

To add a new mode, right-click either the Mode Transitions tab or the Outline view and select Create Mode from Reset.

Right-clicking an existing mode also enables cloning that mode with the Clone Mode option. To add a transition from one

mode to another, hover over one of the four white handles on a mode until the mouse cursor changes, hold down left

mouse button, and drag to the end mode of the transition. A Peripherals and Port I/O pair of tabs are added for each mode

in the project.

After reset, call the mode transition enter_DefaultMode_from_RESET() to apply the DefaultMode settings. In most cases this

will be the first transition in the application code.

Adding a transition generates a corresponding function that application firmware can call to initiate the transition between

modes. For example, with DefaultMode as the originating mode going to Mode2:

enter_Mode2_from_DefaultMode(vo id)

This function then calls all of the functions that configure the peripherals for the mode. Hardware Configurator generates

only the transitional code from peripheral to peripheral between modes. For example, if only the timer reload value and ADC

input mux selection differ, then those are the only two properties touched by the transition code. To see the differences

between two modes, right-click the mode transition and select Show Differences. This provides a report of all the different

property values between the modes on a module-by-module basis.

Using Hardware Configurator

168/335

Transitions can be added in both directions using the same method as the original mode transition.

To delete a mode transition, select the arrow and press Delete or right-click the arrow and select Delete transition.

Transition functions will not modify the state of the global interrupt enable (EA) on EFM8 or C8051 devices. Transitions

assume that interrupts are disabled (that is, global interrupt enable bit EA = 0) or that any enabled interrupts will not

interact with any changes made during the transition. Transition functions do not clear interrupt flags, to ensure that no

information is lost during reconfiguration. If having these flags set will cause an issue in firmware operation, firmware must

clear these interrupt flags before calling the transition function.

Transition functions also assume that any peripherals being updated are not active. For example, firmware should stop a

timer before calling a transition function that changes the timer configuration and restart the timer after the transition

completes.

It is possible to change the configuration order of a set of peripherals by creating multiple modes with multiple transitions.

For example, to configure Timer 2 before the ADC during a mode transition that would normally put the ADC first, create a

mode to handle the Timer 2 changes and a mode to handle the ADC changes. Firmware can then call the Timer2 mode

transition function first, followed by the ADC transition function.

Errors and Warnings

The Hardware Configurator automatically validates register configuration values and displays any errors, warnings, or

information items in the Problems view. Double-clicking an entry displays the property that raised the problem in the

Properties view. Any peripherals that contain a warning or error are highlighted in yellow (warning) or red (error), and the

associated property has a corresponding warning or error icon.

Using Hardware Configurator

169/335

Once the highlighted property is updated, the associated warning or error will disappear from the Problems view, indicating

that the problem has been solved.

All newly created projects will have a warning regarding the Watchdog Timer, since it’s enabled after a reset and must be

handled in application code or disabled. If a warning or error doesn’t apply to the project, it can be temporarily deleted from

the project by right-clicking the entry in the Problems view and selecting Delete. Closing and reopening the .hwconf file
regenerates any deleted warnings or errors.

Code Generation

To generate code for a peripheral, check the checkbox for that peripheral in the Peripherals tab. Saving the project

automatically generates code for all selected peripherals and port pins. This code generates into the InitDevice.c,
InitDevice.h, and Interrupts.c files.

Each hardware register has a section in the InitDevice.c file tagged with the register name and register description. For

example, the P1 register area is as follows:

// $�P1 - Port 1 Pin Latch]

// �P1 - Port 1 Pin Latch]$

These tags indicate that everything in between is automatically generated, so any code added manually between these

tags will be deleted on the next Hardware Configurator project save. Code can be added in between these tags, however,

and this code will not be overwritten.

// $�P1 - Port 1 Pin Latch]

P1 = 0�00; // This code is not safe, and Configurator will overwrite it

// �P1 - Port 1 Pin Latch]$

P1 = 0�00; // This code is safe from Configurator automatic code generation

// $�P1MASK - Port 1 Mask]

// �P1MASK - Port 1 Mask]$

For registers that are modified from their reset value or the value in the previous mode, the tags include comments that

update based on the settings for the register. For example, setting P1.0 to push-pull on an EFM8 or 8-bit MCU generates

the following:

Using Hardware Configurator

170/335

// $�P1MDOUT - Port 1 Output Mode]

/*

// B0 �Port 1 Bit 0 Output Mode) = PUSH_PULL

// �P1.0 output is push-pull.)

// B1 �Port 1 Bit 1 Output Mode) = OPEN_DRAIN

// �P1.1 output is open-drain.)

// B2 �Port 1 Bit 2 Output Mode) = OPEN_DRAIN

// �P1.2 output is open-drain.)

// B3 �Port 1 Bit 3 Output Mode) = OPEN_DRAIN

// �P1.3 output is open-drain.)

// B4 �Port 1 Bit 4 Output Mode) = OPEN_DRAIN

// �P1.4 output is open-drain.)

// B5 �Port 1 Bit 5 Output Mode) = OPEN_DRAIN

// �P1.5 output is open-drain.)

// B6 �Port 1 Bit 6 Output Mode) = OPEN_DRAIN

// �P1.6 output is open-drain.)

// B7 �Port 1 Bit 7 Output Mode) = OPEN_DRAIN

// �P1.7 output is open-drain.)

*/

P1MDOUT = P1MDOUT_B0 PUSH_PULL | P1MDOUT_B1 OPEN_DRAIN | P1MDOUT_B2 OPEN_DRAIN

| P1MDOUT_B3 OPEN_DRAIN | P1MDOUT_B4 OPEN_DRAIN | P1MDOUT_B5 OPEN_DRAIN | P1MDOUT_B6 OPEN_DRAIN | P1MDOUT_B7

OPEN_DRAIN;

// �P1MDOUT - Port 1 Output Mode]$

Interrupts

The Hardware Configurator creates an interrupts.c file containing interrupt prototypes whenever interrupts are enabled and

the project is saved. Hardware Configurator generates the prototype if it is not present, but does not overwrite existing

prototypes. This protects any application code written in the prototypes from being accidentally modified or deleted. The

comments above the prototypes list any flags in the modules that may need to be cleared by application code after the

interrupt triggers.

Building and Flashing

171/335

Building and Flashing

Building and Flashing
These pages describe:

How to compile or build software into a binary image

How to configure additional build steps using the Post-Build Editor to make customized binary images

How to load or flash that application image onto a connected device

Building

172/335

Building

Building
S implicity Studio® 5 (SSv5) offers two convenient ways to compile or 'build' projects:

S imple build

Debug build and flash

Projects are built with the toolchain defined when the project was created, and using the active configuration. Project files

must be generated before you can build the project.

For 32-bit device development using AppBuilder, click Generate in the S implicity IDE.

Files are automatically generated if the project uses Project Configurator.

Progress is shown in the lower right of the S implicity IDE perspective.

Speed varies depending on your system, number of projects, and other factors. Be sure that generation and indexing

complete before building the application image.

The result of the build is a compiled application known as a firmware image or binary. The binaries are physically located in a

directory named for the compiler used to generate them, and are also shown as a 'binaries' group in project explorer. Right-

click a binary for a context menu from which you can debug, flash, and perform other functions.

The binaries generated depend on both the SDK and the target device. For example, the Keil® 8051 compiler for an 8-bit

device generates:

*.hex (application image)

*.omf (contains additional debug information)

The GNU ARM® compiler for a 32-bit device using the Zigbee EmberZNet SDK generates:

*.axf (image that can be read on a Microsoft Windows device)

*.bin (binary image file, can be flashed to any address)

*.gbl (Gecko Bootloader file, specialized firmware file for use with the Gecko bootloader)

*.hex (application image file)

*.s37 (similar to a binary file but contains the target memory location to flash to - an application image or a bootloader image,

but not both)

Note that if you need a .gbl file but do not see one in the binary directory, you can use S implicity Commander to create

one. Commands invoked from S implicity Commander's CLI can be used to:

Generate key files for signing and encryption

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator

Building

173/335

S ign application images for Secure Boot

Create GBL images (encrypted or unencrypted, signed or unsigned)

Parse GBL images

For details about using S implicity Commander see UG162: S implicity Commander Reference Guide.

For details about using the Gecko Bootloader, including its enhanced security features, see UG266: S ilicon Labs Gecko

Bootloader User's Guide.

See your SDK 's quick-start guide for more stack-specific information about building and flashing.

About Toolchains

SSv5 provides a GNU ARM® toolchain to build projects for 32-bit devices and a 30-day evaluation license to the Keil®

8051 toolchain to build projects for 8-bit devices. You can apply for a free full license when you build an 8-bit project.

You can also add your own toolchain, for example IAR-EWARM. IAR is required for some projects, such as the Zigbee

Dynamic Multiprotocol and Micrium OS examples. However, you must use the version specified in the SDK release notes

front page under compatible tools. See your SDK 's quick-start guide for information on how to load a compatible version

and obtain a free evaluation license. SSv5 provides an integration package for IAR, so that you can use that tool within

SSv5.

https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf

Building

174/335

Projects use the toolchain selected at the time of project creation. The selection is available on the first of the three New

Project Wizard dialogs.

The toolchain and build configuration are displayed in Project Explorer view with the project directory. The build

configuration determines whether the image is built for debugging or release. Default is typically equivalent to a debug build.

Building

175/335

If more than one toolchain is available, you can configure which are presented as options when creating a new project. In

the Preferences filter field type too lchain . Uncheck the ones you do not wish to display. You can also completely remove

toolchains, or add new toolchains through this dialog.

Simple Build

Right-click the project directory and in the context menu select Build, or click the Build (hammer) button on the S implicity

IDE perspective toolbar to build a project with its toolchain and the active build configuration.

Building

176/335

While the Build menu selection always uses the active configuration, the Build button's drop-down menu allows you to

select a different configuration. This also changes the active configuration for the project to the one selected.

If the Build button is not enabled, make sure you have a project directory or file in the directory selected.

Debug Build and Flash

Click the Debug (bug) button in either the S implicity IDE or Debug perspective to build an application image, flash it to the

device, and open the Debug perspective (if it is not already open).

The Debug button's drop-down menu allows you to select the project in your workspace you want to debug.

If you have a lot of projects use Organize Favorites to select favorites and organize them. These projects then appear at

the top of the selection list with other projects below a demarcation line.

Building

177/335

Select Debug Configurations to open a tabbed set of configuration option dialogs. If you click Debug, the build and flash

process will proceed with the options you selected.

See Using the Debugger for more information.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-testing-and-debugging/using-the-debugger

Post-Build Editor

178/335

Post-Build Editor

Post-Build Editor �PBE�
The Post-Build Editor (PBE) is provided to make it easy for the user to specify actions required on the project output binary

to create various types of image files. The tool provides the following capabilities:

Adding signatures or checksums to application or bootloader binaries

Merging applications and other data into production images

Packaging applications and other data into upgrade files, including GBL and Zigbee OTA.

Workflow

The PBE-defined post-build steps are stored in a post-build YAML file with an '.slpb' extension that can be used either from

within S implicity Studio 5 (SSv5) or by running S implicity Commander on the command line. S implicity Studio IDE projects

and SLC exported projects will execute the post-build steps automatically using the post-build command step to call the

command line version of S implicity Commander. Also, the various project configurator generators (GCC Makefile, Visual

Studio Code Compatible (beta), and IAR Embedded Workbench) will include the necessary S implicity Commander call to

automatically perform the post build steps when the project is built in those environments.

Several example .slpb files are included in the Gecko SDK Suite (GSDK) starting with version 4.2.0.0. For examples of

projects that use the .slpb feature, see the TrustZone examples. Refer to UG162: S implicity Commander User's Guide for

details on the signing and secure boot information in the following tasks.

Tasks

The PBE supports four different tasks: copy, convert, create_gbl, and create_ota.

Copy

The copy task is used to copy a file from one folder to another and it is also the starting point for specifying the post-build

sequence.

Required Arguments:

Input name: The project relative path and filename to copy.

Output name: The destination project relative path and filename. Folders will be created as needed.

Optional Arguments:

Export output as: The parameter name to assign to the output file.

Convert

https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Post-Build Editor

179/335

The convert task performs various actions on the binary to convert it to another form, such as adding a CRC or a signature.

See the Simplicity Commander User’s Guide 'Convert and Modify File Commands' section for details.

Required Arguments:

Input name: The project relative path and filename to convert.

Output name: The destination project relative path and filename. Folders will be created as needed.

Optional Arguments:

Export output as: The parameter name to assign to the output file.

Add CRC checkbox: To calculate and store the CRC32 on the bootloader image. The Gecko Bootloader can use the CRC

to ensure image integrity when Secure Boot is not used.

Secure boot: Private Key and Intermediary Certificate to use to sign the secure boot image.

S ignature file to sign the image

Include-section: <ELF section to include in image>

Exclude-section: <ELF section to exclude from image>

Verify: Key file

The Include-section and Exclude-section optional arguments can be used if the input file is an Executable and Linkable

Format (ELF) file. If neither the Include-section nor the Exclude-section arguments are used, all .text sections will be

extracted, as well as sections of type progbits with address not equal to 0x0.

Create_gbl

The create_gbl task creates a Gecko Bootloader file (GBL) from an application and/or bootloader image that optionally

includes a Secure Element (SE) upgrade image. See the Simplicity Commander User’s Guide "GBL Commands" section for
details.

Post-Build Editor

180/335

Required Arguments:

Output name: The destination project relative path and filename. Folders will be created as needed.

Optional Arguments:

Export output as: The parameter name to assign to the output file.

Application Image: Application image file.

Bootloader: Bootloader image file.

SE upgrade: Secure Element upgrade image file.

Metadata: Metadata bin file to include in the image.

Compression: Compression method for output (none, lzma, lz4).

S ign using HWM checkbox: Check if the signature will be created using Hardware Security Module.

S igning key

S igning certificate

Encrypt: Encryption key used to encrypt image.

Include-section: <ELF section to include in image>.

Exclude-section: <ELF section to exclude from image>.

Create_ota

The create_ota task creates a Zigbee Over-the-air (OTA) bootloader file from one or more GBL files. See the Simplicity

Commander User’s Guide "OTA Commands" section for details.

NOTE: The "Input name" field should be ignored; it will be removed in a future release. The "Input name" is a duplicate of

the "Upgrade Image". Using both will add two copies of the file to the output.

Post-Build Editor

181/335

Required Arguments:

Upgrade Image: The project relative path of the gbl file.

Output name: The destination project relative path and filename. Folders will be created as needed.

Manufacturer ID

Image type

Header string

Firmware Version

Optional Arguments:

Export output as: The parameter name to assign to the output file

Manufacturer tag: Tag ID.

Stack version

Credentials

Target device EUI64

Minimum HW version

Maximum HW version

Example

Series 1 Combined Bootloader

An example of the PBE can be seen by creating a Series 1 bootloader for an EFR32MG12 target part. The PBE file copies

the output .s37 of the main bootloader and adds a CRC to it. Then it copies the pre-built first stage bootloader image into a

combined bootloader file that can be programmed to the device. To create this example:

 Add BRD4161A to the Launcher Perspective [My Products] window and select it.

 Make sure GSDK 4.2.0 or later is the Preferred SDK.

 Click the Example Projects and Demos tab and click the Bootloaders filter checkbox

 Click [Create] for “Bootloader – SoC Internal Storage (single image on 1MB device)

 Build the project. In the build console output will be a call to commander.exe with the postbuild argument and the .slpb file:

Post-Build Editor

182/335

"C�\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander\commander.exe" postbuild

"C�\Users\USERNAME\SimplicityStudio\v5_workspace\bootloader-storage-internal-single/bootloader-storage-internal-single.slpb" --parameter

build_dir:"C�\Users\USERNAME\SimplicityStudio\v5_workspace\bootloader-storage-internal-single\GNU ARM v10.3.1 - Default"

Parsing file C�\Users\japitt\SimplicityStudio\v5.rel.Staging_1865\bootloader-storage-internal-single/bootloader-storage-internal-single.slpb...

Running task copy...

Running task convert...

Running task convert...

DONE

The 'artifact' folder is created with three files in it:

Opening the .slpb file shows three operations with the last one being a convert that takes the ‘autogen/first_stage.s37’ file

and adds it to the main bootloader image in a new file called ‘bootloader-storage-internal-single-combined.s37.

Series 2 OTA Image Creation

The following example was created using an EFR32MG24B210F1536IM48 target on a BRD4186C radio board. It includes all

four tasks and can be created with the following steps:

 Create and build a "Bootloader - SoC Internal Storage single image with LZMA compression, 1MB Flash" (bootloader-

storage-internal-single-lzma) project.

 Create and build a "Zigbee SoC ZigbeeMinimal" (ZigbeeMinimal) project.

 Open the bootloader .slpb file in the PBE. It will have copy and convert tasks already defined:

Post-Build Editor

183/335

Add a Create_gbl Task

 Select the Convert task and then click the "+" icon and select "create_gbl".

 Next to 'Application Image', click BROWSE and select the ZigbeeMinimal.s37 file. Multiple application images could be entered

in this field if needed.

 Next to 'Bootloader', click BROWSE and select the bootloader .s37 file.

 Next to 'SE Upgrade', click BROWSE and browse to the Secure Element upgrade image file "s2c4_se_fw_upgrade_2v2p1.seu".

 Click the 'Compression' dropdown and select "lzma".

 Click the 'Output name' field and enter "artifact/CompressedZigbeeMinimal.gbl".

 Click SAVE. The GBL task should look like this:

Post-Build Editor

184/335

Add a Create_ota Task

 Click the "+" icon and select "create_ota".

 Click the 'Output name' field and enter "artifact/CompressedZigbeeMinimal.ota".

 Click the 'Manufacturer ID' field and enter your manufacturer ID. A dummy value of 0x1002 is used in this example.

 Click the 'Image type' field and enter a hex number for the image type. A dummy value of 0x5678 is used in this example.

 Click the 'Header string' field and enter "Example".

 Click the 'Upgrade Image' field and enter the path and .gbl filename from the create_gbl task -

artifact/CompressedZigbeeMinimal.gbl. Note multiple .gbl files could be entered in this field if needed.

 Click the 'Firmware Version' field and enter an unsigned integer value for the version. A dummy value of 0x1002 is used in this

example.

 Click SAVE. The OTA task should look like this:

Post-Build Editor

185/335

Test the Post-Build File

Build the project and at the end of the build commander will be called with the .slpb file and each of the tasks will be run:

"C�\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander\commander.exe" postbuild

"C�\SiliconLabs\workspaces\v5_workspace\bootloader-storage-internal-single-lzma/bootloader-storage-internal-single-lzma.slpb" --parameter

build_dir:"C�\SiliconLabs\workspaces\v5_workspace\bootloader-storage-internal-single-lzma\GNU ARM v10.3.1 - Default"

Parsing file C:\SiliconLabs\workspaces\v5_workspace\bootloader-storage-internal-single-lzma/bootloader-storage-internal-single-lzma.slpb...

Running task copy...

Running task convert...

Running task GBL create...

Running task OTA create...

DONE

Flashing

186/335

Flashing

Flashing
S implicity Studio® 5 (SSv5) offers several ways to load (flash) a firmware image to your device.

With the Debug button (see Debug build and flash)

Through the debug adapter's context menu, Upload Application... selection

Using the Flash Programmer tool

See your SDK 's quick start guide for more stack-specific information about building and flashing.

Upload Application

This option is useful if you want to load a bootloader image and an application image in a single step. To use this option, you

will need to know the radio board part number (shown in the Debug Adapters view), and the location and name of the

binary image you wish to load. The default workspace locations are:

Windows 10 workspace: C:\Users\<user>\S implicityStudio Mac workspace: /Users/<user>/S implicityStudio

In the Debug Adapters view, right-click the adapter (top line) and select Upload Application... from the debug adapter

context menu.

The Application Image Upload dialog is displayed.

Flashing

187/335

Browse to the project directory, go to the directory corresponding to the compiler toolchain, and select an image file. This

example uses the .GBL file, as it assumes you are also loading a Gecko Bootloader image. (Start with UG103.6: Bootloader

Fundamentals if you are not familiar with bootloaders.) Click Open.

Check Bootloader image, then browse to the folder containing a prebuilt bootloader image. Images are located in the

S implicity Studio platform bootloader folder under sample apps. In this case open the SPI Flash S ingle folder, for example:

C:\S iliconLabs\S implicityStudio\<version>\developer\sdks\gecko_sdk_suite\<version>\platform\bootloader\sample-

apps\bootloader-storage-spiflash-single

Open the folder that corresponds to your board and part number and select the .s37 file, for example:

efr32mg12p332f1024gl125-brd4162a\bootloader-storage-spiflash-single-combined.s37

Click Open.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf

Flashing

188/335

Now that both the application image and the bootloader are selected, check Erase Chip, to make sure that the main flash

block is erased before your new image is uploaded. New users will typically always check this.

The After uploading options are Run (begin executing the code immediately) and Halt (wait for an event, such as a

debugger to connect or manual initiation of a boot sequence). During initial development you will typically leave this set to

Run.

The Flash options determine the storage location, and are Internal and External SPI. Leave the option set to Internal.

The completed dialog should resemble the following:

Click OK.

Flash Programmer

The Flash Programmer is a tool that provides a number of options for use when flashing images to a device. Select the

Flash Programmer from the Tools button on the toolbar. Some perspectives have a button specifically for the Flash

Programmer.

Flashing

189/335

The Flash Programmer provides basic flash and erase functionality, but also allows you to lock parts of memory and enable

or disable debug access.

Flash Part

The Flash Programmer is configured to facilitate flashing .hex or .bin files.

Flashing

190/335

To flash an image, browse to the image location. Note that the images you see are filtered by the extension drop-down to

the right of the file name field.

Click Open and then click Program to flash the image.

By default, the Erase function erases the main page. Click Advanced Settings to change what is erased.

Finally, if you have more than one device connected, click Change Device to select the target.

Flash Erase/Write Protection

Use these functions to protect or remove protection from a custom range, or default pages.

Debug Lock Tools

Use these functions to unlock or lock debug access.

Testing and Debugging

191/335

Testing and Debugging

Testing and Debugging
This section provides information on testing and debugging application firmware.

Overview and Resources reviews the tools that are available and additional documentation.

Using the Debugger provides details on S implicity Studio's built-in debuggers.

Using Wireshark describes how to connect a device to the Wireshark packet analyzer.

Overview and Resources

192/335

Overview and Resources

Resources
S implicity Studio® 5 (SSv5) offers a number of tools that can be used to test and debug application functionality, power

consumption, and network behavior.

Tools include:

A built-in debugger, either the GNU Debugger (GDB) client and SEGGER's GDB server or a S implicity Studio Debugger.

Connectivity to the Wireshark packet analyzer.

Network Analyzer

Energy Profiler

In addition, a number of SDKs provide example applications that can be used for testing, such as:

NodeTest (Zigbee EmberZNet SDK) (See AN1019: Using the NodeTest Application) - Deprecated in Zigbee EmberZNet SDK

6.10.0.0

RAILtest (Proprietary Flex SDK) (see UG409: RAILtest User's Guide)

Finally, S ilicon Labs provides a number of other documentation resources related to testing such as:

AN1267: Radio Frequency Physical Layer Evaluation in Bluetooth® SDK v3.x

AN1142: Mesh Network Performance Comparison

AN718: Manufacturing Test Overview

UG104: Testing and Debugging Applications for the S ilicon Labs EM35x and EFR32MG Platforms (Zigbee)

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-network-analyzer
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-energy-profiler
https://www.silabs.com/documents/public/application-notes/an1019-node-test.pdf
https://www.silabs.com/documents/public/user-guides/ug409-railtest-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1297-custom-direction-finding-solutions-silicon-labs-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1142-mesh-network-performance-comparison.pdf
https://www.silabs.com/documents/public/application-notes/AN718-MfgTestOverview.pdf
https://www.silabs.com/documents/public/user-guides/ug104-test-debug-apps.pdf

Using the Debugger

193/335

Using the Debugger

Using the Debuggers
S implicity Studio® 5 (SSv5) supports two debuggers:

For 32-bit device users, SSv5 includes support for a GNU Debugger (GDB) client and SEGGER's GDB server. The GNU

Debugger (GDB) enables thread-aware debugging, and offers features such as unlimited flash breakpoints. This is the

default debugger

The classic S implicity Studio debugger is a full featured debugger that offers the ability to step through code, set

breakpoints, examine memory, variables and registers.

To change from the GNU debugger, on the toolbar click Preferences and select Simplicity Studio > Debuggers. Select

Simplicity Studio Debugger and click Apply and Close.

S ilicon Labs supplies the debug models for each of their devices so that all of the registers can be examined and modified

using either debugger.

The debugger runs in the Debug perspective. The debug perspective can be opened in a variety of ways, but most

commonly by clicking the Debug button in the S implicity IDE perspective once a project has reached a point where it will

build and link correctly.

Using the Debugger

194/335

If a debug session has never been started before, a warning that a debug configuration does not exist might appear. Click

the down arrow next to the debug icon, select Debug as... and then select either Silicon Labs ARM Program for 32-bit

parts or Silicon Labs 8051 Program for EFM8 and C8051 parts.

If a single debug adapter is available, SSv5 automatically downloads the code to that device. If more than one debug

adapter is available, SSv5 will prompt to select one.

With the S implicity Studio debugger you can also save a snapshot of register values on a device, which can be used to

compare the states of two different devices, or the state of the device at two different points in time.

Debug Perspective

The Debug Perspective by default is composed of the editor (A) and three tabbed view panes.

The Debug view (B) shows the call stack and call hierarchy that can help debug and find where functions are called. The

Project Explorer view is available as a tab.

The right pane (C) and the bottom pane (D) contains tabbed views into data and consoles. These vary between the two

debuggers. Depending on your actions, additional views may open in either the right or bottom pane.

Buttons in the Debug perspective toolbar (E) for the S implicity Studio debugger and the GDB are shown below. The toolbar

is similar for both debuggers.

Using the Debugger

195/335

Number Command Description

1 Debug Starts a new debug session. An active debug session must be disconnected before starting a

new session using the same debug adapter.

2 Reset the

device

Performs a hardware reset.

3 Create

snapshot

(S implicity Studio Debugger only) Creates a snapshot when clicked (default). Drop down the

menu to select Create when Stopped or Create at Breakpoints. See About Snapshots for more

information.

4 Skip Skips all breakpoints.

5 Resume Runs the application after reset or hitting a breakpoint.

6 Suspend Halts the application.

7 Terminate Terminates the session.

8 Disconnect (S implicity Studio Debugger only, gray for GDB) Terminates the session and disconnects the

debug adapter. SSv5 automatically switches back to the S implicity IDE perspective.

9 Step into S ingle steps into the first line of a function.

10 Step over S ingle steps over a function, executing the entire function.

11 Step return Steps out of a function, executing the rest of the function.

12 Instruction

Stepping

Mode

Toggles assembly single stepping. When enabled, single stepping executes a single assembly

instruction at a time. If clicked, opens a Disassembly view in the right pane that shows the

assembly code corresponding to the source code at the current line of execution.

13 Restart (S implicity Studio debugger only) Restarts a process or target without terminating and

relaunching

14 Open

Element

Opens a dialog where you can see the qualified name and location for an element. Start typing

to bring up a list of matching elements.

15 Toggle Mark

Occurrences

Turns the mark occurrences function on and off.

A debug adapter can only support a single debug session at a time. An active debug session must be disconnected before

code can be recompiled and a new debug session started.

To set a breakpoint, double-click in the blue bar to the left of the code editor or right-click on a line of code and select

Add Breakpoint.

Simplicity Studio Debugger

This section describe the various views in the S implicity Studio debugger.

Using the Debugger

196/335

The Variables view shows the values of variables.

The Breakpoints view provides functionality to manage breakpoints.

The Registers view displays and allows you to change register contents. Registers with bitfields are split into individual fields

with the enumeration value decoded. Registers that have changed between breakpoints are highlighted in yellow.

The Expressions view allows you to add and change expressions. If possible, SSv5 evaluates the expression and displays its

current value when the application is halted. If an expression is out of scope, SSv5 cannot evaluate the expression until the

application is halted in a section of code where the expression is in scope.

The Disassembly view provides an interleaved display of the original source code with the assembler instructions use to

execute the source code.

The Memory view in the bottom pane displays the contents of the CODE, RAM, and XRAM memory. To experiment, in the

Monitors menu click +. Select Enter memory space and address, select a memory space such as CORE and enter an

address to view, such as 0x0000. Click OK. A memory monitor is added to the Memory view that displays the contents of

the space starting at the address you provided.

GDB

This section describe the various views in the GNU Debugger.

Using the Debugger

197/335

The Variables view shows the values of variables.

The Breakpoints view provides functionality to manage breakpoints.

The Registers view displays and allows you to change general register contents. Registers that have changed between

breakpoints are highlighted in yellow. To see other registers, select a peripheral in the Peripherals view.

The Expressions view allows you to add and change expressions. If possible, SSv5 evaluates the expression and displays its

current value when the application is halted. If an expression is out of scope, SSv5 cannot evaluate the expression until the

application is halted in a section of code where the expression is in scope.

The Disassembly view provides an interleaved display of the original source code with the assembler instructions use to

execute the source code.

The Peripherals view, after a short delay, shows peripherals with bitfields that are split into individual fields shown as a hex

value. Their values cannot be modified. When a peripheral is selected, the Memory tab in the bottom pane shows associated

registers and their values.

The Memory view in the bottom pane displays the contents of the CODE, RAM, and XRAM memory. To experiment, in the

Monitors menu click + and enter an address or an expression to monitor. A monitor for that address or expression is added.

The bottom pane also includes a Debugger Console, with output specific to GDB Debug SEGGER J-Link Debugging.

About Snapshots

The Snapshot feature is available in the S implicity Studio debugger only. A snapshot saves the values of the registers on a

device at a particular point in time. This feature is useful when comparing the states of two systems next to each other or

looking at the state of the hardware at separate points in time.

Once you take a snapshot, the Snapshot Album view opens in the bottom view pane.

Using the Debugger

198/335

In the Debug perspective, if you do not see the Snapshot Album view, select Window > Show View > Other > Snapshot

Albums.

To view a snapshot, right-click a snapshot in the list and select Launch Snapshot. This adds a debug session in the Debug

window as it was at the time of the snapshot, with a Snapshot label at the start of the debug configuration. However, it is

not an active debug session on hardware. To switch back to a debug session on hardware, select the S ilicon Labs ARM

debug configuration in the Debug window if a hardware debug session was active or else select Run > Debug if a session is

not active.

Using Wireshark

199/335

Using Wireshark

Using Wireshark
Beginning with version 5.5.0, S implicity Studio® 5 (SSv5) supports live interaction between the application running on a

S ilicon Labs device and the Wireshark packet analyzer. Windows/Mac users can download Wireshark from

https://www.wireshark.org/download.html. Linux users can find instructions at

https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html.

If you installed the GSDK in an earlier version of S implicity Studio, click Install on the toolbar. Click Manage Installed

Packages and go to the Tools tab. Find the "Packet Trace Using Wireshark Integration" tool and click Install.

 Make sure that debug output is enabled in your project, if it is available. This is enabled by default in most GSDK examples

and demos.

 Build and flash the project to your device. If you are working in S implicity Studio, do not start a debug session to build and

flash the project, but rather build it and then flash the binary separately.

 In S implicity Studio's Debug Adapters view, select one or more devices and right-click one of the devices. Two Wireshark

options are available, 'Start Wireshark Data Source' and 'Start Wireshark Data Source with Options'.

https://www.wireshark.org/download.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html

Using Wireshark

200/335

Start Wireshark Data Source: If all selected devices are connected through a network, the Wireshark Data Source starts.

Devices connected by USB use the application S ilink to communicate with the network. The network ports that S ilink uses

are assigned dynamically and are different on each launch. Knowing the port numbers can be useful when filtering captured

packets by TCP port using Wireshark's display filters functionality. If you select at least one device connected by USB, a

dialog is presented showing the device's IP address and port number.

Start Wireshark Data Source with Options: A dialog is displayed in which you can configure the output log name and the

capture duration in milliseconds. It also shows the IP address and port number.

Using Wireshark

201/335

When Wireshark Data Source starts, S implicity Studio writes a script to Wireshark’s Personal Extcap directory. If this fails, a

dialog where you can specify the target location is displayed. To find the location, launch Wireshark, select Help > About

Wireshark, and go to the Folders tab.

 After the Wireshark Data Source starts successfully, S implicity Studio launches Wireshark automatically, and locks the

device. In the Wireshark startup dialog, select a network interface to use and configure the capture and display filters. If the

device is connected by USB, select the 'loopback' network interface. For networked devices, try Wi-Fi or Ethernet. See the

Wireshark documentation for details on using Wireshark.

Using Wireshark

202/335

Note: Wireshark is launched as a child process of S implicity Studio. If you close S implicity Studio, Wireshark also closes.

After you have completed the packet analysis, in S implicity Studio right-click any of the devices connected to Wireshark,

and click 'Stop Wireshark Data Source'. This stops Wireshark Data Source for all connected devices.

Note: Stopping Wireshark Data Source does not close Wireshark and closing Wireshark does not stop Wireshark Data

Source.

Companion IDEs

203/335

Companion IDEs

Visual Studio Code Enablement
With the S implicity Studio 5 (SSv5) 5.6.0.0 release, S ilicon Labs introduced support for using Visual Studio Code (VS Code)

in combination with S implicity Studio. To enable this support, a VS Code extension is required. It can be either downloaded

directly from the VS Code marketplace or with this link to marketplace. The preferred method of installation is to download

it from the marketplace within the VS Code application itself.

S implicity Studio is still needed to create the initial project and to make project changes with the Project Configurator GUIs.

However, when you are using the Visual Studio Code compatible project generator, all editing, building, and debugging of

the project should be done in VS Code. In other words, do not try to build the project in both S implicity Studio and in VS

Code.

Enabling a Project for Use Within VS Code

In order to operate on a S ilicon Labs project from within VS Code, the correct project generator must be used. This can be

set from within an existing project or at initial project creation.

For new projects, you can set the target generator in the new project wizard on step 1 as shown below.

https://marketplace.visualstudio.com/publishers/silabs

Companion IDEs

204/335

For existing projects, from the Project Configurator Overview tab, click Change Target/SDK/Generators and select the VS

Code generator.

Companion IDEs

205/335

Companion IDEs

206/335

Once you have set your project to generate for VS Code, and generation is complete, you will notice new files in the

Project Explorer view. This includes new files to support development in VS Code and enable CMake and Ninja. If a popup

dialog appears asking what to do with some project configuration files, leave the setting at the default “Keep my file” and

click OK.

The new VS Code support files are:

Folder: <projectname>_cmake

<projectname>.cmake

CMakeLists.txt

CMakePresets.json

toolchain.cmake

vscode.conf.

Companion IDEs

207/335

You can make any other project configurator changes, such as adding a component, to the project from within S implicity

Studio. From there, the project can be continued in VS Code. Once you begin using VS Code for development, it is not

recommended to build the project in S implicity Studio. However, before any changes have been made in VS Code, you can

verify that it builds in S implicity Studio before continuing development in VS Code.

The VS Code generator is Gecko SDK Suite (GSDK)-independent. This means it can be used with any 4.x.x GSDK.

Using the Project in Visual Studio Code

Preparing VS Code for Silicon Labs Support

To use VS Code for development with S ilicon Labs projects, VS Code must first be downloaded and installed from the

Visual Studio website (Download Visual Studio Code). Then the S ilicon Labs extension must be installed either from within

VS Code by clicking on the Extensions icon and then searching the Marketplace for “S iLabs” or by downloading the

extension as a .vsix file from the marketplace and then adding it to VS Code by clicking the three dots next to EXTENSIONS

and selecting 'Install from vsix…'.

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/publishers/silabs

Companion IDEs

208/335

Installing the S implicity Studio for VS Code extension will also install other extensions it depends on: C++ Extension Pack

and Cortex-Debug.

VS Code is now ready to add the S ilicon Labs project from the earlier step.

Adding a VS Code-Enabled Simplicity Studio Project to VS Code

You can add a project to VS Code in two ways.

 Use File > Open Folder… and browse to the project folder in the S implicity Studio workspace (default workspace is

v5_workspace) or the source-controlled project folder.

 Use File > Add Folder to Workspace… and again browse to the project folder. This second method is recommended,

especially if working with multiple projects. This will place the folder in an untitled workspace. Select File > Save Workspace

As… and select a folder and name for the workspace. The VS Code workspace should be saved outside of the S implicity

Studio workspace folder in a folder dedicated to VS Code workspaces. Subsequent projects can be added to this open

workspace using File > Add Folder to Workspace….

After adding projects to a workspace, you should notice that the project appears in the explorer and the 'SILICON LABS

SUPPORT' section is now populated with project related actions as shown below.

Upon initial project addition, you will only see the “Build” icon. Once built, the flash and debug icons will appear as shown

below.

Companion IDEs

209/335

The source files can be edited and additional files may be added to the projects. When ready to build the project, select

the project build configuration ('all' is the default for now) in the SILICON LABS SUPPORT section and the icons for three

support options are displayed.

Build will use 'make' along with the two generated make files and the GNU ARM GCC toolchain specified when the

project was created in S implicity Studio. All files and folders in the project folder will be compiled (including user-added

source files).

Flash will flash the project .hex file to the target board using S implicity Commander. The Output console window will

display the progress of the flash operation.

Debug will start a debug session using the Segger GDB Server and the GNU ARM GDB Client. The normal options to

step through the program, set breakpoints, and examine variables and registers are all supported. The debug control icons

are highlighted in the red box in the following figure.

Companion IDEs

210/335

Additionally, you can access these functions from the bottom ribbon as shown below.

Note: The vscode.conf file is used as the ‘glue ’ file between the project configuration of the S implicity Studio-

installed resources and the S ilicon Labs VS Code extension. The links in this file are used by the S ilicon Labs VS

Code extension to find the associated tools necessary for building, flashing, and debugging the project. It is not

meant to be manually edited.

Note for Matter developers: After you have generated your project in S implicity Studio and added it to VS Code

Workspace, S ilicon Labs has provided four VS Code tasks to facilitate developing Matter projects in VS Code.

See the G itHub Matter documentation for more information.

https://github.com/SiliconLabs/matter/blob/latest/docs/silabs/README.md

Tools Overview

211/335

Tools Overview

Using the Tools - Overview
S implicity Studio® 5 (SSv5) provides a number of tools to assist with development activities. Use the Tools button to see a

list of available tools. The Project COMPATIBLE TOOLS tab provides a list filtered by the project's target device.

Many of these tools are discussed on other pages in this guide, for example:

S implicity IDE

Application Builder

Migrate Projects

Flash Programmer

Hardware Configurator

These pages discuss:

Bluetooth NCP Commander

Energy Profiler

Network Analyzer

Bluetooth Direction Finding tools suite

More tools will be documented in future releases of the Simplicity Studio 5 User's Guide.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-appbuilder
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-getting-started/migrate-from-ss-4
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-building-and-flashing#flash-programmer
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-for-8bit-devicesusing-hardware-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-bluetooth-ncp-commander
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-energy-profiler
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-network-analyzer
https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-direction-finding-tools

Bluetooth NCP Commander

212/335

Bluetooth NCP Commander

Bluetooth NCP Commander
Bluetooth NCP Commander is a S implicity Studio® 5 (SSv5) tool for sending BGAPI commands to an NCP target application

during development.

Two versions of the tool are available in SSv5:

Bluetooth NCP Commander Standalone

Bluetooth NCP Commander

For detailed information about using NCP Commander and developing Bluetooth NCP-Host applications, see AN1259: Using

the S ilicon Labs v3.x Bluetooth Stack in Network Co-Processor Mode.

Bluetooth NCP Commander Standalone

The Standalone version is provided for customers who need to control an NCP device on custom hardware. The

Standalone version can access the system COM ports that are not exposed in SSv5. Users who wish to work outside of

the SSv5 environment can do so by copying the directory <SSv5-install>/developer/adapter_packs/ncp_commander.

The Standalone version cannot access parts over Ethernet, which the integrated SSv5 version can.

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

Bluetooth NCP Commander

213/335

Bluetooth NCP Commander

To open Bluetooth NCP Commander, make sure that the correct board is connected. If you are just getting started, build

and flash a project based on Bluetooth - NCP.

In the Project Configurator COMPATIBLE TOOLS tab, click Launch on the Bluetooth NCP Commander card. In the

Connection Manager dialog, select the target device and click CONNECT.

Once the UART connection to the mainboard is established, an Interactive view opens, which you can use to issue BGAPI

commands. Note that the connected device is shown in the lower right. You can change target devices without leaving

Bluetooth NCP Commander by clicking that area. It will show "Disconnected" if not connected to any device. Check the log

for the NCP target response and status messages.

You can also issue commands manually. For example, you can issue the 'system hello' command at any time to verify that

communication between the host and the device is working. The Smart Console provides auto completion and

documentation for the possible commands.

Bluetooth NCP Commander

214/335

NCP Commander provides a simple scripting feature. Create or import an existing script using the controls in the top right

corner. You can use any BGAPI commands in the script, but it has no additional features, such as branching or error handling.

Click Export to save the commands sent through the console to a file that can be imported back as a script.

Advertising

To start advertising, click "+" next to "Advertise – Peripheral" to create an advertiser set.

Select the desired advertising mode, create custom advertising packets if desired, and click Start.

Bluetooth NCP Commander

215/335

When advertising, the NCP target example accepts Bluetooth connections. If you connect to a WSTK or with another

central device (for example with your phone), you can see the events and commands on the log.

GATT Database

NCP commander supports creating a GATT database. To generate a basic GATT database, open the Local GATT view, and

click Create Basic GATT. The following database is generated.

Bluetooth NCP Commander

216/335

Here you can add services and characteristics. You can also read out the local GATT database from the device.

Bluetooth mesh

NCP Commander supports Bluetooth mesh features. You can issue Bluetooth mesh commands manually in the Smart

Console, or use the interactive host provisioner feature to provision and configure mesh nodes and manage mesh networks,

instead of using a Bluetooth mesh mobile application. To use the Bluetooth Mesh features, create, build, and flash the

device with an NCP example supporting Mesh features. This section provides a summary of host provisioning. For details

see AN1259: Using the S ilicon Labs Bluetooth® Stack v3.x and Higher in Network Co-Processor Mode .

To start using the host provisioner, select either Provision or Networks and Devices on the left menu, and click Initialize for

Provision.

If you do not have a network from a previous configuration or have reset the provisioner node, you must create a new

network with Create New Network.

To provision devices, select Provision on the left menu, and click Start Scan in the right panel. The devices that are

transmitting unprovisioned beacons are shown in the Discovered Devices section. Click Provision next to the device you

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

Bluetooth NCP Commander

217/335

want to provision.

Before configuring provisioned devices, you may need to create application keys and groups. Application keys, groups and

other network settings can be managed in the Settings tab of the Networks and Devices menu item.

To configure provisioned devices, select Networks and Devices on the left menu. Provisioned devices are shown in the

Provisioned Devices section of the Settings tab. Click Configure.

This opens a Mesh Node tab in which you can add an application key. Once you have added the key, the interface changes

to include a Get DCD control (not shown). Click Get DCD to to configure all the Models available on your node(s), bind to

app keys, set publishing or subscription to groups, fine tune parameters, and so on.

Bluetooth NCP Commander

218/335

To configure the host provisioner, first initialize models using Initialize Client Models.

Bind an application key to the models and, optionally, subscribe the models to a group. When configuration is complete, click

Done

The Show Nodes tab is displayed. Click Get DCD to configure all the Models available on your node(s), bind to app keys,

set publishing or subscription to groups, fine-tune parameters, and so on.

Bluetooth NCP Commander

219/335

Energy Profiler

220/335

Energy Profiler

Energy Profiler
S implicity Studio® 5 (SSv5)'s Energy Profiler enables you to visualize the energy consumption of individual devices, multiple

devices on one target system, or a network of interacting wireless devices to analyze and improve the power performance

of these systems. Real-time information on current consumption is correlated with the program counter providing advanced

energy software monitoring capabilities. It also provides a basic level of integration with the Network Analyzer network

analysis tool.

Energy saving and efficiency are at the top of developers’ priorities for an ever-growing number of embedded systems

applications. These constraints can be due to government regulations (for example, metering applications), a requirement to

increase battery life, or simply a need to lower the electricity bill. In battery-operated systems, energy efficiency often

plays the most important role. In cases where developers are satisfied with their system’s battery life, increasing the energy

efficiency means they can switch to a smaller and cheaper battery, which will lower the overall cost. There are also

situations where the operating life must be extended to the absolute maximum, such as products where the battery cannot

be replaced or replacement involves very high costs.

Having a low-power MCU by itself does not mean you will have lower energy consumption. The trick is to optimize your

software not just in terms of functionality, but also with respect to energy efficiency. Having full control of the hardware

surrounding the MCU and optimizing the overall software and peripheral usage are crucial factors for reducing system

energy consumption. Software is not usually seen as an energy drain, yet every clock cycle consumes energy. Minimizing

the number of clock cycles becomes a key challenge to reduce overall system consumption.

The Energy Profiler enables you to visualize the energy consumption of individual devices, multiple devices on one target

system, or a network of interacting wireless devices to analyze and improve the power performance of these systems.

Real-time information on current consumption is correlated with the program counter providing advanced energy software

monitoring capabilities. It also provides a basic level of integration with the Network Analyzer network analysis tool.

In these pages the following terms will be used:

AEM: Advanced Energy Monitor

ISD: The file extension used with Multi-Node Energy Profiler and Network Analyzer files.

PTI: Packet Trace Information

Starting an Energy Analysis Session

221/335

Starting an Energy Analysis Session

Starting an Energy Analysis Session
An energy analysis session can be started from either the S implicity IDE Perspective or from the Energy Profiler.

From the Simplicity IDE Perspective

Some S ilicon Labs SDKs contain examples that are pre-configured to deliver energy profiling data to the Energy Profiler. In

the S implicity Studio Launcher perspective, you can find example titles such as "Powertest" or "Energy modes" or "Emode"

for many development kits. In the figure below, the selected device is an EFR32 development kit. The Flex SDK has been

installed.

Create an example (in this case Flex(RAIL) - Energy Mode). Because this is a RAIL example, the S implicity IDE perspective

opens with the Radio Configurator open. If this is an AppBuilder project, click Generate.

Right-click the project directory. In the context menu select Profile As > Simplicity Energy Profiler Target.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-developing-with-project-configurator/proprietary-radio-configurator

Starting an Energy Analysis Session

222/335

SSv5 then:

 Rebuilds the entire project.

 Flashes the application to compatible hardware.

 Starts energy capture for that device.

 Switches to the Energy Profiler perspective.

 Displays the device data on S ingle-Node View, Multi-Node View, and Scope View.

In step 2 above, if more than one connected device is compatible with the application being profiled, SSv5 prompts you to

select a device. Select the target of interest and click OK.

After the application is built and the firmware flashed, the Energy Profiler perspective is displayed, with a release notes

dialog. Click OK.

Starting an Energy Analysis Session

223/335

From the Energy Profiler

If application firmware is already running on a device, you can connect to it from the Energy Profiler tool. Open the Energy

Profiler perspective. Click Quick Access to display its menu and select Start Energy Capture.

If more than one connected device is compatible with the application being profiled, SSv5 prompts you to select a device.

Select the target of interest and click OK.

Starting an Energy Analysis Session

224/335

Energy Profiler then:

Starts energy capture for that device.

Depending upon which view is currently active, displays the device ’s energy data on S ingle-Node view, Multi-Node view, or

Scope view.

Customer Hardware and Software Design Information

This section discusses design requirements in order for a device to be able to use Energy Profiler features. Among these

features is Code Correlation, which connects power consumption and executed code. Using code correlation is discussed in

more detail in Profiling with Code Correlation

Hardware Design

EFM8 Hardware Interface

To use the Energy Profiler functionality on a board design, the board needs to include a debug interface that can be

connected to a S ilicon Labs starter kit (STK) or wireless starter kit (WSTK). For the basic Energy Profiler current

measurements, the board must be powered from the VAEM supply of a S ilicon Labs STK or WSTK. Both the current

measurement and EFM8 C2 Debug interface can be obtained by using the S ilicon Labs Mini S implicity 10 pin connector.

This connector is detailed in AN958: Debugging and Programming Interfaces for Custom Designs. The EFM8 C2 interface

signals are on SWDIO (Pin 7 C2D) and SWCLK (Pin 8 C2CK) pins shown in the following figure.

Code correlation is not possible with the EFM8 parts as they do not include the SWO pin that is used to transmit the

program counter information. As mentioned in AN958: Debugging and Programming Interfaces for Custom Designs, using the

https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf

Starting an Energy Analysis Session

225/335

S ilicon Labs debug adapter board (BRD8010A) is the easiest way to get the Mini S implicity pinout from a S ilicon Labs STK

or WSTK development kit.

EFM32 and EFR32 Hardware Interface

To use the Energy Profiler functionality on a board design, the board needs to include a debug interface that can be

connected to a S ilicon Labs STK or WSTK. For the basic Energy Profiler current measurements, the board must be

powered from the VAEM supply of a S ilicon Labs STK or WSTK. To also include code correlation, the debug interface must

include the SWD interface. Both the current measurement and the code correlation (SWD) can be obtained by using the

S ilicon Labs Mini S implicity 10 pin connector. This connector is detailed in AN958: Debugging and Programming Interfaces for

Custom Designs. The Mini S implicity 10 pin connector can be used with all EFM32 and EFR32 parts. The pinout is shown in

the following figure.

As mentioned in AN958: Debugging and Programming Interfaces for Custom Designs, using the S ilicon Labs debug adapter

board (BRD8010A) is the easiest way to get the Mini S implicity pinout from a S ilicon Labs STK or WSTK development kit.

The debug adapter board is not compatible with the older EFM32 Development K its (DKs) and some of the older EFM32

starter kits (STK) that have a different debug connector on them (Gecko, G iant Gecko (EFM32GG-STK3700), Leopard

Gecko, Tiny Gecko, Wonder Gecko, Zero Gecko).

Software Design

To use the current monitoring functionality provided by the AEM interface, no software changes or setup are required. To

use the code correlation functionality, the SWD interface must be configured to output periodic program counter

information. Currently, code correlation is not possible with the EFM8 family. The Multi-Node Energy Profiler can still be used

to monitor the overall energy use of the parts over time / usage scenarios.

Software can be configured in two ways:

Project configurator method (using software components; preferred for SSv5 projects)

Legacy method (by manually adding the necessary source code)

Project Configurator Method

This method of enabling code correlation is preferred in SSv5, as it leverages the software components and thereby

reduces the chance of error.

 In the Project Configurator, SOFTWARE COMPONENTS tab, find and install the SWO Debug component.

 Click Configure to open the Component editor.

 Open its configuration file and turn on Enable interrupt event trace and Enable program counter samples.

 If the device allows SWO functionality on multiple GPIO pins, in the SL_Debug card's SWV field, select the pin to be used as

the SWO output.

https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf

Starting an Energy Analysis Session

226/335

Further initialization of the software component in code is not required provided that the System Init component is installed

in the project.

Legacy Method

This method should be used for Appbuilder project and projects not created in the Project Configurator.

 The following paths must be included in your project, as they provide access to relevant header files used to enable code

correlation. These header files are readily available for S ilicon Labs parts. For custom design boards use bsp_trace.h and

traceconfig.h as a reference instead.

 <SSv5 install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/common/bsp

Grants access to bsp_trace.h

 (not required for AppBuilder projects) <SSv5

install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/kitname/config

Grants access to traceconfig.h

For AppBuilder projects, instead see the next step.

 (Only for Appbuilder projects) In the Hardware Configurator file (.hwconf) in the "DefaultMode" peripheral tab, enable the

GPIO module. This adds the BSP_TRACE_SWO_ macros to the hal-config.h file.

Starting an Energy Analysis Session

227/335

 Add bsp_trace.c to the project (from <SSv5install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/common/bsp)

 The code must enable SWO output from the MCU. To enable this output, add #include bsp_trace .h to the appropriate module

and call BSP_TraceSwoSetup() during initialization as indicated in the following sections, based on the SDK being used.

Stackless project MCU SDK: Place BSP_TraceSwoSetup() after the EMU_DCDCInit() call in main().

#include "bsp_trace.h"

.

.

.

/* Initialize DCDC. Always start in low-noise mode. */

dcdcInit.dcdcMode = emuDcdcMode_LowNoise;

EMU_DCDCInit(&dcdcInit);

// Setup SWD for code correlation

BSP_TraceSwoSetup();

Bluetooth LE SDK: Place BSP_TraceProfilerSetup() in main.c after the initApp() call.

#include "bsp_trace.h"

.

.

.

// Initialize application

initApp();

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

// Initialize LEDs

BSP_LedsInit();

Flex SDK: Place BSP_TraceProfilerSetup() in main.c after the BSP_Init() call.

Starting an Energy Analysis Session

228/335

#include "hal_common.h"

#include "bsp_trace.h"

.

.

.

// Initialize the BSP

BSP_Init(BSP_INIT_BCC);

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

EmberZNet SDK: Place BSP_TraceProfilerSetup() in af-main-soc.c after the emberInit() call.

 #include "afv2-bookkeeping.h"

 #if defined(CORTEXM3_EFR32_MICRO) || defined (CORTEXM3_EMBER_MICRO)

 #define EXTENDED_RESET_INFO

 #include "hal/micro/cortexm3/ diagnostic.h"

 #endif

 #include "bsp_trace.h"

.

.

.

 int emberAfMain (MAIN_FUNCTION_PARAMETERS)

{

 EmberStatus status;

 int returnCode;

if (emberAfMainStartCallback(& returnCode, APP_FRAMEWORK_MAIN_ARGUMENTS)) {

return returnCode;

}

}

// Initialize the Ember Stack.

 status = emberInit();

if (status !� EMBER_SUCCESS) {

emberAfCorePrintln("%pemberInit 0x%x", "ERROR� ", status);

// The app can choose what to do here. If the app is running

// another device then it could stay running and report the

// error visually for example. This app asserts.

assert(false);

} else {

emberAfDebugPrintln("init pass");

}

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

The program must be built with debug information enabled so that source code lookup is possible. If you create your

project in S implicity Studio, this is enabled by default. If you import a project into S implicity Studio, check compiler options in

project context menu Properties...-> C/C++ Build -> Settings. If you build the program outside of S implicity Studio, check

compiler options of the build tools.

EFM32 Software Configuration

 Add bsp_trace.c to the project. (from <SSv5 install>\developer\sdks\gecko_sdk_suite<version>\hardware\kit\common\bsp)

 The macros BSP_TRACE_SWO_PIN, BSP_TRACE_SWO_PORT and BSP_TRACE_SWO_LOC must be defined. For EFM32 parts

this is done by default for S ilicon Labs development kits in <SSv5 install>\developer\sdks\gecko_sdk_suite\

<version>\hardware\kit\<board>/hal-config-board.h. For a custom board design the S ilicon Labs hal-config-board.h can be

used as an example for defining the values. The following is an example for the Pearl Gecko Starter K it (SLSTK3401A):

Starting an Energy Analysis Session

229/335

// $�GPIO�

#define PORTIO_GPIO_SWV_PIN (2)

#define PORTIO_GPIO_SWV_PORT (gpioPortF)

#define PORTIO_GPIO_SWV_LOC (0)

#define BSP_TRACE_SWO_PIN (2)

#define BSP_TRACE_SWO_PORT (gpioPortF)

#define BSP_TRACE_SWO_LOC (0)

// �GPIO�$

 The code must enable SWO output from the MCU. To enable this output, add #include bsp_trace .h to main.c and call

BSP_TraceProfilerSetup() during initialization after the EMU_DCDCInit() call in main() .

#include

#include "bsp_trace.h"

.

.

.

/* Initialize DCDC. Always start in low-noise mode. */

dcdcInit.dcdcMode = emuDcdcMode_LowNoise;

EMU_DCDCInit(&dcdcInit);

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

 The program must be built with debug information enabled so that source code lookup is possible. If you create your project

in SSv5, this is enabled by default. If you import a project into SSv5, check compiler options in project context menu

Properties... > C/C++ Build > Settings. If you build your program outside of SSv5, check compiler options of the build tools.

User Interface

230/335

User Interface

Energy Profiler User Interface
The Energy Profiler perspective is divided into six primary sections. The following figure shows S ingle-Node view.

Quick Access Menus - The most frequently used menus for Multi-Node Energy Profiler are available on the user interface

itself and also from the Profiler menu at the top menu bar.

View Selector - Three views for Multi-Node Energy Profiler can be selected by clicking the View Selector bar.

Data Control - Controls in this area are used to enable and disable data flow to the user interface and to disk.

Statistics - Energy data for the waveform is shown in the statistics area.

Code Correlation - Function execution related to power consumption is shown in the Code Correlation view.

Editor - Source code for the program is shown here and works in conjunction with the Code Correlation view.

Three views are available for evaluating power performance:

S ingle-Node View

Multi-Node View

Scope View

Single-Node View

S ingle-Node view is used to display a single device ’s waveform and events. It displays a high-detail waveform and ensures

that all events rows are visible, without the need to scroll the UI. The Energy Profiler perspective combines this S ingle-

Node view, the Code Correlation view, and the source code Editor view, allowing you to perform in-depth analysis of a

single device from many viewpoints. Any active device may be selected through the Display Nodes menu.

User Interface

231/335

Multi-Node View

Multi-Node view is used to display multiple device waveform and events. It allows you to investigate system behavior and

interactions between devices. Two devices are visible in the main portion of the UI, while others are viewed by scrolling.

The Multi-Node view groups each individual device ’s waveform and events together. The Energy Profiler perspective

combines this Multi-Node view, the Code Correlation view, and the source code Editor view, allowing you to perform in-

depth analysis of multiple devices from many viewpoints.

User Interface

232/335

Multi-Node view offers the following capabilities:

Sorting

Node display control

Sorting

Sorting in Multi-Node view allows you to order waveforms based upon several criteria. For example, it may be useful to sort

descending by average power, such that the highest power consumers are easily identified at the top. As shown in the

following figure, devices may be sorted ascending and descending by name, average current, average power, or total

energy.

Displaying Nodes

Enabling capture on any device automatically adds it to the Multi-Node view. However, as the number of devices displayed

increases, UI performance may be impacted. Click Display Nodes to select the devices that will be displayed. This selection

only affects the waveform display. If recording is enabled, data for all actively capturing devices is streamed to disk

regardless of whether or not they are displayed.

User Interface

233/335

Scope View

Scope view is used to display multiple device waveforms and events, allowing you to investigate system behavior and

interactions between devices. In Scope view, all waveforms are displayed in one waveform area, so that you can see all

waveforms without needing to scroll the UI. It also enables the user overlay and align traces like an oscilloscope. All event

traces are grouped below the waveform view. The Energy Profiler perspective combines this Scope view, the Code

Correlation view, and the source code Editor view allowing you to perform in-depth analysis of a single device from many

viewpoints.

Scope view offers the following capabilities:

Sorting

Node display control

Waveform display control

Sorting

Sorting in Scope view allows you to order events based upon several criteria. For example, it may be useful to sort events

descending by average power, such that the events for the highest power consumers are easily identified at the top.

User Interface

234/335

Displaying Nodes

Enabling capture on any device automatically adds it to scope view. However, as the number of devices displayed

increases, UI performance may be impacted. Click Display Nodes to select which devices will be displayed. This selection

only enables or disables display of waveform and event data in the UI. If recording is enabled, data for all actively capturing

devices is streamed to disk regardless of whether they are displayed.

Displaying Waveforms

One of the Scope view ’s key benefits is the ability to view waveforms in a single view at difference scales, enabling you to

compare waveform characteristics that would not be possible for two waveforms on the same scale. The waveform

scale/offset controls are available by default at the upper right corner of the Scope waveform view. The color of the

waveform scale/offset control indicates which waveform will be adjusted when the sliders are moved.

User Interface

235/335

The drop-down menu at the top of the control allows you to select the device to be adjusted by the waveform scale and

offset control. The debug adapter name colors match the colors in the waveform portion of Scope view.

Toggle wave scale/offset control display using the show/hide button above it.

User Interface

236/335

Selecting Ranges

Energy Profiler provides the ability to select a range of data by clicking and dragging across the waveforms or events. This

is useful for determining power statistics for regions of interest. Once a range is selected, a light gray section summarizing

the energy statistics for the selected region is displayed. That section also allows you to re-center the selection in the

waveform view if it has scrolled out of view and includes a button to close/deselect the region.

Energy Statistics

237/335

Energy Statistics

Energy Statistics
Energy Profiler calculates the following device and system statistics:

Average current

Average power

Total energy

Statistics are provided for each individual device in the waveform’s top bar on both S ingle-Node and Multi-Node views. The

sum for all devices is provided in the top bar of Multi-Node Energy Profiler for all three views. S ingle-Node and Multi-Node

views provide individual device statistics, while Scope view does not.

This page reviews how to:

Configure energy statistics

Save a snapshot for future reference

Review saved statistics

Energy Statistics Configuration

Energy Profiler allows you to select which of the actively capturing devices are included in the total system energy

statistics calculation displayed in the top bar. Click the Energy Statistics Configuration icon and select the devices to be

included in the calculation. It is important to note that the devices available for selection are those that are actively

capturing data, which may be different from the devices that are selected for display in the UI.

Energy Statistics

238/335

Energy Statistics Snapshot

Energy Profiler allows you to save statistics for future reference and comparison. Click the Save Snapshot icon on any of

the energy statistics panels and be presented with a dialog to provide a name and tag for future reference.

Energy Statistics

239/335

Review Saved Statistics

Once you have saved multiple snapshots, you may want to review them, or to copy them to the clipboard for use in other

applications. This is possible through the Profiler->Session Statistics... menu.

Play and Record Data Control

240/335

Play and Record Data Control

Play and Record Data Control
The following diagram provides a general description of data flow from target devices into SSv5 profiling applications. Data

is sourced from target devices from the debug adapter either through USB or Ethernet connectivity to the host PC. The

host debug adapter software layer provides data to the AEM/PTI data streaming engine, which in turn provides data to

analysis applications such as Multi-Node Energy Profiler or Network Analyzer. The AEM/PTI data streaming engine saves

data to disk in temporary files during a capture session. When the user ends the session, Energy Profiler prompts the user

with the option to save the data to file.

Play and record controls in the top bar of the Energy Profiler perspective provide control over data being captured from

connected devices.

Play Control

The Play control determines whether data being captured is displayed in the Multi-Node Energy Profiler UI. The Play control

has three states:

Running (green)

Paused (black)

Play and Record Data Control

241/335

Frozen (orange)

Running: The "Running" state is entered when a capture is first started. When the Play control is green and displays

"Running", it means energy capture data is actively arriving and being displayed on the UI. The visible portion of the

waveform and events is the most recently captured data as it is arriving to Multi-Node Energy Profiler. The time position

scroll bar is all the way to the right.

Paused: The "Paused" state is entered by clicking Play while it is in the green "Running" state. The Play control turns black

and displays "Paused", indicating energy capture data is actively arriving but it is not being displayed on the UI. The visible

portion of the waveform and events may be anywhere on the timeline of previously captured data. Pausing the display has

no effect on whether data is saved to disk. Save to disk is determined by the state of the Record control.

Frozen: The "Frozen" state means energy capture data is actively arriving for display, but the visible portion of the waveform

and events in the UI is previously captured data. The time position scroll bar may be anywhere on the timeline of previously

captured data. The "Frozen" state is entered when the UI is in the play state and the time position scroll bar is scrolled or

moved to the left. The "Frozen" state may also be entered as the result of a "Freeze trigger" condition. The "Frozen" Play

control state has no effect on whether data is saved to disk. Save to disk is determined by the state of the Record control.

Record Control

The Record control manages data streaming to disk. There are two states to the Record control:

Recording (red)

Not recording (black)

Recording: When the Record control is red and displays "Recording", it means energy capture data is actively arriving and is

being saved to temporary files to disk. When an energy capture is started, the "Recording" state is entered automatically.

The state of the Record control has no effect on the Play control or the data being displayed in the UI. Clicking the Record

control while in the "Recording" state transitions to the "Not Rec" state (that is, not recording). The "Recording" state may

also be entered by use of Record triggers.

Not Recording: When the Record control is black and displays "Not Rec", it means energy capture data is actively arriving but

it is not being saved to disk. The "Not Rec" state is entered by clicking the Record control when it is in the "Recording" state.

The state of the Record control has no effect on the Play control or the data being displayed in the UI. Clicking the Record

control while in the "Not Rec" state will transition to the "Recording" state. The "Not Rec" state may also be entered by use

of record triggers.

Freeze and Record Triggers

242/335

Freeze and Record Triggers

Freeze and Record Triggers
Triggers provide a method to automate freezing the display or recording to disk. Trigger icons are found below the Play and

Record controls. Three triggers are available:

Freeze trigger

Record start trigger

Record stop trigger

Triggers are driven by criteria set by the user. To set the criteria, use the context menu available from each trigger icon. The

context menu also provides the ability to clear all conditions, which also disables the trigger.

Trigger States

The four trigger states are each designated by a color:

Grey - Trigger conditions are not set

Yellow - Trigger conditions are set, trigger is not armed

Red - Trigger conditions are set, trigger is armed

Freeze and Record Triggers

243/335

Green - Trigger has fired

When Energy Profiler first starts up in a new workspace, all trigger icons are grey, indicating trigger conditions have not yet

been set. Clicking a grey trigger icon opens the trigger configuration dialog, allowing you to specify trigger conditions. Once

trigger conditions have been set, the trigger icon turns yellow, indicating the trigger conditions are set but the trigger is not

armed. Clicking a yellow trigger icon arms the trigger as indicated by the trigger icon turning red. Incoming data is now

evaluated against the trigger condition. Once the trigger condition is satisfied, the trigger icon turns green, indicating the

armed trigger has fired. The relevant action (freeze, record start, or record stop) will have been executed. The following

diagram shows the trigger state behavior.

Freeze Trigger

The freeze trigger transitions the user interface from play to freeze mode automatically based upon search criteria. The

freeze criteria are set through the Freeze Trigger Conditions dialog. This is invoked either through the Profiler > Freeze

Trigger... menu selection or by right-clicking the Freeze Trigger icon and selecting **Configure Freeze Trigger".

In the following diagram, the play freeze trigger condition has occurred in the incoming data. Freeze mode is automatically

entered for the waveform display and data continues to arrive as indicated by the scroll bar automatically moving to the left

as new data arrives. Notice that the freeze trigger icon is green, indicating the trigger condition has occurred in arriving data.

Freeze and Record Triggers

244/335

Record Start/Stop Triggers

The record start/stop triggers automatically start and stop data record to disk based upon search criteria. This may be

beneficial for capturing rare conditions rather than recording large amounts of data followed by search. The record start

criteria are set through the Record Start/Stop Trigger Conditions dialog, which is invoked through the Profiler > Record

Triggers... selection" menu or by right-clicking the Record Start or Record Stop icon and selecting the Configure option.

The record start/stop trigger conditions are set together in a single dialog as shown in the following figure.

In the following figure, the record start trigger condition has occurred in the incoming data as indicated by the green record

start trigger icon. The record stop trigger condition has not yet occurred and data will be written to disk until it does.

Freeze and Record Triggers

245/335

Search Capability

246/335

Search Capability

Search Capability
One of Energy Profiler's most powerful aspects is the ability to search data. Search is available both during a live capture

and with an offline ISD file. Click Search to open the Search Conditions dialog.

When you click OK, a search is performed on all data currently available, whether from the currently active capture or in

offline mode from an open file. The search results window is displayed on completion. Sections where the data matched the

criteria are shown in red. A summary of the count and % coverage of the matching regions is shown at the upper right. Use

the context menu to jump to the matching in the waveform view from the search results window.

Search Capability

247/335

Profiling with Code Correlation

248/335

Profiling with Code Correlation

Profiling with Code Correlation
Code correlation is one of the most powerful features in Energy Profiler. Energy Profiler captures program execution in

conjunction with the energy data. This allows Energy Profiler to calculate the power consumed by each function executed

in the application. This data may then be sorted to highlight the portions of an application that consume the most power.

This enables the application developer to know where they should concentrate their software development efforts to

reduce power consumption. Additionally, Energy Profiler can color-code sections of the current waveform to represent

which functions were executing when a given section of the current waveform occurred.

This page reviews:

Enabling code correlation

The Code Correlation view

Color coding

Enabling Code Correlation

This section assumes an embedded application is already configured to produce AEM data through a debug adapter (see

Customer Hardware and Software Design Information for details). For code correlation to operate, Energy Profiler needs

access to debug information associated with the embedded application that is currently running. This information is available

in the AXF file output from the build. Code correlation can be enabled when an application is started from the S implicity IDE

perspective through context menu commands for a given project, or it can be associated with an application already running

on an embedded device that is being profiled in Energy Profiler.

From the Simplicity IDE Perspective

One simple way to enable the code correlation view is to start the energy profiling session by using the context menu on

the project from the S implicity IDE perspective, as shown below. The associated debug file will be provided to Energy

Profiler when the session is started.

Profiling with Code Correlation

249/335

Once Energy Profiler starts, the following view is displayed. Notice in the Code Correlation view, energy consumed by each

function is updated in real time. Clicking any of the functions opens the associated source code file and jumps to that

function in the file.

From Energy Profiler

If you start energy capture with a running embedded application, Energy Profiler does not have the debug information it

needs to associate program execution with source code. In these cases, the Code Correlation view is as shown in the

Profiling with Code Correlation

250/335

following figure.

Click the elect an Executable link and the program selection dialog is displayed. Debug files from open projects are provided

in the list. Alternatively, you may browse to select the debug file.

Code Correlation View

The Code Correlation view is shown below the waveform portion of the Multi-Node Energy Profiler Perspective, and works

in conjunction with the Editor view. When multiple devices are displayed in the Multi-Node view, you can click on each

adapter to view the function profile data associated with that device. The function data may be sorted as desired. Clicking

on any function opens the associated source file in the Editor view with the start of scope for that function selected.

Profiling with Code Correlation

251/335

Color Coding and Code Correlation

Energy Profiler provides the ability to color-code the current waveform based on program execution. You can set the color

for each function using the context menus in the Code Correlation view.

The following figure shows the current waveform view with several functions set to different colors.

Profiling with Code Correlation

252/335

Debugging with the Logic Analyzer

253/335

Debugging with the Logic Analyzer

Debugging with the Logic Analyzer
Note: Energy Profiler's integrated Logic Analyzer can only be used with Wireless Pro K it Mainboards, such as BRD4002A.

The features described in this section are enabled only when supported hardware is connected.

The Logic Analyzer displays the profiles from up to eight channels corresponding to the mainboard's four external pins, two

LEDs, and two buttons:

External channels: 0-3

CH0

CH1

CH2

CH3

Internal channels: 4-7

CH4: LED0

CH5: LED1

CH6: BTN0

CH7: BTN1

The Logic Analyzer's channel buttons act as toggles: click a button to display the logic signal, click again to turn it off. The

channels that are being displayed can be dragged and positioned closer to or farther away from other channels or the

energy profile.

Debugging with the Logic Analyzer

254/335

Freeze triggers can be set for the logic signals as for other features, as described in Freeze and Record Triggers. Click the

Freeze trigger to open the configuration dialog, then select DigitalSignal, the target channel, and the condition. Logic

channel data recording will be enabled in a future release.

Energy Profiler and Network Analyzer

255/335

Energy Profiler and Network Analyzer

Energy Profiler and Network Analyzer Integration
Note: This functionality is only available in offline mode with a previously saved ISD file.

Energy Profiler and Network Analyzer now provide a basic level of integration when trace data from a debug adapter

includes both AEM and PTI data. This integration allows you to easily move between the two applications by selecting an

event in either one and selecting Show in Network Analyzer or Show in Energy Profiler.

An SSv5 preference determines whether moving between applications leaves the Energy Profiler perspective and opens

the Network Analyzer perspective, or stays in the Energy Profiler perspective.

This page reviews:

How to use the integrated tools

Use Cases for Multi-Node Energy Profiler and Network Analyzer

Post analysis using an ISD file

Using the Integrated Tools

To open a previously saved ISD file, either use the top menu Profiler > Open ISD File... menu or the Quick Access > Open

ISD File... menu, as shown in the following figure.

Energy Profiler and Network Analyzer

256/335

Once the file is open, you can examine previously recorded details. In the following figure, notice two devices transmitting

and receiving packets. Select a TX or RX event and display the context menu. One of the options is Show in Network

Analyzer.

Select that option and the Network Analyzer view opens either in the Energy Profiler perspective or the Network Analyzer

perspective, based upon the preference setting.

Energy Profiler and Network Analyzer

257/335

Likewise, you can select an event in Network Analyzer and use the context menu to navigate back to Energy Profiler.

Use Cases for Multi-Node Energy Profiler and Network Analyzer

Depending upon your goals for an analysis session, there will be times when you will primarily use Network Analyzer, times

when you will primarily use Energy Profiler, and times when you will find it advantageous to use them together.

Energy Profiler and Network Analyzer

258/335

When you are interested in energy consumption of a single or multiple devices, Energy Profiler is where you will focus your

time. From a network communication perspective, it provides only the start time of a TX or RX packet, and does not provide

any decoding of the packets themselves. Still, this information can be revealing in your application's consumption of power

relative to network activity. For example, by using the search tool, you can set search criteria that identify all points in the

data where a packet was transmitted and the power exceeded a given value. If you have an expected power performance

based upon your design, you can quickly identify when your system is operating outside its specification.

If you are interested in packet contents, node activity, and network interaction in a wireless network, Network Analyzer is

where you will focus your time. Network Analyzer's multiple editor panes provide tiered displays of network activity, letting

you drill down from a high-level map of node interactions to the details of each packet. Customizable filters enable you to

specify exactly which network activities to display, allowing you to sift out information unrelated to a given task. These

features allow you to determine when your network is behaving as expected, but are not available in Energy Profiler.

You will find yourself benefitting from the integration of these applications where these two information spaces intersect.

For example, the Energy Profiler use case mentioned above ended at finding a transmit packet that exceeded expected

power consumption. To investigate further, you could select Show in Network Analyzer to investigate that specific node's

network activity and packet contents, in hopes of determining why the power was higher for that particular network

transaction. In contrast, you may suspect that packets with specific content are the root cause of high power consumption.

In Network Analyzer you could search for that data, and use Show in Energy Profiler to determine if indeed those packet

contents are the root cause of high power consumption.

Post Analysis Using an ISD File

Both Network Analyzer and Energy Profiler capture data in the same format, which are saved in the ISD file format. Both

applications can open an ISD file that has been save by either application. For example, if you have completed an Energy

Profiler session and saved the ISD file, only to realize later that you are interested in the packet trace information, you

would open that file from Network Analyzer to further investigate it. It is important to note, however, that captures started

in Energy Profiler include packet trace data by default, but captures started in Network Analyzer only contain energy data if

the preference to include it has been selected, as shown in the following figure.

Network Analyzer

259/335

Network Analyzer

Network Analyzer
S implicity Studio® 5 (SSv5)'s Network Analyzer enables debugging of complex wireless systems. This tool captures a trace

of wireless network activity that can be examined in detail live or at a later time.

More than simply a packet sniffer, the Network Analyzer works with the data sniffer interface on the S ilicon Labs wireless

chips to provide direct feedback from the baseband radio of each device, allowing any supported radio to report detailed

packet transmission and reception data, such as timestamps, link quality (or LQI), receive sensitivity (or RSSI), and CRC

pass/fail results, all without any software overhead.

With SSv5, any PTI-enabled S ilicon Labs platform can record the radio activity regardless of the application firmware that is

being used, so there ’s no need to have a dedicated sniffer device installed to catch the traffic. The Network Analyzer also

enables capture from multiple sources simultaneously into the same log file without falsely duplicating packets. This enables

the developer to compare how well different radios in the network heard the same transmission.

In cases when detail is not desired, Network Analyzer makes it easier to understand the workings of a complex wireless

protocol. Related packet events are automatically grouped into a Transactions pane within the capture view, allowing for

quicker parsing of what’s happening during that portion of the traffic log. Quickly access statistics like total duration, number

of related packets, number of point-to-point and end-to-end retries, and unexpected conditions like requests with missing

responses or deliveries where expected acknowledgments are missing.

Network Analyzer

260/335

In addition to capturing packet events, Network Analyzer also captures asserts, debug prints, and many other events.

This guide contains the following sections:

Network Analyzer Interface: Provides a guided tour of all elements of the Network Analyzer Perspective.

Capturing Data and Managing Sessions: Describes how to perform live captures, and save and manage the resulting data.

Viewing Data in Editors: Goes into detail about working with the data presented in both the Stream Editor and the Large File

Editor.

Filtering Captured Data: Explains how to focus on exactly what you need from a Network Analyzer session.

Multinetwork Considerations: Discusses how to manage nodes that belong to more than one network.

Custom Decoders: Explains the basics of how to create custom decoders.

Network Analyzer Preferences: Provides a reference for the many ways you can customize Network Analyzer to meet your

needs.

Network Analyzer Interface

261/335

Network Analyzer Interface

Network Analyzer Interface
The Network Analyzer Interface is presented as a Network Analyzer perspective.

The Network Analyzer perspective contains the following work areas:

Debug Adapters view (1) - Lists all debug adapters and their connected hardware that are accessible to Network Analyzer.

See S implicity IDE User Interface Review

Capture sessions (2) - Contain data captured from a node or set of nodes, with each session shown as a tab, and a live

session shown in a *Live tab.

Editor Panes - Display the data of a selected capture session in the editor area with up to five different panes. Network

Analyzer supports two types of capture sessions:

Live sessions - Display data as it is captured; the display is continuously refreshed as new data arrives.

Saved sessions - Contain captured data that has been saved to permanent storage in a named .isd file. You can load a

saved session and play it back at any time.

Toolbar and Menu (3) and Supporting Views (11) - Provide options to control data capture and display.

A filter Bar (4) allows you to enter data filters, as described in Filtering Captured Data.

A Timeline Bar (5) displays the statistics of the traffic over time, as discussed in Viewing Data in editors

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide/user-interface-review

Network Analyzer Interface

262/335

The Views area (11) displays additional views in a tabbed interface.

Editor Panes

Editor panes provide different aspects of capture session data. Up to five editor panes can be open at any one time:

Map (6) provides a graphical view of the network, where nodes are displayed with their network identifiers. The map also

displays network activity.

Transactions (7) displays high-level node interactions that might comprise multiple events.

Events (8) displays information about all events transmitted and received during a capture session.

Event Detail (9) displays the decoded contents of the event that is currently selected in the Events pane.

Hex Dump (10) displays the data of the selected event in raw bytes. Network Analyzer highlights bytes that map to the data

currently selected in the Event Detail pane. It shows multiple "layers", so if the packet is decrypted, the "raw" layer shows

encrypted data, but the higher-level layers show this data progressively decrypted.

Using the editor is discussed in more detail in Viewing Data in Editors

Toolbar and Menu

The Network Analyzer Toolbar and Menu provides shortcuts to frequently-used features. Selections and controls are either

enabled or disabled depending on what the user is doing.

On the toolbar, hover over any control to see a short description.

Network Analyzer Interface

263/335

The following describes the controls in order from left to right. Where the function is also available on the Network Analyzer

menu, it is so noted.

Network Analyzer toolbar controls are added to the controls already present in the S implicity IDE. See About the S implicity

IDE for more information. This section provides Network Analyzer-specific information, if any, about those controls.

Open File - Opens a file dialog from which the user may select one of the applicable extensions, such as .isd, or .log.

Equivalent to File > Open File (Network Analyzer Trace, Energy Profiler, etc.).

Open Capture Directory - Opens the folder to which an output file has previously been saved. Equivalent to File > Other

Network Analyzer Actions > Open Network Analyzer Capture Directory.

Restart a Process - S implicity IDE function.

New - Creates a new project or other file. Equivalent to File > Other Network Analyzer Functions > New Live Capture

Session.

Save (Ctrl+S) - Saves any changes to the currently opened file to disk. If the file has never been saved before, the user

can say where they want it saved and what extension they want to give it. If the file was previously saved, Network

Analyzer saves over the old file.

Save All (Ctrl+Shift+S) - Saves all files that have been edited, including any files open elsewhere in S implicity Studio. As

with Save, the user has the option to indicate where and how to save any files that have never been saved.

Next Annotation and Previous Annotation - S implicity IDE function.

Last Edit Location - S implicity IDE function.

Back and Forward - S implicity IDE function.

Pin Editor - S implicity IDE function.

Reopen Editor - Closes and reopens the editor. When you have changed or added new decryption keys to the preferences,

it is useful to be able to reopen the file and run it through the decryptors and decoders again.

Clear Events - Clears the editor of all events. This is useful when you are capturing on a network and are waiting for some

set of events to occur but do not want to keep everything else around.

Live Capture Options - Opens the Capture Options dialog, used to tailor the condition under which events will be captured.

View and Modify Security Keys (Toolbar and Menu) - Opens the Active live capture keys dialog, where you can add

security keys to be used during the current capture in progress. Any keys that are added will also be added to the list of

security keys in the Network Analyzer preferences.

Pause Stream (Toolbar and Menu) - Pauses a capture without stopping it. This is useful to stop capturing for period of time,

and then later continue as if nothing happened. Live events occurring during a pause are not retrievable.

Import - Select files to import and the type of import. Additional fields allow you to specify characteristics of the import.

Equivalent to File > Network Analyzer Import.

Export - Select the exporter to use, and the output file name and location. Other options depend on the exporter.

Equivalent to File > Network Analyzer Export.

Show Short Id (Toolbar and Menu) - Displays a node's shortId on the map, if one is known for the currently selected time.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide

Network Analyzer Interface

264/335

Show Long Id (Toolbar and Menu) - Displays a node's long Id (64 bit identifier) on the map, if one is known.

Show Pan Id (Toolbar and Menu) - Displays the pan Id on the map, if one is know for the currently selected time.

Show Node Label (Toolbar and Menu) - Displays the node's label. If the node is connected to Network Analyzer over the

backchannel, this value will be the host name of the adapter connected to the node.

Show Signal Strength (Toolbar and Menu)

Show All Connectivity (Toolbar and Menu) - Shows the quality of connections between nodes on the map.

Show all Simultaneous Events on Map (Toolbar and Menu) - During periods of heavy traffic, several simultaneous

transactions may overlap. When enabled, the map shows all traffic. When it is disabled (default), the map shows only the

traffic related to the currently selected transaction.

Show All Transactions on Map (Toolbar and Menu) - When enabled, all transactions that overlap with the currently selected

one are shown on the map.

Filter Nodes (Toolbar and Menu) - Filters out nodes that are not involved with the filtered event.

Map Zoom In and Map Zoom Out (Toolbar and Menu) - Increases and decreases the size of the map in the map page.

Zooming in can be useful if you are looking at a very large network where a large number of nodes are positioned very

close together.

Edit Trace File Description (Toolbar and Menu) - Each saved Network Analyzer trace file contains a description. The

description can be used to store information that is important to the trace but may not be included by default. Generally

the description is used to provide context for the trace and any other information that may be of help to the viewer. A

checkbox on the dialog determines if the description is shown when the file is loaded.

Go To Line (Toolbar and Menu) - Moves the event cursor directly to the event number entered. This is only enabled if the

Stream preference "Show event numbers" is selected. To turn this feature on go to: Window > Preferences > Network

Analyzer > Capture Configuration > Show event numbers.

Go to Time (Toolbar and Menu) - Moves the cursor to the transaction and event that match or immediately follow the

specified time.

Go To Bookmark (Toolbar and Menu) - Moves the event or transaction cursor to the bookmark selected in the bookmark

dialog. Assign bookmarks to events or transactions by right-clicking the event or transaction and selecting Add Bookmark.

Decrease Font Size and Increase Font Size (Toolbar and Menu) - Decreases and increases the size of the font used in the

Event, Transaction and Detail panes.

Apply Row Coloring (Toolbar and Menu) - Turns coloring on and off in the Transaction and Event panes. Row colors are

applied based on the pre-defined filters included in the Filter Manager.

Lock To Bottom (Toolbar and Menu) - Locks the event cursor to the bottom of the Event pane. During a live capture, this

causes the Map and Details panes to always show the latest event. To remove the lock, select any event or transaction

during a live session, which causes a view to scroll as the events are captured.

Start Replay (Toolbar and Menu) - Begins scrolling forward through events from the current event selected. If no event is

selected, the scrolling will begin from the start of the current trace file. Once replay has started, converts to a Stop Replay

function.

Timeline Bar - Toggles the timeline shown at the top of the currently opened Stream Editor.

Toggle Filter Bar - Toggles the Filter Bar at the top of the currently opened Stream Editor.

Show Filter Manager View - Toggles the Filter Manager View.

The following are selections on the Network Analyzer menu that are not on the toolbar:

Show DAG - Shows the connectivity DAG from the captured neighbor DAG events. Applies only in cases when the

networking stack is instrumented with the correct abilities.

Network Analyzer Interface

265/335

Load Background Image and Clear Background Image - Loads and clears a background image on the map pane. Also

available on the Map pane context menu.

Print map - Prints the nodes as currently displayed in the map pane.

Organize map - Organizes the nodes on the map into a Default, Random, Square, or Hexagonal placement. Also available

on the Map pane context menu.

Other Views

Network Analyzer provides access to a wide range of functionality through the use of views. The views are all accessible in

the menu Window > Show View. For a complete listing of all available Views, select Window > Show View > Other....

The following lists some of the most helpful views. The first four are open in the Views area by default.

Radio Info - The Radio Info View shows data captured for each event, as discussed in Radio Info View.

Event Difference - Event Difference view is a helper view that displays the specific differences between two packets, as

discussed in Event Difference View.

Connectivity view - (15.4 captures only) Displays a graph of network connectivity, using the neighbor information from the

nodes.

Data capture view

Adapters - (deprecated)

Application Controller view - (deprecated)

Error Log - Decoder, decryption, and other types of errors are displayed in a tabular format in the Error Log View. Each error

is shown in a single row with its summary message, the plugin or component that reported the error, and the date and time

the error was encountered. To view detailed information about the error, double-click it. The error will be displayed in an

Event Details dialog that includes the date, severity, message, and, if available, stack trace. The navigation at the top of the

view allows you to perform basic functions on the Error log itself, including Export, Import, Clear, Delete, Open, and Restore.

Expression Manager - Also known as the Filter Manager, this tool is used to compose and edit custom filtering expressions.

Progress - The Progress View shows the progress of user actions. Actions that take a long time to execute may be

managed within the Progress View. For example, the application upload action can take several seconds. The Progress View

provides a user interface for managing this action. If you wish to stop an action, you may do so in the Progress View.

Network Analyzer Interface

266/335

Sample Application Wizard - (deprecated)

Other views of interest are:

Event Detail - Event details are normally shown in the EventDetail Pane within the Stream Editor. If you want to see the

event details in a separate window, you can open the Event Detail View. This view shows the details for the currently

selected Event in the same format as the Event Detail Pane, but in a view that you can pull outside of Network Analyzer

and resize to your liking.

Hex Dump - S imilar to event details, the hex dump information is shown the Hex Dump Pane within the Stream Editor. If you

want to see the hex dump in a separate window, you can open the Hex Dump View. This view shows the hex dump of the

currently selected Event in the same format as the Hex Dump Pane, but in a view that you can pull outside of Network

Analyzer and resize to your liking.

Search - Search data is displayed in the Search Pane within the Large File Editor. However, as with the Event Details and

Hex Dump Panes, you may wish to see this data in a separate view. The Search View allows you to view search results in a

window that you can pull outside of Network Analyzer and resize to your liking.

Shell - The Shell View provides command line access to the scripting capabilities of Network Analyzer. For a list of all

commands available within the shell, simply enter help at the command line.

Capturing Data and Managing Sessions

267/335

Capturing Data and Managing Sessions

Capturing Data and Managing Sessions
Network Analyzer can display one or more network capture sessions. Each capture session displays the transaction and

event data captured from one or more nodes. The captured data is shown in editor panes. In general, Network Analyzer

captures all incoming and outgoing packet data via the selected adapters, regardless of whether the host nodes have

sniffer applications. The captured data includes failed transmissions, as well as debug messages from node applications that

are compiled in debug mode.

This kind of capture is called a perfect trace session. The capture nodes of a perfect trace session are not sniffers but

nodes that might be running your own application that you are trying to debug. The perfect trace session compiles all

incoming and outgoing data from each node in chronological real time, providing a richly-layered display of all activity within

a network. A perfect trace session can be especially useful for debugging a network in development as it allows you to see

every packet on the network.

Network Analyzer supports two types of capture sessions:

Live sessions display data as it is captured. The display is continuously refreshed as new data arrives. When a live session

starts, it is unnamed and its data is maintained in temporary storage until you save it to a named file. Network Analyzer can

capture live session data from multiple sets of adapters into the same session. You cannot, however, capture from one

adapter into different sessions at the same time. You can run more than one live session at the same time.

Saved sessions contain captured data that has been saved to permanent storage in a named .isd file. You can load a saved

session and analyze it at any time.

When you start Network Analyzer, it opens a new live session. Network Analyzer displays each session in an editor with its

own tab. The tab of each saved session is labeled with the session's file name; the first live session is labeled Live, the

second Live1, the third Live2, and so on.

You can capture data from the node of any connected Debug Adapter, from one node at a time or multiple nodes

simultaneously. You can also capture all network traffic over the current channel by capturing data from a connected sniffer

node.

Note: The types of data captured from a node depend primarily on the software protocol running on the node, and also the

capabilities of the node's radio chip and Debug Adapter.

Starting a Capture

Before starting a capture, open Preferences > Network Analyzer > Decoding > Stack Versions and make sure that the

protocol running on the adapters is selected. If you are working in a multiprotocol environment, select 'Auto-detecting

decoder stack'. A change here will not affect any active capture sessions but will apply to the next capture you start.

To start a capture:

 Select one or more connected adapters. Multiple adapters are usually on the same network.

 Right-click the selected adapters.

 On the context menu, select Start Capture.

Capturing Data and Managing Sessions

268/335

Alternatively, select File > Other Network Analyzer Actions > New Live Capture Session. This creates a new live capture

session and puts it on top of the editor list.

When you start a capture on an adapter, or on multiple adapters at the same time, the live session used for the capture is

assigned in one of the following ways:

If no live sessions are currently active, a new live session is created and used.

If live sessions are active, but they are not on top of the editor stack (for example, another file is opened and currently on

top), a new live session is created and used.

If a live session is active and it is also on top of the editor stack, then this session will be used for capture.

Capturing with Options

You can filter packets out of the stream during a capture. For example, you can choose to see only packets from a certain

PAN ID and drop all other packets.

 Select one or more connected adapters.

 Right-click the selected adapters.

 On the menu, select Start capture with options.

 Configure options in the resulting dialog, and click OK.

Capturing Data and Managing Sessions

269/335

In the capture options dialog, you can set the following:

Capture only PANs: (15.4 protocols only) This filter, based on PAN ID, allows a comma-separated list of hexadecimal values.

Aggressive mode: Filters out all events that may not be or definitely are not packets.

Enable advanced energy measurement: This enables AEM packet filtering. AEM packets are used with Energy Profiler. If you

turn this option on and later look at the data in Energy Profiler, you will not see any packets.

Enable PC sample data: If selected, captures diagnostic events.

Enable exception sample data: If selected, captures Java framework exceptions, which are used for deep diagnostics of

possible Network Analyzer bugs.

Enable debug channel: If selected, enables capturing all other non-packet events.

S ilent capture to file: If selected, performs a lengthy capture as a background task. Traffic will not show in the GUI until the

capture is stopped and the file is opened. The silent capture enables you to run a capture over several days, as it does not

consume memory resources, only disk space.

The start capture options specify the trigger for delayed start of capture.

immediately: No automation, capture starts right away.

after: Capture starts after a certain time or after a certain number of events.

upon: Capture starts upon Node reset, or upon an event containing a specified ASCII or byte pattern.

The triggers for starting and stopping capture on node reset work only if you have DEBUG level NORMAL turned on for the

node that you are capturing from. With the debug level set to Normal, the chip will send debug information, including node

resets, over the back channel to Network Analyzer. Network Analyzer uses these reset and other commands to trigger the

Capturing Data and Managing Sessions

270/335

start-and-stop capture process. If an image does not have debug turned on, it will not send reset information to Network

Analyzer, and Network Analyzer has no basis for triggering start or stop capture.

You can also modify some, but not all, capture options through the Live Capture Options toolbar control.

Capturing from a Sniffer Node

Any adapter's node that connects to Network Analyzer can be designated as a sniffer. A sniffer node is capable of

capturing all data that is transmitted among nodes over the designated channel.

A sniffer node must have a sniffer application loaded. The sniffer application enables the node to capture over-the-air

transmissions between nodes over the designated channel. When you start capturing from a sniffer node, the sniffer node

captures all packets that are exchanged by the nodes on the designated channel.

If no sniffer application is currently loaded, load one in either of the following ways:

In the Debug Adapters view, right-click the adapter and select Sniffer Configurator.

On the Adapters tab, select the adapter.

On the Upload tab, select the target adapter.

On the Apply Configuration tab, apply the appropriate configuration.

In the Debug Adapters view, right-click the adapter and select Make Sniffer. Network Analyzer will first check whether the

node has a Sniffer image on it before attempting to upload the new Sniffer image.

Stopping a Capture

 Select one or more connected adapters.

 Right-click the selected adapter(s).

 On the context menu, select Stop Capture.

Capturing Data and Managing Sessions

271/335

To resume capture, select Start Capture.

Pausing a Capture

Pause a capture at any time by selecting Pause on the Network Analyzer menu or the toolbar. This is a convenient way to

stop capturing from a device or devices without having to start a new capture at a later time. Events that occur during the

pause are lost, and cannot be retrieved.

Clearing Session Events

Click Clear Events on the Network Analyzer menu or toolbar to purge all events and their associated transactions from the

current session. Caution! You cannot retrieve cleared events.

This is mostly used if you are working on a scenario on an embedded node, where you control some activity through

command-line actions. You then simply "Clear" events between each retry, instead of having to do a complete "Start

Capture / Stop Capture".

Note: Network Analyzer is designed to stay connected and continue capturing, even when the firmware on the target node

is uploaded and the node resets. That does not stop the capture session.

Saving a Session

When you start a capture, it is initially written to an unnamed live session. At any point during a live session, you can save

the data thus far captured to a file by selecting File > Save or clicking the toolbar Save control. After you save a session

file, Network Analyzer continues to append capture data to it; however, you must save again in order to retain this data in

the session file.

Network Analyzer saves session data to an .isd file, which is a compressed file that stores session data and the network

state. Network state includes display settings such as map modifications, which Network Analyzer restores when you reload

the session file.

Network Analyzer closes a saved session from further captures after you explicitly stop the capture, or when you start

another live session. After a saved session is closed, it cannot be reopened to capture more data.

If you modify a saved session file - for example, set bookmarks or reposition icons in the Map pane - Network Analyzer

asks whether to save or discard those changes before you close the session.

Note: For security reasons, Security Keys that you may use to decrypt captured data are not included in saved .isd files by

default. If you wish to share security keys with your files, you should turn on the option "Save decryption keys in Network

Analyzer files" on the Security Keys preference page, which you can access by selecting Window > Preferences >

Network Analyzer > Decoding > Security Keys

Saving Multiple Sessions

If multiple open capture sessions have unsaved data, you can save all of them at once by selecting File > Save All, or using

the toolbar Save All control.

Exporting to Other File Formats

To export a capture session to another file format:

 Select File > Network Analyzer Export or click the toolbar Network Analyzer Export control.

 Select the export format

 Name the output file.

 Click Save.

Extracting Individual Events

You can extract specific events from the Transactions pane, Events pane, or Hex Dump pane, and save them into a

separate text log file.

To extract specific events to a text file:

Capturing Data and Managing Sessions

272/335

 Right-click the event in the Transactions, Events, or Hex Dump panes that you want to extract.

 On the menu, select Extract to.

 Name the output file with a text extension.

 Click Save.

Once you specify a file, you can append additional events to it by right-clicking the event that you want to append and

selecting Append to <file>.

Open and Close Options

To open a capture file, select File > Open Recent File (Network Analyzer trace ...) or click the toolbar control.

To close a single capture session, close the session tab.

To close all capture sessions, right-click any session tab and select Close All, or select File > Close All.

To close all but the current capture session, right-click its session tab and select Close Others.

Replaying a Session

(Rarely used) Replay events of the current session, whether live or saved, by selecting Start Replay on the Network

Analyzer menu or the toolbar. Network Analyzer replays the session from the selected event at a constant speed.

Replaying events in a live session has no effect on the capture in progress.

Once replay has started, both the toolbar control and the menu selection convert to a Stop Replay function.

Viewing Data in Editors

273/335

Viewing Data in Editors

Viewing Data in Editors
On the File menu, select Open File (Network Analyzer trace ..) or Open Recent File (Network Analyzer trace ...) to open

data in an editor. If the file is smaller than the size set in Preferences > Network Analyzer > Capture File Storage for a file

to be considered large, Network Analyzer opens it in the Stream Editor. Otherwise, Network Analyzer opens it in the Large

File editor.

Stream Editor: The Stream Editor decrypts, decodes, and displays details of individual events.

Large File Editor: The Large File Editor does not offer any detailed decoding and presentation of events. Instead, it provides

a high-level overview of a file and allows users to open their points of interest in the Stream Editor.

The Stream Editor provides details about individual events. However, in the case of really large captures, this may tax

system resources. The Large File Editor shows an overall timeline and node statistics. It allows you to scan very large

captures for areas of interest, which you can then open in Stream Editor.

Stream Editor

The Stream Editor contains five editor panes, each of which provides a different view of the captured session data:

Viewing Data in Editors

274/335

Map pane: Provides a map of the network, with nodes displayed with their network identifiers. The map also displays network

activity.

Transactions pane: Displays high-level node interactions that might comprise multiple events.

Events pane: Displays information about all packets transmitted and received during a capture session.

Event Detail pane: Displays the decoded contents of the packet that is currently selected in the Events pane.

Hex Dump pane: Displays the data of the selected event in raw bytes. Network Analyzer highlights bytes that map to the

data currently selected in the Event Detail pane.

All five editor panes may be open at once. Live captured data is continuously updated and displayed in the editor panes.

A Timeline Bar displays the statistics of the traffic over time.

Views are presented in a tabbed interface in the lower left of the default Network Analyzer perspective.

Radio Info View: Shows the information from the radio of all the receivers in the network that have heard the currently

selected event.

Event Difference View: Displays the differences between two packets.

Connectivity View: (15.4 captures only) Displays a graph of network connectivity, using the neighbor information from the

nodes.

For more information about using the Stream Editor panes, see the Editor navigation tools.

Map Pane

The following information is applicable to 15.4 networks only.

The Map pane shows all interaction between nodes at a high level. As events occur or are replayed, the Map pane

refreshes to show the pattern of network communication. Debug messages issued from a node also display next to the

node.

Each node in the map pane is given a different color depending on its capabilities within the network as they are

understood by Network Analyzer based on captured data.

RED: The node is a network coordinator.

BLACK: The node is a router.

GREEN: Default color for network nodes.

The following figure shows the graphical elements that appear in the Map pane to depict network activity. Thick lines depict

transactions, while thin lines depict single packets.

Viewing Data in Editors

275/335

Note: The colors shown vary according to the transaction or event type, and can be configured through the Filter Manager.

The data that is shown for each node is managed through menu/toolbar options:

Show Short ID toggles display of the node's 16-bit address that is unique within the personal area network (PAN).

Show EUI64 toggles display of the node's unique 64-bit IEEE address.

Show PAN ID toggles display of the PAN identifier of the node's network. This label can be useful when the map displays

multiple networks.

Show Node Label displays the custom label that you create for map display only.

Show LQI toggles display of link quality data that pertains to the quality of connection between nodes. This is available with

perfect trace captures, but not with sniffer captures.

Show Connectivity shows the neighbor relationships between nodes in the network.

Simultaneous Events displays on the Map pane all events that occurred at the same time as the transaction or event that is

currently selected. The currently selected event is in color and any other events display in gray.

Zoom Map In and Zoom Map Out enlarge and shrink the space that the map uses to display nodes. Zoom options have no

effect on the size of node icons.

You can move node icons within the Map pane display. This has no effect on network functionality. However, it can help to

highlight certain node interactions and relationships. When you move node icons in a session, Network Analyzer asks

whether to save those changes before you close the session.

Right-click anywhere in the map pane to bring up a context menu.

Organize Map establishes the layout of all nodes on a map. You can also modify individual node positions as needed. The

following layouts are available:

Default Placement aligns nodes in a linear pattern.

Random Placement scatters the nodes across the map randomly.

Square Grid aligns the nodes in a grid.

Hexagonal Grid aligns the nodes in a hexagonal, offset pattern.

Load Background Image and Clear Background Image manage the display of a background image in the Map pane.

Right-click on a node to bring up a context menu.

Assign EUI64 lets you assign a EUI64 to a node (not available if Network Analyzer obtains the EUI64). Network Analyzer

obtains a node's EUI64 only when that node associates with a network. If the node already belongs to a network when a

session begins, its EUI64 is unknown. This option lets you display a known EUI64 for a node; the node's actual EUI64 is

Viewing Data in Editors

276/335

unaffected by this label. The Multinetwork checkbox can be used to indicate that the node is operating on multiple

networks. See Multinetwork Considerations for more information.

Multinetwork toggles the multinetwork property. See Multinetwork Considerations for more information.

Label lets you customize the node's adapter (device) label with any string up to 25 characters long. This string appears in

brackets after the node's device name. (By default, the Map pane labels each node that is undergoing capture with its

device name.) You can also make the labels time-dependent by entering a start time. This lets you supply multiple names for

the same node. This can be useful while debugging applications, by indicating the node's current state.

Icon and More Icons allow you to display the node as an icon.

Transactions Pane

The Transactions Pane displays higher-layer protocol events that consist of multiple packet transmissions. For example, a

Zigbee broadcast is retransmitted by every node in the network. By analyzing packet headers, Network Analyzer

determines which packets belong to the same transaction and groups them accordingly.

Typical 15.4 transactions include:

802.15.4 association: Involves a request-response protocol that consists of at least 6 packet transmissions.

APS unicast: Can contain the following events:

A MAC layer unicast packet and its MAC retries

Acknowledgements for each hop along the route

An end-to-end APS acknowledgement message, which itself consists of multiple MAC unicast packets

Multiple end-to-end APS retries

Zigbee route discovery: Involves a broadcast route request followed by unicast route-reply packets across multiple hops.

In the case of Bluetooth Low Energy (and Bluetooth mesh), a “transaction” refers to an actual Bluetooth Low Energy

transaction as defined in the core specification. This corresponds most of the time to a Bluetooth Low Energy procedure.

Equally, the event pane displays the actual Bluetooth Low Energy events corresponding to the transaction or procedure.

For more details, refer to the Bluetooth Core specification document.

Network Analyzer understands the protocol semantics for many transaction types. Therefore it can group multiple packets

in real time to facilitate high-level analysis.

All transactions are listed in chronological order, using transaction start times. Each selection maps to one or more events in

the Events Pane, which are marked accordingly. Clock icons indicate concurrent transactions with the current selection.

All transactions and their events are uniquely numbered. However, the transaction numbers may not be in sequence, and

various factors will result in number gaps. For example, only top-level transactions and the lowest-level packets are shown.

Intermediate transactions are not shown. Also, number gaps are likely to occur if filters are turned on.

When you click on a transaction, the information shown in the Event Detail Pane and the Hex Dump Pane corresponds to

the first packet in the transaction. However, if filters are turned on, the first transaction might not be shown in the Event

Pane. In that case, the event detail information in the transaction display will not be consistent with the first packet shown

in the Event Pane. In fact, with a filter expression such as show(transaction.summary != null, SELF) only transactions are

Viewing Data in Editors

277/335

displayed and the Event Pane will be blank. In that case, click the transaction to see the first events in the transaction in

the Event Detail and Hex Dump Panes.

Events Pane

The Events pane displays information about packets received by the current session. All events are displayed in

chronological order.

Events that belong to the currently selected transaction in the Transactions pane are marked by one of the following icons:

Clock icons mark unrelated events that are concurrent with the selected transaction in the Transactions pane.

Event Detail Pane

The Event Detail pane displays the decoded contents of the event that is currently selected in the Events pane. The

content of this pane varies according to the event type. If a transaction is selected on the Transactions pane, the Event

Detail pane shows the details of the first event in the transaction.

Pane options include:

Expand Bitfield: Shows the bitfields in an expanded mode, like Wireshark.

Use Fixed Fonts: Can improve readability as information is presented aligned.

When capturing from multiple devices, Network Analyzer may capture the same packet as heard by several different

sources. In order to reduce confusion, Network Analyzer automatically performs duplicate detection on all packets

captured. If the transmission is captured over the backchannel, only the transmitted packet is kept. Otherwise the first

receive packet is kept. All duplicate packets are dropped after extracting their RadioInfo data. Only the radio info frame for

each duplicate packet is kept. The radio info for each individual instance of a packet captured by Network Analyzer is

visible in the Radio Info View

Viewing Data in Editors

278/335

Pinning a field: The Event Detail pane has the ability to "pin" a field into view. When you double-click on a specific field, the

Pin icon in the top left of the pane turns bright red, indicating that it is active. Now, as you move through events, this field is

always visible when it is present in the currently selected packet. This is useful if you are interested in a specific field

across multiple events in a trace file. In the above figure, the Zigbee Application Support Delivery Mode is "pinned" into

view. The pin can be deactivated at any time by either double-clicking on the pinned field, or by clicking the Pin icon itself.

Hex Dump Pane

The Hex Dump pane displays data in raw bytes of a selected event in the Events pane. Clicking on bytes in the Hex Dump

pane selects the corresponding field in the Event Detail pane. Alternatively, selecting a field or a frame in the Event Detail

pane highlights the corresponding bytes in the Hex Dump pane. The pane shows multiple "layers", so if the packet is

decrypted, the "raw" layer shows encrypted data, but the higher-level layers show this data progressively decrypted.

Timeline Bar

The Timeline bar displays the statistics of the traffic over time. The Timeline bar function on the Network Analyzer toolbar

toggles the Timeline Bar on and off.

Available actions are:

Viewing Data in Editors

279/335

Click on the Timeline bar to move the cursor to the event closest to the time selected.

Click and drag on the Timeline bar to filter the display to only the time within the selected area.

Right-click to display a timeline menu.

The Timeline bar shows bookmarks as yellow flags. You can click a bookmark to jump to it in the Transaction and Event

panes. It shows red flags for errors, such as out-of-sequence problems.

Radio Info View

The Radio Info view is a helper view that shows the information from the radio of all the receivers in the network that have

heard the currently selected event. It is available through the tabbed Views interface in the lower left of the default

Network Analyzer perspective. If not, add it through Window > Show View.

The view displays in a tree all the information that has been gathered from the receiver nodes. Displayed information

includes LQI value, CRC value, and the status bits that show several states of the radio.

The event that supplied radio information in the figure above was captured from both the sending and receiving nodes. This

is possible because the trace that contains this event was created by capturing from both the sending and receiving nodes

simultaneously using Network Analyzer's Perfect Trace capability. While the original events were merged into a single event

by Network Analyzer's duplicate detection mechanism, the radio information was retained for each event and is shown in

the Radio Info view with the time that the event was captured by Network Analyzer.

Event Difference View

Event Difference view is a helper view that displays the specific differences between two packets. It is available through

the tabbed Views interface in the lower left of the default Network Analyzer perspective. If not, add it through Window >

Show View.

Viewing Data in Editors

280/335

Once the view is shown, it tracks the selected events. The view will by default show the difference between the last two

events selected. If you select event 1, and then click on event 2, the view shows the difference between those two

events. If later you select event 3, the view shows the differences between event 2 and 3.

Packet frames that do not have any differences are shown in green. Frames that contain differences are shown in red.

Expand the frame to see which portions of the frames are different.

The menu at the top of the view supports additional functions.

Show traffic counts: Opens a window showing the statistics for the events between, but not including, the two selected

event.

Show byte differences: Enables viewing of individual bytes in the view.

Pin last selected event: Changes the way events are tracked. If this is enabled, then the first event for diffing stays the

same, and only the second event changes. You can use this if you wish to always differentiate events against a certain

static event, rather than always viewing last two selected events.

Include fields that are same: Enables filtering out fields that are same in both events.

Editor Navigation Tools

Some of the Network Analyzer Toolbar functions are specific to working in the Stream Editor.

Viewing Data in Editors

281/335

Edit description of trace file: Opens a simple dialog which allows you to view and edit overall description of the captured

data. This is helpful if you need to pass on some information others for analyzing the contents of the trace file.

Go to Line: Moves the cursor to the event or transaction having the specified event number. This is only enabled if the

Stream preference "Show event numbers" is selected. To turn this feature on go to: Window > Preferences > Network

Analyzer > Capture Configuration > Show event numbers.

Go to Time: Moves the cursor to the transaction and event that match or immediately follow the specified time.

Go to Bookmark: Moves the cursor to the selected bookmark. Assign bookmarks to events or transactions by right-clicking

the event or transaction and selecting Add Bookmark.

Lock to Bottom: Locks the cursor on the latest event during a live session. To remove the lock, select any event or

transaction during a live session, which causes a view to scroll as the events are captured.

Large File Editor

If the file is larger than the size set in Preferences > Network Analyzer > Capture File Storage, Network Analyzer opens it

in the Large File editor. The Large File Editor allows you to find and select a region of interest, which you can then open

and analyze with the Stream Editor.

The Large File Editor consists of three component panes:

Large File Timeline: Shows a high-level view of a large file's traffic over time.

Large File Search pane: Provides a mechanism for searching across very large files.

Large File Network Nodes pane: Shows all of the network devices included in a large file.

Large File Timeline

Viewing Data in Editors

282/335

The Large File Timeline shows a high-level view of a large file's traffic over time. It works similarly to the Stream Editor's

timeline. In fact, the Large File and the Stream Editor timelines use the same widget.

Large File Timeline Segments: The entire set of events shown in the Large File Timeline is broken into segments. By

default, each segment includes up to 5,000 events. Segments boundaries are shown in the Large File Timeline by horizontal

grey lines.

Large File Timeline Time Markers: The Large File Timeline shows the actual time during which a file was captured. The

capture start-time appears in the bottom left corner of the Timeline. The capture end-time appears in the bottom right

corner.

Moving the cursor to any point on the timeline displays the time for that point.

Large File Intervals: A Large File Interval is a subset of an entire trace. You can create an interval by clicking and dragging.

Click on the Large File Timeline at the desired start-point, and then drag the cursor along the timeline to the desired end-

point.

The click and drag operation creates the interval you defined, and zooms the timeline view into that interval. To clear the

interval, click the Clear Selection button in the toolbar under the timeline, or right-click on the timeline and select Clear

interval.

Once you have created an interval, you can open that interval in the Stream Editor by clicking the Open Interval button, or

right-clicking in the timeline and selecting Open Interval.

Timeline Flags: Search results and errors are displayed in the Large File Timeline by flags. Search results are displayed as a

yellow flag. Errors are displayed as a red flag. When you move the mouse over the flag, the Timeline displays the Summary

of the Event or Transaction that is associated with the flag.

Large File Search

Use the Large File Search mechanism to search for events across very large files. The entire filter language is supported in

the Large File Search. For more information, see Filter Language.

To run a search in the Large File Editor, enter the filter expression into the Filter Expression text box and click the Start

Search control. The search progress is shown in the Large File Timeline. Options allow you to limit the search within a time

interval or to limit the number of search results. It is useful to limit the number of search results, as the system can become

slow if the search expression matches an extremely large number of events.

Filter results are shown in the Search Results table. Search results are grouped into results trees and labeled with the time

and date that the search was performed.

To view search result details, double-click an individual search result. This opens three segments in a Stream Editor: one

before the selected event, one that contains the event, and one after the event.

Note: The expressions and search results are saved into the Network Analyzer file. Thus they will be seen by other users

who open the same Network Analyzer file.

Controls to the right of the search results allow you to delete, tag, open, and assign decorative icons to the searches and

search results.

Large File Network Nodes

The Large File Network Node pane shows all of the network devices included in a large file. The information provided about

each node in a trace includes:

EUI64 address

Short address

PAN ID

Node type

S ince each of these values is subject to change over time, the summary also includes the time at which each value was

discovered.

Filtering Captured Data

283/335

Filtering Captured Data

Filtering Captured Data
By default, the Events pane displays all session events. You can build and apply filters that constrain Network Analyzer to

show only events that are of interest. By filtering events, you can analyze results more efficiently.

Each capture session has its own filter settings. A filter can be used either to search for the next matching event or to

display only the events that match the filter. In the latter mode, when you change a session's filters, Network Analyzer

immediately refreshes the display. When you exit Network Analyzer, all session filters are cleared and must be reapplied

when you restart. Network Analyzer provides two ways to edit filters:

Filter Manager: Maintains a set of saved filters that you can review and edit. You can also add new filters. You specify any of

the saved filters for display on the Filters menu, accessed through the n saved filters button on the filter bar, so that they

are available for use in one or more sessions.

Filter Bar: An editor that attaches to a given session, where you can enter one or more filter expressions on the fly. Network

Analyzer discards filter bar expressions for all sessions when it exits.

Quick filters are available when you right-click on events and transactions. They provide an easy way to create common

expressions for the filter bar.

Filter Language is a powerful syntax used to create filters.

Filter Manager

The Filter Manager lets you:

Use filter expressions to customize display of entries in the Events pane.

Specify which filters appear in the Filters menu.

The Filter Manager is available through menu and toolbar selections as well as through Window > Show View (as Expression

Manager).

Filtering Captured Data

284/335

An older feature, the Expression Builder, is deprecated.

Maintaining Filters

To add a filter to the Filters menu, check the Menu checkbox. This makes the filter available to the current sessions.

To restore filters to installation settings, click Reset.

To rename a filter, click on the name field and edit.

You can also create new, delete, export and import filters.

Setting Filter Color Schemes

You can associate a color scheme with each filter. If an event evaluates as true for a given filter expression, Network

Analyzer applies the filter's color scheme to that event. An event can be configured with a color scheme for two display

levels:

For the Map pane, the color used by the graphic representing the event type.

For the Events pane, the foreground and background colors used by event type instances.

Note: Setting a color scheme on a filter expression does not specify whether to display events; it only determines how to

display certain event types.

Note: If a filter's foreground color is the same as its background color you will not be able to read the text in the event and

it will effectively disappear from view.

To set a filter color scheme, in the Filter Manager:

 Next to the filter of interest, check the Color checkbox to enable the controls for Map (Map color), and Fg (Foreground

color) and Bg (background color) for event instances.

 Click the control you want to set to enable the color selector control.

Filtering Captured Data

285/335

 Click the color selector control, set the filter's color, and click OK. If you have changed Foreground or Background colors you

will see the change on the Name field.

 For each filter, set the color scheme's Priority level by assigning a positive or negative integer value. If an event evaluates

as true for multiple filters, Network Analyzer uses the color scheme with the highest precedence. In the case where there is

no clear precedence, Network Analyzer randomly chooses one of the matching color schemes.

 To refresh the Map pane and Events pane with the new color scheme, click Reapply.

A filter whose menu checkbox is selected is shown in the Filters menu. The order in which the filters are displayed in the

Filters menu is determined by their order in the filter manager table.

Filter Bar

A session's Filter Bar provides the same level of functionality as the Filter Manager for building expressions. Any filter

expression that appears in a session's Filter Bar is combined with the saved filter expressions that are already in effect for

that session.

The Filter bar is displayed by default, but can be toggled on and off using the Show Filter Bar menu control.

You can compose a Filter Bar expression in the following ways:

 Enter the expression directly in the filter edit field, and press Enter.

 Create a Quick filter.

To apply a Filter Bar filter, enter an expression into the filter edit field and press Enter.

To find an event that matches the filter, click the Find icons on the Filter Bar.

To remove a filter, select it and press Enter.

Note: A history of filter expressions is maintained in the drop-down list.

Quick Filters

Network Analyzer provides several filters that are available from the Transactions pane, Events pane, Event Detail pane,

and Hex Dump pane.

To access a quick filter, right-click an item and choose a quick filter pop-up menu option.

Hide or Show Events/Transactions

Access these filters by right-clicking an event (Events pane) or transaction (Transactions pane) and selecting a pop-up

menu option to hide or show specific information. The filter options that are available depend on the selected transaction or

event. You can specify to hide all events/transactions of the selected type, or to show only that type. In addition if you

select an event of type APITrace, the pop-up menu displays two filter options:

Hide type: APITrace

Show only type: APITrace

Further, if you select an event such as a neighbor exchange that has a source and/or destination address, the pop-up menu

also contains these two filter options:

Show only destination: short-ID

Show only source: short-ID

Filtering Captured Data

286/335

In all cases, Network Analyzer enters the corresponding filter expression in the session's Filter Bar. This can help you to

understand the filter language. For example, if you specify to show only route discovery transactions, this expression is set

in the filter bar: isType(Route)

Frame Byte Pattern Filtering

A frame pattern filter matches a specific byte-array pattern. For example, you could filter for packets in a payload whose

frame has the third byte equal to 0x33. (Many more complex combinations are possible.)

To create a frame pattern filter:

 Right-click a frame in the Event Detail pane or Hex Dump pane.

 Select Filter by frame pattern from the pop-up menu.

 In the Byte Pattern dialog, check the byte pattern match desired and click OK. The filter is added to the Filter Bar for this

session.

Filter Language

Filter language enables you to construct logical expressions, based on decoded fields in events. The following are some

examples:

fifteenFour.sequence == 0x52 : Matches events where 15.4 sequence number equals hex 0x52.

fifteenFour.ackRequired == true && fifteenFour.source == 0x035f : Matches events where 15.4 ack required flag is set, and source

shortId is 0x035f.

isPresent(zigbeeSecurity.frameCounter) : Matches events that contain the Zigbee security frame, and the frameCounter field

within it.

event.summary | "string" : Matches events where a string is a substring of the summary.

isType(Packet) : Matches events that are packets.

frameMatch(fifteenFour,"**88**EF/**********") : Matches events where 15.4 frame contains second byte equal to 0x88 and

fourth byte equal to 0xEF.

A good way to learn the filter language is by first using the Add to filter context menu option in the Event Detail Pane. This

option will add a filter expression for the chosen field.

You can use most standard logical operators (&&, ||) and standard comparison operators (==, !=, |, <, >, <=, >=, etc.) in

filter expressions.

Event and Transaction Filter Extensions

In addition to filtering on decoded packet fields, you can filter on several other Event and Transaction values.

Event Extensions:

event.summary: A String value of the summary shown in the Event Pane.

Example: event.summary == "APS Ack"

event.linkStatus: True if the packet is a Link Status packet.

Filtering Captured Data

287/335

Example: event.linkStatus == true

event.ack: True if the packet is an 802.15.4 ack.

Example: event.ack == true

event.time: The time that the event was transmitted (tx) or received (rx).

Example: event.time >= 75.78

event.originator: The adapter that saw and reported the event.

Example: event.originator == "ewb-unit04"

event.status: The event status, listed in the righthand column of the event status window

Example: event.status == "ZCL: ReportEventStatus"

event.type: The type of event, shown in the Type column of the Event and Transaction Panes.

Example: event.type == "Packet"

event.corrupt: The event corruption string, empty if event is not corrupt

Example: event.corrupt < "crypt"

Transaction Extensions:

transaction.summary: Filters on the transaction summary field shown in the Summary column of the Transaction Pane.

Example: transaction.summary == "ZCL: LoadControlEvent"

transaction.packetCount: Filters on the number of packets in the transaction shown in the P# column of the Transaction

Pane

Example: transaction.packetCount == 4

transaction.macRetries: Filters on the number of MAC retries in the transaction shown in the M# column in the Transaction

Pane.

Example: transaction.macRetries == 2

transaction.endToEndRetries: Filters on the number of end to end retries shown in the E# column in the Transaction Pane.

Example: transaction.endToEndRetries == 3

transaction.status: Filters on the status of the transaction shown in the Status column of the Transaction Pane.

Example: transaction.status == "CRC failed"

transaction.dest: Filters on the network destination of the transaction shown in the NWK Dest column of the Transaction

Pane.

Example: transaction.dest == 0x05c7

transaction.source: Filters on the network source of the transaction shown in the NWK Src column of the Transaction Pane.

Example: transaction.source == 0x0000

How Network Analyzer Applies a Filter

When Network Analyzer captures an over-the-air message, it runs the message through a processing stream. The

processing stream is made up primarily of Decoders and Groupers.

Decoders: Decoders are responsible for making sense of the message based on its format so that it may be displayed to

the user. Each over-the-air message captured becomes a single Event of type Packet. This Event is displayed to the user in

the Event view.

Groupers: The groupers are responsible for making sense of a series of packets and grouping them into a hierarchy under a

single Transaction. The Transaction is displayed in the Transaction view.

Using show(expression, SELF|PARENT|CHILD|SIBLING�

Events exist within a hierarchical structure where Transactions represent the top of the hierarchy and Events are at the

bottom. The hierarchical nature of trace data creates something of a problem for filtering. In most cases, you wish to see

Transactions associated with filter-matching Events, and vice versa.

For instance, if you use a filter like: "transaction.summary == Association", you probably do not want to see only the

transactions in the Transaction Pane. You probably also want to see the events contained within the Association displayed

in the Event Pane.

You can solve this problem by using the optional show(expr, args) syntax in your filters.

Filtering Captured Data

288/335

The show syntax allows you to explicitly indicate the conditions under which an event or transaction should match your

filter. The arguments for the show syntax are as follows:

SELF - The Event or Transaction matches if it contains data that matches the expression provided.

PARENT - A Transaction should be shown if any one of its child Events matches the filter.

CHILD - An Event should be shown if the Transaction to which it belongs matches the filter.

SIBLING - An Event matches if its PARENT transaction contains another Event which itself matches the filter.

Filter display defaults: Filter expressions that do not explicitly contain the optional show(expr, args) syntax are implemented

as though they contain one of two default syntaxes. Which default syntax is used depends on where the filter is executed,

in the Stream Editor or in the Large File Editor.

Stream Editor default: show(expression, SELF|PARENT|CHILD)

By default, filter expressions that do not explicitly contain the show(expr, args) syntax are implemented as though they were

wrapped in the following syntax: show(expression, SELF|PARENT|CHILD) The SELF|PARENT|CHILD arguments provide what

S ilicon Labs believes a user expects to see when a filter is run in the Stream Editor. The filter display includes the events

and transactions that match the filter itself. If an Event matches the filter, you also see an associated Transaction (PARENT)

regardless of whether that Transaction matches the filter. Likewise, if a Transaction matches the filter, you also see its

associated Events (CHILD) regardless of whether those Events match the filter.

Large File Editor default: show(expression, SELF)

By default, the search mechanism in the Large File Editor returns only those Events and Transactions which themselves

match the filter expression provided. This behavior makes it very easy to run a filter to search for all the Transactions with a

given summary without having the search results bogged down with hits for their associated Events.

Expression Validation

Lexical validation - When you enter a filter expression, the filter engine validates whether the expression is lexically correct.

If an expression is not lexically correct, Network Analyzer gives you an error message with a suggestion about where there

may be a problem in the expression.

Event Key validation - When you enter a lexically correct expression, Network Analyzer also runs an event key validation. It

checks that any identifier provided represents a real entity within an Event or Transaction. If the filter engine is not able to

find any associated data for an event key within the expression, Network Analyzer will warn you that you are using an

unverified identifier.

For example, in the expression

fifteenFour.dest == 0xffff

fifteenFour.dest is a verifiable event key in that Network Analyzer knows that it represents real data in an event.

Here are two examples to illustrate the validation of expressions in Network Analyzer. Consider this expression:

foo == bar

The filter mechanism has no way of knowing what foo and bar represent, or that they even represent any type of data

within an Event or Transaction. While this expression is lexically correct, Network Analyzer will warn the user that foo and

bar could not be verified, and that the expression may provide unexpected results. In fact, this expression will not show

anything, since foo may very well equal bar, but the filter engine has no way of knowing that.

Consider also this expression:

foo == foo

This expression also displays a warning. However, when run, it will return ALL events, because while Network Analyzer does

not know what foo is, it knows it definitely equals foo.

Special identifiers - Several special identifiers are not mapped to an event key.

Filtering Captured Data

289/335

payload.xxx, which evaluates into the payload bytes for a given layer xxx, for example payload.raw or payload.tcp_stream.

You can form expressions like payload.raw == {001122aabbcc} to match payloads

flag.xxx, which evaluates into the value of the event flag for a given event, for example: flag.neighbor_exchange or

flag.fragment .

Multinetwork Considerations

290/335

Multinetwork Considerations

Multinetwork Considerations
If your application uses nodes operating on multiple networks, this information can be reflected when reviewing capture

sessions. Currently, however, Network Analyzer cannot auto-detect multinetwork nodes. At the onset, unless all traditional,

conceptual nodes constituting the multinetwork node are assigned EUI64s, each conceptual node shows up as a separate

node in the Map editor pane. Each such node must be assigned the same EUI64 by right-clicking on the node in the Map

editor pane and selecting Assign EUI64… A dialog pops up that facilitates the assignment, and the Multinetwork EUI64

checkbox must be checked to inform Network Analyzer that the node is indeed a multinetwork node. This sequence is

illustrated in the following figure.

Once all the constituent conceptual nodes have been assigned the same EUI64, Network Analyzer coalesces them into

one node in the Map editor pane. Alternatively, if the all the conceptual nodes know the EUI64 or all have been coalesced

but Network Analyzer has not been informed that the node is multinetwork, the Multinetwork node menu item in the figure

above can be toggled. Once a node is known to Network Analyzer to be multinetwork, it is indicated as such by being

colored magenta in the Map editor pane.

Custom Decoders

291/335

Custom Decoders

Custom decoders
Network Analyzer provides functionality to create custom decoders. This section provides instructions on how to use Lua, a

language embedded inside Network Analyzer, to develop custom payload decoders for S implicity Studio.

Procedure

There are five main steps to leverage this functionality.

Step 1� Writing a decoder

All Lua decoders must implement the following six functions.

name(): Returns a string that will be used as the name of your decoder.

filterName(): Returns a string that will serve as the filterName that can be used to filter the packets decoded by this

decoder later on.

description(): Returns a string that will act as the description of the frame in Network Analyzer.

enabled(): Returns a boolean value that corresponds to whether the decoder should be active by default when first

loaded/when defaults are reapplied.

accept(event, packet): Decides which packets your decoder is interested in. It has two objects, of type Event and Packet.

The packet object can be used to figure out the raw bytes of the entire packet or just the bytes of the payload. The event

object can be used to identify and read information from prior frames via get() and contain() functions.

decode(event, fieldContext, formatter): Handles the actual decoding. It has two objects, of type Event and FieldContext.

The decode process functions by using the append()`` and decode()`` functions to create and register different fields of

interest. The formatter field is optional and is used for formatting the fields of your decoder.

More detailed decoder examples can be found under Example Decoders.

Step 2� Loading into Simplicity Studio

After the decoder is ready to be tested, load it into S implicity Studio.

 Open S implicity Studio

 Go to Window -> Preferences -> Network Analyzer -> Decoding

 Click Add, select the LUA file that corresponds to our decoder, and then click Open.

You should now see the decoder under the table of Decoders.

Step 3� Editing the Decoder

Once the decoder is loaded, you can now edit it in S implicity Studio. Click Edit under the decoding screen to open a text

editor where you can modify the file. Note that if you save your decoder while there are syntax errors, then you may need

to re-add your decoder.

Step 4� Testing the Decoder

Once the decoder is loaded into Studio, you can test it against specific packets by doing the following:

 From the Decoding page, click decoder in the table of custom decoders.

 Click Test.

 Set the desired options (for example, Input Format or Payload vs. Full Over The Air)

 Enter the raw payload or over-the-air packet bytes in the input textbox.

NOTE: The OUT box does not work and will be fixed in a future release.

Custom Decoders

292/335

You see how this works by looking at the example decoders and trying the example packets that are listed. You can also

have additional inline debug information printed to screen with print() statements within the decoder.

Step 5� Use with Network Captures

If the decoder is enabled (as indicated by the checkbox next to its entry in the Preference -> Decoding page), then you

can decode messages using this decoder in Network Analyzer.

Note: To have logging during longer network captures, go to Preference -> Decoding and check Enable Debug Logging.

This will write to file any calls to the following function:

log("message")

See Example decoders to see how this is done.

Field Formatters

You can enhance the decoded information by implementing custom field formatters. Currently, Network Analyzer supports

user-written functions that take in an integer and outputs a string that can be used as a description. Note that these

formatters can sometimes get in null information, so these functions should be able to deal with null.

Example of a formatter:

function decoder.versionName(version)

 local versions = {

 �0� = "Version 1",

 �1� = "Version 2",

 �2� = "Version 3",

 �3� = "Version 4",

 }

 return versions[version] or "Unknown version"

end

In order to use this functionality, include the following line at the top of your custom decoder:

decoder.fieldFormatters = { "versionName" }

Each of the strings within this array should correspond to the names of the function that you are using as a formatter.

To use these formatters in your decoder, add a third argument to the decode functions that corresponds to a map of

formatters that are indexed by the strings given in fieldFormatter.

For example, in function decode(event, fieldcontext, formatter), formatter is a map, indexed by function name, that

corresponds to the formatter.

Once this is done, you can use a formatter by adding a third argument to many of fieldContext's append and decode

functions.

fc.append("versionName", 1, formatter["versionName"]);

See Example decoders to see how this is done.

The list of currently supported append/decode functions that allow for a field formatter is provided in the next sections.

Event Object API

void setStderr(final String err) - Sets the stderr of the decoder.

Parameters: err —

Custom Decoders

293/335

void setStdout(final String out) - Sets the stdout of the decoder.

Parameters: out —

Object get(final String eventKey, final String subkey) - Wrapper function to access the value associated in the decorated map.

Mainly for use with custom user payload decoders.

Parameters:

EventKey — A string that must corresponds to the name of a specific frame. See EventKey Documentation.

Subkey — A string that corresponds to field names. See FieldContext API to see how to generate these fields.

Returns: Object Null if it does not exist.

int getInt(final String eventKey, final String subkey) - Wrapper function to access the value associated in the decorated map.

Mainly for use with custom user payload decoders.

Parameters:

EventKey — A string that must corresponds to the name of a specific frame. See EventKey Documentation.

Subkey — A string that corresponds to field names. See FieldContext API to see how to generate these fields.

Returns: int Null if it does not exist.

boolean getBoolean(final String eventKey, final String subkey) - Wrapper function to access the value associated in the

decorated map. Mainly for use w/ custom user payload decoders.

Parameters:

EventKey — A string that must corresponds to the name of a specific frame. See EventKey Documentation.

Subkey — A string that corresponds to field names. See FieldContext API to see how to generate these fields.

Returns: boolean Null if it does not exist.

boolean containsSubkey(final String eventKey, final String subkey - Wrapper function so that users can figure out if a

frame/subkey combination is known by the decorated map.

Parameters:

EventKey — A string that must corresponds to the name of a specific frame. See EventKey Documentation.

Subkey — A string that corresponds to field names. See FieldContext API to see how to generate these fields.

Returns: boolean True if the subkey's corresponding field is found under the frame given by EventKey

boolean containsKey(final String eventKey) - Wrapper function so that users can figure out if an frame/eventKey is known by

the the event.

Parameters: Subkey — A string that corresponds to field names. See FieldContext API to see how to generate these fields.

Returns: boolean True if the event encountered or recognizes the event key in question, false otherwise.

Packet Object API

byte[] currentLayerBytes() - Returns raw byte array. Decryptors need this.

int currentOffset() - Returns the current offset where the decoders need to pick up.

void setSummary(final String summary) - Sets the summary string.

Parameters: summary —

String summary() - Returns the packet summary string.

void setCorrupt ion(final String message) - Backwards compatibility. JC interface needs this.

Parameters: message —

void skip(final int skipBytes) - Skips bytes. Remove after packet decoders are cleaned up.

void setEndOffset(final int end)

Parameters: end —

Custom Decoders

294/335

void setOffset(final int offset)

Parameters: offset —

int micCount() - Returns number of all mics

int endOffset() - Returns the end of "over the air" packet.

Returns: end of over the air packet

int flagBits()

void setFlagBits(final int bits)

Parameters: bits —

boolean isFragment() - Returns true if this packet is a fragment.

Parameters: `` —

Returns: boolean

FieldContext Object API

void append(String name, int length) - Appends the number of bytes as a field. This method is more efficient than decode,

so if you do not need the value of the field, use this.

Example Input and Output:

0x01234567 -> 0x01234567

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

void appendBytes(String name, int length) - Appends the number of bytes as given by length as a byte field. This method is

more efficient than decode, so if you do not needs the value of the field, use this.

Example Input and Output:

0x01234567 -> 01 23 45 67

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

vo id appendEui64(String name) - Appends the next 8 bytes as the EUID of the sender. This method is more efficient than

decode, so if you do not needs the value of the field, use this. The format will be Little Endian here.

Example Input and Output:

0x89ABCDEF01234567 -> 67452301EFCAB89

Parameters: name — The name of the field that is to be registered.

void appendFloat(String name, int length) - Appends the field as a float. This method is more efficient than decode, so if you

do not needs the value of the field, use this.

Example Input and Output:

0x00000001x -> 1.4 E-45

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

Custom Decoders

295/335

void appendFloatLE(String name, int length) - Appends the field as a float in little endian order. This method is more efficient

than decode, so if you do not needs the value of the field, use this.

Example Input and Output:

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

0x01000001x -> 1.4 E-45

void appendRemainingBytesLE(String name) - Appends the remaining bytes in the packet in little endian order. This method is

more efficient than decode, so if you do not needs the value of the field, use this.

Parameters: name — The name that will be used to refer to the field containing the remaining bytes

int decode(String name, int length) - Decodes the field as an int and returns value.

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

Returns: int The value that was decoded from the payload and copied into the field called name.

int decodeLE(String name, int length) - Decodes the field as an int in little endian format and returns value.

Parameters:

name — The name of the field that is to be registered.

length — An integer number of bytes to read from the payload and save as name.

Returns: int The value that was decoded from the payload and copied into the field called name.

String decodeString(String name, int length) - Decodes length bytes as a string.

Example Output:

0x68656c6c6f20776f726c64 -> 'hello world'

Parameters:

name — The name of the field the string will be registered as.

length — The number of bytes to be decoded as a string.

void appendStringWithLength(String name) - Appends a string that first contains a length byte and then the remainder as

bytes.

Returns: String

boolean decodeBit(String name) - Decodes and returns the value of the next bit in the payload.

Parameters: name — The name of the field that is to be registered.

Returns: boolean The value of the decoded bit.

int decodeBits(String name, int numOfBits) - Decodes bits as field name. Identical to bits(name.name(), numOfBits);

Parameters:

name — The name of the field that is to be registered.

numOfBits — The number of bits that are to be decoded jointly.

Returns: int The value of the decoded bits as an integer.

void bit(String name) - This method heavily depends on the last field being decoded. So it's meaningful to be used kinda

only in context of last field. You would do this: fc.decode(flags); fc.bit(flag1); fc.bit(flag2); fc.bit(flag3);

As each field take length from flags and does internal bitshifting to calculate masks of flag1 flag2.

Parameters: name — The name of the field that the bit is to be decoded as.

Custom Decoders

296/335

void bits(String name, int numOfBits) - Appends numOfBits within a bitfield, labeling then name.

Parameters:

name — The name of the field that the bit is to be decoded as.

numOfBits — The number of bits that are to be decoded as a group.

void namelessBitField(int nBytes) - Declares the start of the nameless bit field.

Parameters: nBytes — The number of bytes to be treated as a nameless field.

void namelessBitFieldLE(int nBytes) - Declares the start of a nameless bit field.

Parameters: nBytes — The number of bytes to be treated as a nameless field.

void skipBits(int numOfBits) - Skips given number of bits in decoding.

Parameters: numOfBits — The number of bits to be skipped.

void skipBytes(int n) - Skips n bytes without decoding them.

void appendString(String name, int length) - Appends length bytes as a string. This method is more efficient than decode, so

if you do not needs the value of the field, use this.

Example Output:

0x68656c6c6f20776f726c64 -> 'hello world'

Parameters:

name — The name of the field the string will be registered as.

length — The number of bytes to be decoded as a string.

void appendSummary(String append) - Appends a message to describe the packet in network analyzer. This can be useful

for describing what kind of payload the packet is.

Parameters: append — A string that will be appended to the packet's summary.

void setSummary(String summary) - Sets the summary for what kind of event the payload could be. This will be what is read

under the the network analyzer.

Parameters: summary — The summary that will be read under network analyzer.

void setPrefix(String prefix) - Sets a prefix for the payload.

A prefix will be prepended to the fields that are decoded by this decoder.

Parameters: prefix — A string that will be prepended to the names of fields for this decoder.

void applyPrefixToSummary() - Sets the summary to be the prefix associated with the protocol. See fc.setPrefix()

String codeNameSuffix() - Returns the codeNameSuffix, the suffix that is appeneded to each field.

Returns: String The codeNameSuffix currently set for the decoder.

** int currentOffset()** - Returns the current offset for next element to be decoded in the payload.

Returns: int The current offset within the packet.

boolean hasRemainingBytes() - Returns true if there are remaining bytes left in the payload that have not been updated.

Returns: boolean True if there are remaining bytes left.

int remainingBytes() - Returns the number of bytes left before the end of the payload

Returns: int The remaining bytes that have been not been processed within the payload.

Custom Decoders

297/335

void setAppendLengthsToFieldCodes(boolean flag) - Toggles the mode where the lengths of the fields are appended to the

names.

If you are decoding field "x" with length, 2, then the actual name of the field will be "x_2" if the length appending mode is

true, and only "x" if its false.

Parameters: flag — Setting this true will append lengths to the end of fields as stated above.

void setCodeNameSuffix(String codeNameSuffix) - Sets the codeNameSuffix

Parameters: codeNameSuffix — A string that will be appended to the ends of field names.

EventKey / Subkey Fields

To see the full list of EventKeys that are currently available, go to Window -> Preferences -> Network Analyzer ->

Decoding -> Frames and Fields.

This window displays the valid frames and associated fields for your selected stack and profile. Note that the string you

should use as the EventKey is the text that is located within brackets (e.g., if there is line "IEEE 802.15.4 [fifteenFour]", then

you should refer to that frame using "fifteenFour").

If you expand the tree under each frame, then you will be able to see all the valid fields, and the text string that can be

used as a subkey to search for them.

Example Decoders

Custom Decoder Skeleton

Custom Decoders

298/335

-- Custom Decoder Skeleton (custom-decoder-skeleton.lua)

-- Users should use this as a framework to build their decoders.

-- Create a table to hold all the functions

local decoder = {}

-- This will let you set what the name of the frame should be when viewed in the network analyzer.

decoder.name = "Custom Decoder Skeleton"

-- This will determine what the decoder can be filtered by in the network analyzer when viewing all packets.

decoder.filterName = "SampleDecoder"

-- This is a function that is describing what the frame should have as its description

-- when you are viewing specific information in the network analyzer.

decoder.description = "This is an example of how you can describe a frame"

-- This function will let you set whether the decode should be enabled by default when

-- loading it for the first time or when resetting the settings to default.

decoder.enabled = true

-- This function will do the actual decoding of the payload.

-- You should primarily use the functions as defined for the FieldContext object fc to do this.

-- The functions for event can be used to process information from earlier frames.

function decoder.decode(event, fieldContext)

 -- Your decoding logic here

end

-- This function determines if an event is relevant to this decoder.

-- Note that this should be specific to the payload; if it is too generic,

-- then event payloads belonging to other decoders may be mistakenly read and decoded by this decoder.

function decoder.accept(event, packet)

 return false

end

return decoder

Field Formatter Example

Custom Decoders

299/335

-- Example Decoder for using a field formatter (field-formatter-example.lua)

-- Create a table to hold all the functions

local decoder = {}

decoder.name = "Field Formatter Example"

decoder.filterName = "fieldFormatterExample"

decoder.description = "This is an example of how you can log debug information and test your decoder"

decoder.enabled = true

-- The list of field formatters

local fieldFormatters = { "decimal", "enuming", "bitFields", "bitDescription" }

-- This function will do the actual decoding of the payload.

-- Note that the function call when using custom decoding requires

-- the addition of the third parameter formatter.

function decoder.decode(event, fc, formatter)

 fc:setAppendLengthsToFieldCodes(true)

 fc:append("append", 4, formatter["decimal"])

 fc:decodeLE�"appendLe", 4, formatter["enuming"])

 fc:namelessBitField(4)

 fc:bits("decodeBits", 3, formatter["bitFields"])

 fc:bit("decodedBit", formatter["bitDescription"])

end

-- This function determines if an event is relevant to this decoder.

function decoder.accept(event, packet)

 return true

end

-- These are three examples of field formatters.

-- Note that these functions MUST be able to handle null values.

function decimal(value)

 return tostring(value)

end

function enuming(value)

 if value == 0 then

 return "ZERO"

 elseif value == 1 then

 return "ONE"

 elseif value == 2 then

 return "TWO"

 else

 return "NOT ONE OR ZERO"

 end

end

function bitFields(value)

 if value == tonumber("0001", 2� then

 return "1"

 elseif value == tonumber("0010", 2� then

 return "2"

 elseif value == tonumber("0100", 2� then

 return "3"

 else

 return "invalid"

 end

end

function bitDescription(value)

 return (value and "1" or "0")

end

return decoder

Custom Decoders

300/335

Payload Decoder Logging Example

-- Sample Logging Examples for testing and debugging (payload-decoder-logging-example.lua)

-- Users should see this for how they may be able to do some initial logging.

-- Create a table to hold all the functions

local decoder = {}

decoder.name = "Payload Decoder Logging Example"

decoder.filterName = "debugExampleDecoder"

decoder.description = "This is an example of how you can log debug information and test your decoder"

decoder.enabled = true

function decoder.decode(event, fieldContext)

 -- This will show up under the test console, but not the log file.

 print("Hello world!")

 -- This will show up under the log file, but not the test console.

 local a = fieldContext:decode("var1", 2�

 log(a)

end

function decoder.accept(event, packet)

 return false

end

return decoder

Sensor Sink Example

Custom Decoders

301/335

-- Example Packet w/ Length byte for Full Over the Air (sensor-sink.lua)

--

384188E8FF01FFFF00000803111100000AD5C12D0610000084E10A00006F0D0000080101000FC0010184E10A00006F0D000000FB8

-- Create a table to hold all the functions

local decoder = {}

decoder.name = "Sensor Sink Example"

decoder.filterName = "sensor"

decoder.description = "Lorem Ipsum"

decoder.enabled = true

function decoder.decode(event, fc)

 fc:appendEui64�"SenderEuid64")

 local clusterId

 if event:containsSubkey("zigbeeApplicationSupport", "clusterId") == true then

 clusterId = event:getInt("zigbeeApplicationSupport", "clusterId")

 else

 clusterId = event:getInt("zigbeeApplicationSupport", "clusterIdV2")

 end

 if clusterId == 0�01 then

 fc:setSummary("Sink Advertise")

 fc:append("senderShortId", 2�

 elseif clusterId == 0�02 then

 fc:setSummary("Sensor Select Sink")

 elseif clusterId == 0�03 then

 fc:setSummary("Sink Ready")

 elseif clusterId == 0�04 then

 fc:setSummary("Sink Query")

 elseif clusterId == 0�0A then

 fc:setSummary("Sensor Data")

 fc:appendBytes("SensorData", 40�

 elseif clusterId == 0�64 then

 fc:setSummary("Sensor Hello")

 fc:appendString("hello", 5�

 end

end

function decoder.accept(event, packet)

 local accept = false

 local clusterId

 if event:containsSubkey("zigbeeApplicationSupport", "clusterId") == true then

 clusterId = event:getInt("zigbeeApplicationSupport", "clusterId")

 else

 clusterId = event:getInt("zigbeeApplicationSupport", "clusterIdV2")

 end

 local profileId = event:getInt("zigbeeApplicationSupport", "profileId")

 if (clusterId == 0�01 or clusterId == 0�02 or clusterId == 0�03 or clusterId == 0�04 or clusterId == 0�0A or clusterId == 68� and

(profileId == 0xC00F� then

 accept = true

 end

 return accept

end

return decoder

Payload Decoding Example

Custom Decoders

302/335

-- Example Packet w/ no length byte and payload only (payload-decoding-example.lua)

-- 01234567 89abcdef 01234567 89abcdef01234567 00000001 01000000 68656c6c6f20776f726c64 abcd abcd ffcdabcd 0f

00000000ff

-- Similar Example that is corrupted instead:

-- 01234567 89abcdef 01234567 89abcdef01234567 00000001 01000000 68656c6c6f20776f726c64 abcd abcd ffcdabcd ff

00000000ff

-- Create a table to hold all the functions

local decoder = {}

decoder.name = "Payload Decoding Example"

decoder.filterName = "exd"

decoder.description = "Lorem Ipsum"

decoder.enabled = true

function decoder.decode(event, fc)

 fc:setAppendLengthsToFieldCodes(true)

 fc:append("append", 4�

 fc:appendLE�"appendLe", 4�

 fc:appendBytes("appendBytes", 4�

 fc:appendEui64�"Eui64")

 fc:appendFloat("appendFloat", 4�

 fc:appendFloatLE�"AppendFloatLe", 4�

 fc:appendString("AppendString", 11�

 fc:decode("decode", 2�

 fc:setPrefix("Prefix")

 fc:decodeLE�"decodeLe", 2�

 fc:decodeBytes("decodeBytes", 4�

 fc:namelessBitField(1)

 fc:bit("bitTest0")

 fc:setSummary("Hello! ")

 if fc:decodeBit("Error") == true then

 fc:bits("Error Code", 3�

 fc:setCorruption("Error was set!")

 fc:setSummary("Failed!")

 else

 fc:decodeBits("Data", 3�

 fc:appendSummary("Success")

 end

 fc:setCodeNameSuffix("suffix")

 fc:skipBytes(4)

 fc:appendRemainingBytesLE�"appendRemainingBytesLe")

end

function decoder.accept(event, packet)

 return true

end

return decoder

Network Analyzer Preferences

303/335

Network Analyzer Preferences

Network Analyzer Preferences
To access Network Analyzer preferences, select Window > Preferences > Network Analyzer. The preferences you set

apply to all capture sessions. Network Analyzer saves your preferences and uses them each time Network Analyzer

restarts. Preference categories include:

Capture Configuration

Capture File Storage

Connectivity Display

Decoding

Energy Profiler Integration

Node Icons

Optional Dialogs

Stream Visualization (deprecated function)

Timeline

Wireshark

Capture Configuration Preferences

Network Analyzer Preferences

304/335

These preferences offer general, time management, and user interface configuration options. Changes take effect in the

next new capture session. Some options are:

Sorting and duplicate match window: Specifies in microseconds a time span in which duplicate packets can be detected. If

identical packets arrive within the specified time span, Network Analyzer detects the duplication and allows only one to

display.

Perform drift correction in network Analyzer: Allows drift for autocorrection.

Drift Threshold: Specifies the amount of time-drift that Network Analyzer will tolerate between the absolute PC clock and

the adapter clocks before it resets its "time-correction" factor. In most situations you should not change this value. In a

typical situation, adapter clocks are more precise than PC clocks, but they do not provide absolute time, just relative time

against an arbitrary reference.

Capture File Storage Preferences

Network Analyzer Preferences

305/335

These preferences determine, among other things, what is considered a large file, which in turn determines the default

editor used. Changes take effect in the next new capture session. Some of the options are:

Monitor the timestamp and optionally reload: Monitors whether the file has changed on the disk, and prompts to reload if so.

Monitor files for appending after opening: Enables Network Analyzer to detect new packet data appended by an external

program to an open session file, and read it in for display.

Preserve open files across sessions: Instructs Network Analyzer to automatically reopen files from previous session

Enable large file handling: Enables Network Analyzer to handle large files in the Large File Editor. Files are considered large if

they contain more events than the number entered in "Number of events for a file to be large."

Connectivity Display Preferences

Network Analyzer Preferences

306/335

These preferences customize how device connectivity is displayed.

Decoding Preferences

Network Analyzer Preferences

307/335

The Decoding preferences group affect how decoding is handled. Changes take effect in the next new capture session. On

the Decoding dialog, some options are:

Selected stack: The stack selected for decoding newly captured data. Links allow you to make changes in other preference

interfaces. This setting has no effect on a previously captured trace. The decoding stack for a trace file is stored in the file

itself.

Security level: The security level set for the MAC and network layers. Valid values include 1 through 5.

Security Keys

Network Analyzer Preferences

308/335

Specifies the security decryption keys. To enable a key, select the Decryption key checkbox. To edit a key, select its name

or key values. All enabled decryption keys are run against each incoming packet until one is successful. Successful keys are

automatically moved to the top of the key list to improve performance. Decryption keys can also be obtained from network

traffic for future use.

Buttons on the right of the dialog provide the following features:

New: Creates a new key for editing.

Import: Opens a dialog from which you can import a key file.

Clone: Creates a copy of the currently selected key.

Delete: Removes the currently selected key.

Invert swaps the order of the key values.

Clear All: Removes all security keys.

Run HMAC: Opens a dialog that allows you to manually calculate the HMAC authenticated key from trust key and IEEE EUI64

address.

ASCII edit...: Converts a human-readable ASCII string into a binary security key.

The checkboxes at the bottom of the keys list provide the following options:

Save decryption keys in ISD files (unchecked by default): Saves the security keys that you have specified into the capture

file along with your traffic. Note: If you are sharing the Network Analyzer file with users who have a right to know your key,

this may make the opening of the file easier for them, as they will not have to separately enter the key. However, by doing

this, you create a security risk. Never enable this option, if your keys must remain secure and known to you only.

Network Analyzer Preferences

309/335

Disable keys when not used for n days (checked by default): You can configure the number of days unused keys should be

kept.

Stack Versions

A list of profiles representing Gecko SDK Suite stack versions. Check the stack that is deployed on the network you are

using. If you are working with Dynamic Multiprotocol projects, select 'Auto-detecting decoder stack'.

Transaction Groupers

Network Analyzer Preferences

310/335

A table of all the groupers loaded into Network Analyzer. Transaction groupers are responsible for making transactional

sense out of a trace of network data. Groupers watch for batches of events and record them as a transaction.

Energy Profiler Integration Preferences

Network Analyzer Preferences

311/335

See Energy Profiler and Network Analyzer in the Energy Profiler section for more information about using the two tools

together and the effect of these preferences.

Node Icon Preferences

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-tools-energy-profiler/energy-profiler-and-network-analyzer

Network Analyzer Preferences

312/335

Network Analyzer provides several predefined icons. The Node Icons dialog displays all icons that are available for

customizing display of nodes in the map pane. You can also add icons of your own.

Optional Dialog Preferences

Network Analyzer Preferences

313/335

Some dialogs can be turned off if you prefer not to interact with them.

Timeline Preferences

Network Analyzer Preferences

314/335

Among other options, you can choose the colors and fonts for features of the Timeline.

Wireshark Preferences

If you are using the Wireshark open source packet analyzer, these options configure the integration.

Network Analyzer Preferences

315/335

Bluetooth Direction Finding Tools

316/335

Bluetooth Direction Finding Tools

Bluetooth Direction Finding Tool Suite
A Real Time Locating System (RTLS) consists of many locators that pick up the signals of asset tags to locate them in 3D

space. To calculate the positions of the asset tags, you must know each locator’s position, orientation, and configuration

(such as antenna array type, switching pattern, and so on). The S ilicon Labs’ Real Time Locating (RTL) library also needs

configuration parameters, such as estimation mode, azimuth, elevation constraints, and so on, to provide the best

estimation for a given environment. The Bluetooth Direction Finding Tool Suite is meant to ease development with the

S ilicon Labs’ RTL library. It provides tools to configure the system, and also helps development with analyzer tools that

calculate many output parameters from the observed IQ samples.

Note: The tools were created for demonstration purposes, and not to be used in production. For development purposes,

start with the sample application described in AN1296: Application Development with S ilicon Labs RTL Library.

The implementation described in AN1296 requires you to configure and build both individual locators and a locator host

application in order to test the system. While the SDK examples provide the openness to customize and add new features

to your direction find-ing project using RTL library APIs directly, the manual configuration of the locators and their topologies

may not be a trivial task. It is simpler to configure a single locator and multi-locator setup through interactive graphical

interfaces available through the Direction Finding Tools Suite. The Suite is composed of:

AoA Analyzer

Positioning Tool

Both are available through the S implicity Studio Tools menu.

AoA Analyzer

AoA Analyzer can:

Create a locator configuration file without the need to manually edit the .json file, to ease the configurations process.

Apply the configuration for a single locator board and run the RTL library to estimate angles from the incoming data (without

the need to build and run any host sample application).

Positioning Tool

While it is easy to configure a single locator and get angle information of asset tags, configuring and running a multi-locator

setup to get position information can be rather complicated. To calculate position, the RTL needs to know the coordinates

and orientation of the locator so that it can translate the angle feeds from each one of them with respect to the

coordinate system of a given topology. S implicity Studio provides the Positioning tool, which makes the configuration and

testing of a multi-locator setup easy and quick.

Positioning Tool can:

Create a multi-locator topology without the need to manually edit the configuration .json file.

Add locators to the topology and configure their positioning RTL parameters (such coordinates and orientation) easily.

Apply the configuration and locate asset tags in 3D.

Import/Export a topology from/to a configuration .json file.

For details about the tools and references to other direction-finding documentation, see UG514: Using the Bluetooth®

Direction Finding Tool Suite

https://www.silabs.com/documents/public/application-notes/an1296-application-development-with-rtl-library.pdf
https://www.silabs.com/documents/public/user-guides/ug514-using-bluetooth-direction-finding-tool-suite.pdf

T ips and Tricks

317/335

Tips and Tricks

Tips and Tricks
Many of these tips rely on changes in Preferences. This can be accessed through the Window > Preferences selection, or

the Preferences button on the toolbar.

Useful Windows 10 paths

Default S implicity Studio Install Path: C:\S iliconLabs\S implicityStudio

Downloaded location for kit resources:

C:\S iliconLabs\S implicityStudio\v5\offline\aem\www.silabs.com\documents\public\schematic-files

Command line or direct GUI access to S implicity Commander:

C:\S iliconLabs\S implicityStudio\v5\developer\adapter_packs\commander

Protocol SDK locations for all GSDK SDKs:

GSDK 4.x: C:\Users\<NAME>\S implicityStudio\SDKs\gecko_sdk\protocol\<protocol>

GSDK 3.x: C:\S iliconLabs\S implicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK version>\<protocol>

Beginning with GSDK 4.0, content such as documentation or demos that was previously installed with the SDK is now

downloaded after being accessed through S implicity Studio:

C:\S iliconLabs\S implicityStudio\v5\offline\com.silabs.sdk.stack.super_<version>

Useful Mac OS paths

Default S implicity Studio Install Path: /Applications/S implicityStudio.app/Contents/Eclipse (recommend changing to one word

S implicityStudio.app)

Downloaded location for kit resources:

/Applications/S implicityStudio.app/Contents/Eclipse/offline/aem/www.silabs.com/documents/public/schematic-files

Command line or direct GUI access to S implicity Commander:

/Applications/S implicityStudio.app/Contents/Eclipse/developer/adapter_packs/commander

Protocol SDK locations for all GSDK SDKs:

GSDK 4.x: /Users/<NAME>/S implicityStudio/SDKs/gecko_sdk/protocol/<protocol>

GSDK 3.x: /Applications/S implicityStudio.app/Contents/Eclipse/developer/sdks/gecko_sdk_suite/<GSDK version>/protocol

Beginning with GSDK 4.0, content such as documentation or demos that was previously installed with the SDK is now

downloaded after being accessed through S implicity Studio:

/Applications/S implicityStudio.app/Contents/Eclipse/offline/com.silabs.sdk.stack.super_<version>

Default Project Locations

Default project locations in your Windows 10 workspace C:\Users<user>\S implicityStudio Ex:

C:\Users\daseymou\S implicityStudio

Default project locations in your Mac workspace /Users/<user>/S implicityStudio Ex: /Users/mahallam/S implicityStudio

Get All Parts of an Update

http://www.silabs.com/documents/public/schematic-files
http://www.silabs.com/documents/public/schematic-files

T ips and Tricks

318/335

When you update S implicity Studio, whether in response to an update notification or in the Installation Manager, S implicity

Studio installs all Product Updates. However, other updates may also be available, for example for the GSDK or compiler

support. The best practice after S implicity Studio installs an update is to open the Installation Manager and select Install by

Technology Type. Check the boxes for each technology type being used and click Next. Click Advanced and then Next.

The next dialog shows you if there are any required or recommended packages to be installed. If yes, install them,

otherwise click Cancel to leave the Installation Manager. For example, in an update from S implicity Studio version 5.1 to

5.3.2, the following recommended updates, including GCC toolchain and the GSDK, were available.

How to Update the Internal Simplicity Studio Copy of Simplicity Commander

S implicity Commander, included with S implicity Studio, is regularly updated with other S implicity Studio updates. In general, to

get the latest S implicity Commander update, update S implicity Studio. However, sometimes the release of a new S implicity

Commander to the S ilicon Labs website (https://www.silabs.com/mcu/programming-options) lags behind the release of a

new S implicity Studio™ version. If the new version of S implicity Commander includes a feature that is required for

development then it is possible to replace the S implicity Studio version with the following procedure.

First exit all running instances of S implicity Studio and then download the appropriate version of S implicity Commander from

the above website.

The procedure for updating S implicity Commander on the MacOS is slightly different and is described after the Windows and

Linux instructions.

Windows and Linux (verified on Windows 10 and Ubuntu 18.04 LTS�

Two S implicity Commander files in the current installation must be backed up as they have to be added back after the

update. The default paths for the S implicity Studio version of S implicity Commander are:

Windows: C:\SiliconLabs\SimplicityStudio\v4\developer\adapter_packs\commander

Linux: ~/SimplicityStudio_v4/developer/adapter_packs/commander

Back up the following two files:

https://www.silabs.com/mcu/programming-options

T ips and Tricks

319/335

 apack.info

 commander40x40.png

When the downloaded version of S implicity Commander is expanded on Windows it is placed in a [S implicity Commander]

folder and on Linux in a [S implicityCommander-Linux] folder. The Linux version will contain an additional tarball that needs to

be expanded into a [commander] folder. The contents of that folder ([S implicity Commander] on Windows or [commander]

on Linux) should be used to replace the internal S implicity Studio™ commander located at the above paths. Then copy in

the two files that were backed up (apack.info and commander40x40.png) replacing the apack.info file.

MacOS Instructions (verified on MacOS Catalina version 10.15.4�

After the S implicityCommander-Mac.zip is expanded it will be placed in a folder with a release note text file, a README.txt

and the Commander .dmg file. When the .dmg file is opened it mounts the Commander application as a volume. The

Commander.app can then be executed from that volume, dragged into the Applications folder or, in this case, used to

replace the internal S implicity Studio installation. Drag Commander.app into the folder containing the existing

Commander.app:

/Applications/Simplicity\ Studio.app/Contents/Eclipse/developer/adapter_packs/commander

A popup will be displayed saying an item named "Commander.app" already exists with various options:

Click Replace. Note: If Commander.app is dragged from the Applications folder it will move it out of Applications and not

create a copy.

Conclusion

To verify the new version is being used, start S implicity Studio and launch S implicity Commander (from the Launcher

perspective Tools icon (green wrench)) and select [Help] > [About S implicity Commander] and the version will match the

name of the .zip (Windows), .tgz (Linux) or .dmg (MacOS) file. Commander is also used behind the scenes for several

operations including flashing images and various security commands.

Note there has been at least one report on a Mac that it had to be rebooted for this to work correctly. That should not

normally be necessary, but it might if S implicity Commander or S implicity Studio did not shut down cleanly for some reason

so it is worth trying.

Optionally Disable Automatic Updates

By default, SSv5 checks for updates when you first open it. You can manage update frequency through Preferences >

Install/Update > Automatic Updates.

http://apack.info/

T ips and Tricks

320/335

Either uncheck Automatically find new updates and notify me or change the Update Schedule selection to use a schedule

such as once a week.

If you have turned automatic updates off, you can check for updates by clicking Install on the toolbar, then Manage

Installed Packages, and then Check for Updates on the Product Updates tab.

See About Update Frequency for details on the selections available.

Performance Enhancements

To improve SSv5 performance, try one or more of the following suggestions.

Disable SDKs not being used

If you have installed many different versions of different SDKs and GSDKs over time, go to Preferences, type SDK in the

filter field, and uncheck the ones not currently being used.

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-launcher/toolbar#about-update-frequency

T ips and Tricks

321/335

Disable unused targets or toolchains

If you have installed multiple toolchains but are not using all of them, or are not using all of the targets, disable the unused

ones. Go to Preferences and type too lchain or target in the filter field, and uncheck any unused items.

Use different workspaces for different GSDK versions or compilers

T ips and Tricks

322/335

Overloading a workspace with projects and different versions of SDKs can slow down SSv5 operations. Keep separate

workspaces for specific project and/or SDK versions and/or toolchains. Note that this is necessary if you are using different

versions of the IAR compiler to match different versions of the GSDK.

While you can use File > Switch Workspaces to change workspaces as described in Project Explorer View, if you will be

working with different workspaces, you may wish to have SSv5 prompt you on startup about which workspace to use. Go

to Preferences > General > Startup and Shutdown > Workspaces and check Prompt for workspace on startup.

Then on startup you can select a workspace or create a new workspace by clicking Browse and adding a directory.

Increase heap size

Close SSv5. Use a text editor to open following file within the S implicity Studio root path, for example:

C:\SiliconLabs\SimplicityStudio\v5\studio.ini

In the following figure, the line Xmx5g was added to increase the maximum Java heap SSv5 will use to 5 GBytes. Choose

larger or smaller depending on your system resources. Without that line SSv5 defaults to a maximum of one quarter of the

https://docs.silabs.com/simplicity-studio-5-users-guide/5.8.0/ss-5-users-guide-about-the-simplicity-ide/user-interface-review#project-explorer-view

T ips and Tricks

323/335

system RAM. On a system with 8 GBytes of RAM that would be 2 GBytes and SSv5 might run out of Java Heap space on

memory-intensive operations.

SDK installation or updates are not working

The cause might be your IT department using proxy servers, and potentially also man-in-the-middle security monitoring. See

the following knowledge base articles for more information on how to work around these situations:

Configuring S implicity Studio to Work with Proxy Servers

Installing SSL Security Certificates for S implicity Studio Updates

Speed up debug session startup

Go to Preferences > Run/Debug > Launching, and under General Options uncheck Build (if required) before launching.

This will interfere with your workflow if you are accustomed to making a change and clicking the Debug button to build the

project before launching the project.

Speed up reading large source files

Enable folding of #if/#ifdef's and if/else, do/while, for, and switch statements in source code. Go to Preferences and type

fo lding in the filter field, and check the three "Enable folding … " options.

https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2018/11/12/configuring_simplici-hwpu
https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2018/10/12/installing_ssl_secur-UVxo

T ips and Tricks

324/335

Speed up the indexer

If the Indexer is taking a long time to run, close other projects. If still slow, in the Project Explorer view right-click the project

directory and select Index > Rebuild.

T ips and Tricks

325/335

Restore a perspective layout

To reset a perspective to its original layout, right-click the perspective button in the toolbar and select Reset.

Find a Version

Go to Help > About Simplicity Studio for version information. The overall SSv5 version is at the top of the dialog. The

Studio Version tab lists version information for all the components that make up SSv5. The Toolchains and SDKs tab lists

version information for the installed SDKs and toolchains.

Report a Bug

Go to Help > Report bug The default selection generates a log file to the location you specify. This is useful if you need

to attach a log to a case that's already created.

T ips and Tricks

326/335

Select Submit bug at Silabs.com if you are creating a new ticket. This generates the log file and provides instructions on

creating a ticket.

Capture a Simplicity Studio 5 Thread Dump

If S implicity Studio 5 happens to hang (become unresponsive for several minutes) during an operation, the best way to

report this to S ilicon Labs is to use a Java tool called jstack to capture a thread dump while the program is still in the hung

state. This thread dump can be used by the S ilicon Labs team to analyze the hang. If S implicity Studio 5 is shut down and

restarted, a thread dump at that point will not be useful. The jstack tool is included in the S implicity Studio 5 installed Java

Runtime Environment (JRE).

Once you have generated the thread dump file according to one of the following procedures, attach it to a S ilicon Labs

support case along with other details of what operation was being performed right before the hang as well as any

screenshots taken of what was shown in the application. A support case can be created from the S ilicon Labs S implicity

Studio Community home page or with this url: https://siliconlabs.force.com/s/contactsupport.

https://siliconlabs.force.com/s/contactsupport

T ips and Tricks

327/335

The procedure to use the jstack tool for Windows, MacOS and Linux is described in the following sections.

Windows

 Open Windows Task Manager and go to the Details tab to find the PID for S implicity Studio (studio.exe).

 Open a command prompt and issue the following command, adjusting it based on the S implicity Studio installation path:

[SIMPLICITY_STUDIO_INSTALLATION]\features\com.silabs.external.java.windows.x86_64.feature_11.0.5\jre\bin\jstack.exe PID >

[PATH]\SSv5ThreadDump.txt

For example, with the default installation path:

C:\SiliconLabs\SimplicityStudio\v5\features\com.silabs.external.java.windows.x86_64.feature_11.0.5\jre\bin\jstack.exe -l -e 41068 >

C:\temp\SSv5ThreadDump.txt

MacOS

 Open a terminal window.

 Use the following command to get the PID:

ps aux | grep studio

This is an example of the output with the pid 76698:

USERNAME@mac0010128 ~ % ps aux | grep studio

USERNAME 76698 5.6 9.7 12491892 1633396 ?? S Tue09AM 92:52.70 /Applications/SimplicityStudio5.app/Contents/MacOS/studio

USERNAME 19420 0.0 0.0 4268300 680 s000 R+ 3:26PM 0:00.00 grep studio

 Use the PID with the jstack command

[SIMPLICITY_STUDIO_INSTALLATION]/Contents/Eclipse/jre/Contents/Home/bin/jstack -l -e PID > [PATH]/SSv5ThreadDump.txt

For example

/Applications/Simplicity\ Studio.app/Contents/Eclipse/jre/Contents/Home/bin/jstack -l -e 76698 > ~/Documents/SSv5ThreadDump.txt

Linux

 Open a terminal window.

 Use the following command to get the PID:

ps aux | grep studio

This is an example of the output with the pid 10233:

ThinkPad-W530:~$ ps aux | grep studio

USERNAME 10233 10.1 27.3 110505488 2115904 ? Sl 12:55 10:58 /home/USERNAME/SimplicityStudio_v5//jre/bin/java -

Dosgi.requiredJavaVersion=11.0.5 �Xms40m �Declipse.p2.unsignedPolicy=allow �Djava.net.preferIPv4Stack=true �Djxbrowser.ipc.external=true -

jar /home/USERNAME/SimplicityStudio_v5//plugins/org.eclipse.equinox.launcher_1.5.600.v20191014�2022.jar -os linux -ws gtk -arch x86_64 -

showsplash -launcher /home/USERNAME/SimplicityStudio_v5/studio -name Studio --launcher.library

/home/USERNAME/SimplicityStudio_v5//plugins/org.eclipse.equinox.launcher.gtk.linux.x86_64_1.1.1100.v20190907�0426/eclipse_1801.so -startup

/home/USERNAME/SimplicityStudio_v5//plugins/org.eclipse.equinox.launcher_1.5.600.v20191014�2022.jar --launcher.overrideVmargs -exitdata

a78007 -vm /home/USERNAME/SimplicityStudio_v5//jre/bin/java -vmargs �Dosgi.requiredJavaVersion=11.0.5 �Xms40m -

Declipse.p2.unsignedPolicy=allow �Djava.net.preferIPv4Stack=true �Djxbrowser.ipc.external=true -jar

/home/USERNAME/SimplicityStudio_v5//plugins/org.eclipse.equinox.launcher_1.5.600.v20191014�2022.jar

 Use the PID with the jstack command:

[SIMPLICITY_STUDIO_INSTALLATION]/jre/bin/jstack -l -e PID > [PATH]/SSv5ThreadDump.txt

For example:

~/SimplicityStudio_v5/jre/bin/jstack -l -e 10233 > ~/Documents/SSv5ThreadDump.txt

T ips and Tricks

328/335

Convert an Existing Simplicity Studio 5 Project from GCC to IAR

 Create a new IAR build configuration:

Right-click the project folder and select Build Configurations > Manage.

In the resulting Manage Build Configurations dialog, click New.

Select the IAR ARM build configuration to use (IAR ARM Default recommended) and click OK.

 Still in the Manage Build Configurations dialog, select the new build configuration and click Set Active.

 Open the project's .slcp file and, on the OVERVIEW tab, click Edit on the Project Generators card.

 Select IAR EMBEDDED WORKBENCH PROJECT and click Save.

For Bluetooth projects steps 5 through 7 are also necessary. For Platform and Flex projects proceed to step 8.

 In the Project Explorer view:

Right-click the project folder and select Properties.

In the resulting Properties dialog, expand C/C++ Build and select Settings.

Under Tool Settings select IAR Linker for ARM > Library and select all of the libraries with GCC or gcc in the name or

path and also the 'gcc', 'c', 'm' and 'nosys' libraries.

Click Delete in the dialog menu.

Click Apply and Close.

 In the Project Explorer view:

Expand gecko_sdk_n.n.n > platform > Device > S iliconLabs > <target-part> > Source.

Right-click the GCC folder and select Resource Configurations > Exclude from Build...

In the resulting dialog, check the box for the IAR ARM ... build configuration.

Click OK

 Check if the project contains gecko_sdk_n.n.n > service > udelay > src > sl_udelay_armv6m_gcc.s. If it does, exclude it from

the build with the same command as in the previous step.

 Build the project. It should be successful. If not, check if any other GCC-specific files exist that need to be excluded from

the build configuration.

Use Custom Boards

Connect the board either using an external Segger J-Link Debug Adapter or a S ilicon Labs mainboard, with Debug Mode set

to OUT. (In the Debug Adapters view, right-click the device, select Device Configuration, and change the Debug Mode on

the Adapter Configuration tab). Create the project with the chip part number set in the Target, SDK, and Toolchain

Selection dialog.

You cannot use Flash Programmer until the debug adapter's device configuration has been configured with the part. Use

S implicity Commander instead.

Projects based on custom boards can be built and flashed as part of a debug session. S implicity Studio then displays and

allows you to confirm the target settings to use for the debug session.

T ips and Tricks

329/335

You can change the debug adapter's device configuration by right-clicking the device in the Debug Adapters view, selecting

Device Configuration, and making either of these changes:

 On the Device Hardware tab, enter the target part number.

 On the Device Hardware tab, change the Target Interface to SWD. Click Detect Part.

T ips and Tricks

330/335

Discover Network Devices

Sometimes S implicity Studio may fail to discover a device connected on a local network. For devices with

EFR32/EM3xx/S i917 MCUs, this can be addressed through the Preferences > Simplicity Studio > Device Manager > TCP/IP

Adapters settings. Enabling more network scanning, for example by selecting the Include all network interfaces. (Use when

connected to VPN) checkbox on that dialog, can flood the network with undesired discovery requests. The preferred

method is by discovering the specific device.

On the TCP/IP Adapters dialog, check Use TCP discovery for individual addresses.

In the Discovery Subnet Configuration text box, enter the individual IP address.

Place a Project Under Source Control

Note that not all of these folders will be present in all projects. Which ones are present depends on if the project is a

Project Configurator-based project (has a .slcp file) as well as what operations have been done with the project, especially

in the Project Configurator.

Hidden Folders in SSv5 IDE Projects:

Files / Folder Purpose
Under Source

Control?

.pdm Tracks project changes compared to the original project template used during project

creation, normally from a software example.

Yes - very

important

.cproject &

.project files

Eclipse project files, contains project settings for the different build configurations such

as Includes, Defines, and compiler options.

Yes

T ips and Tricks

331/335

Files / Folder Purpose

Under

Source

Control?

.settings Tracks project-level preferences for Eclipse and S implicity Studio. Probably -

but some

might only

apply to

the local

developer

.trash Keeps a copy of Project Configurator files or folders for software components that were

deleted from the project and had been changed from the default values. The files are

kept in case the component is added back, in which case the last used settings for the

component are restored. Can also contains user-copied/supplied source files, for example

if the user adds their own source files to the project and then deletes them.

No

.uceditor Keeps a list of software components that were edited on this computer. No

.projectlinkstore Contains quick links for commonly used files or resources. The listed links are updated

based on how often a user opens a file or resource.

No

General Source Control Information for Project Configurator Projects:

File / Folder Purpose Under Source Control?

.slcp, .slps and

.pintool

The main Project Configurator files. Yes

config Contains the configuration header files for all of the software components

used in the project. Changes made in the header files are reflected in the

Project Configurator and vice versa. Also contains subfolders with

Advanced Configurator (AC) configuration files. For example, Bluetooth

projects have a 'btconf' subfolder with the gatt_configuration.btconf file

and possibly 'in_place_ota_dfu.xml' file.

Yes - Cannot be

recreated

autogen Contains files created by the Project Configurator based on the installed

software components and the files in the 'config' folder. The files are

necessary to build the project, but they will be recreated on project

generation.

Normally yes, but with

some flexibility depending

on the workflow of the

team (that is, do they

always do a generation

after updating the

project).

gecko_sdk_x.y.z Created by the Project Configurator based on the installed components. It

will be recreated on project generation.

Same as for the 'autogen'

folder

Build output

folders ('GNU

ARM...', 'IAR

ARM...' or 'Keil

8051...')

Created when the project is built. Not normally

Revision History

332/335

Revision History

Revision History

Revision 5.8.0 released December 13, 2023

Overview: Update new features and known issues

Getting Started: Add Extension upgrades to Upgrade an Existing Project

Companion IDEs: Update VSCode Project Generation

Tools: Network Analyzer: Update custom decoders

Revision 5.7.2 released October 9, 2023

Overview: Update known issues

Getting Started: Update the Zigbee Cluster Configurator to ZCL Advanced Platform

Developing with Project Configurator: Zigbee Cluster Configurator

Rename to ZCL Advanced Platform

Update user interface illustrations

Add information on use with Matter

Revision 5.7.1 released August 17, 2023

Overview: Update known issues

Revision 5.7.0 released June 7, 2023

Overview: Update known issues and new features

Getting Started: Updated first page to reflect that extensions are now installed as part of the normal install process, also

update images and the Extensions section

Developing with Project Configurator: Update Proprietary Radio Configurator

Companion IDEs - VS Code: Update for current interface and functionality

Revision 5.6.3 released March 16, 2023

Overview:

Add release dates to New Features

Update Known Issues

Getting Started: Restructure and update Solutions and Memory Editor content

Developing with Project Configurator:

Update Pin Tool to reflect new interface

Update Solutions section

Add Memory Editor section

Using the Tools: NCP Commander - Update Bluetooth mesh section

Tips and Tricks:

Place a Project Under Source Control (update)

Discover Networked Devices (new)

Revision 5.6.0 released December 14, 2022

Getting Started:

Generate project report

Software Components tab: quality dropdown, PIN tool button

Revision History

333/335

Configurator updates

Developing with Project Configurator:

Update Zigbee Cluster Configurator to include Matter projects

Update Wi-SUN Configurator for Fan 1.1 changes

Building and Flashing: Add new post-build editor section

Add new Companion IDEs: Visual Studio Code section.
Tips & Tricks: Added a new tip about getting an updated S implicity Commander tool.

Revision 5.5.0 released September 7, 2022

Getting Started:

Changed Update and Install SDK Software to reflect the modification for the Matter extension.

Updated for the new approach to installing extensions.

Added a section on updating a project to a newer GSDK version.

About the Launcher:

Revised the Toolbar > Install section, SDK tab to show the new interface for updating or adding SDKs.

Changed Preferred SDK information in the Welcome and Device tabs section.

Testing and Debugging:

Changed to reflect that the GNU Debugger is now the default.

Added a section on using the Wireshark Packet Analyzer.

Revision 5.4.2 released August 17, 2022

Getting Started: Updated the New Project Wizard interface, removed outdated content; documented the IDE / toolchain

options when creating a new project.

Using the Tools:

Updated the Bluetooth Direction Finding Tool Suite section.

Added a logic analyzer section to Energy Profiler

Tips and Tricks: Added instructions for placing a project under source control

Throughout - Clarified that AppBuilder is a legacy tool.

Revision 5.4.0 released June 8, 2022

Getting Started: Updated Project Configurator Overview tab; added summary sections for Wi-SUN Configurator and beta

Memory Editor.

About the Launcher: Documented new filter options for example applications.

Project Configurator: Updated Overview tab; added new Wi-SUN Configurator section.

Testing and Debugging: GNU Debugger support is now GA.

Tips and Tricks: Added a tip for installing all parts of an upgrade.

Revision 5.3.2 released March 9, 2022

Getting Started: Added more information about linking sources in a new project.

About the Launcher: Clarified the interface overview, with new information about the perspectives menu; added instructions

on adding an SDK to the list shown on the General Information card.

NCP Commander: Added information about the scripting feature.

Tips and Tricks: Added a tip about working with custom radio boards.

Revision 5.3.1 released January 26, 2022

Getting Started: Updated Start a Project to reflect other project types available

NCP Commander: Updated to include Bluetooth mesh functionality

Using the tools: New section on the Bluetooth Direction Finding Tool Suite

Various maintenance updates.

Revision 5.3.0 released December 15, 2021

Revision History

334/335

Installation instructions reflect installing the Gecko SDK from G itHub.

Project migration text includes newer migration options.

New SDK Extensions section.

New Solutions section.

Project Configurator now supports Zigbee, Bootloader, and Z-Wave.

New Zigbee Cluster Configurator tool.

NCP Commander enhanced with dynamic GATT database interactions.

Tips and Tricks updated with new installation information.

Revision 5.2.0 released June 16, 2021

Version changed to correlate with S implicity Studio 5.

Tools: Standalone NCP Commander documented.

Getting Started: Linux installation instructions added.

Energy Profiler: Code correlation software setup instructions updated.

Tips and Tricks: Links added at the top of the page; tip on changing from GCC to IAR compiler added.

Various maintenance updates.

Revision 1.1.0 released December 9, 2020

General updates for S implicity Studio 5.1.

Launcher perspective (Getting Started, About the Launcher):

Software Examples and Demos tabs combined into a single tab, enhanced filtering options.

Examples from G itHub repositories.

New security firmware update option for Series 2 devices.

Developing for 32-Bit Devices:

Project Configurator now supports Bluetooth Mesh and 32-Bit MCU SDKs.

New Project Configurator Configuration Tools tab.

New Bluetooth Mesh Node Configurator tool.

Pin Tool, new 'Add Component' functionality.

Testing & Debugging:

New Beta quality GNU Debugger.

Tools:

New Bluetooth NCP Commander tool.

Tips & Tricks:

Update protocol locations for Bluetooth Mesh.

New 'Capture a S implicity Studio 5 Thread Dump' tip.

Revision 1.0.0 released July 29, 2020

Initial release

Revision History

335/335

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Overview
	New Features
	Known Issues
	For Users of Previous Versions

	Getting Started
	Prerequisites
	Install SSv5 and Software
	Explore SSv5
	Start a Project
	Install SDK Extensions
	Upgrade a Project to a New Software Version
	Project Migration

	About the Launcher
	Welcome and Device Tabs
	Debug Adapters
	My Products
	Menu
	Toolbar

	About the Simplicity IDE
	User Interface Review
	Import and Export
	Code Editing

	Developing for 32-Bit Devices
	Overview
	Developing with Project Configurator
	Project Configurator
	Component Editor
	Pin Tool
	Bluetooth GATT Configurator
	Bluetooth Mesh Configurator
	Proprietary Radio Configurator
	Wi-SUN Configurator
	ZCL Advanced Platform
	Solutions
	Memory Editor

	Developing with AppBuilder
	Configuring a Project
	Configuring Peripherals

	Developing for 8-Bit Devices
	About Projects
	Using Hardware Configurator

	Building and Flashing
	Building
	Post-Build Editor
	Flashing

	Testing and Debugging
	Overview and Resources
	Using the Debugger
	Using Wireshark

	Companion IDEs: VS Code
	Using the Tools
	Tools Overview
	Bluetooth NCP Commander
	Energy Profiler
	Starting an Energy Analysis Session
	User Interface
	Energy Statistics
	Play and Record Data Control
	Freeze and Record Triggers
	Search Capability
	Profiling with Code Correlation
	Debugging with the Logic Analyzer
	Energy Profiler and Network Analyzer

	Network Analyzer
	Network Analyzer Interface
	Capturing Data and Managing Sessions
	Viewing Data in Editors
	Filtering Captured Data
	Multinetwork Considerations
	Custom Decoders
	Network Analyzer Preferences

	Bluetooth Direction Finding Tools

	Additional Information
	Tips and Tricks
	Revision History

