
Wi-SUN

1/602

Wi-SUN

Developing with Wi-SUN

Quick Start Guide

Introduction

Getting Started

Wi-SUN Sample Applications

Create a Wi-SUN Network

Going Further

Development Walkthrough

Overview

Build and Connect

API Calls to Connect

Add a Custom Application

Timestamping

Custom Callback

JSON Connection Strings

Send Status Strings

Add CoAP Resources

Retrieve UDP Notifications

Retrieve Device Information

OTA DFU

Wi-SUN Node

Overview

Wi-SUN Developer's Guide �PDF�

Wi-SUN Configurator

FAN 1.0 Node Certification

Wi-SUN Limited Function Nodes �LFN�

Platform Resources

Overview

Bootloading

Overview

Bootloader Fundamentals �PDF�

Silicon Labs Gecko Bootloader User's Guide �PDF�

Non-Volatile Memory Use

Overview

Non-Volatile Data Storage Fundamentals �PDF�

Using NVM3 Data Storage �PDF�

Security

Overview

https://www.silabs.com/documents/public/user-guides/ug495-wi-sun-developers-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Wi-SUN

2/602

IoT Security Fundamentals �PDF�

Security Concepts and Design Considerations

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS �PDF�

Wi-SUN Border Router

Overview

Network Configuration

Wi-SUN SoC Border Router

Wi-SUN Linux Border Router

CPCD and wsbrd

External Servers

IP Communication

Ping and UDP

CoAP

Multicast

Border Router GUI

Network Performance

Overview

Network Measurement Application �PDF�

Wi-SUN Performance Results �PDF�

API Reference

Wi-SUN Services

Util Functions

sl_wisun_util_get_rf_settings

sl_wisun_util_get_phy_config

sl_wisun_util_connect

Application Core

Application Core API type definitions

current_addr

link_local

global

border_router

primary_parent

secondary_parent

regulation_thresholds

warning_threshold

alert_threshold

app_core_time_stat

curr_ms

connected_ms

tot_connected_ms

disconnected_ms

tot_disconnected_ms

conn_cnt

app_core_error_state_flag

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1364-wi-sun-network-performance-measurement-app.pdf
https://www.silabs.com/documents/public/application-notes/an1330-wi-sun-network-performance.pdf

Wi-SUN

3/602

app_core_error_state_flag_t

current_addr_t

regulation_thresholds_t

app_core_time_stat_t

app_wisun_project_info_init

app_wisun_project_info_print

app_wisun_project_info_get

app_wisun_wait_for_connection

app_wisun_connect_and_wait

app_wisun_network_is_connected

app_wisun_dispatch_thread

app_wisun_core_init

app_wisun_core_get_error

app_wisun_network_connect

app_wisun_get_current_addresses

app_wisun_set_regulation_active

app_wisun_get_regulation_active

app_wisun_get_remaining_tx_budget

app_wisun_set_regulation_thresholds

app_wisun_get_regulation_thresholds

app_wisun_get_ join_state

app_wisun_get_time_stat

CoAP

CoAP type definitions

sl_wisun_coap

handler

malloc

free

tx_callback

rx_callback

version

sl_wisun_coap_handle_t

sl_wisun_coap_malloc_t

sl_wisun_coap_free_t

sl_wisun_coap_version_t

sl_wisun_coap_tx_callback

sl_wisun_coap_rx_callback

sl_wisun_coap_packet_t

sl_wisun_coap_message_code_t

sl_wisun_coap_message_type_t

sl_wisun_coap_option_num_t

sl_wisun_coap_option_list_t

sl_wisun_coap_t

SL_WISUN_COAP_URI_PATH_MAX_SIZE

Wi-SUN

4/602

sl_wisun_coap_init

sl_wisun_coap_init_default

sl_wisun_coap_malloc

sl_wisun_coap_free

sl_wisun_coap_parser

sl_wisun_coap_builder_calc_size

sl_wisun_coap_builder

sl_wisun_coap_build_response

sl_wisun_coap_print_packet

sl_wisun_coap_get_uri_path_str

sl_wisun_coap_destroy_uri_path_str

sl_wisun_coap_get_lib_handler

sl_wisun_coap_destroy_packet

sl_wisun_coap_get_payload_str

sl_wisun_coap_destroy_payload_str

SL_COAP_SERVICE_LOOP

Ping

Ping API type definitions

sl_wisun_ping_echo_request

type

code

checksum

identifier

sequence_number

payload

sl_wisun_ping_info

identifier

sequence_number

packet_length

response_time_ms

remote_addr

start_time_stamp

stop_time_stamp

lost

sl_wisun_ping_stat

remote_addr

packet_count

packet_length

lost

min_time_ms

max_time_ms

avg_time_ms

sl_wisun_ping_echo_request_t

sl_wisun_ping_echo_response_t

Wi-SUN

5/602

sl_wisun_ping_info_t

sl_wisun_ping_stat_t

sl_wisun_ping_stat_hnd_t

sl_wisun_ping_req_resp_done_hnd_t

SL_WISUN_PING_MAX_REQUEST_RESPONSE

SL_WISUN_PING_MIN_PACKET_LENGTH

SL_WISUN_PING_MAX_PACKET_LENGTH

SL_WISUN_PING_TYPE_ECHO_REQUEST

SL_WISUN_PING_TYPE_ECHO_RESPONSE

SL_WISUN_PING_CODE_ECHO_REQUEST

SL_WISUN_PING_CODE_ECHO_RESPONSE

SL_WISUN_PING_ICMP_PORT

sl_wisun_ping_init

sl_wisun_ping_request

sl_wisun_ping_response

sl_wisun_ping

sl_wisun_ping_stop

iPerf

iPerf type definitions

sl_iperf_opt

mode

protocol

port

remote_addr

bandwidth

packet_nbr

buf_len

duration_ms

win_size

persistent

interval_ms

bw_format

multicast

sl_iperf_stats

nbr_calls

bytes

tot_packets

nbr_rcv_snt_packets

errs

transitory_error_cnts

last_recv_pkt_cnt

ts_curr_recv_ms

ts_prev_recv_ms

ts_curr_sent_ms

Wi-SUN

6/602

ts_prev_sent_ms

udp_ jitter

udp_rx_last_pkt

udp_lost_pkt

udp_out_of_order

udp_dup_pkt

udp_async_error

end_err

ts_start_ms

ts_end_ms

bandwidth

finack_tot_len

finack_duration_ms

finack_pkt

sl_iperf_conn

socket_id

socket_id_clnt

srv_addr

clnt_addr

run

buff

buff_size

sl_iperf_log_str_buff

pos

buff

size

sl_iperf_log

colored

buffered

last_res

print

buff

sl_iperf_test

id

status

err

opt

statistic

conn

cb

log

sl_iperf_udp_datagram

id

time_var_sec

Wi-SUN

7/602

time_var_usec

id2

sl_iperf_udp_srv_hdr

dtg

flags

tot_len_u

tot_len_l

stop_sec

stop_usec

lost_pkt_cnt

out_of_order_cnt

packet_cnt

jitter_sec

jitter_usec

sl_iperf_udp_clnt_hdr_v1

flags

num_threads

port

buf_len

win_band

amount

sl_iperf_clnt_hdr_ext

type

length

u_flags

l_flags

u_version

l_version

reserved

tos

l_rate

u_rate

tcp_write_prefetch

sl_iperf_clnt_hdr_isoch_payload

burst_period

start_tv_sec

start_tv_usec

prev_frameid

frame_id

burst_size

remaining

reserved

sl_iperf_clnt_hdr_ext_starttime_fq

reserved

Wi-SUN

8/602

start_tv_sec

start_tv_usec

l_fq_rate

u_fq_rate

sl_iperf_clnt_hdr_ext_isoch_settings

l_fps

u_fps

l_mean

u_mean

l_variance

u_variance

l_burst_ipg

u_burst_ipg

sl_iperf_udp_clnt_hdr

dtg

base

extend

isoch

start_fq

isoch_settings

sl_iperf_mode

sl_iperf_status

sl_iperf_opt_bw_format

sl_iperf_err

sl_iperf_mode_t

sl_iperf_test_id_t

sl_iperf_status_t

sl_iperf_opt_bw_format

sl_iperf_opt_t

sl_iperf_stats_t

sl_iperf_conn_t

sl_iperf_error_t

sl_iperf_log_str_buff_t

sl_iperf_log_t

sl_iperf_log_print_t

sl_iperf_test_t

sl_iperf_test_callback_t

sl_iperf_udp_datagram_t

sl_iperf_udp_srv_hdr_t

sl_iperf_clnt_hdr_v1_t

sl_iperf_clnt_hdr_ext_t

sl_iperf_clnt_hdr_isoch_payload_t

sl_iperf_clnt_hdr_ext_starttime_fq_t

sl_iperf_clnt_hdr_ext_isoch_settings_t

Wi-SUN

9/602

sl_iperf_udp_clnt_hdr_t

SL_IPERF_UDP_SERVER_FIN_ACK_SIZE

SL_IPERF_HEADER_VERSION1

SL_IPERF_HEADER_VERSION2

SL_IPERF_HEADER_EXTEND

SL_IPERF_HEADER_SEQNO64B

SL_IPERF_HEADER_UDPTEST

SL_IPERF_HEADER_EPOCH_START

SL_IPERF_HEADER_TRIPTIME

SL_IPERF_HEADER_TIME_MODE

SL_IPERF_SERVER_UDP_TX_FINACK_COUNT

SL_IPERF_IP_STR_BUFF_LEN

sl_iperf_service_init

sl_iperf_test_init

sl_iperf_test_set_default_logger

sl_iperf_test_set_default_buff

sl_iperf_test_add

sl_iperf_test_get

sl_iperf_test_udp_client

sl_iperf_test_udp_server

Over-The-Air Device Firmware Upgrade �Alpha)

Type definitions

sl_wisun_ota_dfu_error_ctx_fw_download

ret_val

offset

data_size

sl_wisun_ota_dfu_error_ctx_btl_fw_verify

ret_val

sl_wisun_ota_dfu_error_ctx_btl_fw_set

ret_val

sl_wisun_ota_dfu_error_ctx

download

verify

set

sl_wisun_ota_dfu_status

sl_wisun_ota_dfu_error_code

sl_wisun_ota_dfu_status_t

sl_wisun_ota_dfu_error_code_t

sl_wisun_ota_dfu_error_ctx_fw_download_t

sl_wisun_ota_dfu_error_ctx_btl_fw_verify_t

sl_wisun_ota_dfu_error_ctx_btl_fw_set_t

sl_wisun_ota_dfu_error_ctx_t

sl_wisun_ota_dfu_init

sl_wisun_ota_dfu_start_fw_update

Wi-SUN

10/602

sl_wisun_ota_dfu_stop_fw_update

sl_wisun_ota_dfu_reboot_and_install

sl_wisun_ota_dfu_get_fw_update_status

sl_wisun_ota_dfu_get_fw_update_status_ json_str

sl_wisun_ota_dfu_free_fw_update_status_ json_str

sl_wisun_ota_dfu_get_fw_update_status_flag

sl_wisun_ota_dfu_error_hnd

Silicon Labs socket API (deprecated)

sl_wisun_open_socket

sl_wisun_close_socket

sl_wisun_sendto_on_socket

sl_wisun_listen_on_socket

sl_wisun_accept_on_socket

sl_wisun_connect_socket

sl_wisun_bind_socket

sl_wisun_send_on_socket

sl_wisun_receive_on_socket

sl_wisun_set_socket_option

sl_wisun_get_socket_option

Wi-SUN Stack Plugin

Stack Trace and Debug

sl_wisun_set_trace_level

sl_wisun_set_trace_filter

RF Test

sl_wisun_start_stream

sl_wisun_stop_stream

sl_wisun_start_tone

sl_wisun_stop_tone

sl_wisun_set_test_tx_power

sl_wisun_is_running_rf_test

Wi-SUN Stack API

Wi-SUN API events

sl_wisun_evt_t

header

connected

socket_data

socket_data_available

socket_connected

socket_connection_available

socket_closing

disconnected

connection_lost

socket_data_sent

error

Wi-SUN

11/602

join_state

network_update

regulation_tx_level

mode_switch_fallback

rx_frame

lfn_wake_up

lfn_multicast_reg

evt

sl_wisun_msg_connected_ind

sl_wisun_msg_connected_ind_body_t

status

sl_wisun_msg_connected_ind_t

header

body

sl_wisun_msg_network_update_ind

sl_wisun_msg_network_update_ind_body_t

status

flags

sl_wisun_msg_network_update_ind_t

header

body

sl_wisun_msg_socket_data_ind

sl_wisun_msg_socket_data_ind_body_t

status

socket_id

remote_address

remote_port

data_length

data

sl_wisun_msg_socket_data_ind_t

header

body

sl_wisun_msg_socket_data_available_ind

sl_wisun_msg_socket_data_available_ind_body_t

status

socket_id

data_length

reserved

sl_wisun_msg_socket_data_available_ind_t

header

body

sl_wisun_msg_socket_connected_ind

sl_wisun_msg_socket_connected_ind_body_t

status

Wi-SUN

12/602

socket_id

sl_wisun_msg_socket_connected_ind_t

header

body

sl_wisun_msg_socket_connection_available_ind

sl_wisun_msg_socket_connection_available_ind_body_t

status

socket_id

sl_wisun_msg_socket_connection_available_ind_t

header

body

sl_wisun_msg_socket_closing_ind

sl_wisun_msg_socket_closing_ind_body_t

status

socket_id

sl_wisun_msg_socket_closing_ind_t

header

body

sl_wisun_msg_disconnected_ind

sl_wisun_msg_disconnected_ind_body_t

status

sl_wisun_msg_disconnected_ind_t

header

body

sl_wisun_msg_connection_lost_ind

sl_wisun_msg_connection_lost_ind_body_t

status

sl_wisun_msg_connection_lost_ind_t

header

body

sl_wisun_msg_socket_data_sent_ind

sl_wisun_msg_socket_data_sent_ind_body_t

status

socket_id

socket_space_left

sl_wisun_msg_socket_data_sent_ind_t

header

body

sl_wisun_msg_error_ind

sl_wisun_msg_error_ind_body_t

status

sl_wisun_msg_error_ind_t

header

Wi-SUN

13/602

body

sl_wisun_msg_ join_state_ind

sl_wisun_msg_ join_state_ind_body_t

status

join_state

sl_wisun_msg_ join_state_ind_t

header

body

sl_wisun_msg_regulation_tx_level_ind

sl_wisun_msg_regulation_tx_level_ind_body_t

status

tx_duration_ms

tx_level

reserved

sl_wisun_msg_regulation_tx_level_ind_t

header

body

sl_wisun_mode_switch_fallback_level_ind

sl_wisun_msg_mode_switch_fallback_ind_body_t

status

address

sl_wisun_msg_mode_switch_fallback_ind_t

header

body

sl_wisun_msg_rx_frame_ind

sl_wisun_msg_rx_frame_ind_body_t

status

timestamp_us

length

frame

sl_wisun_msg_rx_frame_ind_t

header

body

sl_wisun_msg_lfn_wake_up_ind

sl_wisun_msg_lfn_wake_up_ind_body_t

status

wup_duration_us

next_wup_us

sl_wisun_msg_lfn_wake_up_ind_t

header

body

sl_wisun_msg_lfn_multicast_reg_ind

sl_wisun_msg_lfn_multicast_reg_ind_body_t

status

Wi-SUN

14/602

ip_address

sl_wisun_msg_lfn_multicast_reg_ind_t

header

body

sl_wisun_msg_ind_id_t

Wi-SUN API type definitions

sl_wisun_msg_header_t

length

id

info

sl_wisun_statistics_phy_t

crc_fails

tx_timeouts

rx_timeouts

sl_wisun_statistics_mac_t

tx_queue_size

tx_queue_peak

rx_count

tx_count

bc_rx_count

bc_tx_count

rx_drop_count

tx_bytes

rx_bytes

tx_failed_count

retry_count

cca_attempts_count

failed_cca_count

rx_ms_count

tx_ms_count

rx_ms_failed_count

tx_ms_failed_count

sl_wisun_statistics_fhss_t

drift_compensation

hop_count

synch_interval

prev_avg_synch_fix

synch_lost

unknown_neighbor

sl_wisun_statistics_wisun_t

pan_control_rx_count

pan_control_tx_count

sl_wisun_statistics_network_t

ip_rx_count

Wi-SUN

15/602

ip_tx_count

ip_rx_drop

ip_cksum_error

ip_tx_bytes

ip_rx_bytes

ip_routed_up

ip_no_route

frag_rx_errors

frag_tx_errors

rpl_route_routecost_better_change

ip_routeloop_detect

rpl_memory_overflow

rpl_parent_tx_fail

rpl_unknown_instance

rpl_local_repair

rpl_global_repair

rpl_malformed_message

rpl_time_no_next_hop

rpl_total_memory

buf_alloc

buf_headroom_realloc

buf_headroom_shuffle

buf_headroom_fail

etx_1st_parent

etx_2nd_parent

adapt_layer_tx_queue_size

adapt_layer_tx_queue_peak

sl_wisun_statistics_arib_regulation_t

tx_duration_ms

sl_wisun_statistics_regulation_t

arib

sl_wisun_statistics_heap_t

arena

uordblks

sl_wisun_statistics_t

phy

mac

fhss

wisun

network

regulation

heap

sl_wisun_phy_config_fan10_t

reg_domain

Wi-SUN

16/602

op_class

op_mode

fec

sl_wisun_phy_config_fan11_t

reg_domain

chan_plan_id

phy_mode_id

sl_wisun_phy_config_explicit_t

ch0_frequency_khz

number_of_channels

channel_spacing

phy_mode_id

sl_wisun_phy_config_ids_t

protocol_id

channel_id

phy_mode_id

reserved

sl_wisun_phy_config_custom_fsk_t

ch0_frequency_khz

channel_spacing_khz

number_of_channels

phy_mode_id

crc_type

preamble_length

reserved

sl_wisun_phy_config_custom_ofdm_t

ch0_frequency_khz

channel_spacing_khz

number_of_channels

phy_mode_id

crc_type

stf_length

reserved

sl_wisun_phy_config_custom_oqpsk_t

ch0_frequency_khz

channel_spacing_khz

number_of_channels

phy_mode_id

crc_type

preamble_length

reserved

sl_wisun_phy_config_t

type

fan10

Wi-SUN

17/602

fan11

explicit_plan

ids

custom_fsk

custom_ofdm

custom_oqpsk

config

sl_wisun_mac_address_t

address

sl_wisun_channel_mask_t

mask

sl_wisun_socket_option_event_mode_t

mode

sl_wisun_socket_option_multicast_group_t

action

address

sl_wisun_socket_option_send_buffer_limit_t

limit

sl_wisun_socket_option_edfe_mode_t

mode

sl_wisun_socket_option_unicast_hop_limit

hop_limit

reserved

sl_wisun_socket_option_multicast_hop_limit

hop_limit

reserved

sl_wisun_socket_option_data_t

event_mode

multicast_group

send_buffer_limit

edfe_mode

unicast_hop_limit

multicast_hop_limit

value

ipv6_address

sl_wisun_neighbor_info_t

link_local_address

global_address

type

lifetime

mac_tx_count

mac_tx_failed_count

mac_tx_ms_count

mac_tx_ms_failed_count

Wi-SUN

18/602

mac_rx_count

rpl_rank

etx

routing_cost

pan_size

rsl_out

rsl_in

rssi

is_lfn

phy_mode_id_count

phy_mode_ids

is_mdr_command_capable

sl_wisun_trace_group_config_t

group_id

trace_level

sl_wisun_network_info_t

pan_id

sl_wisun_rpl_info_t

dodag_rank

dag_max_rank_increase

min_hop_rank_increase

lifetime_unit

instance_id

dodag_version_number

grounded

mode_of_operation

dodag_preference

dodag_dtsn

dio_interval_min

dio_interval_doublings

dio_redundancy_constant

default_lifetime

reserved

sl_wisun_trickle_params_t

imin_s

imax_s

k

reserved

sl_wisun_params_discovery

trickle_pa

trickle_pas

eapol_target_min_sens

allow_skip

reserved

Wi-SUN

19/602

sl_wisun_params_eapol

sec_prot_trickle

pmk_lifetime_m

ptk_lifetime_m

sec_prot_retry_timeout_s

initial_key_min_s

initial_key_max_s

initial_key_retry_min_s

initial_key_retry_max_s

initial_key_retry_max_limit_s

temp_min_timeout_s

gtk_request_imin_m

gtk_request_imax_m

gtk_max_mismatch_m

lgtk_max_mismatch_m

sec_prot_trickle_expirations

initial_key_retry_limit

allow_skip

reserved

sl_wisun_params_configuration

trickle_pc

trickle_pcs

sl_wisun_params_rpl

dis_max_delay_first_s

dis_max_delay_s

init_parent_selection_s

etx_probe_period_max_s

etx_samples_init

etx_samples_refresh

candidate_parents_max

parents_max

sl_wisun_params_mpl

trickle

seed_set_entry_lifetime_s

trickle_expirations

reserved

sl_wisun_params_misc

temp_link_min_timeout_s

pan_timeout_m

reserved

sl_wisun_connection_params_t

version

discovery

configuration

Wi-SUN

20/602

eapol

rpl

mpl

misc

sl_wisun_lfn_params_connection_t

discovery_slot_time_ms

discovery_slots

reserved

sl_wisun_lfn_params_data_layer_t

unicast_interval_ms

unicast_interval_min_ms

unicast_interval_max_ms

lfn_maintain_parent_time

reserved

sl_wisun_lfn_params_network_t

lfn_registration_lifetime_m

lfn_na_wait_duration_m

reserved

sl_wisun_lfn_params_power_t

listening_window_min_us

window_margin_min_us

broadcast_lts_only

reserved

sl_wisun_lfn_params_t

version

connection

data_layer

network

power

Predefined FFN parameter sets

SL_WISUN_PARAMS_PROFILE_TEST

SL_WISUN_PARAMS_PROFILE_CERTIF

SL_WISUN_PARAMS_PROFILE_SMALL

SL_WISUN_PARAMS_PROFILE_MEDIUM

SL_WISUN_PARAMS_PROFILE_LARGE

Predefined LFN parameter sets

SL_WISUN_PARAMS_LFN_TEST

SL_WISUN_PARAMS_LFN_BALANCED

SL_WISUN_PARAMS_LFN_ECO

sl_wisun_device_type_t

sl_wisun_network_size_t

sl_wisun_ip_address_type_t

sl_wisun_certificate_option_t

Wi-SUN

21/602

sl_wisun_private_key_option_t

sl_wisun_statistics_type_t

sl_wisun_regulatory_domain_t

sl_wisun_operating_class_t

sl_wisun_operating_mode_t

sl_wisun_multicast_group_action_t

sl_wisun_channel_spacing_t

sl_wisun_ join_state_t

sl_wisun_network_update_flags_t

sl_wisun_phy_config_type_t

sl_wisun_lfn_profile_t

sl_wisun_crc_type_t

sl_wisun_socket_protocol_t

sl_wisun_socket_option_t

sl_wisun_neighbor_type_t

sl_wisun_trace_group_t

sl_wisun_trace_level_t

sl_wisun_regulation_t

sl_wisun_mode_switch_mode_t

sl_wisun_regulation_tx_level_t

sl_wisun_unicast_tx_mode_t

sl_wisun_channel_exclusion_mode_t

sl_wisun_frame_type_t

sl_wisun_channel_mask_type_t

sl_wisun_ip_address_t

sl_wisun_broadcast_mac

SL_WISUN_NETWORK_NAME_SIZE

SL_WISUN_MAC_ADDRESS_SIZE

SL_WISUN_CHANNEL_MASK_SIZE

SL_WISUN_FILTER_BITFIELD_SIZE

SL_WISUN_ADVERT_FRAGMENT_DISABLE

SL_WISUN_MAX_PHY_MODE_ID_COUNT

SL_WISUN_CHANNEL_SPACING_100HZ

SL_WISUN_CHANNEL_SPACING_200HZ

SL_WISUN_CHANNEL_SPACING_400HZ

SL_WISUN_CHANNEL_SPACING_600HZ

SL_WISUN_TRACE_THREAD_WISUN

SL_WISUN_TRACE_THREAD_EVENT_TASK

SL_WISUN_TRACE_THREAD_EVENT_LOOP

SL_WISUN_TRACE_THREAD_MAC

Socket API

sockaddr

sa_family

sa_data

Wi-SUN

22/602

in6_addr

address

sockaddr_in6

sin6_family

sin6_port

sin6_flowinfo

sin6_addr

sin6_scope_id

SOL_SOCKET

SOL_APPLICATION

IPPROTO_IPV6

SO_EVENT_MODE

SOCKET_EVENT_MODE

SO_NONBLOCK

SO_RCVBUF

SO_SNDBUF

SO_SNDLOWAT

IPV6_UNICAST_HOPS

IPV6_MULTICAST_HOPS

IPV6_JOIN_GROUP

IPV6_LEAVE_GROUP

SO_EDFE_MODE

SOCKET_EDFE_MODE

sl_wisun_socket_event_mode_t

socket_domain

socket_type

socket_protocol

socklen_t

sl_wisun_socket_id_t

sl_socket_domain_t

sl_socket_type_t

sl_socket_protocol_t

in6_addr_t

sockaddr_in6_t

in6addr_any

socket

close

bind

send

sendto

recvfrom

recv

accept

connect

Wi-SUN

23/602

listen

setsockopt

getsockopt

htonl

htons

ntohl

ntohs

inet_pton

inet_ntop

APP_LEVEL_SOCKET

IPV6_ADDR_SIZE

SOCK_NONBLOCK

sl_wisun_on_event

sl_wisun_ join

sl_wisun_get_ip_address

sl_wisun_disconnect

sl_wisun_set_trusted_certificate

sl_wisun_set_device_certificate

sl_wisun_set_device_private_key

sl_wisun_get_statistics

sl_wisun_set_tx_power

sl_wisun_set_allowed_channel_mask

sl_wisun_set_channel_mask

sl_wisun_allow_mac_address

sl_wisun_deny_mac_address

sl_wisun_get_ join_state

sl_wisun_clear_credential_cache

sl_wisun_get_mac_address

sl_wisun_set_mac_address

sl_wisun_reset_statistics

sl_wisun_get_neighbor_count

sl_wisun_get_neighbors

sl_wisun_get_neighbor_info

sl_wisun_set_unicast_settings

sl_wisun_set_device_private_key_id

sl_wisun_set_regulation

sl_wisun_set_regulation_tx_thresholds

sl_wisun_set_advert_fragment_duration

sl_wisun_set_unicast_tx_mode

sl_wisun_set_device_type

sl_wisun_config_mode_switch

sl_wisun_set_mode_switch

sl_wisun_set_connection_parameters

Wi-SUN

24/602

sl_wisun_set_pom_ie

sl_wisun_get_pom_ie

sl_wisun_get_stack_version

sl_wisun_set_lfn_parameters

sl_wisun_set_lfn_support

sl_wisun_set_pti_state

sl_wisun_trigger_frame

sl_wisun_set_security_state

sl_wisun_get_network_info

sl_wisun_get_rpl_info

sl_wisun_get_excluded_channel_mask

Wi-SUN Stack Release Note

Wi-SUN Sockets

Deprecated List

Wi-SUN Overview

Wi-SUN PHY

Overview

Getting Started with Wi-SUN PHY

How To Use Wi-SUN FAN 1.0 PHY

How To Use Wi-SUN FAN 1.1 On EFR32FG25

Wi-SUN Configuration With RAILtest For EFR32FG25

Known Issues With EFRFG25

Mode Switch �PDF�

Concurrent Mode �PDF�

https://www.silabs.com/documents/public/application-notes/an1403-wi-sun-mode-switch-with-railtest.pdf
https://www.silabs.com/documents/public/application-notes/an1410-concurrent-mode-with-railtest.pdf

Developing with Wi-SUN

25/602

Developing with Wi-SUN

Developing with Silicon Labs Wi-SUN
Wireless Smart Ubiquitous Network (Wi-SUN) is the leading IPv6 sub-GHz mesh technology for smart city and smart utility

applications. S ilicon Labs' Wi-SUN SDK includes industry-leading software stacks and development tools for Wi-SUN end

nodes and border routers. In conjunction with SoCs and reference applications for Wi-SUN, developers can use software

and tools from S ilicon Labs to quickly and reliably:

Develop multi-node mesh networks

Monitor and debug multiple nodes simultaneously

Visually analyze system performance

The content on these pages is intended for those are developing a Wi-SUN application using the S ilicon Labs Wi-SUN SDK.

For details about this release: Links to release notes are available on the silabs.com Gecko SDK page.

For Silicon Labs' Wi-SUN product information: See the product pages on silabs.com.

For background about the Wi-SUN protocol: The introductory materials on silabs.com is a good place to start.

To get started with development with the Wi-SUN stack: See the Getting Started page to get started working with sample

applications.

https://www.silabs.com/developers/gecko-software-development-kit
https://www.silabs.com/wireless/wi-sun
https://www.silabs.com/wireless/wi-sun?tab=learn
https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-overview

Developing with Wi-SUN

26/602

If you are already in development with the stack: See the specific material on this page for details or go directly to the API

Reference.

If you are primarily interested in working directly with the Wi-SUN PHY and system, without using the S ilicon Labs stack,

see the Wi-SUN PHY section.

https://docs.silabs.com/wisun/1.8.0/wisun-stack-api
https://docs.silabs.com/wisun/1.8.0/wisun-phy-overview

Introduction

27/602

Introduction

Introducing Wi-SUN Development
Wireless Smart Ubiquitous Network (Wi-SUN) is the leading IPv6 sub-GHz mesh technology for smart city and smart utility

applications. Wi-SUN brings Smart Ubiquitous Networks to service providers, utilities, municipalities/local government, and

other enterprises, by enabling interoperable, multi-service, and secure wireless mesh networks. Wi-SUN can be used for

large-scale outdoor IoT wireless communication networks in a wide range of applications covering both line-powered and

battery-powered nodes.

S ilicon Labs provides a complete set of hardware and software solutions to help developers design their Wi-SUN wireless

products:

Certified hardware platforms

Certified Wi-SUN FAN router stack

Certified Wi-SUN FAN border router solution (G itHub)

S ilicon Labs has enhanced Wi-SUN to work with S ilicon Labs hardware. The Wi-SUN stack library is available as a software

development kit (SDK) installed as part of the Gecko SDK Suite (GSDK) of S ilicon Labs SDKs. The two primary elements to

getting started with Wi-SUN development are the Silicon Labs Wi-SUN SDK and Simplicity Studio 5.

The Silicon Labs Wi-SUN SDK

The S ilicon Labs Wi-SUN SDK is composed of the Wi-SUN FAN stack and sample applications as well as the addition of

metadata to allow for the seamless integration into S implicity Studio 5. The S ilicon Labs Wi-SUN SDK contains the Wi-SUN

stack in a library format.

The S ilicon Labs Wi-SUN SDK is based on the Gecko Platform component-based design, where each component provides

a specific function. Components are made up of a collection of source files and properties. The component-based design

enables customization by adding, configuring, and removing components. The application developer can use SSv5’s Project

Configurator and Component Editor to easily assemble the desired features by including those components that match the

required functionality and by configuring the various properties associated with those components.

For details on the Wi-SUN stack version included within the S ilicon Labs Wi-SUN SDK, refer to the Wi-SUN SDK release

notes.

Simplicity Studio 5 �SSv5�

The S ilicon Labs Wi-SUN SDK is downloaded through SSv5. SSv5 is the core development environment designed to

support the S ilicon Labs IoT portfolio of system-on-chips (SoCs) and modules. It provides access to target device-specific

web and SDK resources; software and hardware configuration tools; an integrated development environment (IDE)

featuring industry-standard code editors, compilers and debuggers; and advanced, value-add tools for network analysis and

code-correlated energy profiling.

SSv5 is designed to simplify developer workflow. It intelligently recognizes all S ilicon Labs evaluation and development kit

parts and, based on the selected development target, presents appropriate software development kits (SDKs) and other

development resources.

The GNU Compiler Collection (GCC) is provided with SSv5. Other important development tools provided with SSv5 are

reviewed in Development Tools.

Starting Development

https://wi-sun.org/product/wsa0258-efr32fg12/
https://wi-sun.org/product/wsa0266-silicon-labs-wi-sun-sdk/
https://github.com/SiliconLabs/wisun-br-linux
https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-going-further/02-development-tools

Introduction

28/602

Prerequisites

Before following the procedures in this document you must have:

Purchased one of the Wireless Gecko (EFR32) Portfolio Wireless K its with compatible radio boards, listed on

https://www.silabs.com/wireless/wi-sun.

Downloaded SSv5 and the Gecko SDK and be generally familiar with the SSv5 Launcher perspective. SSv5 installation and

getting started instructions along with a set of detailed references can be found in the online S implicity Studio 5 User's

Guide.

Obtained a compatible compiler (See the Wi-SUN SDK ’s release notes for the compatible versions):

S implicity Studio comes with a free GCC C-compiler.

IAR Embedded Workbench for ARM (IAR-EWARM) can also be used as the compiler for S ilicon Labs Wi-SUN projects. Once

IAR-EWARM is installed, the next time S implicity Studio starts it will automatically detect and configure the IDE to use IAR-

EWARM. Refer to the IAR-IDE License section in the Development Tools page to get a 30-day IAR IDE trial.

Setup

Install S implicity Studio 5 (SSv5), which will set up your development environment and walk you through GSDK installation.

Installation instructions are provided in the S implicity Studio 5 online User’s Guide. This is the recommended method for

getting started with development.

Alternatively, Gecko SDK may be installed manually by downloading or cloning the latest from G itHub. See

https://github.com/siliconlabs/gecko_sdk for more information.

Using S implicity Studio, you have easy access to the sample applications and demos. Instructions for quickly beginning to

use these to create a Wi-SUN network is included in Getting Started with Application Development.

Support

Access the S ilicon Labs support portal at https://www.silabs.com/support through SSv5’s Welcome view under Learn and

Support. Use the support portal to contact Customer Support for any questions you might have during the development

process.

https://www.silabs.com/wireless/wi-sun
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-going-further/02-development-tools#iar-ide
http://www.silabs.com/simplicity
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/
https://github.com/siliconlabs/gecko_sdk
https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-development/02-wisun-sample-apps
https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-development
https://www.silabs.com/support

Introduction

29/602

Documentation

Relevant documentation is available through SSv5. It is filtered based on the device selected in either the Debug Adapters

view or the My Product view. Hardware-specific documentation for the device can be accessed through links on the

OVERVIEW tab.

SDK documentation and other references are available through the DOCUMENTATION tab. Filter with the Wi-SUN

Technology Type checkbox to see documentation most closely related to the Wi-SUN SDK. To see documents specific to

Wi-SUN, select Wi-SUN under Wireless Technology.

Introduction

30/602

SSv5 and its tools are documented in the online S implicity Studio 5 User’s Guide.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/

Getting Started

31/602

Getting Started

Getting Started with Wi-SUN Application
Development
This section assumes that you have purchased your hardware and have downloaded SSv5 and the S ilicon Labs Wi-SUN

SDK as described in Prerequisites. You should also be familiar with the features of the SSv5 Launcher perspective as

documented in the S implicity Studio 5 online User’s Guide.

Content in this section includes:

Wi-SUN Sample Applications: Introduces the list of Wi-SUN Demos and Sample applications to start creating a Wi-SUN

Network and evaluate the S ilicon Labs Wi-SUN solution.

Creating a Wi-SUN Network: Provides instructions to compile and load a simple Wi-SUN Ping application on a node and a Wi-

SUN Border Router demo image on another node. You can then use these to create a network.

https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-overview#prerequisites
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

Wi-SUN Sample Applications

32/602

Wi-SUN Sample Applications

About Sample Applications and Demos
Because starting application development from scratch is difficult, the S ilicon Labs Wi-SUN SDK comes with a number of

built-in sample applications and demos covering the most frequent use cases designed to illustrate common application

functions. S ilicon Labs strongly recommends starting development from one of the sample applications.

Like everything in SSv5, the examples and the demos shown on the EXAMPLE PROJECTS & DEMOS tab are filtered based

on the part you have connected or selected.

Demos

Demos are prebuilt firmware images that are ready to download to a compatible device. The quickest way to find if a demo

is available for your part is by adding the part or board information in the My Products view and then navigating to the

EXAMPLE PROJECTS & DEMOS tab in the Launcher perspective. Disable the Example Projects filter. The Solution Examples

filter is provided for future use.

Precompiled demo application images provided with the Wi-SUN SDK are compatible with the Wi-SUN Wireless SoCs listed

S ilicon labs web page.

Software Examples

https://www.silabs.com/wireless/wi-sun?tab=hardware

Wi-SUN Sample Applications

33/602

When you work with examples, the process is:

Select an example

Change the example configuration (if needed)

Build the example

Load the example to the target device

S ince typically you will finish by flashing a compiled application image to a device, connect a device to your computer and

select it in the Debug Adapters view. In the EXAMPLE PROJECTS & DEMOS tab on the Launcher perspective, enter ‘wi-

sun’ as a keyword. A number of other filters are provided. To see the examples only, turn off Demos.

Each example has its own documentation accessible by clicking View Project Documentation below the example

description. The HTML document covers the steps to set up the example and run the associated demonstration.

The sample applications provided with the S ilicon Labs Wi-SUN SDK are as follows.

Wi-SUN – CLI example: Acts as a Wi-SUN router node in a network, and provides an interface device functionality.

Wi-SUN – SoC CoAP Collector: Collects data from other devices configured as meters using CoAP.

Wi-SUN – SoC CoAP Meter: Provides basic meter functionality to communicate with a collector using CoAP.

Wi-SUN – SoC Empty: Provides a basic framework to begin adding custom functionality.

Wi-SUN – SoC Collector: Collects data from other devices configured as meters.

Wi-SUN – SoC Network Measurement: Provides a tool to measure the Wi-SUN solution performance.

Wi-SUN – SoC Meter: Provides basic meter functionality to communicate with a collector.

Wi-SUN – SoC Ping: Provides simple connectivity testing.

Wi-SUN – SoC TCP Client: Works with the TCP server example using the TCP protocol.

Wi-SUN Sample Applications

34/602

Wi-SUN – SoC TCP Server: Works with the TCP client example using the TCP protocol.

Wi-SUN – SoC UDP Client: Works with the UDP server example using the UDP protocol.

Wi-SUN – SoC UDP Server: Works with the UDP client example using the UDP protocol.

Wi-SUN – RCP: Radio co-processor border router implementation that pairs with a Linux host running the Wi-SUN stack

upper layers.

Create a Wi-SUN Network

35/602

Create a Wi-SUN Network

Creating a Wi-SUN Network
In these instructions, you will compile and load a simple Wi-SUN Ping application on a node and a Wi-SUN Border Router

demo image on another node. The Creating a Network section describes how to use the examples to create a network.

The Network Analyzer section on the Going Further page describes how to use Network Analyzer to observe traffic across

the network.

When working with an example application in S implicity Studio, you will be executing the steps in the following order:

 Create a project based on an example.

 Configure the project.

 Build the application image and flash it to your device.

These steps are described in detail in the following sections. These procedures are illustrated for a mainboard with an

EFR32MG12. Note: Your SDK version may be later than the version shown in the figures.

You should have your mainboard connected.

Note: For best performance in S implicity Studio 5, be sure that the power switch on your mainboard is in the Advanced

Energy Monitoring or “AEM” position, as shown in the following figure.

Flashing the Wi-SUN Border Router

Every Wi-SUN example requires a Wi-SUN Border Router to create and manage a Wi-SUN network for the Wi-SUN devices

to join. It provides an easy and quick medium to evaluate the S ilicon Labs Wi-SUN stack solution without deploying an

expensive and cumbersome production-grade Wi-SUN Border Router. A CLI (Command-Line Interface) is exposed to

facilitate the configuration.

Note: Make sure your mainboard has the latest “Adapter FW” to avoid any issue when using the example CLI. To do so:

 In the Launcher perspective, click the radio board listed in the Debug Adapters view.

 In the OVERVIEW tab, verify the Adapter FW version in the General Information card.

 If S implicity Studio 5 proposes to update the firmware, do so.

The Wi-SUN Border Router demonstration is delivered only in a binary format. The implementation does not scale for a

production-grade Border Router maintaining several thousand Wi-SUN nodes. For a production-grade border router solution,

https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-going-further/index#network-analyzer

Create a Wi-SUN Network

36/602

refer to the Wi-SUN Border Router section to get started.

 In the Debug Adapters view, select the device that will be the Wi-SUN border router. Note: To rename the device so that

you know which device is the Border Router, right-click it and select Rename on the context menu.

 Navigate to the EXAMPLE PROJECTS & DEMOS tab and turn off the Example Projects filter. Click RUN next to Wi-SUN –

SoC Border Router demo.

 Start the Wi-SUN Border Router with the CLI interface. In the Debug Adapters view, right-click the Border Router device and

click Launch Console, as shown. Alternatively, click Tools in the S implicity IDE menu and select 'Device Console'.

https://docs.silabs.com/wisun/1.8.0/wisun-border-router-overview

Create a Wi-SUN Network

37/602

 To get a prompt on the Console, go to the Serial 1 tab and press Enter. To start the Wi-SUN Border Router with default FAN

1.1 PHY, enter:

> wisun start_fan11

Or with default FAN 1.0 PHY using the following command:

> wisun start_fan10

Creating a Project Based on an Example

S implicity Studio 5 (SSv5) offers a variety of ways to begin a project using an example application. The online S implicity

Studio 5 User’s Guide describes them all. This guide uses the File > New > Silicon Labs Project Wizard method because it

takes you through all three of the Project Creation Dialogs. Details on each creation dialog option may be found in the

Simplicity Studio 5 User’s Guide.

 In the Debug Adapters view, select the target part for the application node. This should be a different part than the one

used for the border router in the previous section.

 Open SSv5’s File menu and select New > Silicon Labs Project Wizard. The Target, SDK, and Toolchain Selection dialog

opens. Do not change the default Simplicity IDE / GNU ARM v<version> toolchain supported by Wi-SUN. Click NEXT.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/

Create a Wi-SUN Network

38/602

 The Example Project Selection dialog opens. Use the ‘Wi-SUN’ Technology Type and Keyword filters to search for a specific

example, in this case Wi-SUN – SoC Ping. Select it and click NEXT.

Create a Wi-SUN Network

39/602

 The Project Configuration dialog opens. Here you can rename your project, change the default project file location, and

determine if you will link to or copy project files. Note that if you change any linked resource, it is changed for any other

project that references it. Click FINISH.

Create a Wi-SUN Network

40/602

 The S implicity IDE Perspective opens with the project documentation (readme.md). Click the <project>.slcp tab to see the

Project Configurator OVERVIEW tab. See the online S implicity Studio 5 User’s Guide for details about the functionality

available through the S implicity IDE perspective and the Project Configurator.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/

Create a Wi-SUN Network

41/602

Configuring the Project

S ilicon Labs Wi-SUN applications are built on a Gecko Platform component structure. Click the SOFTWARE COMPONENTS

tab to see a complete list of component categories.

Create a Wi-SUN Network

42/602

The project is configured by installing and uninstalling components and configuring installed components. Installed

components are shown with a circled checkmark on their left. Click Installed Components to see a filtered list of

components installed by the example application.

Configurable components have a gear symbol on their right. Select a component to see information about it.

If the component is configurable, click CONFIGURE to open the Component Editor in a new tab.

For example, in the Ping component you can configure various parameters that change the way the wisun-ping application

behaves.

Create a Wi-SUN Network

43/602

Any changes you make are autosaved, and project files are autogenerated.

In addition to the Project Configurator tab (<project>.slcp), a Wi-SUN Configurator tab is also available. For more

information about using the Wi-SUN Configurator and how to change the default Wi-SUN PHY, see UG495: S ilicon Labs Wi-

SUN Developer’s Guide.

https://www.silabs.com/documents/public/user-guides/ug495-wi-sun-developers-guide.pdf

Create a Wi-SUN Network

44/602

If you make changes, the Wi-SUN Configurator tab has an asterisk to the left. Save changes (CTRL-S) when you are

finished updating Wi-SUN Configurator settings. If you build the project without saving changes, the changes are saved

automatically.

Building the Project

You can either compile and flash the application automatically, or manually compile it and then flash it.

Automatically Compile and Flash

 You can automatically compile and flash the application to your connected development hardware in the S implicity IDE, and

open a Debug interface. Click Debug .

 Progress is displayed in the console and a progress bar in the lower right.

The project should build without error.

Create a Wi-SUN Network

45/602

 When building and flashing are complete a Debug perspective is displayed. Click Resume () to start the application

running on the WSTK.

Next to the Resume control are Suspend, Terminate, Disconnect, and stepping controls. Click Disconnect () when you

are ready to exit Debug mode.

Manually Compile and Flash

 After you generate your project files, instead of clicking Debug, click Build () in the top tool bar.

 You can load the binary image through Project Explorer view.

Locate the <project>.bin, .hex, or .s37 file in the Binaries subdirectory.

Right-click the file and select Flash to Device... If you have more than one device connected, select a device to program.

The Flash Programmer opens with the file path populated. Click PROGRAM to flash the image to the device.

Create a Wi-SUN Network

46/602

Flashing a Bootloader

All S ilicon Labs examples require that a bootloader be installed. A bootloader is a program stored in reserved flash memory

that can initialize a device, update firmware images, and possibly perform some integrity checks. S ilicon Labs networking

devices use bootloaders that perform firmware updates in two different modes: standalone (also called standalone

bootloaders) and application (also called application bootloaders). An application bootloader performs a firmware image

update by reprogramming the flash with an update image stored in internal or external memory. By default, a new device is

factory-programmed with a bootloader, which remains installed until you erase the device. The Gecko Bootloader is a code

library configurable through S implicity Studio ’s IDE to generate bootloaders that can be used with a variety of S ilicon Labs

protocol stacks. The Gecko Bootloader is used with all EFR32xG parts. For more information about bootloaders see

UG103.6: Bootloader Fundamentals.

By default, a new device is factory-programmed with a bootloader. If you have a new device, haven’t cleared the

bootloader region for your part or have a supported bootloader image already flashed on your device, skip this step and

continue with the next section.

With S ilicon Labs Wi-SUN, the bootloader serves to start the application code within the image you created and flashed in

the previous procedure. Once you have installed a bootloader image, it remains installed until you erase the device.

To flash a bootloader, first select one of the bootloader examples, such as SPI Flash Storage Bootloader (single image),

and build and flash it as described above. For more information see UG489: S ilicon Labs Gecko Bootloader User’s Guide for

GSDK 4.0 and Higher.

If you are working with the Gecko Bootloader, bootloader images must be formatted as GBL files. To create a GBL file from

an .s37 or binary, follow the instructions in UG162: S implicity Commander Reference Guide, section 6.7.1, GBL File Creation.

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Create a Wi-SUN Network

47/602

The exact format of the GBL file depends on the hardware you selected.

Creating a Network

Depending on the example application, you may be able to interact with it through your development environment’s Console

interface using a CLI (command-line interface). The console interface allows you to form a network and send data using

the border router device created in section Flashing the Wi-SUN Border Router and the application node.

To launch the Console interface, in the S implicity IDE perspective right-click the application node in the Debug Adapters

View. Select Launch Console. Alternatively, click Tools in the S implicity IDE menu and select Device Console.

To get a prompt on the Console, go to the Serial 1 tab and press Enter.

Connect the Wi-SUN Ping WSTK

The Wi-SUN Ping application automatically starts by connecting to the Border Router. If the connection is successful, the

application should output the traces below in the console.

[Connecting to "Wi-SUN Network"]

> [Join state: Authenticate (2)]

[Join state: Acquire PAN Config (3)]

[Join state: Configure Routing (4)]

[Join state: Operational (5)]

Addresses:

[GLOBAL : fd00:7283:7e00:0:5e02:72ff:fe96:ca9c]

[LINK_LOCAL : fe80::5e02:72ff:fe96:ca9c]

[BORDER_ROUTER : fd00:6172:6d00:0:b6e3:f9ff:fea6:3aa]

[170 s]

The following is an illustration of connecting the Wi-SUN SoC Border Router application to the Wi-SUN SoC Ping Example

Application. This setup allows showing the Border Router and the device consoles side by side, where Wi-SUN settings can

be compared. If these do not match, the connection will fail. When using a Linux Border Router, use 'wsbrd_cli status' to

check the Border Router settings.

Create a Wi-SUN Network

48/602

The two Wi-SUN devices (Border Router and Wi-SUN SoC Ping) are now part of the same Wi-SUN network.

Ping the Wi-SUN Border Router

To check the commands exposed in the Wi-SUN Ping application, enter:

wisun help

To retrieve the Border Router IPv6 address, enter:

wisun get wisun.ip_address_border_router

The Wi-SUN Ping application has a specific command: wisun ping [IPv6 address] . Use the command to ping the Border

Router.

wisun ping [Border Router Global IPv6 address]

If the ping command is successful, the pong message size and latency are output on the console.

> wisun ping fd00:6172:6d00:0:20d:6fff:fe20:bd95`

PING fd00:6172:6d00:0:20d:6fff:fe20:bd95: 40 data bytes

> [40 bytes from fd00:6172:6d00:0:20d:6fff:fe20:bd95: icmp_seq=1 time=196.231 ms]

In this case, the ping took 196 milliseconds to come back to the Wi-SUN device. The ping command can be used to

communicate with other Wi-SUN devices in the same Wi-SUN network.

Disconnect and Reconnect the Ping WSTK

You need to disconnect the WSTK and reconnect it to apply new network settings, if you modified them on the Border

Router (check these on the Linux Border Router using ‘wsbrd_cli status’).

Note: It may be worth going through this in situations where the Wi-SUN device does not connect to the Border Router.

To disconnect the WSTK, enter:

Create a Wi-SUN Network

49/602

wisun disconnect

Check the Wi-SUN settings using:

`wisun get wisun````

Set the new Wi-SUN settings using:

wisun set wisun.<parameter> <value>

Use the online help or refer to the readme.md file (at the root of you project) to check what parameters are required for

your FAN configuration, using:

wisun set wisun help

If you want to preserve your settings following a power cycle or reset, use:

wisun save

Depending on the FAN configuration, use one of the commands below to connect with your new settings:

wisun jo in_fan10

wisun jo in_fan11

wisun jo in_explicit (only for the Wi-SUN SoC CLI application)

Next Steps

Some next steps:

Explore the functions available through the Wi-SUN CLI example. In the Serial 1 console connected to a device running the

example, enter wisun help to see a list of commands. Enter wisun get wisun to see a list of Wi-SUN network parameters.

Compile and flash different sample applications and explore the functionality they provide.

Explore configuring one of the sample applications to meet your needs.

Explore the documentation provided in this site.

Going Further provides other suggestions once you have created a network.

https://docs.silabs.com/wisun/1.8.0/wisun-getting-started-going-further

Going Further

50/602

Going Further

Going Further
After creating a Wi-SUN Network, this section is a guide toward the next steps in exploring the S ilicon Labs Wi-SUN

solution.

Wi-SUN Border Router GUI: Under Wi-SUN Border Router, this section presents the Wi-SUN Border Router Dashboard that

can be used to configure the Wi-SUN Linux Border router and visualize the Wi-SUN Network.

Development Tools: The development tools below are provided within S implicity Studio as well as third party.

Gecko Platform

The Gecko Platform is a set of drivers and other lower layer features that interact directly with S ilicon Labs chips and

modules. Gecko Platform components include EMLIB, EMDRV, RAIL Library, NVM3, and MbedTLS. For more information

about Gecko Platform, see release notes that can be found in SSv5’s Documentation tab, as well as online API

documentation at https://docs.silabs.com/.

Simplicity Commander

S implicity Commander is a single, all-purpose tool to be used in a production environment. It is invoked using a simple

Command Line Interface (CLI) that is also scriptable. S implicity Commander enables customers to complete essential tasks

such as configuring and building applications and bootloaders and flashing images to their devices. S implicity Commander is

available through S implicity Studio or can be downloaded through system-specific installers. The Simplicity Commander

User's Guide (PDF) provides more information.

https://docs.silabs.com/wisun/1.8.0/wisun-border-router-gui
https://docs.silabs.com/
https://www.silabs.com/developers/mcu-programming-options#programming
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Going Further

51/602

Pin Tool

S implicity Studio 5 offers a Pin Tool that allows you to easily configure new peripherals or change the properties of existing

ones. In the Project Configurator SOFTWARE COMPONENTS tab, expand the Advanced Configurators group and open the

Pin Tool. The graphical view differs based on the chip.

Going Further

52/602

The pin, function, and peripheral tabs in the configuration pane provide different modes of access. A search function also

provided.

Use the Pin Tool to modify the pin configuration of the device. Software components control behavior in the project but

must be associated with a peripheral, and generally need pin or function assignments. These pin or function assignments are

most easily edited in the Component Editor for that component. The Pin Tool allows you to assign functions to pins. On all

three dialogs, click EDIT next to a software component to go directly to the Component Editor for that component. Click

NEW to go to the Project Configurator's SOFTWARE COMPONENTS tab, where you can install a component in the project

so that it can be selected in the dialog.

For more information see the S implicity Studio 5 User's Guide Pin Tool section.

Network Analyzer

S ilicon Labs Network Analyzer is a packet capture and debugging tool that can be used to debug connectivity between

wireless nodes running Wi-SUN stack on EFR32 platform. It significantly accelerates the network and application

development process with graphical views of network traffic, activity, and duration.

The Packet Trace application captures the packets directly from the Packet Trace Interface (PTI) available on the Wireless

Gecko SoCs and modules. It therefore provides a more accurate capture of the packets compared to air-based capture.

To capture Wi-SUN packets using the S ilicon Labs Network Analyzer, in the Debug Adapters view, first make sure you are

connected and then right-click the device that is running on a Wi-SUN network and select Start capture.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/pin-tool

Going Further

53/602

You should now be able to see the Wi-SUN traffic as shown below. Click the packets to see more details about its

contents in the Event Detail view (on the right).

Going Further

54/602

In the current state, the Network Analyzer does not decrypt the Wi-SUN Upper Layer Application Data. To decrypt the

packet and analyze the complete payload including the data, refer to UG495: S ilicon Labs Wi-SUN Developer’s Guide.

Wireshark

Wireshark is the recommended network protocol analyzer for the use with Wi-SUN networks. Download instructions are

provided for Windows/Mac users or Linux users. S implicity Studio® 5 supports live interaction between the application

running on a S ilicon Labs device and Wireshark.

Silicon Labs Configurator �SLC�

SLC offers command-line access to application configuration and generation functions. Software Project Generation and

Configuration with SLC-CLI provides instructions on downloading and using the SLC-CLI tool.

IAR IDE

To get a 30-day evaluation license for IAR-EWARM:

 Go to the S ilicon Labs support portal at https://www.silabs.com/support.

 Scroll down to the bottom of the page, and click Contact Support.

 If you are not already signed in, sign in.

 Click the Software Releases tab. In the View list select Development Tools. Click Go. In the results is a link to the IAR-

EWARM version named in the release notes.

 Download the IAR package (takes approximately 1 hour).

 Install IAR.

 In the IAR License Wizard, click Register with IAR Systems to get an evaluation license.

 Complete the registration and IAR will provide a 30-day evaluation license.

 Once IAR-EWARM is installed, the next time S implicity Studio starts it will automatically detect and configure the IDE to use

IAR-EWARM.

https://jp.silabs.com/documents/public/user-guides/ug495-wi-sun-developers-guide.pdf
https://www.wireshark.org/download.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-wireshark
https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf
https://www.silabs.com/support

Overview

55/602

Overview

Wi-SUN Development Walkthrough
The purpose of this Wi-SUN Development Walkthrough is to help Wi-SUN application developers start their application

development based on Wi-SUN SoC Empty, and to build a final production-ready application, after initial evaluation of the

Wi-SUN example applications.

The Development Walkthrough is organized in the following sections:

Build an Application and Connect to a Wi-SUN Network

Wi-SUN API Calls to Connect to a Wi-SUN Network

Add a Custom Application to a Wi-SUN Network

Add OTA DFU (Over-The-Air Device Firmware Upgrade) Capability

S ilicon Labs expects that developers have evaluated some of the Wi-SUN example applications prior to beginning this

walkthrough to get a basic understanding of Wi-SUN. These applications are available in S implicity Studio through the

Launcher perspective on the EXAMPLE PROJECTS & DEMOS tab. The intended uses of these Wi-SUN example

applications are:

An application to build a stand-alone Wi-SUN Border Router on an evaluation kit

Wi-SUN - SoC Border Router

Also available as a 'demo' in binary format for easy evaluation. It is convenient for quick testing, while being limited in

terms of features. Moving to the Linux Border Router (below) is recommended to start communicating with the Wi-SUN

network from the outside.

An application to build a Linux Wi-SUN Border Router using an evaluation kit as the RCP (Radio Co-Processor) and a Linux

platform as the host (more details on the Linux Border Router on G itHub for wsbrd and the corresponding GUI).

Wi-SUN - RCP

Also available as a 'demo' in binary format for easy evaluation

An application to test most Wi-SUN Stack API commands: Wi-SUN - CLI example

Also available as a 'demo' in binary format for easy evaluation

Each Radio Board has a matching 'demo' binary, depending on its Frequency Band. This means all PHYs will not be

available for a given Radio Board, only the ones compatible with the Radio Board Frequency Band.

Applications to evaluate Wi-SUN

ping

Wi-SUN - SoC Ping

TCP

Wi-SUN - SoC TCP CLient

Wi-SUN - SoC TCP Server

UDP

Wi-SUN - SoC UDP CLient

Wi-SUN - SoC UDP Server

Wi-SUN - SoC UDP Meter

Wi-SUN - SoC UDP Collector

CoAP

Wi-SUN - SoC CoAP Meter

Wi-SUN - SoC CoAP Collector

Network Performance (ping/iperf)

Wi-SUN SoC Network Measurement

Also available as a 'demo' in binary format for easy evaluation

An application to start final development, after the evaluation phase is complete

Wi-SUN Soc Empty

These applications allow quick evaluation of Wi-SUN without the need to compile anything for the first level of testing,

thanks to the pre-compiled 'demo' binaries. Applications not delivered as binaries can be created easily, built, and flashed to

https://docs.silabs.com/wisun/1.8.0/wisun-building-connecting/index
https://docs.silabs.com/wisun/1.8.0/wisun-connection-details/index
https://docs.silabs.com/wisun/1.8.0/wisun-custom-application/index
https://docs.silabs.com/wisun/1.8.0/wisun-ota-dfu/index
https://github.com/SiliconLabs/wisun-br-linux
https://github.com/SiliconLabs/wisun-br-gui
https://docs.silabs.com/wisun/latest/wisun-stack-api/

Overview

56/602

the evaluation kits.

After this evaluation phase is achieved, actual application development starts, based on the minimal Wi-SUN SoC Empty

example application. It is minimal is the sense that it allows connecting to the Wi-SUN network and doesn't contain

application code, which will be added by the customer.

Build and Connect

57/602

Build and Connect

Build Wi-SUN - SoC Empty and Connect to any Wi-
SUN Network
The Development Walkthrough begins with S implicity Studio.

Starting Simplicity Studio

It is best to keep the code separate from other projects for the sake of clarity. For this reason, start by creating a

Development_Walkthrough folder to serve as a workspace folder for S implicity Studio.

In Windows, the default path for S implicity Studio workspaces is C:\Users\username\SimplicityStudio , so create

C:\Users\username\SimplicityStudio\Development_Walkthrough .

Now, start S implicity Studio and switch to the workspace, if not already selected, by selecting File > Switch Workspace.

Once in the new workspace, you see the S implicity Studio Welcome Screen.

Build and Connect

58/602

Connecting a Wi-SUN Development Kit

At this point, you have no Adapter Board connected, so fit a Wi-SUN compatible Radio Board to a S ilicon Labs WSTK/WPK

from a Wi-SUN Development K it and plug it into a USB port on the PC to get it displayed in the Debug Adapters frame.

You can expand the Adapter information to check the kit's information, including the Radio Board reference, the exact part

number, and the Main board information.

https://www.silabs.com/wireless/wi-sun?tab=kits

Build and Connect

59/602

TIP: Additional information on the Wi-SUN kits is available on the S ilicon Labs Wi-SUN webpage.

Creating the Wi-SUN - SoC Empty Application

Wi-SUN - SoC Empty is the recommended application to start development from, since it contains the necessary resources

to easily connect Wi-SUN devices to any Wi-SUN network.

In this example:

Use console printf calls to help follow the application progress. It makes application development easier to get console

traces. Any C developer will know how to make these optional in a 'release' build, if required, although minimal traces are

always helpful for maintenance reasons, if only to display the application and version information at startup.

Don't add a CLI (Command Line Interface) through the console, because:

In a Wi-SUN network, the only access to the devices is through the Wi-SUN network itself.

Generally, access to a device console will not be possible. It requires physical access to the device.

Not adding a CLI makes the console impossible to use to take control of the device, making the application more secure.

TIP: A typical WI-SUN device also requires OTA DFU capability for updates/upgrades. S ilicon Labs recommends

adding OTA DFU once the Wi-SUN SoC Empty application is working as expected.

After connecting a Wi-SUN Development K it and selecting it, S implicity Studio opens the perspective, where

information on the selected Adapter is displayed, and S implicity Studio is ready to help create matching projects.

S implicity Studio only displays information relevant to the context it is in, so here, because the target Debug Adapter is

selected, it shows the Launcher perspective and the OVERVIEW tab for the evaluation kit. You also have easy access to

the corresponding documentation and tools.

https://www.silabs.com/wireless/wi-sun?tab=kits
https://docs.silabs.com/wisun/1.8.0/wisun-ota-dfu/index

Build and Connect

60/602

TIP: When the General Information box indicates the need to update the Adapter FW or the Secure FW to

newer versions, it is recommended to do so. New releases generally improve stability.

Build and Connect

61/602

To get started with the Wi-SUN SoC Empty application, select the EXAMPLE PROJECTS & DEMOS tab, still in the Launcher

perspective, and wait for S implicity Studio to display the examples. It can take a couple seconds.

Build and Connect

62/602

Filter the projects by clicking the following items:

Under Wireless Technology: Wi-SUN

Under Device Type: SoC

To further limit to items containing 'empty', type 'empty' in the Filter on keywords box, and press Enter.

Build and Connect

63/602

This makes it easy to locate the Wi-SUN - SoC Empty project.

Now click CREATE in the Wi-SUN - SoC Empty box to start creating your project.

Build and Connect

64/602

S ince you are happy with the default project name and location, click FINISH to create the project.

TIP: An alternate path to project creation is File > New > Silicon Labs Project Wizard. If you use this path after

selecting your development kit in the Debug Adapter window, the settings will be pre-filled for it as well. You

will be at the Target/SDK selection step in this case, two steps higher in the process than the

Configuration step above (). When using the Launcher path just described, you can still click

the Back button twice to go back to the Target/SDK selection step, which allows you to select an IDE (to edit

your code) and a toolchain (to compile your code) if the default IDE (S implicity IDE) and toolchain (GNU ARM)

are not what you want to use.

Notes on the 'With project files' Options

Part of the code in the application is the Wi-SUN Stack. This is delivered as pre-compiled libraries matching each

Stack_application/Part/Compiler/Configuration combination. Customers don't have access to the source code for this part, to

keep it under control by S ilicon Labs. It's complex, and the Wi-SUN stack developers are responsible for keeping it working

and up to date, and they add new features over time. These will be linked with the rest of the object files in the project. You

will check this after compiling your first project.

Another part of the code is the GSDK (Gecko Software Development K it) code which is common to all projects. Customers

are given access to this code. When a new project is created in your workspace, the preferred method consists of creating

symbolic links to those 'sdk' sources, to save space and allow updating the GSDK version in the future. It ensures that all the

projects use the same Wi-SUN Stack code, and it can be easily updated.

The final part of the code is the application code. Customers need to add their own application code there. The preferred

method here is to copy the 'project sources' code from the GSDK to your project's folder, such that changing it will keep

changes local to your project. This is why the default option is Link sdk and copy project sources, which is fine for most

cases.

Build and Connect

65/602

Created Project

Once project creation is complete, S implicity Studio switches to the perspective (see the top-right corner),

and is ready for project configuration and compilation.

Build and Connect

66/602

Three tabs are present in this perspective:

Wi-SUN Configurator: Used to set your Network / Security / Radio options via three tabs.

TIP: You can always get access to the Wi-SUN Configurator by double-clicking on config/wisun/wisun_settings.wisunconf , if

you ever close it.

wisun_soc_empty.slcp: Your access to the previous view with the Overview / Software Components / Configuration Tools

tabs.

TIP: S imilarly, you can always access this tab by double-clicking on the wisun_soc_empty.slcp file in the Project Explorer

tab.

readme.md: The project's documentation, with links to the Quick Start guide and additional details on docs.silabs.com.

TIP: Open the readme .md file in the Project Explorer tab to re-open it.

You can see the pre-compiled libraries, which will be linked with your object files.

https://docs.silabs.com/wisun/latest/wisun-start/

Build and Connect

67/602

Project Explorer

Now look at what you have in your Project Explorer view when selecting the project.

Build and Connect

68/602

This matches the files in your workspace folder, since it's a file view. Note that, if using the Show hidden files, folders, and

drives folder option in Windows, you also see the .* folders and files below.

Project Sub-Folders

includes contains links to the sdk and stack API header files relevant to your project.

autogen contains all files copied from the GSDK which contain the application code you may want to customize, plus

component configuration files.

config contains the files giving access to the Wi-SUN Configurator and to the RAIL configuration, plus some low-level stack

configuration files.

gecko_sdk_x.y.z contains links to the GSDK files required by your project. Only links to files relevant to your use case are

included, not the entire GSDK.

TIP: If you want to modify one of the GSDK files, the IDE will ask you whether you want to edit the GSDK file

or create a copy of the file (i.e. replacing the symbolic link to the file by a copy of the file). With the first option,

changes you make will be shared with all other projects, and possibly lost with GSDK updates. The second

option will keep your changes local to the current project.

Build and Connect

69/602

Using Git to Track Changes

For the sake of documenting/understanding what happens when you act on your project and tracking changes, S ilicon Labs

recommends using G it to track changes.

The following actions are required for this:

 Open a G it Bash command window in the Development_Walkthrough/wisun_soc_empty folder.

 Make it a G it-controlled folder using git init .

 Copy the gitignore file to this folder and rename it to .gitignore . This is to avoid tracking object files, git files. Renaming the

file is necessary to include this git-specific file to this documentation.

 Use git config core .autocrlf false to avoid changing the line endings.

 Use git add --all to add all selected files to git.

 Use git commit -m "Initial Commit" to commit the initial files.

TIP: Later on, opening the Development_Walkthrough/wisun_soc_empty folder with Visual Studio Code is a nice way

to get access to a revision control interface, for those not familiar with git's command line.

First Compilation

Back to S implicity Studio's Simplicity IDE perspective, with your project selected, build your project with all settings by

default.

TIP: Click either on the project or in any of its opened files to select it. Check that it's the current project in the

top bar.

TIP: Open the Progress view to check what S implicity Studio is working on, and check when compilation is

complete. Undock this window and move it next to S implicity Studio to see progress at any time, while reducing

the window dimensions. For multi-screen users, move it to a second screen.

Build and Connect

70/602

Time to Build

Use Project > Build Project to launch your first build of the project.

Build and Connect

71/602

Hopefully, the project compiles without errors. S ince this was a first-time full build, it takes approximately 1 min. Subsequent

builds are generally smaller, if only adding minor changes to a couple files (only files impacted by the changes are

recompiled).

What Happened

Build and Connect

72/602

Two new folders were added to your project folder:

Binaries contains the executable files in various formats.

GNU ARM vx.y.z - Default contains all the .o files corresponding to the .c files compiled. There are a lot of files in there,

but you don't need to look at them. It's a storage area for the compiler.

The Console window shows the results of the compilation.

This is where you will need to check for any compilation issue.

Build and Connect

73/602

You can see all 'build' commands (there are many, one per .c files) starting with:

Invoking: GNU ARM C Compiler

arm-none-eabi-gcc ...

You can see the 'link' command (there is only one link command) starting with:

Invoking: GNU ARM C Linker

arm-none-eabi-gcc ...

Build and Connect

74/602

You can see the creation of all binary files (those stored in Binaries):

Building target: wisun_soc_empty.axf

Invoking: GNU ARM C Linker

arm-none-eabi-gcc -g3 -gdwarf-2 -mcpu=cortex-m33 -mthumb ...

Finished building target: wisun_soc_empty.axf

Building out file: wisun_soc_empty.out

arm-none-eabi-objcopy "wisun_soc_empty.axf" "wisun_soc_empty.out"

Building hex file: wisun_soc_empty.hex

arm-none-eabi-objcopy �O ihex "wisun_soc_empty.axf" "wisun_soc_empty.hex"

Building bin file: wisun_soc_empty.bin

arm-none-eabi-objcopy �O binary "wisun_soc_empty.axf" "wisun_soc_empty.bin"

Building s37 file: wisun_soc_empty.s37

arm-none-eabi-objcopy �O srec "wisun_soc_empty.axf" "wisun_soc_empty.s37"

Last, a check is done on the code size using the arm-none-eabi-size tool:

Running size tool

arm-none-eabi-size "wisun_soc_empty.axf" �A

wisun_soc_empty.axf :

section size addr

.text 617712 134217728

.ARM.exidx 8 134835440

.copy.table 12 134835448

.zero.table 0 134835460

.stack 4096 536870912

.data 4728 536875008

.bss 30836 536879736

text_application_ram 0 536910572

.heap 54272 536910576

.nvm 40960 134835460

.ARM.attributes 54 0

.comment 69 0

.debug_line_str 713 0

.debug_info 3207643 0

.debug_abbrev 257437 0

.debug_loc 630169 0

.debug_aranges 44648 0

.debug_ranges 25360 0

.debug_line 1059997 0

.debug_str 365703 0

.debug_frame 147496 0

.debug_loclists 362184 0

.debug_rnglists 36380 0

Total 6890477

TIP: To find the FLASH footprint of your application, add .text to .data . For the RAM usage, add .bss to .data

(.data is used in both cases since it is copied from FLASH to RAM before execution).

You can run this same command on the .axf file whenever you want. arm-none-eabi-size .exe is normally installed with

S implicity Studio, under C:\SiliconLabs\SimplicityStudio\v5\developer\too lchains\gnu_arm\12.2.rel1_2023.7\bin (the gnu_arm release

may vary).

Build and Connect

75/602

TIP: To get the values displayed in hex, use the '-x' flag. This can be convenient to understand where each

piece of code will reside in Flash.

Checking the Linker Command

In the linker command, you can see several interesting things.

The command line is very long, so only an abstract is provided below, with line breaks for easier reading.

Invoking: GNU ARM C Linker

arm-none-eabi-gcc

 -g3

 -gdwarf-2

 -mcpu=cortex-m33

 -mthumb

 �T "C�\Users\username\SimplicityStudio\Development_Walkthrough\wisun_soc_empty\autogen\linkerfile.ld"

�Xlinker

 --gc-sections

 �Xlinker

 �Map="wisun_soc_empty.map"

 -mfpu=fpv5-sp-d16

 -mfloat-abi=hard

 --specs=nano.specs

 -o wisun_soc_empty.axf

 �Wl,--start-group "./app.o" "./app_init.o" "./main.o"... <all `.o` files having been previously compiled from `.c` files>

"C�/Users/username/SimplicityStudio/SDKs/gecko_sdk/platform/emdrv/nvm3/lib/libnvm3_CM33_gcc.a"

"C�/Users/username/SimplicityStudio/SDKs/gecko_sdk/platform/radio/rail_lib/autogen/librail_release/librail_efr32xg25_gcc_release.a"

"C�/Users/username/SimplicityStudio/SDKs/gecko_sdk/protocol/wisun/stack/libwisun_router_efr32xg2x_micriumos_gcc_debug.a"

 -lgcc -lc -lm -lnosys �Wl,--end-group �Wl,--start-group -lgcc -lc -lnosys �Wl,--end-group

All linker configuration flags (refer to GCC GNU DOC for details on these flags).

Among these, you see that, by default, S implicity Studio compiles with -g3 , which means 'optimize for debugging'.

The name of the linked file, here -o wisun_soc_empty.axf .

You see in the Console output that the other binary files are copied from this file using various arm-none-eabi-objcopy

options.

A very long list of all .o files, compiled from your project's .c files.

Three .a files matching your project's configuration. These correspond to pre-compiled libraries found in various libraries:

The NVM library libnvm3_CM33_gcc.a

The RAIL library for your hardware librail_efr32xg25_gcc_release .a

The Wi-SUN library managed by S ilicon Labs R&D: libwisun_router_efr32xg2x_micriumos_gcc_debug.a

Looking in C:/Users/username/SimplicityStudio/SDKs/gecko_sdk/protoco l/wisun/stack/ , you see that there is a dedicated pre-

compiled library per device_type/part/OS/Compiler/debug_or_release. Here, you linked with the library matching your

project's default configuration.

Flashing the Binary to the Adapter Board

To run the binary you just compiled, you need to flash (copy) it to your Radio Board, with the following steps.

Open the Serial 1 UART Console

 In the Debug Adapters frame, select the Radio Board.

 Select Launch Console to open a communication console with the Adapter Board.

https://gcc.gnu.org/onlinedocs/

Build and Connect

76/602

A new tab will open, with the name of the J-Link adapter and it's ID.

 In this new tab, select the Serial 1 tab to access the application's UART console. This will show all strings printed from the

application using printf() .

TIP: Strings printed by the Wi-SUN Stack will not be sent to the Serial 1 console. These are accessible as

RTT traces, using J-Link RTT Viewer.

When the Serial 1 console opens, it's in a non-connected state by default, as shown by the small icon in the bottom left

corner.

 Select the console's text area and press Enter to connect to the application. The icon changes to indicate a connected

state.

Build and Connect

77/602

The Console is now connected. You can flash your application, but you need to start a Border Router first to be able to

connect over your Wi-SUN network.

TIP: Having the Serial 1 console ready to print the application output is important to check messages indicating

proper application start. Most example applications will display the application's name at startup.

Time to Start a Border Router Demo

To make your development walkthrough more pleasant, it's time now to start a Border Router with default settings, such

that your Empty application will be able to connect to an existing Wi-SUN network.

 Plug a second Development K it.

 Select it in the Debug Adapters view.

 As above, open the Serial 1 console for this Development K it.

 Drag and drop the new console to the left side of the first one to see them side by side.

 Click Enter in the new console to connect the UART.

 Click Launcher at the top right to open the Launcher perspective.

 Select the EXAMPLE PROJECTS AND DEMOS.

 Leave only Demos selected.

 Filter on Wi-SUN.

 Filter on SoC.

Only three applications match.

 Move to the Wi-SUN - SoC Border Router frame and click RUN.

Build and Connect

78/602

This immediately triggers flashing the corresponding pre-compiled binary to the target.

Build and Connect

79/602

 Go back to the Simplicity IDE perspective.

 Check the Border Router Demo console, which should show the Border Router CLI initial message.

 In this console, use wisun start_fan11 to start the Border Router with default FAN1.1 settings.

Flashing the Binary

 In the Project Explorer view select the wisun_soc_empty project, open the Binaries folder and right-click the .s37 file.

 Select Flash To Device.

Build and Connect

80/602

 Select the device. Make sure not to select the one used as a Border Router.

TIP: For a first flash of a new application on a Radio Board where other application may have been running

before, use the Erase button to clear any data possibly stored in flash. A progress bar appears and closes

when done.

Build and Connect

81/602

 Use the Program button to flash the selected binary. A progress bar appears and closes when done.

Build and Connect

82/602

 Close the Flash Programmer window.

Verifying Console Output

The Device Console now shows the startup message.

The name of the application is printed.

This comes from app.c/app_task() , the entry point for the application code.

Build and Connect

83/602

Then, you see the first message generated by the application: [Jo in state : Select PAN (1)]

This comes from the Application Core component, which is tracking join state change events.

A similar message will be printed every time the join state will change.

TIP: When a component is present in the project, the corresponding code is shown with normal colors. If a

component is not present, the corresponding code is grayed out in the editor, meaning that it is not compiled

and can be ignored.

Here, the fact that the sl_wisun_on_event() function (lines 32-72) is grayed out indicates that this code is not compiled,

meaning that SL_CATALOG_WISUN_EVENT_MGR_PRESENT is not defined.

This means that the Wi-SUN Event Manager component is not installed in your project.

S imilarly, the fact that the app_wisun_connect_and_wait() function call (line 84) is displayed with normal colors indicates that

this code is compiled, meaning that SL_CATALOG_WISUN_APP_CORE_PRESENT is defined.

This means that the Wi-SUN Application Core component is installed in your project.

Last, you see a message coming from the application indicating the name of the Wi-SUN network that you are trying to

connect to.

If a Wi-SUN Border Router is within range with a Wi-SUN network named Wi-SUN Network and the same PHY settings as

your application defaults, you will connect.

Tracking the Connection Message

For users not familiar with S implicity Studio and C code in general, the following are some elementary code checks:

In app.c/app_task() , you see that there is a call to app_wisun_connect_and_wait(); on line 84.

Select app_wisun_connect_and_wait and right-click to get access to the declaration of this function.

Build and Connect

84/602

You end up in /wisun_soc_empty/gecko_sdk_x.y.z/app/wisun/component/app_core/sl_wisun_app_core_util.c , in the code implementing

app_wisun_connect_and_wait() on lines 90-94.

You find two function calls here. G iven the function names, you get a pretty good idea of what they do. S ince the

Connecting to... message probably comes from app_wisun_network_connect() , look for it's declaration as well.

You end up in /wisun_soc_empty/gecko_sdk_x.y.z/app/wisun/component/app_core/sl_wisun_app_core .c/app_wisun_network_connect() ,

which is a longer function (lines 389-454).

Build and Connect

85/602

You can find the Connecting to message on line 448.

While you are looking at app_wisun_network_connect() , you can see that there are several steps during the connection

preparation:

Preparation of the PHY and network settings

Check of the current join state

Setting the network settings (to your project defaults)

Setting Security

Build and Connect

86/602

So far, rely on the application components (i.e. Wi-SUN Application Core here) to do that.

More details on this later.

An alternative method to follow the function calls is to use the Open Call hierarchy for the app_wisun_connect_and_wait()

function.

The Call Hierarchy view proposes two modes, selectable using the 'tree' icons.

The Show Callers view shows which functions are calling app_wisun_connect_and_wait() :

Here, a single function: app_task() , as you've already seen.

Using the Call Hierarchy, you are now sure that app_wisun_connect_and_wait() is called from a single location, information

you didn't have before.

The Show Callees view shows which functions are called by app_wisun_connect_and_wait() :

Here, two functions are called, as you've already seen:

app_wisun_network_connect()

app_wisun_wait_for_connection()

Using the Call Hierarchy, you can expand app_wisun_network_connect() and check which functions it calls.

Build and Connect

87/602

This view still shows that app_wisun_network_connect() calls printf , the function called to print your message.

TIP: Depending on the user, everyone prefers a method to find the call hierarchy based on personal

preferences and the situation. The method above proposes two ways to follow the function calls in a Wi-SUN

application.

TIP: When going down the call hierarchy, you will end in a situation where you can't go further and are left with

the definition of a given function in a header file. It means that you have reached the tip of the Wi-SUN Stack

API, that part of the Wi-SUN code which is under the responsibility of S ilicon Labs R&D and where you don't

have access to the source code.

GSDK Code vs User Code

TIP: All files under /wisun_soc_empty/gecko_sdk_x.y.z/ are GSDK files, common to all projects. Consider that for all

your projects, /<pro ject_name>/gecko_sdk_x.y.z/ is the same content. This is why there are blocks of code

conditionally compiled depending on the project's configuration (settings and components). These files should

normally not be modified. User code and changes should stay out of <pro ject_name>/gecko_sdk_x.y.z/ , since

changing this code will impact all your projects the next time you build them.

What Has Changed

If you started using G it, it's time to check the changes and commit the current state before proceeding.

Using git status , you see that no change has been made to the settings and source files. S ince, thanks to the .gitignore

file, many files generated at compilation time are not tracked (they would otherwise change on most commits), you can use

G it to track your settings changes.

Use:

git add --all to 'stage' the changes (i.e. get them ready for committing).

git commit -m "All defaults" to commit the changes (i.e save them to the repository) with a commit message.

Build and Connect

88/602

Checking the Wi-SUN Connection

While you were looking at the source code, time passed and there is a good chance that your device connected to the Wi-

SUN Border Router. This should be visible in the Device's Serial 1 console.

The Wi-SUN connection took 86 seconds. This is extremely variable in a Wi-SUN environment, and depends on the network

settings. Detailed connection times are provided in AN1330: S ilicon Labs Wi-SUN Mesh Network Performance.

Once connected, the IPv6 addresses are displayed:

GLOBAL is the device's IPv6 to connect to it from anywhere, provided that IPv6 forwarding is allowed on the Border

Router, which is not the case with the Border Router SoC Demo. To test pinging the device from the Border Router, S ilicon

Labs recommends our open source Linux Border Router.

LINK_LOCAL is the device's IPv6 address to communicate with its neighbors.

BORDER_ROUTER is the Border Router's IPv6 address. You can check this on the Border Router Demo using 'wisun get

wisun.ip_addresses'. It is listed as the 'dodagid' address.

What's Next

If you achieved a Wi-SUN connection, everything is fine in terms of Wi-SUN connectivity. The Wi-SUN stack will now

maintain the connection, using the self-healing features of Wi-SUN to select an alternative path if the current parent fails

or if there is a better option.

You can flash exactly the same application to many similar Adapter Boards. They will all end up connected to the Wi-SUN

network. If you move the devices apart or you start more devices than what the Border Router can support directly, they

will start creating hops to connect to the Border Router.

Basically, you have a working Wi-SUN network where you can add your custom application code to do whatever you need

to.

There are still, however, a number of limitations in this approach:

All devices use the same security credentials. In production devices, each device should have its own set of device

key/device certificate.

You didn't control the network name.

You used the default PHY settings (with lowest throughput).

You may not be using a PHY matching your region, so you may be transmitting in a forbidden frequency band.

It's time to learn how to check and change the settings, and then how to add your custom application.

Checking and Changing the Settings

Border Router Settings

To illustrate how to change the settings, using something different from the defaults

regulatory_domain/chan_plan_ id/phy_mode_ id (NA/1/2 in our example), you will use BZ/3/8 and name your network 'BZ_3_8'.

https://www.silabs.com/documents/public/application-notes/an1330-wi-sun-network-performance.pdf
https://github.com/SiliconLabs/wisun-br-linux

Build and Connect

89/602

Note: The previous steps are valid for all Wi-SUN development kits, with default settings, because S implicity

Studio selected the proper libraries to match the Radio Boards. There are several frequency ranges used for

Wi-SUN, with only some valid for a given country. The first part of the Development Walkthrough used Radio

Boards with the 902-928 MHz frequency range valid for North America (NA), Mexico (MX), and Brazil (BZ).

Selecting BZ/3/8 is only possible when using Radio Boards for these regions. With 'EU' Radio Boards or any

other region, it is necessary to select a valid PHY for the Radio Boards to go through the following part.

Using the Wi-SUN Border Router Demo, use the following to change the settings.

Hardware reset on the Border Router (to stop the Border Router):

> Wi-SUN Border Router CLI Application

wisun get wisun.state

wisun.state = initialized (0)

TIP: If the wisun.state is not initialized (0) at this step, the new settings won't be applicable. Make sure you

reset the Border Router.

> wisun set wisun.regulatory_domain BZ

wisun.regulatory_domain = BZ

> wisun set wisun.chan_plan_id 3

wisun.chan_plan_id = 3

> wisun set wisun.phy_mode_id 8

wisun.phy_mode_id = 8

> wisun start_fan11

[Border router started]

> wisun get wisun.state

wisun.state = operational (1)

Wi-SUN Router Settings

Checks

First observe what you have by default:

 Open the Wi-SUN Configurator (double-click the .slcp file).

 Open the autogen/sl_wisun_config.h file, and move it aside to get a view on both.

 Open the config/wisun_settings.wisunconf file with the option Open With > Text Editor, and move it below to see it also.

In the Wi-SUN Configurator, the Application tab gives access to:

The network name, which corresponds to WISUN_CONFIG_NETWORK_NAME in autogen/sl_wisun_config.h and "networkName" in

config/wisun/wisun_settings.wisunconf

The network size, which corresponds to WISUN_CONFIG_NETWORK_SIZE in autogen/sl_wisun_config.h and "networkSize" in

config/wisun/wisun_settings.wisunconf

The device type, i.e. WISUN_CONFIG_DEVICE_TYPE

The broadcast retransmission, i.e. WISUN_CONFIG_BROADCAST_RETRIES

Build and Connect

90/602

No Tx Output Power in the files?

This is because the default GUI value is set to the code's default value (20 dBm). If you change the Tx Output Power in the

GUI, you will see new items added to the files:

WISUN_CONFIG_TX_POWER in autogen/sl_wisun_config.h and "txOutputPower" in config/wisun/wisun_settings.wisunconf

Build and Connect

91/602

A quick search for WISUN_CONFIG_TX_POWER will show how this is handled by

gecko_sdk_x.y.z/app/wisun/component/app_core/sl_wisun_app_core .c :

Build and Connect

92/602

TIP: The code default Tx Output Power is 20. As explained by the helptext, when you click the icon, the

actual output power is generally less than that. Indeed, for best MCS6 performance (OFDM MCS6 uses a 16-

QAM modulation) with EFR32xG25, do not go above 14 dBm to avoid clipping the outer edges of the

constellation and get better performances.

There are close relationships between:

Build and Connect

93/602

The GUI (the Wi-SUN Configurator)

It's control file config/wisun_settings.wisunconf

Some of the .h and .c files which you will ultimately use to compile your application

The Security tab gives access to:

The Device Private Key, i.e. wisun_config_device_private_key[];

You can see its current value by hovering over it, as shown above.

You can also right-click it and select Open Declaration. This opens autogen/sl_wisun_config.c , where

wisun_config_device_private_key[] is declared on lines 47-53.

You can check that the text string:

Is identical to the one in the GUI

Starts with -----BEGIN PRIVATE KEY-----

Ends with -----END PRIVATE KEY-----

The Device Certificate, i.e. wisun_config_device_certificate[];

The CA Certificate, i.e. wisun_config_ca_certificate[];

You can cross-check these three values.

TIP: As already stated, in a production application, these will need to be different per device. The CA certificate

Build and Connect

94/602

may be shared, but the Device key and certificate should be device-specific.

Open the config/rail/radio_settings.radioconf file with Open With > Text Editor, and move it in the same frame as

config/wisun/wisun_settings.wisunconf .

The Radio tab gives access to:

In the Selected Wi-SUN PHYs frame, the list of currently selected PHYs. Here, only the default NA - 1 -2 PHY is selected.

In the Application's Default PHY Configuration frame, the default PHY.

Obviously, this needs to be present in the selected PHYs, and in your case (using a single PHY) is also NA - 1 -2 .

In Reference PHYs, tools to select the PHYs.

Observing config/rail/radio_settings.radioconf , you can check that <phy_name_override> matches the select PHY.

Once again, you see some relationship between the GUI, the control files, and the file used to compile.

Changes

Now, change your Network name to BZ_3_8 in the Wi-SUN Configurator Application tab.

Build and Connect

95/602

You can see an * next to the Wi-SUN Configurator tab's name. This indicates that the settings are not saved yet.

No change to the other files (autogen/sl_wisun_config.h and config/wisun_settings.wisunconf).

Click the in S implicity Studio or 'Ctrl-s' to save your changes.

Build and Connect

96/602

Changes are propagated to both autogen/sl_wisun_config.h and config/wisun_settings.wisunconf .

Now move to the Radio tab, since you won't change the security settings yet.

On the right side of the Radio tab, you see that you have by default only the NA - 1 - 2 PHY in the list.

Now add the BZ - 3 -8 PHY.

 S lide left to see the Reference PHYs area.

 Select the FAN 1.1 radio button. This changes the content of the frame to match FAN 1.1 parameters.

 Select the Brazil (BZ - 0x07) option in the Regulatory Domain dropdown.

Build and Connect

97/602

You may have noticed that the list of possible PHYs at the bottom is now reduced to 'BZ' PHYs.

 Select phy_mode_id_8 in the PHY Operating Mode ID dropdown.

Build and Connect

98/602

The list of possible PHYs at the bottom is further reduced to only those with '8' as their PHY Operating Mode ID (a single

one).

 You can continue by selecting 3 (902-928MHz - Channel Spacing 600 kHz) in the Channel Plan ID list.

This is not really required, since the above operations were used to reduce the list of possible PHYs, making it easy to

select the desired PHY.

Build and Connect

99/602

Click the blue icon on the PHY line to add it to the Selected Wi-SUn PHYs list.

The icon you just clicked turns light gray, indicating that this PHY is already in the list.

A message is present in Selected Wi-SUN PHYs to indicate unsaved changes.

A message informs you that you should save your new configuration by clicking the Apply Configuration button.

Once saved, you can check in the config/rail/radio_settings.radioconf file that you now have two PHYs.

In most cases, your Wi-SUN device will be targeting a single PHY, so also delete the NA - 1 -2 PHY from the list, using

the icon. Confirm the deletion and save the configuration again.

Only one PHY is now in config/rail/radio_settings.radioconf , your 'BZ' PHY.

 A red box appears around the Default PHY, because the selected default is not part of the list anymore, so select FAN 1.1 |

BZ - 3 - 8 and save as instructed.

Build and Connect

100/602

 You can check in config/wisun/wisun_settings.wisunconf that your settings are now in the GUI control file, and also in

autogen/sl_wisun_config.h that the following items match your selection:

WISUN_CONFIG_DEFAULT_PHY_FAN11

WISUN_CONFIG_REGULATORY_DOMAIN

WISUN_CONFIG_CHANNEL_PLAN_ID

WISUN_CONFIG_PHY_MODE_ID

Now, you can rebuild your project, and it will attempt to connect to your new 'BZ_3_8" Wi-SUN network.

While it's compiling, you can use 'git status' in your project folder to see which files have been modified.

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: autogen/radioconf_generation_log.json

 modified: autogen/rail_config.c

 modified: autogen/rail_config.h

 modified: autogen/sl_wisun_config.h

 modified: config/rail/radio_settings.radioconf

 modified: config/wisun/wisun_settings.wisunconf

You can use 'git diff' on any of these files to see the actual modifications.

Build and Connect

101/602

$ git diff autogen/sl_wisun_config.h

diff --git a/autogen/sl_wisun_config.h b/autogen/sl_wisun_config.h

index 6c8cb63..3983737 100644

--- a/autogen/sl_wisun_config.h

+++ b/autogen/sl_wisun_config.h

@@ �41,7 �41,7 @@

 #endif

 //! Wi-SUN network name

-#define WISUN_CONFIG_NETWORK_NAME "Wi-SUN Network"

+#define WISUN_CONFIG_NETWORK_NAME "BZ_3_8"

 //! Wi-SUN network size

 #define WISUN_CONFIG_NETWORK_SIZE SL_WISUN_NETWORK_SIZE_SMALL

@@ �54,13 �54,13 @@ extern const sl_wisun_channel_mask_t wisun_config_allowed_channels_mask;

 #define WISUN_CONFIG_DEFAULT_PHY_FAN11 1

 //! Wi-SUN default PHY - Regulatory domain

-#define WISUN_CONFIG_REGULATORY_DOMAIN 1

+#define WISUN_CONFIG_REGULATORY_DOMAIN 7

 //! Wi-SUN default PHY - Channel Plan ID

-#define WISUN_CONFIG_CHANNEL_PLAN_ID 1

+#define WISUN_CONFIG_CHANNEL_PLAN_ID 3

 //! Wi-SUN default PHY - PHY Mode ID

-#define WISUN_CONFIG_PHY_MODE_ID 2

+#define WISUN_CONFIG_PHY_MODE_ID 8

 //! Wi-SUN Broadcast retries

 #define WISUN_CONFIG_BROADCAST_RETRIES 2

These are the expected changes.

Take a minute to flash your new application to the Router to see if it displays the new network name and can connect to

your new Wi-SUN network.

TIP: Before reloading, it's often useful to click the icon in the Serial 1 Console to clear old messages.

The most convenient feature in S implicity Studio to flash the same application after recompiling it is Redo last upload when

selecting a Debug Adapter.

TIP: You can even select multiple targets and trigger the last upload for all in a click. It will work even if the

binaries are different, reloading the previous binary for each target.

Build and Connect

102/602

TIP: Understand 'redo last upload' as 'reload the binary from the same location, with the same name'. If the

binary content changed (your case), it will be updated.

While it's connecting, you can go back to G it and commit your changes.

git add --all

git commit -m "After changing to BZ 3 8"

After this is done, you can track your next changes.

In the meantime, it connected!

If the device is connected to the Wi-SUN network, the Wi-SUN specific part of the application is complete.

Resources Once Wi-SUN SoC Empty is Connected

PING capability

Listening to IPv6 Broadcast addresses:

The following IPv6 addresses are ready to receive broadcast messages:

Scope IPv6 nanostack #define Send to

Link Local (= neighbors) FF02::1 ADDR_LINK_LOCAL_ALL_NODES BR + FFN (1 hop) + LFN (1 hop)

Build and Connect

103/602

Scope IPv6 nanostack #define Send to

Link Local (= neighbors) FF02::2 ADDR_LINK_LOCAL_ALL_ROUTERS BR + FFN (1 hop)

Realm Local (= all network) FF03::1 ADDR_REALM_LOCAL_ALL_NODES BR + FFN (n hops) + LFN (n hops)

Realm Local (= all network) FF03::2 ADDR_REALM_LOCAL_ALL_ROUTERS BR + FFN (n hops)

From this point, your device will:

Reconnect to your Wi-SUN network automatically in case it's powered down then up.

Regularly check for connection options within the surrounding Wi-SUN routers, and select a new parent if there is a better

one or the current parent goes down. That is the self-healing part of Wi-SUN.

Once connected, advertise the Wi-SUN network for other routers to connect, and become a parent for other devices if

need be.

If the Border Router goes down but another Border Router with the same Network name and credentials is within range,

connect to this Border Router.

Adding several Border Routers to a Wi-SUN network (with Ethernet IPv6 connectivity between such Border Routers) is a

good way to share the load within the network.

You can flash the same binary to several Evaluation kits. They will all connect in a tree-like fashion to the Border Router,

routers being direct children of the Border Router acting as parents for devices located further away, and so on.

As explained earlier, in a production environment the credentials will need to be unique per device, but for development

purposes, it is sufficient to use the same credentials for a number of devices.

TIP: On the Linux Border Router, you can use watch wsbrd_cli status to monitor the network topology. You can

also use the wsbrd GUI to get a graphical representation of this Wi-SUN network topology.

It's now time to look at the Wi-SUN connection process in detail.

https://github.com/SiliconLabs/wisun-br-gui
https://docs.silabs.com/wisun/1.8.0/wisun-connection-details/index

API Calls to Connect

104/602

API Calls to Connect

Wi-SUN API Calls to Connect to a Wi-SUN Network
In the first part of this series, you connected to a Wi-SUN Network without looking at how this is achieved.

Connection was easy because you relied on the Wi-SUN Configurator GUI and the underlying Wi-SUN Application Core

component.

This is a lecture on how the Wi-SUN Application Core component uses the Wi-SUN Stack API functions to achieve

successful connection. Key points to understand are:

Some general principles used when developing a Wi-SUN application

Details of the connection process

Wi-SUN Application Core Component

There are at least four ways to check that the Wi-SUN Application Core component is part of the project.

 Check the installed components in the SOFTWARE COMPONENT tab. You get access to an abstract of the component's

readme, indicating the use of app_wisun_core_init() to initialize it.

 Check the content of wisun_soc_empty.slcp with a text editor.

https://docs.silabs.com/wisun/1.8.0/wisun-building-connecting/index

API Calls to Connect

105/602

 In the source code, you can see that the main() function calls sl_system_init() , which calls sl_internal_app_init() , which calls

app_wisun_core_init() . This code is automatically added when adding the component via the GUI.

 In app.c/app_task() , you see that the code surrounded by SL_CATALOG_WISUN_APP_CORE_PRESENT is not grayed out, indicating

that SL_CATALOG_WISUN_APP_CORE_PRESENT is defined and the corresponding code will be compiled.

API Calls to Connect

106/602

The Wi-SUN Application Core component uses the Wi-SUN Configurator settings to achieve connection to a Wi-SUN

Network with only GUI actions. This is the simplest way to connect to any Wi-SUN Network.

Now consider which function calls are required to connect to a Wi-SUN Network.

Wi-SUN Network Connection Walkthrough

You saw earlier the connection process in /wisun_soc_empty/gecko_sdk_x.y.z/app/wisun/component/app_core/sl_wisun_app_core .c ,

with several steps during the connection preparation.

API Calls to Connect

107/602

Preparation of the PHY and Network Settings

The grayed out part is not compiled, so the code uses line 409.

memcpy(&_setting, &_app_default_settings, sizeof(app_setting_wisun_t));

This line copies the _app_default_settings into _setting , a app_setting_wisun_t structure defined earlier as:

/// Internal setting storage

static app_setting_wisun_t _setting = { 0 };

app_setting_wisun_t structure

You can check the declaration of the app_setting_wisun_t structure by selecting the Open Declaration menu item.

API Calls to Connect

108/602

This brings you higher up in /wisun_soc_empty/gecko_sdk_x.y.z/app/wisun/component/app_core/sl_wisun_app_core .c to the

declaration of the structure.

You can see here that the structure stores:

The network name (as a string, which always end up with an additional 0x00 byte as the string terminator, hence the + 1 in

the array definition)

The network_size

The Tx power

The device type

The LFN profile (only used for LFNs)

A flag indicating if the device is using the default PHY

Another sl_wisun_phy_config_t structure describing the PHY

TIP: You can also check the definition of a structure by hovering over it until a pop-up appears with the

definition.

sl_wisun_phy_config_t structure

API Calls to Connect

109/602

The sl_wisun_phy_config_t structure is a more complex union type, which requires clarification for people not familiar with C

coding.

A union is a place where several underlying structures can be stored, but to save memory, only one will be stored at a

time. In your example, you know which underlying structures can be used by looking at each struct {} <STRUCT_NAME>;

block. You can locate:

fan10 on lines 503-512

fan11 on lines 515-522

explicit on lines 525-534

Usually, unions start with a type information, here on line 499, which is used to select the underlying structure.

API Calls to Connect

110/602

In your example application, you're using fan11 , so the type will be set accordingly and the FAN 1.1 values will be accessed

as:

phy.fan11.reg_domain

phy.fan11.chan_plan_id

phy.fan11.phy_mode_id

if phy is a sl_wisun_phy_config_t

or

phy->fan11.reg_domain

phy->fan11.chan_plan_id

phy->fan11.phy_mode_id

if phy is a pointer to a sl_wisun_phy_config_t

TIP: When moving around files in S implicity Studio, use Alt+left_arrow or Alt+Right_arrow to move between

recent locations.

Check of the Current Join State

Back to app_wisun_network_connect() , you see that there is a check of the current join state. This is because, before calling

the join function, the device must be disconnected so that it properly starts using the new parameters and clears its state

machine.

Here it's worth looking at what the __CHECK_FOR_STATUS is doing, since you may see it used often. Use the pop-up since

it's relatively short.

You can understand looking at the macro definition that an error message will be printed with the error number when the

ret value is not 0x0000 , and if ret is 0x0000 , nothing will happen. If an error message will be printed, it will also contain

the name of the function from where it is originating, (here app_wisun_network_connect), as a replacement for the

__PRETTY_FUNCTION__ identifier. Defining macros such as these is a good way to avoid repeating the same code block in

your code. It makes the code more compact and less error prone (once the macros are properly tested).

TIP: Generally, in C code, specific identifiers such as those declared by the compilers are prefixed and suffixed

with __ . Avoid using this in your own variable names to avoid confusion. Here, using the C++

API Calls to Connect

111/602

__PRETTY_FUNCTION__ is not necessary, since the code is compiled as C code, not C++. Using __FUNCTION__ is

sufficient.

_app_wisun_mutex_acquire() and _return_and_mtx_release()

You see _app_wisun_mutex_acquire() and _return_and_mtx_release() in the code around some code blocks.

The _app_wisun_mutex_acquire() name is a bit more explicit. It indicates that you are acquiring a 'mutex', i.e, a mutual-

exclusion flag. This is commonly used in C code when several parts of the code (from different threads) may need to

access common variables.

Whenever the code needs to access such data, you want to make sure no other function is changing it at the same time,

which could lead to unexpected results.

When calling _app_wisun_mutex_acquire() , you're waiting for the number of current users of the flag to be 0 . Until the flag is

0 , you wait. Once it is 0 , the underlying system sets it to 1 and gives you the access. From this point on, you 'own' the

mutex flag and the right to access the shared data.

This means that, if you never release it, all other users (including yourself) will never get access to the shared data!

When you're done, release the mutex by calling _return_and_mtx_release() , which, if you look into it, starts by releasing the

mutex and then returns.

A typical pattern when using a mutex is:

Acquiring the mutex at the beginning of the function (as you see here on line 354)

Releasing the mutex before every return

TIP: You can see several occurrences of _return_and_mtx_release() in a single function, because you need to

release the mutex before returning. To achieve this, all return calls are replaced by _return_and_mtx_release() on

every place in the function where you return from.

Filling the Network Settings

Next you get to the application settings, on line 379.

You see here that the code calls _app_wisun_application_setting with the content of _setting from the preparation of the

PHY and Network settings.

Now look into this function (only showing code which is not grayed out, i.e. compiled code).

API Calls to Connect

112/602

On line 605, the sl_wisun_get_conn_param_by_nw_size() function is called to set the conn_param structure with values

matching the network size selected by the user.

conn_param is a sl_wisun_connection_params_t structure (declared on line 600), defined as:

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-connection-params-t

API Calls to Connect

113/602

As you can see, there are several underlying structures, used to store:

discovery parameters

configuration parameters

eapol parameters

rpl parameters

misc parameters

Your current Network Size setting is Small.

sl_wisun_get_conn_param_by_nw_size simply selects the corresponding settings based on this selection:

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-discovery
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-configuration
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-eapol
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-rpl
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-misc

API Calls to Connect

114/602

In the declaration of SL_WISUN_PARAMS_PROFILE_SMALL , you see all parameters and their values.

TIP: By default, the Wi-SUN Stack API defines three Network S izes for general use: SMALL, MEDIUM, and

LARGE. Each set of parameters corresponds to a good compromise for most applications. The application may

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-params-predefined-profiles

API Calls to Connect

115/602

customize these or add more if required; it's up to the user. An application not using the Wi-SUN Application

Core component will need to define its own sl_wisun_connection_params_t structure.

TIP: If you want to customize the connection parameters and start editing the file, S implicity Studio will ask you

whether you want to create a copy of the file inside your project or edit the GSDK file. (Remember that GSDK

files are normally only logical links to the GSDK files.) If you opt for the copy, the logical link will be replaced by

a copy of the GSDK file, and your changes will be local to your project. If you opt for editing the GSDK file,

your changes will affect all your Wi-SUN projects, but may be 'lost' when you update the GSDK. (They are not

really lost, since they will still be present in the previous GSDK folder, but you will need to patch the new GSDK

files with similar changes.)

Setting Security

Next you get to the security settings, on line 427.

Going to the declaration of _app_wisun_security_setting() , you find the calls to set:

The CA (Certification Authority) certificate

The Device's certificate

The Device Private Key

API Calls to Connect

116/602

Hovering over the corresponding variables, you can check their values. You can also open their declarations, which you find

in autogen/sl_wisun_config.c . As you've already seen, these can be set on the Wi-SUN Configurator's Security tab.

TIP: For a production environment, the Device certificate and Private Key need to be unique per device.

Joining a Network with a Given Name and PHY Settings

Finally, you reach the point where you call the Wi-SUN Stack API sl_wisun_ jo in() function and check its return value.

This is where you use the Network Name you set earlier (using the Wi-SUN Configurator) in autogen/sl_wisun_config.h as

WISUN_CONFIG_NETWORK_NAME .

As you see in the code, the sl_wisun_ jo in() function returns rapidly, before connection is complete, and then there is a

check of the sl_wisun_ jo in() return value.

If the call is successful, it means that your network settings are all okay and match the available PHY(s) that you added

using the Wi-SUN Configurator.

A timestamp is set to the current time to indicate how much time it takes to connect.

If there is an error, most probably the PHY you selected is not in the list of PHYs in your configuration.

If you have been using the Wi-SUN Configurator and the default PHY, this should not happen.

Waiting for Connection

To check the connection state, follow the join state of the Wi-SUN device. This is done by app_wisun_wait_for_connection() .

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-join

API Calls to Connect

117/602

What you see here is that there is an endless loop calling app_wisun_network_is_connected() .

app_wisun_network_is_connected() checks the join_state and returns only when it's SL_WISUN_JOIN_STATE_OPERATIONAL = (5).

The join_state is returned by app_wisun_get_ jo in_state() .

app_wisun_get_ jo in_state() acquires the mutex to read _ jo in_state (note that there is a _ prefix, indicating that _ jo in_state is

an internal variable), stores it into jo in_state , releases the mutex, and returns jo in_state .

Using the mutex means that _ jo in_state is set by another part of the code. To see how, look for occurrences of _ jo in_state .

First, it's declared and initialized with SL_WISUN_JOIN_STATE_DISCONNECTED .

API Calls to Connect

118/602

Possible join state values are defined in gsdk/protoco l/wisun/stack/inc/sl_wisun_types.h .

The sl_wisun_ jo in_state_t enumeration tells us what steps are used for connecting (re-ordered below by chronological order):

Join

state
enum meaning actions

0 SL_WISUN_JOIN_STATE_DISCONNECTED Disconnected Device not attempting to connect. Border Router

and connected routers send 'PAN Advert' on all

channels

1 SL_WISUN_JOIN_STATE_SELECT_PAN Select PAN Device listens for 'PAN Advert'. Sends 'PAN Advert

Solicit' to shorten the transmission delay

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-types#sl-wisun-join-state-t

API Calls to Connect

119/602

Join

state
enum meaning actions

2 SL_WISUN_JOIN_STATE_AUTHENTICATE Authenticate Security key exchange between device and

Border Router (can use an external Radius

server)

3 SL_WISUN_JOIN_STATE_ACQUIRE_PAN_CONFIG Acquire PAN

config

Device listens for 'PAN Config'. Sends 'PAN

Advert Solicit' to shorten the transmission

delay

4 SL_WISUN_JOIN_STATE_CONFIGURE_ROUTING Configure

routing

Network Route Selection (see sub-steps

below)

41 SL_WISUN_JOIN_STATE_PARENT_SELECT Preferred

parent

selection

Comparison between potential parents.

Selection of 'best parent'

42 SL_WISUN_JOIN_STATE_DHCP DHCP

address

acquisition

DHCP address received from Border Router

43 SL_WISUN_JOIN_STATE_EARO Address

registration

44 SL_WISUN_JOIN_STATE_DAO DAO

registration

5 SL_WISUN_JOIN_STATE_OPERATIONAL Operational Device is operational. Starts sending 'PAN

Advert' for other nodes to connect (if

FFN/router)

By default, Wi-SUN SoC Empty doesn't track the intermediate 41-44 sub-steps between join state 4 and join state 5.

When reconnecting, provided that the credentials are still valid, the connection process is sped up by avoiding steps 1 and 2.

Now look at how events are handled, and the concepts behind the Wi-SUN Stack API.

Wi-SUN Stack API Concepts

As stated in the Wi-SUN Stack API documentation:

Wi-SUN Stack API is based on requests from the application to the stack and events from the stack to the application.

Requests are made using function calls, where a function call either performs the required action immediately or initiates an

internal operation within the stack, which terminates with an event. All events contain a status code, indicating the result of

the requested operation. Events are also used by the stack to notify the application of any important information, such as

the state of the connection.

The application is expected to override sl_wisun_on_event() to handle events from the stack. Because all events share a

common header, the function may be implemented as a switch statement. The event-specific data can be accessed through

the sl_wisun_evt_t::evt union.

Event Handling with the Event Manager Component

gsdk/protoco l/wisun/stack/inc/sl_wisun_events.h contains the list of possible events from the stack.

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-on-event
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-evt-t

API Calls to Connect

120/602

The first member of the sl_wisun_event_t structure is a sl_wisun_msg_header_t header.

From this header, the application needs to check the id value to know what the evt corresponds to, and then use the

rest of the structure to get access to the event data.

Now see how this is implemented in gsdk/app/wisun/component/event_manager/sl_wisun_event_mgr.c/sl_wisun_on_event() .

API Calls to Connect

121/602

On line 263 , the _decode_ind() function is checking the evt->header.id with the list of the events your application has

decided to process (i.e. 'handle').

TIP: See the last value in the table, clearly indicating that any value not matching the preceding lines will return

EVENT_IDX_NOTVALID .

In sl_wisun_on_event() :

A message is printed whenever an 'invalid' (i.e. unprocessed) event is received for information purposes. S ince this is

informational, it's only displayed as an Unknown event .

If the event is one of those that the application decided to handle, the corresponding callback function in the Application

Core Component is called with the evt data.

If a 'custom callback' function exists in the customer application , it is also called.

In GSDK/app/wisun/component/event_manager/sl_wisun_event_mgr.c :

You see all .callback functions

You see that no custom_callback is defined by default

API Calls to Connect

122/602

The Wi-SUN Event Manager component provides app_wisun_em_custom_callback_register() to register custom callbacks.

If you want to add some custom processing on join state changes:

You create a custom callback function and add into this function your custom actions.

API Calls to Connect

123/602

void join_state_custom_callback(sl_wisun_evt_t *evt) {

 sl_wisun_join_state_t join_state;

 join_state = (sl_wisun_join_state_t)evt->evt.join_state.join_state;

printf("Join State %d\n", join_state);

}

You call app_wisun_em_custom_callback_register(SL_WISUN_MSG_JOIN_STATE_IND_ID, jo in_state_custom_callback); to register it.

The callback function for join state changes is sl_wisun_ jo in_state_event_hnd() .

You can see it in three places:

Defined in gsdk/app/wisun/component/event_manager/sl_wisun_event_mgr.h (describing the prototype of the function).

Declared as SL_WEAK in gsdk/app/wisun/component/event_manager/sl_wisun_event_mgr.c .

A 'weak' declaration (i.e. implementation) of a function is a default implementation, which can be superseded by another

located elsewhere in the code.

Most 'weak' functions do nothing. They are there to avoid compilation errors when there is no other implementation.

Declared as a normal function in gsdk/app/wisun/component/app_core/sl_wisun_app_core .c .

This implementation supersedes the 'weak' implementation.

Finally, check the sl_wisun_ jo in_state_event_hnd() function in gsdk/app/wisun/component/app_core/sl_wisun_app_core .c to follow

what it does.

API Calls to Connect

124/602

This 'event handler' is called only when there are changes to the internal join state.

_ jo in_state is set on line 355 in the 'event handler' function sl_wisun_ jo in_state_event_hnd() , as evt->evt.jo in_state .jo in_state .

If there is a change of the join_state, the app_wisun_trace_util_conn_state_to_str() function returns a valid string to translate the

state's decimal value into a human-readable string. If this string is not empty, it is traced in the application's console.

Printing a message is useful to follow the connection process when having access to the device's UART console. It's not

actually required to achieve connection, but it is convenient.

Remarks on Function Names

All Wi-SUN Stack API functions are prefixed with sl_wisun_ .

Customers can't read the underlying Stack source code, which is under the responsibility of the Wi-SUN Stack developers.

The OK return code is SL_STATUS_OK = 0x0000 .

All return codes are defined in gsdk/platform/common/inc/sl_status.h . Checking this file in case of an error can help get

minimal information on the error.

Wi-SUN Stack functions don't print traces in the device's UART console, instead in the form of RTT traces, accessible

using J-LINK connected to the device via an evaluation kit (which embed SEGGER debug capabilities) or a external

debugger.

GSDK functions ultimately use the sl_wisun_ Wi-SUN Stack API functions.

GSDK component top-level API functions are also prefixed with sl_wisun_ .

If there are 'GSDK-internal' functions in the components, they are prefixed with sli_ , the i meaning 'internal'.

Additional API functions provided by GSDK components to be called by customer application code are prefixed with app_ .

As is common usage in C coding, functions that are internal to a single source file are prefixed with _ , meaning that they are

not intended to be called by other parts of the code.

Customers have access to the GSDK function's source code.

Takeaway

What you have accomplished in this session is the join process available when you add the Wi-SUN Application Core

Component to your project.

The Wi-SUN Application Core Component uses calls to these Wi-SUN Stack API functions, in the following order (minimal set

of calls for connecting to a basic Wi-SUN network as FFN). It also checks the return values for all calls to raise errors if

needed:

sl_wisun_set_device_type()

sl_wisun_set_connection_parameters()

sl_wisun_set_tx_power()

sl_wisun_set_trusted_certificate()

sl_wisun_set_device_certificate()

sl_wisun_set_device_private_key()

sl_wisun_ jo in()

If the call to sl_wisun_ jo in() fails, most probably there is an issue with your PHY selection.

If you use a single PHY and the Wi-SUN Configurator, this should not happen.

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-device-type
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-connection-parameters
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-tx-power
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-trusted-certificate
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-device-certificate
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-set-device-private-key
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-api#sl-wisun-join

API Calls to Connect

125/602

Once the join call is made, connection starts. The customer application should wait for the connection before acting, since it

can't communicate with the rest of the Wi-SUN network until it's connected.

An application can directly use the Wi-SUN Stack API functions, while using the Wi-SUN Application Core Component makes

the join process much easier.

Calling sl_wisun_ jo in() returns rapidly, once connection settings are set.

The application communicates with the Wi-SUN Stack using function calls.

The Wi-SUN Stack communicates with the application using events.

As a consequence, following the connection process from the application is done using the SL_WISUN_MSG_JOIN_STATE_IND_ID

event message.

Triggered by the Wi-SUN Stack.

That the application can monitor using an event-specific handler.

It's now time to add a custom application to a Wi-SUN network.

https://docs.silabs.com/wisun/1.8.0/wisun-custom-application/index

Add a Custom Application

126/602

Add a Custom Application

Add a Custom Application
The example is the Wi-SUN Node Monitoring example application The reference code is provided on G itHub.

The example code being available on G itHub, it is recommended to:

Add the 'Wi-SUN Applications' repository to S implicity Studio

Create a Wi-SUN Node Monitoring project after selecting the wisun_applications provider.

Using the Wi-SUN Node Monitoring project removes the difficulties related to adding pieces of code along the way to

reach a compilable project.

The goal of this application is to:

https://github.com/SiliconLabs/wisun_applications/tree/main/wisun_node_monitoring
https://github.com/SiliconLabs/wisun_applications/tree/main#add-the-wi-sun-applications-repository-to-simplicity-studio-5
https://github.com/SiliconLabs/wisun_applications/tree/main#create-the-wi-sun-applications-example-projects

Add a Custom Application

127/602

Follow the device connections from the Border Router.

The devices will send a UDP connection message to the Border Router on port 1237 after connecting for the first time.

The devices will automatically send a connection status message to the Border Router every auto_send seconds.

The default auto_send period is 30 seconds.

The auto_send period can be checked remotely via a CoAP get command for settings\auto_send .

It can be modified using the same CoAP command if adding -e <n> as the command payload, <n> being the new value.

This can be used as an example for sensor monitoring or actuator control in a final application.

The connection message contains time values in dd-hh:mm:ss format.

The start point of these time values is the moment the application is started.

The first connection message can be used to check the connection time.

Follow the device join state changes.

The history of these changes can be retrieved from the Border Router once connected.

Monitor application statistics.

Application statistics can be retrieved from the Border Router using CoAP requests.

A very important statistic is the availability rate, computed from the total connected and disconnected times, which should

be as close to 100% as possible (counting starts on the very first connection).

Monitor Wi-SUN Stack statistics.

All statistics provided by the Wi-SUN Stack are available via CoAP requests.

Use OTA DFU to remotely update the WI-SUN devices via the Wi-SUN network.

Prerequisites

Use Git to Store the Current State

Before adding code, it is useful to use G it to track code changes, to be able to easily check the differences later on, and

roll the code back if required.

Software Components

The following software components are required to compile the application with the added code:

Third-Party / Segger / SEGGER RTT printf

Wi-SUN / Wi-SUN Services / CoAP

Wi-SUN / Wi-SUN Services / PoSIX-compliant Socket

Wi-SUN / Wi-SUN Services / Over-The-Air Firmware Upgrade (OTA DFU)

Note: It is possible to check which components are installed in a project looking at the .slcp file and the

SOFTWARE COMPONENTS tab, checking the Installed box.

Using the Wi-SUN Node Monitoring example application, all components should already be installed. Just check their

presence to get familiar with components used. Install the components now if they are not present.

https://docs.silabs.com/wisun/latest/wisun-building-connecting/#using-git-to-track-changes

Add a Custom Application

128/602

Installed Wi-SUN components are listed in autogen\sl_component_catalog.h :

Add a Custom Application

129/602

Custom Application

The Custom Application pages explain how the custom application features are added to a Wi-SUN project. These features

can be added to multiple projects if needed.

In the Device Application

Add time stamping and tracing functions

Register a custom callback to follow join state changes

Prepare JSON connection strings

Send status strings to the Border Router's IPv6 on UDP port 1237

Add CoAP resources to the Device Application

On the Border Router

Retrieve UDP notifications on the Border Router

Retrieve device information on the Border Router Using CoAP

T imestamping

130/602

Timestamping

One Second Timestamping
Because Wi-SUN network changes are rare while connection times are in days or months, the underlying unit of time

measurement used by the Wi-SUN Stack down to the microsecond is not necessary for long-term observability of network

connection. We therefore:

Set up a 1-second timer to count seconds

Add functions to format current time and delays as dd-hh:mm:ss

To get a 1-second timestamp, do the following steps.

Note: This is all done in app_timestamp.c and app_timestamp.h , which you can use by copy/pasting both files

next to your app.c file.

Simplicity Studio will automatically compile any .c file present under the project folder, so no action is required to add

app_timestamp.c to the compilation once the file is copied.

Declaration of a 64-bit app_timestamp Variable

sl_sleeptimer_timestamp_64_t app_timestamp;

Creation of a Callback Function to Increment the Timestamp by 1

void app_timer_callback(sl_sleeptimer_timer_handle_t *handle, void *data) {

(void)handle;

(void)data;

 app_timestamp++;

}

Protect Access to the Variable Using a Mutex

Mutex declaration:

static const osMutexAttr_t _app_timestamp_mutex_attr = {

.name = "AppT imestampMutex",

.attr_bits = osMutexRecursive,

.cb_mem = NULL,

.cb_size = 0U

};

Mutex acquire function:

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.h
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L54
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L88
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L66
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L77

T imestamping

131/602

__STATIC_INLINE void _app_timestamp_mutex_acquire(void)

{

assert(osMutexAcquire(_app_timestamp_mutex, osWaitForever) == osOK);

}

Mutex release function:

__STATIC_INLINE void _app_timestamp_mutex_release(void)

{

assert(osMutexRelease(_app_timestamp_mutex) == osOK);

}

Timestamp Init

sl_status_t app_timestamp_init(void) {

 sl_status_t status;

 uint32_t app_timer_timeout;

// init mutex

 _app_timestamp_mutex = osMutexNew(&_app_timestamp_mutex_attr);

assert(_app_timestamp_mutex !� NULL);

 app_timestamp = 0;

 status = sl_sleeptimer_init();

if (status !� SL_STATUS_OK) {

printf("Error initializing sleeptimer. Status %lu\n", status);

return status;

}

 app_timer_timeout = (uint32_t)1.0*sl_sleeptimer_get_timer_frequency();

 status = sl_sleeptimer_start_periodic_timer(&app_timer,

 app_timer_timeout,

 app_timer_callback,

 NULL, 0, 0);

if (status !� SL_STATUS_OK) {

printf("Error starting periodic timer 'app_timer'. Status %lu\n", status);

return status;

}

return status;

}

Following this:

app_timestamp is set to 0 when app_timestamp_init() is called

app_timer_callback() is called every second

app_timestamp is increased by 1 every second

You can retrieve it safely using the mutex

Retrieve the Current Timestamp Decimal Value

uint64_t now_sec (void) {

 sl_sleeptimer_timestamp_64_t current_sec;

_app_timestamp_mutex_acquire();

 current_sec = app_timestamp;

_app_timestamp_mutex_release();

return (uint64_t)current_sec;

}

You can use now_sec() to store the current time in decimal values:

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L83
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L97
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.c#L168

T imestamping

132/602

 uint64_t current_time_secs;

 current_time_secs = now_sec();

Utility Functions to Process Timestamp Values

Transform a Timestamp in days/hours/mins/secs Units

Mainly used as a convenience function, this should rarely be used from outside this code:

sl_status_t d_h_m_s_total(sl_sleeptimer_timestamp_64_t timestamp_secs,

 uint16_t* days,

 uint64_t* hours,

 uint64_t* mins,

 uint64_t* secs

) {

*days = timestamp_secs / 60 / 60 / 24;

*hours = timestamp_secs / 60 / 60;

*mins = timestamp_secs / 60;

*secs = timestamp_secs;

return SL_STATUS_OK;

}

Transform a Timestamp as days:hours:mins:secs Decimal Values

sl_status_t d_h_m_s (sl_sleeptimer_timestamp_64_t timestamp_secs,

 uint16_t* days,

 uint8_t* hours,

 uint8_t* mins,

 uint8_t* secs) {

 uint64_t hours_total;

 uint64_t mins_total;

 uint64_t secs_total;

d_h_m_s_total(timestamp_secs, days, &hours_total, &mins_total, &secs_total);

*days = *days;

*hours = hours_total % 24;

*mins = mins_total % 60;

*secs = secs_total % 60;

return SL_STATUS_OK;

}

Format a Timestamp as a days:hours:mins:secs Text String

char* dhms (sl_sleeptimer_timestamp_64_t timestamp_secs) {

 uint16_t days;

 uint8_t hours, mins, secs;

d_h_m_s(timestamp_secs, &days, &hours, &mins, &secs);

snprintf(time_str, TIME_STRING_LEN, "%3d:%02d:%02d:%02d", days, hours, mins, secs);

return time_str;

}

This can be used in traces as follows:

printf("Current time is %s\n", now_str());

T imestamping

133/602

With a Current time is 0:01:23:45 result, if the application has been running for 0 day, 1 hour, 23 minutes and 45 seconds.

Get app_timestamp as a Text String

char* now_str (void) {

return dhms(now_sec());

}

Trace Timestamping and Routing Macros

A set of macros are defined to allow sending traces to the console, the RTT traces, or both:

#define printfT ime(...) printf("[%s] ", now_str()); printf(__VA_ARGS__)

#define printfRTT(...) SEGGER_RTT_printf(0, __VA_ARGS__)

#define printfT imeRTT(...) SEGGER_RTT_printf(0, "[%s] ", now_str()); SEGGER_RTT_printf(0, __VA_ARGS__)

#define printfBoth(...) SEGGER_RTT_printf(0, __VA_ARGS__); printf(__VA_ARGS__)

#define printfBothT ime(...) SEGGER_RTT_printf(0, "[%s] ", now_str()); SEGGER_RTT_printf(0, __VA_ARGS__); printf("[%s] ", now_str());

printf(__VA_ARGS__)

The above makes it easy in the application to:

Select to add a timestamp or not to traces.

Print a trace to the console or the RTT traces, or both.

Use the Timestamp

In app.c , #include "app-timestamp.h" to get access to the timestamping resources.

In app.c/app_task() , initialize the one second timestamp:

It is convenient to declare variables to store various time values:

uint64_t connect_time_sec; // time stamp of Wisun connect call

uint64_t connection_time_sec; // last connection time stamp

uint64_t disconnection_time_sec; // last disconnection time stamp

These can be used as follows (example code, not part of the sample application):

printfBothT ime("running since %s\n", now_str());

 connect_time_sec = now_sec();

app_wisun_connect_and_wait();

/* Some time will pass until we're connected... */

 connection_time_sec = now_sec();

printfBothT ime("Connected in %s\n", dhms(connection_time_sec - connect_time_sec));

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_timestamp.h#L78

Custom Callback

134/602

Custom Callback

Register a Custom Callback to Follow the Join State
As described in Event Handling with the Event Manager, it is possible to register custom callbacks for indications listed in

sl_wisun_events.h/sl_wisun_msg_ind_id_t .

Note: This is all done in app.c .

To follow what is happening on your Wi-SUN network, a dedicated function is added to do whatever you need and is

registered to be called on each join state change.

It is registered with the Event Manager in app.c/app_task() as follows:

// Register our join state custom callback function with the event manager (aka 'em')

app_wisun_em_custom_callback_register(SL_WISUN_MSG_JOIN_STATE_IND_ID, _join_state_custom_callback);

The callback function itself is app.c/_ jo in_state_custom_callback() , relying on our 1-second timestamping to store time

information. The function uses other parts of the code, so replacing the original app.c by this file is an easy way to get

compilable code.

Code Behavior

Check the join state.

Only do something when there is a join state change.

Do nothing for intermediate join states (with values above 5), which the Stack also handles. These are mainly intermediate

stages between join state 4 and join state 5, such as DHCP and DNS, with code between 41 and 49.

Trace the previous and current join state when it changed.

Store the current time in app_ jo in_state_sec[jo in_state] . This will be used in traces and to compute the

app_ jo in_state_delay_sec[jo in_state] values, indicating how much time was spent moving to the new join state.

If the join state is 'OPERATIONAL' (i.e. 'connected'):

Store the time in connection_time_sec .

Increase the number of connections.

If this is the first connection, clear disconnected_total_sec ; otherwise, set it to the time spent since the disconnection.

Trace the duration spent connecting.

Because it is possible to retrieve the parent MAC address, set the parent_tag from it. This is a convenient way to

identify devices using a shorter string than their entire MAC or IPv6 address. It also has the advantage of being visible in

both the MAC and IPv6 addresses.

If a UDP socket has been opened with the Border Router, send it a connection message with all interesting values. It

looks like: { "device":"8486", "chip":"xG25", "parent":"333a", "running":"0:00:00:23", "jo in_states_sec":[0,0,9,1,12] } . This simple

message allows:

Identifying which devices are connected, and which part they are built on.

Knowing which device is their parent.

It becomes possible to draw the network topology based on this.

Knowing how much time has been spent moving between join states.

In the above example, we see that:

No time has been spent to reach join states 1 and 2, due to Wi-SUN stack optimizations allowing reuse of

credentials if they are still valid.

It took 9 + 1 + 12 = 22 seconds to reconnect. No time spent in join states 1 and 2 means it was a reconnection

with previously saved credentials.

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-evt#sl-wisun-msg-ind-id-t
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app.c
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app.c#L317
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app.c#459

Custom Callback

135/602

Store the time in disconnection_time_sec .

Trace the duration spent before disconnecting.

Add this to 'connected_total_sec'.

Set previous_ jo in_state to the new join state.

Using the app_ jo in_state_sec[] array, it becomes possible for the application to compute the values in the connection

message.

Using the various timestamp values, it is possible to compute an availability ratio equal to:

availability = 100.0*(connected_total_sec)/(connected_total_sec + disconnected_total_sec) .

This value gives an interesting indication on the network availability, even if it is 100+ days long, which should be common in

Wi-SUN.

JSON Connection Strings

136/602

JSON Connection Strings

Prepare JSON Connection Strings
Using the values set by the custom callback to follow the join state, you can easily print connection/disconnection

information using the 1-second timestamping, and compute the network availability ratio.

Note: This is all done in app.c .

Two messages are used:

Initial Connection Message

{

"device":"8486",

"chip": "xG25",

"parent":"333a",

"running": " 0�22�21�17",

"join_states_sec"��0,0,9,1,12�

}

This message is printed in the device console and sent to the Border Router right after connecting.

"device" is the device_tag string, formatted from the MAC address of the device. This is a convenient way to identify

devices using a shorter string than their entire MAC or IPv6 address. It has also the advantage of being visible in both the

MAC and IPv6 addresses. This is fixed and set once only in app.c/app_task() .

"chip" is the type of the part used, based on the following code (which can easily be extended to support more parts):

#ifdef _SILICON_LABS_32B_SERIES_1

 #ifdef _SILICON_LABS_32B_SERIES_1_CONFIG_2

 #define CHIP "xG12"

 #endif

#endif

#ifdef _SILICON_LABS_32B_SERIES_2

 #ifdef _SILICON_LABS_32B_SERIES_2_CONFIG_5

 #define CHIP "xG25"

 #endif

 #ifdef _SILICON_LABS_32B_SERIES_2_CONFIG_8

 #define CHIP "xG28"

 #endif

#endif

#ifndef CHIP

 #define CHIP SL_BOARD_NAME

#endif

"parent" is the parent_tag string, formatted from the MAC address of the parent as soon as connection is achieved. This can

change over time, when the device selects a different parent, which is normal in a Wi-SUN network depending on the

reception conditions. It is set inside the custom callback following join state changes.

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app.c

JSON Connection Strings

137/602

The "device" and "parent" information allow building the network topology, to compare it to what wsbrd_cli status shows. The

topology in this case is using information from the devices, not information retrieved using DBus from wsbrd. Both topology

graphs should match.

"running" is the amount of time elapsed since the timestamp has been initialized in app.c/app_task() , calling

app_timestamp_init() . In the example, it shows a 22+ hour run. Note that the very first value is a days count, required for long-

term monitoring in a Wi-SUN network.
"join_state_sec" is an array of delays between join state changes, starting with join state 1. Five values are present, each

corresponding to the time required to reach the corresponding join state. In the example, we can say that:

The device took 9 + 1 + 12 = 22 seconds to connect.

No time was spent going to join states 1 and 2, meaning that the device could reuse already existing credentials, thus

saving time by skipping the authentication exchanges in steps 1 and 2. This is part of Wi-SUN stack optimizations for faster

reconnection. If sl_wisun_clear_credential_cache() is called before connecting, authentication is required to retrieve

credentials.

Status Message

{

"device":"8486",

"chip": "xG25",

"parent":"333a",

"running": " 0�22�21�17",

"connected": " 0�22�20�35",

"disconnected":"no",

"connections": "1",

"availability":"100.00",

"connected_total": " 0�22�20�35",

"disconnected_total":" 0�00�00�00"

}

This message is printed in the console and sent to the Border Router every auto_send_sec seconds.

By default, auto_send_sec is set to 60 seconds. This can be customized in the source code. It is also possible with the

example application to change it remotely using a dedicated CoAP message. Obviously, if the device is not connected, the

message is only printed in the console.

"device", "chip", and "running" are exactly the same as in the initial connection message.

"connected" is the duration of the current connection. This is reset when reconnecting, such that it monitors only the last

connection last. It is "no" when not connected.

"disconnected" is the duration since the last disconnection. It is "no" when connected.

"availability" is the ratio between the connected time and the total time since the first connection. It is computed as 100.0*

(connected_total_sec)/(connected_total_sec + . disconnected_total_sec) .

"connected_total" is the sum of the connected times since the very first connection, used to compute the availability ratio.

"disconnected_total" is the sum of the disconnected times since the very first connection, used to compute the availability

ratio. When "disconnected_total" is " 0:00:00:00" , the availability rate is 100%.

Note: To get a fair value of the availability ratio, disconnection and connection times accumulation only starts

on the very first connection. Otherwise, the statistics would be impacted when the Border Router is started

after the devices. With this configuration, the availability ratio should be very close to 100% under normal

conditions, with devices quickly reconnecting following a disconnection.

If the Border Router is ever stopped and restarted, the devices will reconnect and send their status messages again, all

showing a "disconnected" duration in the same range. This is a clear indication that the disconnection was due to the

Border Router, and debugging should be oriented towards the Border Router.

When a single device has issues, its next status messages will show a "disconnected" value different from all other nodes.

In this situation, debugging should be oriented at the device itself.

JSON Connection Strings

138/602

If a device is disconnected, printing the messages into its console (and RTT traces) still allows debugging up to a certain

level, as long as access to the console or to RTT traces is possible (only in a lab environment in this case):

If the messages don't appear in the console, the application is probably stalled and debugging is required, starting with RTT

traces (which keep a bit of history on the last traces).

If the messages still appear in the console, the application is still running. Further debugging may be possible looking at RTT

traces for any error message coming from the Wi-SUN stack.

Code Walkthrough

Three macros are used to format the first part of both messages and to add JSON start and end strings:

// JSON common format strings

#define START_JSON "{\n"

#define END_JSON "}\n"

#define DEVICE_PARENT_RUNNING_JSON \

"\"device\":\"%s\",\n" \

"\"chip\": \"%s\",\n" \

"\"parent\":\"%s\",\n" \

"\"running\": \"%s\",\n"

The initial connection message is formatted in _connection_ json_string() .

char* _connection_json_string () {

 #define CONNECTION_JSON_FORMAT_STR \

 START_JSON \

 DEVICE_PARENT_RUNNING_JSON \

"\"join_states_sec\"��%llu,%llu,%llu,%llu,%llu]\n" \

 END_JSON

 char sec_string[20];

sprintf(sec_string, "%s", now_str());

snprintf(json_string, SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE,

 CONNECTION_JSON_FORMAT_STR,

 device_tag,

 CHIP,

 parent_tag,

 sec_string,

 app_join_state_delay_sec[1],

 app_join_state_delay_sec[2],

 app_join_state_delay_sec[3],

 app_join_state_delay_sec[4],

 app_join_state_delay_sec[5]

);

return json_string;

};

The status message is formatted in _status_ json_string() .

JSON Connection Strings

139/602

char* _status_json_string (char * start_text) {

 #define CONNECTED_JSON_FORMAT_STR \

"%s" \

 START_JSON \

 DEVICE_PARENT_RUNNING_JSON \

"\"connected\": \"%s\",\n" \

"\"disconnected\":\"%s\",\n" \

"\"connections\": \"%d\",\n" \

"\"availability\":\"%6.2f\",\n" \

"\"connected_total\": \"%s\",\n" \

"\"disconnected_total\":\"%s\"\n" \

 END_JSON

 char running_sec_string[20];

 char current_sec_string[20];

 char connected_sec_string[20];

 char disconnected_sec_string[20];

 uint64_t current_state_sec;

sprintf(running_sec_string, "%s", now_str());

if (join_state == SL_WISUN_JOIN_STATE_OPERATIONAL) {

 current_state_sec = now_sec() - connection_time_sec;

sprintf(current_sec_string, "%s", dhms(current_state_sec));

sprintf(connected_sec_string, "%s", dhms(connected_total_sec + current_state_sec));

sprintf(disconnected_sec_string,"%s", dhms(disconnected_total_sec));

snprintf(json_string, SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE,

 CONNECTED_JSON_FORMAT_STR,

 start_text,

 device_tag,

 CHIP,

 parent_tag,

 running_sec_string,

 current_sec_string,

"no",

 connection_count,

100.0*(connected_total_sec + current_state_sec)/(connected_total_sec + current_state_sec + disconnected_total_sec),

 connected_sec_string,

 disconnected_sec_string

);

} else {

 current_state_sec = now_sec() - disconnection_time_sec;

sprintf(current_sec_string, "%s", dhms(current_state_sec));

sprintf(connected_sec_string, "%s", dhms(connected_total_sec));

sprintf(disconnected_sec_string,"%s", dhms(disconnected_total_sec + current_state_sec));

snprintf(json_string, SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE,

 CONNECTED_JSON_FORMAT_STR,

 start_text,

 device_tag,

 CHIP,

 parent_tag,

 running_sec_string,

"no",

 current_sec_string,

 connection_count,

100.0*(connected_total_sec)/(connected_total_sec + disconnected_total_sec + current_state_sec),

 connected_sec_string,

 disconnected_sec_string

);

}

return json_string;

}

Send Status Strings

140/602

Send Status Strings

Send Status Strings to the Border Router on UDP
Port 1237
Status strings are prepared as in JSON Connection Strings, getting ready to be sent to the Border Router or any other IPv6

address. To send them to their destination, the following steps are needed.

Note: This is all done in app.c , which you can use as a replacement for the original code.

Set the Destination IPv6

IPv6 Declaration

What you want is to automatically select the Border Router IPv6, which the device will only know once it is connected, or

set a static IPv6 if your system is set with a different destination for network monitoring messages.

A text string is defined in app.c . It can be either "border_router" or a valid IPv6.

#define UDP_NOTIFICATION_DEST "border_router" // "border_router" or fixed IPv6 string

Once connected, a part of app.c/_select_destinations() takes care of setting the intended IPv6.

// Set the UDP notification destination �Border Router by default)

printfBothT ime("UDP_NOTIFICATION_DEST� %s\n", UDP_NOTIFICATION_DEST);

if (sl_strcasecmp(UDP_NOTIFICATION_DEST, "border_router") == 0) {

memcpy(udp_notification_ipv6.address, border_router_ipv6.address, sizeof(device_global_ipv6.address));

} else {

sl_wisun_stoip6(UDP_NOTIFICATION_DEST , SL_WISUN_IP_ADDRESS_SIZE, udp_notification_ipv6.address);

}

sl_wisun_ip6tos(udp_notification_ipv6.address , udp_notification_ipv6_string);

printfBothT ime("UDP Notification destination: %s\n", udp_notification_ipv6_string);

Convenience functions sl_wisun_sto ip6() and sl_wisun_ip6tos() are used here to convert between IPv6s and strings. Both are

defined in sl_wisun_ipv6string.h .

Set the Destination UDP Port

The destination port is hardcoded in app.c as UDP_NOTIFICATION_PORT . It can be customized here:

#define UDP_NOTIFICATION_PORT 1237

Open and Connect the UDP Socket

Each socket id is stored in a sl_wisun_socket_id_t , so udp_notification_socket_id is declared in app.c :

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app.c
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-types#sl-wisun-socket-id-t

Send Status Strings

141/602

// Notification sockets

sl_wisun_socket_id_t udp_notification_socket_id = 0;

Once the device is connected to the Wi-SUN network, it becomes possible to open the UDP socket and connect it to the

desired destination and port, as in app.c/_open_udp_sockets_with_Border_Router() :

// UDP Notifications (autonomously sent by the device)

 ret = sl_wisun_open_socket (SL_WISUN_SOCKET_PROTOCOL_UDP, &udp_notification_socket_id);

NO_ERROR(ret, "Opened the UDP notification socket (%ld)\n", udp_notification_socket_id);

IF_ERROR_RETURN(ret, "�Failed: unable to open the UDP notification socket: 0x%04x]\n", (uint16_t)ret);

 ret = sl_wisun_connect_socket(udp_notification_socket_id, &udp_notification_ipv6, UDP_NOTIFICATION_PORT);

NO_ERROR(ret, "Connected the UDP notification socket �%ld %s/%d)]\n",

 udp_notification_socket_id, udp_notification_ipv6_string, UDP_NOTIFICATION_PORT);

IF_ERROR_RETURN(ret, "�Failed: unable to connect the UDP notification socket: 0x%04x]\n", (uint16_t)ret);

Print and Send Status Messages

Auto Send Loop

In app.c/app_task() , the code enters an endless loop after initial connection, with a pause of auto_send_sec seconds after

each loop. Inside this loop, a call to _print_and_send_messages() is used to send the string formatted by _status_ json_string() :

void app_task(void *args)

{

. . .

 bool with_time, to_console, to_rtt, to_udp, to_coap;

. . .

 with_time = to_console = to_rtt = true;

 to_udp = to_coap = false;

. . .

while (1) {

///

// Put your application code here! //

///

// We can only send messages outside if connected

if (join_state == SL_WISUN_JOIN_STATE_OPERATIONAL) {

 to_udp = to_coap = true;

} else {

 to_udp = to_coap = false;

}

// Print status message every auto_send_sec seconds

 _print_and_send_messages (_status_json_string(""),

 with_time, to_console, to_rtt, to_udp, to_coap);

osDelay(auto_send_sec*1000);

}

}

Messages Print Out and Transmission

In app.c/_print_and_send_messages() , the flags are used to select where to send the message, including to the selected UDP

port:

Send Status Strings

142/602

uint8_t _print_and_send_messages (char *in_msg, bool with_time,

 bool to_console, bool to_rtt, bool to_udp, bool to_coap) {

 sl_status_t ret = SL_STATUS_OK;

 uint8_t messages_processed = 0;

 uint16_t udp_msg_len;

 uint16_t coap_msg_len;

if (to_console == true) { // Print to console

if (with_time == true) {

printfT ime(in_msg);

} else {

printf(in_msg);

}

 messages_processed++;

}

if (to_rtt == true) { // Print to RTT traces

if (with_time == true) {

printfT imeRTT(in_msg);

} else {

printfRTT(in_msg);

}

 messages_processed++;

}

if (to_udp == true) { // Send to UDP port

 udp_msg_len = snprintf(udp_msg, 1024, "%s", in_msg);

 ret = sl_wisun_send_on_socket(udp_notification_socket_id, udp_msg_len, (uint8_t *)udp_msg);

IF_ERROR(ret, "�Failed (line %d): unable to send to the UDP notification socket �%ld %s/%d): 0x%04x. Check sl_status.h] udp_msg_len %d\n",

 __LINE__, udp_notification_socket_id, udp_notification_ipv6_string , UDP_NOTIFICATION_PORT, (uint16_t)ret, udp_msg_len);

if (ret == SL_STATUS_OK) messages_processed++;

}

. . .

return messages_processed;

}

Add CoAP Resources

143/602

Add CoAP Resources

Add CoAP Resources to the Device Application
Using the Send status / Retrieve UDP notifications technique, the devices are automatically sending messages to the

Border Router (by default, another destination is possible). In a large Wi-SUN network, this may not be convenient, or the

auto_send_sec value would be set to a very high value, such that these messages act as 'keep alive' messages, used to

make sure the devices are still active and connected.

An approach more fitting for large networks consists of adding the capability for the nodes to reply with the status

messages to CoAP 'get' messages. With this approach, the network management machine is responsible for regularly

checking the node status, potentially infrequently. This is described in the next paragraphs.

If the devices are monitoring critical sensors, such as temperature values, they can be set to send notification messages if

the monitored values pass above pre-determined thresholds, or enter critical zones. This is application-specific, out of

scope of the current example application.

Add CoAP to the Project

The demonstration code is in app_coap.c and app_coap.h . It uses the Wi-SUN CoAP service, available in SOFTWARE

COMPONENTS > Wi-SUN > Wi-SUN Services > CoAP.

Because the demonstration application uses a lot of CoAP resources, the Maximum capacity of the CoAP Resource Table is set

to 30 in /wisun_soc_empty_stability/config/sl_wisun_coap_config.h , instead of the default of 10 .

// <o SL_WISUN_COAP_RESOURCE_HND_MAX_RESOURCES> Maximum capacity of the CoAP Resource Table

// <i> Default: 10

#define SL_WISUN_COAP_RESOURCE_HND_MAX_RESOURCES 30U

The Resource handler service socket communication buffer size is left to its default value of 1024 , declared as

SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE in sl_wisun_coap_config.h . This will limit the length of the JSON text string we

can send.

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_coap.c
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/app_coap.h

Add CoAP Resources

144/602

// <o SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE� Resource handler service socket communication buffer size

// <i> Default: 1024

#define SL_WISUN_COAP_RESOURCE_HND_SOCK_BUFF_SIZE 1024UL

Definition of CoAP Resources

One of the most difficult parts of coding a CoAP application is setting correct names for resources, i.e. names that feel

logical for most users, and present a consistent hierarchy for those resources.

In the demonstration application, S ilicon Labs used:

'info/' for parameters that will not change for a given device:

device_tag

chip

board

'info/all' returns a json string with all of the above

'status/' for parameters varying with time and not part of the statistics

running

parent (which can change if selecting a different parent)

neighbor (access to neighbor count if no payload, otherwise adding -e <n> returns info for neighbor n)

connected (not accumulated connection time)

'status/all' returns a json string with all of the above

'statistics/' for values accumulated by the application, or retrieved from the stack

'statistic/app/'

join_states_sec

disconnected_total

connections

connected_total

availability

'statistics/app/all' returns a json string with all of the above. Adding -e reset resets these statistics.

'statistics/stack/'

phy (statistics from sl-wisun-statistics-phy-t. Adding -e reset resets these statistics)

mac (statistics from sl-wisun-statistics-mac-t. Adding -e reset resets these statistics)

fhss (statistics from sl-wisun-statistics-fhss-t. Adding -e reset resets these statistics)

wisun (statistics from sl-wisun-statistics-wisun-t. Adding -e reset resets these statistics)

network (statistics from sl-wisun-statistics-network-t. Adding -e reset resets these statistics)

regulation (statistics from sl-wisun-statistics-regulation-t. Adding -e reset resets these statistics)

No 'all' option here, because some of the resources already return very long strings. Adding all together would overflow

the json string limit.

'settings/' for parameters of the application we want to change via CoAP

auto_send (returns the current auto_send_sec value if no payload, otherwise adding -e <s> sets auto_send_sec to s))

Declare a CoAP Callback Function for each CoAP Resource

The application needs to know which function to execute when a CoAP get request is received. There is one function per

resource. We will only document some of them. Adding more is straightforward once the first ones are clearly explained.

CoAP Callback Prototype

Each CoAP callback function has the same return type and parameters:

return type sl_wisun_coap_packet_t * , a pointer to the response packet

parameter const sl_wisun_coap_packet_t *const req_packet , the CoAP request packet, defined in sl_wisun_coap.h as:

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-phy-t
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-mac-t
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-fhss-t
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-wisun-t
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-network-t
https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-statistics-regulation-t

Add CoAP Resources

145/602

/**

 * \brief Main CoAP message struct

 */

typedef struct sn_coap_hdr_ {

 uint8_t token_len; /**< 1�8 bytes. */

 sn_coap_status_e coap_status; /**< Used for telling to User special cases when parsing message */

 sn_coap_msg_code_e msg_code; /**< Empty: 0; Requests: 1�31; Responses: 64�191 */

 sn_coap_msg_type_e msg_type; /**< Confirmable, Non-Confirmable, Acknowledgment or Reset */

 sn_coap_content_format_e content_format; /**< Set to COAP_CT_NONE if not used */

 uint16_t msg_id; /**< Message ID. Parser sets parsed message ID, builder sets message ID of built coap message */

 uint16_t uri_path_len; /**< 0�255 bytes. Repeatable. */

 uint16_t payload_len; /**< Must be set to zero if not used */

 uint8_t *token_ptr; /**< Must be set to NULL if not used */

 uint8_t *uri_path_ptr; /**< Must be set to NULL if not used. E.g: temp1/temp2 */

 uint8_t *payload_ptr; /**< Must be set to NULL if not used */

/* Here are not so often used Options */

 sn_coap_options_list_s *options_list_ptr; /**< Must be set to NULL if not used */

} sn_coap_hdr_s;

. . .

typedef sn_coap_hdr_s sl_wisun_coap_packet_t;

The above shows that there is a possible payload, corresponding to payload_ptr with a size of payload_len . The code can

therefore check the payload to act differently. This payload corresponds to the -e <payload> the user can add to each

CoAP request.

The settings resource is interesting to look at, since it can be used to retrieve the auto_send_sec value and also to

change it.

CoAP Reply Function

To more easily reply to a CoAP request with a text string as the result, the app_coap_reply() function is added to

app_coap.c :

sl_wisun_coap_packet_t * app_coap_reply(char *response_string,

 const sl_wisun_coap_packet_t *const req_packet) {

 sl_wisun_coap_packet_t* resp_packet = NULL;

// Prepare CoAP response packet with default response string

 resp_packet = sl_wisun_coap_build_response(req_packet, COAP_MSG_CODE_RESPONSE_BAD_REQUEST);

if (resp_packet == NULL) {

return NULL;

}

 resp_packet->msg_code = COAP_MSG_CODE_RESPONSE_CONTENT;

 resp_packet->content_format = COAP_CT_TEXT_PLAIN;

 resp_packet->payload_ptr = (uint8_t *)response_string;

 resp_packet->payload_len = (uint16_t)sl_strnlen(response_string, COAP_MAX_RESPONSE_LEN);

return resp_packet;

}

The CoAP component provides the sl_wisun_coap_build_response() function, which can be used to prepare most of the reply.

Then the payload is set to the response_string input string.

CoAP Resource Handler

Add CoAP Resources

146/602

The CoAP Resource Handler is the only part of the CoAP component you need to interact with. It will then perform the

following tasks whenever a CoAP request is received:

Check that there is a known resource uri_path matching the request's uri_path_ptr .

If yes, call the resource's auto_response function.

If the auto_response function is coded to send a reply, the reply will be sent to the IPv6 address at the origin of the

request.

If the request is ".well-known/core" , return a JSON array with all resource set as discoverable

settings/auto_send Example

The settings/auto_send resource is interesting to look at, since it can be used to retrieve the auto_send_sec value and also

to change it.

settings/auto_send CoAP Callback Function

sl_wisun_coap_packet_t * coap_callback_auto_send (

 const sl_wisun_coap_packet_t *const req_packet) {

 int sec = 0;

 int res;

if (req_packet->payload_len) {

 res = sscanf((char *)req_packet->payload_ptr, "%d", &sec);

if (res) { auto_send_sec = sec; }

}

snprintf(coap_response, COAP_MAX_RESPONSE_LEN, "auto_send_sec: %d", auto_send_sec);

return app_coap_reply(coap_response, req_packet); }

The one-before-last line of the function is formatting the text string corresponding to the reply's payload (req_packet-

>payload_ptr), then app_coap_reply() is called to send the reply to the sender. The reply is in the form auto_send_sec: 60 .

Before this, the request payload has been checked, and if it contains a decimal value, this is used as the new

auto_send_sec if it exists, so the reply will always contain the current value.

settings/auto_send CoAP Resource Registration

To have the CoAP component handle this new resource, a part of the app_coap_resources_init() function provides a

corresponding sl_wisun_coap_rhnd_resource_t to the CoAP Resource Handler:

uint8_t app_coap_resources_init() {

 sl_wisun_coap_rhnd_resource_t coap_resource = { 0 };

 uint8_t count = 0;

// Add CoAP resources (one per item)

. . .

 coap_resource.data.uri_path = "/settings/auto_send";

 coap_resource.data.resource_type = "sec";

 coap_resource.data.interface = "settings";

 coap_resource.auto_response = coap_callback_auto_send;

 coap_resource.discoverable = true;

assert(sl_wisun_coap_rhnd_resource_add(&coap_resource) == SL_STATUS_OK);

 count++;

. . .

printf(" %d/%d CoAP resources added to CoAP Resource handler\n", count, SL_WISUN_COAP_RESOURCE_HND_MAX_RESOURCES);

return count;

}

A check has been added at the end of app_coap_resources_init() on the number of CoAP resources registered with the CoAP

Resource Handler. This allows you to check if SL_WISUN_COAP_RESOURCE_HND_MAX_RESOURCES is correctly set, and if it needs

to be increased.

Add CoAP Resources

147/602

CoAP Resources Initialization by the Application

The app_coap_resources_init() function is called once at startup from app-init.c/app_init() , adding all CoAP resources to the

CoAP Resource Handler:

void app_init(void)

{

app_coap_resources_init();

/* Creating App main thread */

. . .

With the above, from the Border Router console, you can:

Discover the available CoAP resources on the device, using

coap-client -m get -N -B 3 coap://[<device_IPv6>]:5683/.well-known/core

Retrieve a CoAP resource using

coap-client -m get -N -B 3 coap://[<device_IPv6>]:5683/<resource>

Details about the possibilities are provided in the app_coap.c/print_coap_help() function once connected, because at this

moment the device has obtained an IPv6 address:

void print_coap_help (char* device_global_ipv6_string, char* border_router_ipv6_string) {

printf("\n");

printf("To start a CoAP server on the linux Border Router:\n");

printf(" coap-server �A %s -p %d -d 10\n", border_router_ipv6_string, 5685);

printf("CoAP discovery:\n");

printf(" coap-client -m get �N �B 3 coap://[%s]:5683/.well-known/core\n", device_global_ipv6_string);

printf("CoAP GET requests:\n");

printf(" coap-client -m get �N �B 3 coap://[%s]:5683/<resource>, for the following resources:\n", device_global_ipv6_string);

sl_wisun_coap_rhnd_print_resources();

printf(" '/settings/auto_send' returns the current notification duration in seconds\n");

printf(" '/settings/auto_send' -e <d>' changes the notification duration to d seconds\n");

printf(" '/status/neighbor' returns the neighbor_count\n");

printf(" '/status/neighbor -e <n>' returns the neighbor information for neighbor at index n\n");

printf(" '/statistics/stack/<group> -e reset' clears the Stack statistics for the selected group\n");

printf(" '/statistics/app/all -e reset' clears all statistics\n");

printf("\n");

}

status/all Example

The status/all resource is used to retrieve the running , connected , and parent information.

status/all CoAP Callback Function

Add CoAP Resources

148/602

sl_wisun_coap_packet_t * coap_callback_all_statuses (

 const sl_wisun_coap_packet_t *const req_packet) {

 #define JSON_ALL_STATUSES_FORMAT_STR \

"{\n" \

" \"running\": \"%s\",\n" \

" \"connected\": \"%s\"\n" \

" \"parent\": \"%s\",\n" \

"}\n"

 char running_str[40];

 char connected_str[40];

snprintf(running_str , 40, dhms(now_sec()));

snprintf(connected_str, 40, dhms(now_sec() - connection_time_sec));

snprintf(coap_response, COAP_MAX_RESPONSE_LEN, JSON_ALL_STATUSES_FORMAT_STR,

 running_str,

 connected_str,

 parent_tag

);

return app_coap_reply(coap_response, req_packet);

}

status/all CoAP Resource Registration

To have the CoAP component handle this new resource, a part of the app_coap_resources_init() function provides a

corresponding sl_wisun_coap_rhnd_resource_t to the CoAP Resource Handler:

uint8_t app_coap_resources_init() {

 sl_wisun_coap_rhnd_resource_t coap_resource = { 0 };

 uint8_t count = 0;

// Add CoAP resources (one per item)

. . .

 coap_resource.data.uri_path = "/status/all";

 coap_resource.data.resource_type = "json";

 coap_resource.data.interface = "node";

 coap_resource.auto_response = coap_callback_all_statuses;

 coap_resource.discoverable = true;

assert(sl_wisun_coap_rhnd_resource_add(&coap_resource) == SL_STATUS_OK);

 count++;

. . .

printf(" %d/%d CoAP resources added to CoAP Resource handler\n", count, SL_WISUN_COAP_RESOURCE_HND_MAX_RESOURCES);

return count;

}

As visible above, there are very few differences between the block of code used to register "/settings/auto_send" or

"/status/all" , so adding more is easy.

Before looking at adding CoAP to the Border Router, below is an example of the output you can get on the Border Router

when monitoring multiple devices:

status/all in use

Add CoAP Resources

149/602

./coap_all /status/all

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51c]�5683/status/all : { "running": " 8�05�37�43", "connected": " 0�01�49�55"

"parent": "2527", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51d]�5683/status/all : { "running": " 0�23�00�55", "connected": " 0�22�59�53"

"parent": "a901", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a527]�5683/status/all : { "running": " 8�05�37�35", "connected": " 0�02�05�35"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a8ff]�5683/status/all : { "running": " 8�05�37�38", "connected": " 0�21�05�04"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a901]�5683/status/all : { "running": " 1�02�44�11", "connected": " 1�02�43�16"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2191]�5683/status/all : { "running": " 1�05�50�51", "connected": " 1�05�49�47"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2527]�5683/status/all : { "running": " 1�05�50�50", "connected": " 1�05�49�37"

"parent": "a8ff", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2853]�5683/status/all : { "running": " 1�05�50�53", "connected": " 0�05�10�54"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8486]�5683/status/all : { "running": " 1�05�43�48", "connected": " 0�00�47�53"

"parent": "333a", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8493]�5683/status/all : { "running": " 1�02�45�43", "connected": " 0�10�37�17"

"parent": "2853", }

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8503]�5683/status/all : { "running": " 1�02�43�29", "connected": " 0�07�51�09"

"parent": "333a", }

NOTE: Remember that timestamping is in dd-hh:mm:ss format, meaning that in the example above " 8-05:37:43

means more than 8 days of connection time, corresponding to a group of 3 devices, while others have been

started only a day ago, with about 3 hours between them. This shows how interesting it is to use this time

stamping format.

Retrieve UDP Notifications

150/602

Retrieve UDP Notifications

Retrieve UDP Notifications on the Border Router
Note that this part is executed on the Linux Border Router.

If the application flashed on the Wi-SUN devices is sending notification messages to the Border Router, a convenient way

to retrieve them from the Border Router is via a python script such as udp_notification_receiver.py .

Call the Script

 python udp_notification_receiver.py 1237 " "

The first parameter is the UDP port to listen to, rcv_port in the script.

The second parameter is an optional newline parameter used to replace the newline characters from the incoming message.

It's useful to display one message per line, since otherwise they would be displayed in json format on multiple lines. You can

use a different character as a separator.

The script is also suppressing all spaces from the incoming message, for a more compact display.

Script Output

python udp_notification_receiver.py 1237 " "

Receiving on ::/1237...

[2023-08-18 14:07:28] Rx 1237: { "device":"a901", "chip":"xG25", "parent":"333a", "running":"0�22�47�30", "connected":"0�22�46�35",

"disconnected":"no", "connections":"1", "availability":"100.00", "connected_total":"0�22�46�35", "disconnected_total":"0�00�00�00" }

[2023-08-18 14:07:44] Rx 1237: { "device":"8486", "chip":"xG25", "parent":"333a", "running":"1�01�47�22", "connected":"1�01�46�40",

"disconnected":"no", "connections":"1", "availability":"100.00", "connected_total":"1�01�46�40", "disconnected_total":"0�00�00�00" }

[2023-08-18 14:07:46] Rx 1237: { "device":"a51d", "chip":"xG25", "parent":"a901", "running":"0�19�04�32", "connected":"0�19�03�30",

"disconnected":"no", "connections":"1", "availability":"100.00", "connected_total":"0�19�03�30", "disconnected_total":"0�00�00�00" }

[2023-08-18 14:07:58] Rx 1237: { "device":"a51c", "chip":"xG25", "parent":"333a", "running":"8�01�41�33", "connected":"1�20�54�38",

"disconnected":"no", "connections":"6", "availability":"97.34", "connected_total":"7�20�32�26", "disconnected_total":"0�05�08�36" }

[2023-08-18 14:08:03] Rx 1237: { "device":"2191", "chip":"xG25", "parent":"333a", "running":"1�01�54�45", "connected":"1�01�53�41",

"disconnected":"no", "connections":"1", "availability":"100.00", "connected_total":"1�01�53�41", "disconnected_total":"0�00�00�00" }

[2023-08-18 14:08:04] Rx 1237: { "device":"2853", "chip":"xG25", "parent":"333a", "running":"1�01�54�47", "connected":"0�01�14�48",

"disconnected":"no", "connections":"2", "availability":"99.88", "connected_total":"1�01�51�49", "disconnected_total":"0�00�01�52" }

Code Walkthrough

The script is as follows:

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/Border_Router_scripts/udp_notification_receiver.py

Retrieve UDP Notifications

151/602

Used to receive UDP notifications strings

Call with

python udp_notification_receiver.py 1237 " "

import socket

import sys

import datetime

HOST_IP = "::" # Host own address (tun0 IPv6 address)

rcv_port = int(sys.argv[1])

newline = " "

if (len(sys.argv) > 2��

 newline = sys.argv[2]

 space = ""

PORT = rcv_port # Port used by the peer

sock = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM�

sock.bind((HOST_IP, PORT��

print(f"Receiving on �HOST_IP�/�PORT�...")

while True:

 data, addr = sock.recvfrom(2048) # buffer size is 2048 bytes

 now = datetime.datetime.now()

 now_str = str(now.strftime('%Y�%m-%d %H�%M�%S'))

 try:

 message_string = data.decode("utf-8").replace(" ", space).replace("\n", newline)

 except Exception as e:

 print(f"Exception {e} (from {addr})")

 print (f"[{now_str}] Rx �PORT�� {newline}", message_string)

It goes through:

Import of the required python packages

Retrieving the rcv_port value from the first argument

Retrieving the newline replacement, if any, from the second argument

Opening a socket to listen to the rcv_port on all IPv6 addresses

Infinite loop with:

Reception from the UDP socket

Formatting the current date and time

Removing all spaces from the received message

Replacing all \n from the received message by newline

Printing the modified string

Retrieve Device Information

152/602

Retrieve Device Information

Retrieve the Device Information from the Border
Router using CoAP

Install libcoap2-bin on the Border Router

The application requires libcoap binaries to be installed on the Border Router, so install the -bin package.

If using CoAP notifications instead of UDP notifications, coap-server will be used, and requires the -d option to define the

max number of resources the coap-server can listen to. This is only available in libcoap as from libcoap2 , so install libcoap

as follows:

sudo apt-get install libcoap2-bin

Check the installed binaries using:

ls -al /usr/bin/coap*

-rwxr-xr-x 1 root root 26236 Nov 9 2019 /usr/bin/coap-client

-rwxr-xr-x 1 root root 26236 Nov 9 2019 /usr/bin/coap-client-gnutls

-rwxr-xr-x 1 root root 26236 Nov 9 2019 /usr/bin/coap-client-openssl

-rwxr-xr-x 1 root root 18016 Nov 9 2019 /usr/bin/coap-rd

-rwxr-xr-x 1 root root 18016 Nov 9 2019 /usr/bin/coap-rd-gnutls

-rwxr-xr-x 1 root root 18016 Nov 9 2019 /usr/bin/coap-rd-openssl

-rwxr-xr-x 1 root root 22124 Nov 9 2019 /usr/bin/coap-server

-rwxr-xr-x 1 root root 22124 Nov 9 2019 /usr/bin/coap-server-gnutls

-rwxr-xr-x 1 root root 22124 Nov 9 2019 /usr/bin/coap-server-openssl

The example uses coap-client and optionally coap-server (if using COAP notifications).

List Connected Devices' IPv6 Addresses

wsbrd_cli status returns the connected devices' MAC addresses, while CoAP requires the IPv6 addresses.

The dbus resources related to the Wi-SUN Border Router are available to dbus as com.silabs.Wisun.BorderRouter :

busctl introspect SERVICE OBJECT [INTERFACE]

busctl introspect com.silabs.Wisun.BorderRouter /com/silabs/Wisun/BorderRouter com.silabs.Wisun.BorderRouter

Retrieve Device Information

153/602

NAME TYPE SIGNATURE RESULT/VALUE FLAGS

com.silabs.Wisun.BorderRouter interface - - -

.IeCustomClear method - - -

.IeCustomInsert method yyayay - -

.InstallGtk method ay - -

.InstallLgtk method ay - -

.JoinMulticastGroup method ay - -

.LeaveMulticastGroup method ay - -

.RevokeGroupKeys method ayay - -

.RevokePairwiseKeys method ay - -

.SetModeSwitch method ayi - -

.SetSlotAlgorithm method y - -

.Gaks property aay 4 16 54 182 30 129 250 196 136 180 3 24… emits-change

.Gtks property aay 4 16 0 16 32 48 64 80 96 112 128 144 16… emits-change

.HwAddress property ay 8 144 253 159 255 254 0 51 58 -

.Lgaks property aay 3 16 159 29 31 16 211 121 13 120 93 104… emits-change

.Lgtks property aay 3 16 205 198 155 180 84 17 14 130 116 6… emits-change

.Nodes property a(aya{sv}) 3 8 144 253 159 255 254 0 51 58 3 "is_b… emits-invalidation"

.WisunChanPlanId property u 3 const

.WisunClass property u 0 const

.WisunDomain property s "BZ" const

.WisunFanVersion property y 2 const

.WisunMode property u 0 const

.WisunNetworkName property s "Linux_BZ_3_8" const

.WisunPanId property q 59418 const

.WisunPhyModeId property u 8 const

.WisunSize property s "CERT" const

org.freedesktop.DBus.Introspectable interface - - -

.Introspect method - s -

org.freedesktop.DBus.Peer interface - - -

.GetMachineId method - s -

.Ping method - - -

org.freedesktop.DBus.Properties interface - - -

.Get method ss v -

.GetAll method s a{sv} -

.Set method ssv - -

.PropertiesChanged signal sa{sv}as - -

What you are looking for is the Nodes property, which you can 'get' using:

busctl introspect com.silabs.Wisun.BorderRouter /com/silabs/Wisun/BorderRouter com.silabs.Wisun.BorderRouter Nodes

a(aya{sv}) 3 8 144 253 159 255 254 0 51 58 3 "is_border_router" b true "node_role" y 0 "ipv6" aay 2 16 254 128 0 0 0 0 0 0 146 253 159 255 254

0 51 58 16 253 0 97 114 109 0 0 0 146 253 159 255 254 0 51 58 8 96 164 35 255 254 55 168 255 8 "is_authenticated" b true "node_role" y 1

"parent" ay 8 144 253 159 255 254 0 51 58 "is_neighbor" b true "rssi" i �46 "rsl" i �41 "rsl_adv" i �37 "ipv6" aay 2 16 254 128 0 0 0 0 0 0 96 164 35

255 254 55 168 255 16 253 0 97 114 109 0 0 0 98 164 35 255 254 55 168 255 8 96 164 35 255 254 55 169 1 4 "is_authenticated" b true

"node_role" y 1 "parent" ay 8 96 164 35 255 254 55 165 29 "ipv6" aay 2 16 254 128 0 0 0 0 0 0 96 164 35 255 254 55 169 1 16 253 0 97 114 109

0 0 0 98 164 35 255 254 55 169 1

The underlying structure is detailed in wsbrd-br-linux/DBUS.md:

https://github.com/SiliconLabs/wisun-br-linux/blob/4cbabbab288354cdbeba12c831e20d518c698f34/DBUS.md?plain=1#L91

Retrieve Device Information

154/602

- `ay`: EUI64

- `a{sv}`: list of properties identified by a string, as described in the

 following table. Not all properties are guaranteed to be present per node

(ex: a node without parent has no `parent` field)

| Key |Signature| Comment |

|------------------|---------|--|

|`is_border_router`|`b` |Deprecated. Use `node_role` instead. |

|`node_role` |`y` |Semantics from Wi-SUN (`0`: BR, `1`: FFN-FAN1.1, `2`: LFN, none: FFN-FAN1.0)|

|`ipv6` |`aay` |Array of IPv6 addresses (usually link-local and GUA) |

|`parent` |`ay` |EUI-64 of the preferred parent |

|`is_authenticated`|`b` | |

|`is_neighbor` |`b` |Only nodes that use direct unicast traffic to the border router are listed|

|`rssi` |`i` |Received Signal Strength Indication (RSSI) of the last packet received in dBm (neighbor only)|

|`rsl` |`i` |Exponentially Weighted Moving Average (EWMA) of the Received Signal Level (RSL) in dBm (neighbor only)|

|`rsl_adv` |`i` |EWMA of the RSL in dBm advertised by the node in RSL-IE (neighbor only) |

Although it's possible, using the above to retrieve IPv6 addresses is quite complex, and is better done using the pydbus

Python package and a short script.

Install pydbus Python Package

pip3 install pydbus

get_nodes_ipv6_address.py Python Script

from pydbus import SystemBus

import re

"""

get_nodes_ipv6_address.py

Prints the IPv6 address of each node connected to the running WSBRD instance.

USAGE�

 python3 get_nodes_ipv6_address.py

NOTES�

 - This script can only be used with the WSBRD + RCP setup and must be executed on the host.

"""

bus = SystemBus()

proxy = bus.get("com.silabs.Wisun.BorderRouter", "/com/silabs/Wisun/BorderRouter")

nodes = proxy.Nodes

def sliceIPv6(source):

 return [source[i : i + 4� for i in range(0, len(source), 4��

for node in nodes:

 if len(node[1]["ipv6"]) !� 2�

 continue

 if "parent" not in node[1] and (

 "node_role" not in node[1] or node[1]["node_role"] !� 2

):

 continue

 ipv6 = bytes(node[1]["ipv6"��1��.hex()

 ipv6 = ":".join(sliceIPv6(ipv6��

 ipv6 = re.sub("0000�", ":", ipv6�

 ipv6 = re.sub("�{2,}", "::", ipv6�

 print(ipv6)

Retrieve Device Information

155/602

For a more convenient use from bash, this Python script can be called from the ipv6s bash script.

#!/bin/bash

usage: listing IPv6 addresses of all nodes currently connected

./ipv6s

ipv6s=$�python /home/pi/get_nodes_ipv6_address.py)

for ipv6 in $ipv6s

do

echo $ipv6

done

This script needs to be set as an executable using chmod a+x ipv6s .

Use ipv6s

./ipv6s

fd00�6172�6d00��62a4�23ff:fe37:a8ff

fd00�6172�6d00��62a4�23ff:fe37:a901

NOTE: The IPv6 addresses obtained from wsbrd via DBus reflect the vision of the network from wsbrd.

It takes a while for a device lifetime to expire, so even after a device is switched off, it may still appear as part of the

network from wsbrd's perspective. If a device is off for a while and then turned on in a relatively short term, it may even

reconnect before wsbrd considers it as disconnected. With the initial connection message in the demonstration application,

you will know this because:

You will receive a notification when the device will reconnect.

You can ask via CoAP for the device status and statistics, which will tell you when the reconnection occurred.

Typical CoAP 'get' Request

coap-client uses port 5683 by default. This is the default CoAP UDP port, and is set in the application code.

An abstract of coap-client --help with the options used in the example is:

coap-client v4.2.1 -- a small CoAP implementation

Copyright (C) 2010�2019 Olaf Bergmann <bergmann@tzi.org> and others

TLS Library: None

Usage: coap-client [-e text] [-m method] [�N] [�B seconds] URI

 URI can be an absolute URI or a URI prefixed with scheme and host

General Options

 -e text Include text as payload (use percent-encoding for non-ASCII characters)

 -m method Request method (get|put|post|delete|fetch|patch|ipatch), default is 'get'

 �N Send NON-confirmable message

 �B seconds Break operation after waiting given seconds (default is 90)

The typical coap-client request for the example application takes the following form:

coap-client -m get -N -B 3 coap://[< IPV6>]:5683<COAP_URI> [-e <PAYLOAD>]

where COAP_URI is the CoAP resource, starting with /

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/Border_Router_scripts/ipv6s

Retrieve Device Information

156/602

Discover CoAP Resources

When a device supports CoAP, it generally supports discovery using the /.well-known/core URI:

coap-client -m get -N -B 3 coap://[fd00:6172:6d00::62a4:23ff:fe37:a901]:5683/.well-known/core

</settings>;ct=40,</statistics>;ct=40,</status>;ct=40,</info>;ct=40,</settings/auto_send>;rt="sec";if="settings",

</statistics/stack/regulation>;rt="json";if="regulation",</statistics/stack/network>;rt="json";if="network",

</statistics/stack/wisun>;rt="json";if="wisun",</statistics/stack/fhss>;rt="json";if="fhss",</statistics/stack/mac>;rt="json";if="mac",

</statistics/stack/phy>;rt="json";if="phy",</history>;rt="text";if="node",</statistics/app/availability>;rt="ratio";if="node",

</statistics/app/connected_total>;rt="dhms";if="node",</statistics/app/connections>;rt="int";if="node",

</statistics/app/disconnected_total>;rt="dhms";if="node",</statistics/app/join_states_sec>;rt="array";if="node",

</statistics/app/all>;rt="json";if="node",</status/connected>;rt="dhms";if="node",</status/neighbor>;rt="json";if="node",

</status/parent>;rt="tag";if="node",</status/running>;rt="dhms";if="node",</status/all>;rt="json";if="node",</info/version>;rt="text";if="node",

</info/application>;rt="text";if="node",</info/chip>;rt="tag";if="node",</info/device>;rt="tag";if="node",</info/all>;rt="json";if="node"

The above shows four groups of resources (splitting on , , with ct=40):

</settings>;ct=40,

</statistics>;ct=40,

</status>;ct=40,

</info>;ct=40,

And the resources you can access for each group (splitting the remaining text on ,):

</settings/auto_send>;rt="sec";if="settings",

</statistics/stack/regulation>;rt="json";if="regulation",

</statistics/stack/network>;rt="json";if="network",

</statistics/stack/wisun>;rt="json";if="wisun",

</statistics/stack/fhss>;rt="json";if="fhss",

</statistics/stack/mac>;rt="json";if="mac",

</statistics/stack/phy>;rt="json";if="phy",

</history>;rt="text";if="node",

</statistics/app/availability>;rt="ratio";if="node",

</statistics/app/connected_total>;rt="dhms";if="node",

</statistics/app/connections>;rt="int";if="node",

</statistics/app/disconnected_total>;rt="dhms";if="node",

</statistics/app/join_states_sec>;rt="array";if="node",

</statistics/app/all>;rt="json";if="node",

</status/connected>;rt="dhms";if="node",

</status/neighbor>;rt="json";if="node",

</status/parent>;rt="tag";if="node",

</status/running>;rt="dhms";if="node",

</status/all>;rt="json";if="node",

</info/version>;rt="text";if="node",

</info/application>;rt="text";if="node",

</info/chip>;rt="tag";if="node",

</info/device>;rt="tag";if="node",

</info/all>;rt="json";if="node"

These match what the application provides, since it's filled by the CoAP Resource Manager based on registered CoAP

resources.

Send a CoAP Request to All Connected Devices

The coap_all bash script can be used to send the same request to all devices. It uses get_nodes_ipv6_addresses.py to get

the IPv6 addresses and traces the CoAP command, such that you can easily copy/paste it for a specific device if needed.

https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/Border_Router_scripts/coap_all
https://github.com/SiliconLabs/wisun_applications/blob/main/wisun_node_monitoring/Border_Router_scripts/get_nodes_ipv6_address.py

Retrieve Device Information

157/602

./coap_all /settings/auto_send

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51c]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51d]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a527]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a8ff]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a901]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2191]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2527]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2853]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8486]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8493]�5683/settings/auto_send : auto_send_sec: 60

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8503]�5683/settings/auto_send : auto_send_sec: 60

Based on the coap_callback_auto_send() implementation in the Wi-SUN device, coap_all can also be used to change the

auto_send period for all nodes in a row:

./coap_all /settings/auto_send -e 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51c]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a51d]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a527]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a8ff]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00��62a4�23ff:fe37:a901]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2191]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2527]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b635�22ff:fe98�2853]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8486]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8493]�5683/settings/auto_send -e 120 : auto_send_sec: 120

 coap-client -m get �N �B 3 coap://[fd00�6172�6d00::b6e3:f9ff:fec5�8503]�5683/settings/auto_send -e 120 : auto_send_sec: 120

OTA DFU

158/602

OTA DFU

Over-The-Air Device Firmware Upgrade
To upgrade an application on a device, you need to:

Once only (on the Border Router platform):

Install libcoap2 & libcoap2-bin

Install a TFTP server

Start a CoAP notification server (optional, used to monitor the upgrade process)

Start a Linux Border Router

Add known IPv6 addresses to the Border Router tun0 interface

Once per device hardware:

Create an OTA-capable bootloader, with the compression algorithm(s) of your choice

Once per project:

Add the OTA DFU component

This will add the CoAP and TFTP components

Set the Wi-SUN network to auto-connect to the Border Router (Optional. If not, you will need to trigger connection on the

device)

Once per device:

Flash the OTA-capable bootloader to the device, with the compression algorithm(s) of your choice

Flash an initial OTA-capable application to the device

Have the device connect to the Wi-SUN network

For every upgrade:

Build the project

Create a .gbl file from the .s37 file (optionally using compression)

Copy the .gbl to the expected name in the TFTP server folder

Trigger the OTA upgrade using a coap-client 'post' method

Check file download results

Trigger the reboot on the new firmware (the initial version of the OTA DFU component uses auto-reboot)

The following explains how to perform these steps based on the 'Wi-SUN SoC Empty' example application. OTA DFU can

be applied using the same steps to all Wi-SUN example projects.

It is recommended to set an initial startup message in the application to show that the upgrade worked.

Prerequisites

libcoap2 Installation

libcoap2 is used for:

The (optional) CoAP notification server

The CoAP client used to trigger and monitor the firmware update

Both can be installed on separate machines, as long as they can be reached using IPv6. For the sake of simplicity, use the

Linux platform supporting wsbrd for both functions. You will add a separate IPv6 address to the Border Router Wi-SUN

interface to demonstrate this capability.

sudo apt-get install libcoap2

sudo apt-get install libcoap2-bin

OTA DFU

159/602

TFTP Server Installation on the Linux Border Router

On the selected file server, install a TFTP server through the following steps. Here also you use the Linux platform used as

the Border Router for this purpose, with a separate IPv6 address.

TFTP Daemon Installation

sudo apt-get install tftpd-hpa tftp-hpa

TFTP Service Configuration

sudo nano /etc/default/tftpd-hpa

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"

TFTP_DIRECTORY="/srv/tftp"

TFTP_ADDRESS="�69"

TFTP_OPTIONS="--secure"

(optional) Set the TFTP_USERNAME and TFTP_DIRECTORY to match you setup, if it differs from the defaults.

Restart the TFTPD Service

/etc/init.d/tftpd-hpa restart

From this point, files stored under the TFTP_DIRECTORY are accessible using TFTP.

Start a Linux Border Router

Start a Border Router set to allows connecting your devices. The devices should connect before adding OTA DFU to their

application.

Add known IPv6 addresses to the Border Router (acting as CoAP server and Notification Server)

What you need here is:

A TFTP server, such that your devices can send TFTP requests for the .gbl files.

A (optional, highly recommended) CoAP Notification Server such that your devices can send progress notifications during

OTA DFU download.

The TFTP and CoAP servers may not be on the Border Router platform, as long as they can be reached by your Wi-SUN

devices via the Border Router. For the sake of simplicity in this first setup, use the same Linux platform as for wsbrd (i.e,

your Wi-SUN Border Router) for both uses.

Using separate IPv6 addresses makes it clear that the three entities (Border Router, TFTP server, CoAP Notification Server)

can be on different platforms. S ince the Border Router application is 'wsbrd', you have control over the IPv6 prefix used by

your Wi-SUN network (set in your wsbrd.conf file).

ipv6_prefix = fd00:6172:6d00::/64

You can then add a first IPv6 address to the tun0 interface using this IPv6 prefix for the 'OTA DFU HOST' role:

sudo ip �6 address add fd00�6172�6d00��1/64 dev tun0

Add a second IPv6 address to the tun0 interface 'OTA DFU NOTIFY HOST' role:

OTA DFU

160/602

sudo ip �6 address add fd00�6172�6d00��2/64 dev tun0

Then check that you now have two IPv6 addresses for the 'tun0' interface:

ip address show tun0 | grep global'

 inet6 fd00�6172�6d00��1/64 scope global

 inet6 fd00�6172�6d00��2/64 scope global

 inet6 fd00�6172�6d00�0�92fd:9fff:fe00�333a/64 scope global

You will later set the IPv6 OTA_DFU_HOST and OTA_DFU_NOTIFY_HOST addresses in the OTA component code to match

these fixed (fd00:6172:6d00::1 and fd00:6172:6d00::2 , respectively) addresses.

Start the CoAP Notification Server

The CoAP Notification server is optional, but it's useful to follow the upgrade process. S ilicon Labs highly recommends using

it.

Checking coap-server Options

Use coap-server --help to get the help. Below is an abstract with the version info and options used.

coap-server: invalid option -- '-'

coap-server v4.2.1 -- a small CoAP implementation

(c) 2010,2011,2015�2018 Olaf Bergmann <bergmann@tzi.org> and others

TLS Library: None

Usage: coap-server [-d max] [-g group] [-l loss] [-p port] [-v num]

[�A address] [�N]

[[-k key] [-h hint]]

[[-c certfile][�C cafile] [-n] [�R root_cafile]]

General Options

 -d max Allow dynamic creation of up to a total of max

 resources. If max is reached, a 4.06 code is returned

until one of the dynamic resources has been deleted

 -g group Join the given multicast group

 -p port Listen on specified port

 -v num Verbosity level (default 3, maximum is 9). Above 7,

 there is increased verbosity in GnuTLS logging

 �A address Interface address to bind to

 �N Make "observe" responses NON-confirmable. Even if set

 every fifth response will still be sent as a confirmable

 response (RFC 7641 requirement)

Starting the COAP Notification Server

Start the CoAP notification server with -d 10 to allow dynamic resource creation:

coap-server �A fd00�6172�6d00��2 -p 5685 -d 10

Bootloader Application

You need a Bootloader Application using SPI Flash for a single image of max 1024k bytes. This is to be manually flashed

once to the part to allow OTA.

OTA DFU

161/602

TIP:If you use the Erase option before Program when flashing the Wi-SUN application, you will need to re-flash

the bootloader.

In S implicity Studio:

 Select the board you want to flash the bootloader to in the Debug Adapter window.

 Open the Launcher perspective.

 Select the EXAMPLE PROJECTS & DEMOS tab.

 On the projects filtering section, under MCU, check Bootloader to reduce the list of available projects.

 Further reduce by filtering on SPI, single and 1024. Enter these strings in the Filter on keywords box, pressing Enter after

each string.

 'Create' a Bootloader - SoC SPI Flash Storage (single image with slot size of 1024k) project.

Bootloader Configuration

The Bootloader settings are defined in config/btl_storage_cfg.h . No need to change anything here, the default values are

fine.

The Base Address is defined as BTL_STORAGE_BASE_ADDRESS .

The memory slots to store the images are defined as well.

Only SLOT0 is enabled, with a SLOT0_SIZE of 1048576 = 1024 * 1024 = 1024 kBytes, starting at SLOT0_START 0 .

Add LZ4 Compression to Bootloader

By default, the bootloader projects don't include the LZ4 compression algorithm, so install it if you want to use it.

OTA DFU

162/602

TIP: Use lzma instead of lz4, lzma has better compression performance.

Add LZMA Compression to Bootloader

By default, the bootloader projects don't include the most efficient LZMA compression algorithm, so install it if you want to

use it.

TIP: Using lzma to compress .gbl files to save transmission time and therefore power when transmitting data.

Build the Bootloader Project

OTA DFU

163/602

or

See S implicity Studio 5 Users Guide for details.

Flash the Bootloader Binary to the Debug Adapter

A new Binaries folder appeared in the project. This corresponds to the binaries present under GNU ARM v10.3.1 - Default .

On Series 1 (xG12, for example), select the <pro jectname>-combined.s37 binary (see [UG489: S ilicon Labs Gecko Bootloader

User’s Guide for GSDK 4.0 and Higher](https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-

guide-gsdk-4.pdf) section 6, comments on Series 1 and 2 for details).

On Series 2 (xG25 or xG28, for example), select the <pro jectname>.s37 binary.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-building-and-flashing/building#simple-build
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

OTA DFU

164/602

If you have several devices in your Debug Adapters window, you will be asked to select the device.

OTA DFU

165/602

TIP: It's always better to erase the part before flashing a bootloader. As opposed to this, do not erase before

flashing the Wi-SUN application; otherwise, you will need to re-flash the bootloader.

Finally, click the Program button.

Application Project Creation (if not already existing)

If you have no previous application to flash to the device for testing, you can create a new 'Wi-SUN SoC Empty' project as

described in Building and Connecting to a Wi-SUN Network. Otherwise, use your working Wi-SUN project.

Adding the 'Wi-SUN Over-The-Air Device Firmware Upgrade �OTA DFU�'
Component

To perform OTA upgrades:

The bootloader on your device must support OTA DFU.

The application running on your device must support OTA DFU.

In the Simplicity IDE perspective, open wisun_soc_empty.slcp select the SOFTWARE COMPONENTS tab, filter on 'DFU', and

look for the Wi-SUN Over-The-Air Device Firmware Upgrade (OTA DFU) Component.

Install the OTA DFU Component

https://docs.silabs.com/wisun/1.8.0/wisun-building-connecting/index

OTA DFU

166/602

Check the OTA DFU Settings

NOTE: It will take ~30 seconds for the Configure button to be active after installing the OTA DFU component.

There are two ways to change the OTA DFU component settings. The first way is through the SOFTWARE COMPONENTS

view.

 In the SOFTWARE COMPONENTS view, click Configure to access the corresponding GUI. Changes you make here will be

reflected in config/sl_wisun_ota_dfu_config.h .

Verbose mode is enabled by default to follow the upgrade process in the device's console.

Host notifications are enabled by default to follow the upgrade process from the Border Router.

The OTA DFU service stack size in CPU word is set to 360 words (1440 bytes) to avoid stack overflow.

 Set the TFTP service listening address to match the TFTP server IPv6.

 Set the OTA DFU notification server address to match the notification server IPv6.

Optionally, you can change the Firmware image (gbl) file name on TFTP server to match your hardware. This can make it

easier to manage various devices in the future. For the time being, keep using wisun_firmware .gbl .

OTA DFU

167/602

The OTA DFU GUI reflects in config/sl_wisun_ota_dfu_config.h . You can open it from the GUI, using the View Source button.

The settings must match between:

The TFTP server IPv6 (fd00:6172:6d00::1)

The .gbl file name

The CoAP Notification server IPv6 (fd00:6172:6d00::2)

The OTA DFU component

The coap-server command

The coap-client commands

OTA DFU

168/602

TIP: Use the OTA DFU cheat sheet to check your settings.

Enable OTA DFU Verbose Mode

In config/sl_wisun_ota_dfu_config.h , SL_WISUN_OTA_DFU_VERBOSE_MODE_ENABLED is set to 1U to get messages traced in the

device's console during download. Once you get familiar with OTA DFU, you can disable verbose mode.

[wisun-btl] (0) Storage info: version: 196608, capabilities: 0, storageType: 0, numStorageSlots: 1

[wisun-btl] (7) Firmware upgrade started

[wisun-btl] (17) TFTP init done

[wisun-btl] (27) TFTP download started: tftp://[fd00�6172�6d00��1]�69/wisun_firmware.gbl

[wisun-btl] (429) download: received chunk 1, offset: 0�00000000

[wisun-btl] (853) download: received chunk 2, offset: 0�00000200

[wisun-btl] (1077) download: received chunk 3, offset: 0�00000400

[wisun-btl] (1302) download: received chunk 4, offset: 0�00000600

[wisun-btl] (1526) download: received chunk 5, offset: 0�00000800

[wisun-btl] (1949) download: received chunk 6, offset: 0�00000a00

[wisun-btl] (2174) download: received chunk 7, offset: 0�00000c00

Enable OTA DFU Notifications

In config/sl_wisun_ota_dfu_config.h , SL_WISUN_OTA_DFU_HOST_NOTIFY_ENABLED is set to 1U to get notification CoAP messages

sent by the device to the notification server during download, every SL_WISUN_OTA_DFU_NOTIFY_DOWNLOAD_CHUNK_CNT

chunks (default 10U). This can be changed later on to a larger value to reduce the amount of notification messages. Setting

it to a very large number will avoid all intermediate notifications while still keeping the final notification message, which is

important to indicate file download completion and the validity of the new firmware.

The notification server doesn't need to be the Border Router. It can be any other machine. Use a dedicated IPv6 address

to make this clear.

Version 1 Application with OTA DFU Support

Now that you have OTA DFU configured, you can set your Wi-SUN network to match your Border Router. Do this with the

Wi-SUN Configurator.

Set the Wi-SUN Configuration

Set the Wi-SUN Configuration to match the Border Router setup.

Add a Startup Text Indicating the Version of the Application

Here, add the following to app.c/app_task() to get minimal information on your application and make sure you can tell which

version is running through the startup messages that you'll get in the Serial 1 console when you reset the device.

printf("Version 1. Compiled on %s at %s\n", __DATE__, __TIME__);

�Optional) Add a Startup Text Indicating OTA DFU Support

OTA DFU

169/602

S ince it's interesting to know if OTA DFU is supported, add a second message if OTA DFU is supported.

To locate where active components are declared, select in app.c/app_task() the SL_CATALOG_WISUN_APP_CORE_PRESENT

text on line 83, right-click, and select Open Declaration.

You end up in autogen/sl_component_catalog.h , where SL_CATALOG_WISUN_OTA_DFU_PRESENT is declared on line 33.

TIP: You also see that SL_CATALOG_WISUN_COAP_PRESENT is declared on line 27, indicating that the CoAP

component is also present. CoAP is a dependency for the OTA DFU component, so it has been installed

automatically when you added OTA DFU (if not previously installed).

Back to app.c/app_task() , add the following code below your previous message:

OTA DFU

170/602

#ifdef SL_CATALOG_WISUN_OTA_DFU_PRESENT

printf("OTA DFU is supported\n");

#endif

�Optional) Add More Information on OTA DFU Once Connected

Once the device is connected to the Wi-SUN network the application can retrieve it's IPv6 global address and display

information on how OTA DFU can be used.

This is interesting to add for the first OTA DFU tests, to get you familiar with the commands and the parameters.

In app.c , add the following code in the #include area:

#include "sl_wisun_ota_dfu_config.h"

and the following code before the while (1) loop in app_task()

OTA DFU

171/602

#ifdef SL_CATALOG_WISUN_OTA_DFU_PRESENT

 sl_wisun_ip_address_t global_ipv6;

printf("OTA DFU will download chunks of '�TFTP_DIRECTORY�/%s' from %s/%d\n",

 SL_WISUN_OTA_DFU_GBL_FILE,

 SL_WISUN_OTA_DFU_HOST_ADDR,

 SL_WISUN_OTA_DFU_TFTP_PORT

);

sl_wisun_get_ip_address(SL_WISUN_IP_ADDRESS_TYPE_LINK_LOCAL, &global_ipv6);

printf("OTA DFU 'start' command:\n");

printf(" coap-client -m post �N �B 10 -t text coap://[%s]:%d%s -e \"start\"\n",

app_wisun_trace_util_get_ip_str(&global_ipv6),

5683,

 SL_WISUN_OTA_DFU_URI_PATH

);

printf("Follow OTA DFU progress (from node, intrusive) using:\n");

printf(" coap-client -m get �N �B 10 -t text coap://[%s]:%d%s\n",

app_wisun_trace_util_get_ip_str(&global_ipv6),

 SL_WISUN_COAP_RESOURCE_HND_SERVICE_PORT,

 SL_WISUN_OTA_DFU_URI_PATH

);

if (SL_WISUN_OTA_DFU_HOST_NOTIFY_ENABLED) {

printf("OTA DFU notifications enabled (every %d chunks)\n",

 SL_WISUN_OTA_DFU_NOTIFY_DOWNLOAD_CHUNK_CNT

);

printf("OTA DFU notifications will be POSTed to notification server coap://[%s]:%d%s\n",

 SL_WISUN_OTA_DFU_NOTIFY_HOST_ADDR,

 SL_WISUN_OTA_DFU_NOTIFY_PORT,

 SL_WISUN_OTA_DFU_NOTIFY_URI_PATH

);

printf("Follow OTA DFU progress (from notification server) using:\n");

printf(" coap-client -m get �N �B 1 -t text coap://[%s]:%d%s\n",

 SL_WISUN_OTA_DFU_NOTIFY_HOST_ADDR,

 SL_WISUN_OTA_DFU_NOTIFY_PORT,

 SL_WISUN_OTA_DFU_NOTIFY_URI_PATH

);

}

#endif

OTA DFU

172/602

OTA DFU

173/602

Rebuild the 'Version 1' Application

Unfortunately, with GSDK 4.3.0, this will fail because of an assert from

<gecko_sdk>/app/wisun/component/ftp_posix_port/sl_wisun_ftp_posix_port.c line 160 . The root cause is not the assert. The

assert is here to stop you at this point such that you correct the underlying code and safely compile with no runtime issue

to expect. If you don't solve the assert, you may get issues when running your code.

The point is that the TFTP code is using a data block size of 512 bytes by default, while the socket buffer is using 128

bytes per default. As a consequence, the TFTP packets won't fit in the socket buffer, so the socket buffer needs to be

bigger.

With GSDK 4.3.0, setting this was not done automatically in the generation flow when adding TFTP and the OTA DFU

component, so this change needs to be done manually. This is improved in later GSDK versions using the following condition

in the .slcp file:

With GSDK 4.3.0, you will experience this error:

As the error message indicates, the solution consists of increasing SL_SOCKET_BUFFER_SIZE to be higher than

SL_TFTP_DATA_BLOCK_SIZE + 4 .

You find the value of SL_TFTP_DATA_BLOCK_SIZE using Open Declaration (F3).

#define SL_TFTP_DATA_BLOCK_SIZE 512UL

Go to the SL_SOCKET_BUFFER_SIZE declaration and set it to 512 + 4 = 516.

#define SL_SOCKET_BUFFER_SIZE 516U

Now you can compile without errors.

OTA DFU

174/602

Manually Install the 'Version 1' Application

 Flash it manually (if it's the first OTA-capable application you flash, it needs to be flashed manually, since resources to flash it

using OTA DFU are not present yet).

NOTE: If you use the Erase Feature, you will need to re-flash the bootloader then flash the application.

OTA DFU

175/602

 Open a console on the device.

 Select Serial 1 and press Enter to connect.

 Reset the device (using the RESET button on the WSTK/WPK).

The startup message indicates that:

You're running 'Version 1'

OTA DFU is supported

The 'Wi-SUN SoC Empty' example application is set for auto-connection to the Wi-SUN Network, so you see it starting to

connect.

Rename the 'Version 1'Binary to Keep It

OTA DFU

176/602

Add _version_1 to the file name to clearly identify it.

Version 2 Application with OTA DFU Support

Change the Startup Text for 'Version 2'

printf("Version 2. Compiled on %s at %s\n", __DATE__, __TIME__);

OTA DFU

177/602

Rebuild the 'Version 2' Application

The wisun_soc_empty.s37 file is back in the Binaries folder. It now corresponds to your 'Version 2' application.

Rename the 'Version 2' Binary to Keep It

Add _version_2 to the file name to clearly identify it.

Convert the 'Version 2' Binary to GBL Format

The 'Version 2' binary needs to be converted to the GBL (Gecko BootLoader) format using S implicity Commander. It will

have a .gbl extension after conversion.

On Windows platforms, S implicity Commander is by default installed under

C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander .

TIP: To access S implicity Commander easily, it's a good option to add the path to the commander.exe in your

environment variables. Remember that command line windows only check environment variables upon starting,

OTA DFU

178/602

so you need to re-open them to benefit from the change.

Open a command window in the C:\Users\username\SimplicityStudio\v5_workspace\wisun_soc_empty\GNU ARM v10.3.1 - Default folder

where binaries are stored.

Check that the .s37 files are present:

C�\Users\username\SimplicityStudio\v5_workspace\wisun_soc_empty\GNU ARM v10.3.1 - Default>dir *.s37

29/06/2023 15�00 1 888 290 wisun_soc_empty_version_1.s37

29/06/2023 15�12 1 888 290 wisun_soc_empty_version_2.s37

Create the GBL file for the application to transfer over OTA DFU

commander gbl create --app wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2.gbl

To reduce the size of the file to be transferred, you can compress the resulting file with either --compress lz4 or --

compress lzma

commander gbl create --app wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2_lz4.gbl --compress lz4

commander gbl create --app wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2_lzma.gbl --compress lzma

CAUTION: Only compress with the algorithms supported by your bootloader, otherwise the verification step will

fail once downloaded.

C�\Users\username\SimplicityStudio\OTA\wisun_soc_empty\GNU ARM v10.3.1 - Default>commander gbl create --app

wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2.gbl

Parsing file wisun_soc_empty_version_2.s37...

Initializing GBL file...

Adding application to GBL...

Writing GBL file wisun_soc_empty_version_2.gbl...

DONE

C�\Users\username\SimplicityStudio\OTA\wisun_soc_empty\GNU ARM v10.3.1 - Default>commander gbl create --app

wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2_lz4.gbl --compress lz4

Parsing file wisun_soc_empty_version_2.s37...

Initializing GBL file...

Adding application to GBL...

Compressing using lz4...

Writing GBL file wisun_soc_empty_version_2_lz4.gbl...

DONE

C�\Users\username\SimplicityStudio\OTA\wisun_soc_empty\GNU ARM v10.3.1 - Default>commander gbl create --app

wisun_soc_empty_version_2.s37 wisun_soc_empty_version_2_lzma.gbl --compress lzma

Parsing file wisun_soc_empty_version_2.s37...

Initializing GBL file...

Adding application to GBL...

Compressing using lzma...

Writing GBL file wisun_soc_empty_version_2_lzma.gbl...

DONE

As you can see, the best compression method is lzma :

Compression Size (bytes) None/Compressed ratio

None 629476 100 %

lz4 544424 86 %

lzma 385996 61 %

C�\Users\username\SimplicityStudio\v5_workspace\wisun_soc_empty\GNU ARM v10.3.1 - Default>dir *version_2*.gbl

OTA DFU

179/602

29/06/2023 15�17 629476 wisun_soc_empty_version_2.gbl

29/06/2023 15�18 544424 wisun_soc_empty_version_2_lz4.gbl

29/06/2023 15�18 385996 wisun_soc_empty_version_2_lzma.gbl

At this point, you have all the resources you need to start using OTA DFU to upgrade from 'Version 1' (manually flashed) to

'Version 2' (using OTA DFU).

A running TFTP server on the Linux Border Router.

A bootloader with OTA DFU support, flashed to your device.

A 'Version 1' application with OTA DFU support, flashed to your device.

A 'Version 2' file in GBL format (you'll use the lzma-compressed file).

The 'Version 2' binary also has OTA DFU support, to get ready to accept future upgrades to a 'Version 3' application.

And you can follow the process using the notifications, which will be sent to the notification server by the device.

Transfer the 'Version 2' .gbl Files to the Linux Border Router

From the machine where the .gbl files were created, use scp to copy the files to the Linux Border Router host. You can

use your preferred file copy method.

scp wisun_soc_empty_*.gbl <linux_user>@<linux_hostname>:/tmp/

NOTE: The rest of the operations will occur on the Linux Border Router.

Check 'Version 1' Connection to the Border Router

On the Border Router

In wsbrd_cli status , the MAC address of the device should be visible:

OTA DFU

180/602

network_name: Linux_BZ_3_8

fan_version: FAN 1.1

domain: BZ

phy_mode_id: 8

chan_plan_id: 3

panid: 0xd4ec

size: CERT

GAK�0�� 36:b6�1e:81:fa:c4�88:b4�03:f7:b4�9b:38:b3�41�47

GAK�1�� 79�8b:b2�98�7f:ef:d3�55�4a:b8:cf:23:d4:a2�8f:5b

GAK�2�� 79�8b:b2�98�7f:ef:d3�55�4a:b8:cf:23:d4:a2�8f:5b

GAK�3�� 79�8b:b2�98�7f:ef:d3�55�4a:b8:cf:23:d4:a2�8f:5b

GTK�0�� 00�10�20�30�40�50�60�70�80�90:a0:b0:c0:d0:e0:f0

GTK�1�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

GTK�2�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

GTK�3�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

LGAK�0�� 62�80�53�11�03�45:b6:f5�16�67:e6�14�65�21:e4�99

LGAK�1�� 79�8b:b2�98�7f:ef:d3�55�4a:b8:cf:23:d4:a2�8f:5b

LGAK�2�� 79�8b:b2�98�7f:ef:d3�55�4a:b8:cf:23:d4:a2�8f:5b

LGTK�0�� 66�70�4e:08�8c:ce:82:c9:d2:aa:c7�62�83�18�97:b9

LGTK�1�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

LGTK�2�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

90:fd:9f:ff:fe:00�33�3a

 `- 60:a4�23:ff:fe:37:a5�1d

On the Device

Check the content of 'Serial 1'. By now, it should be connected if the Border Router and the device settings match and both

are working as expected.

S ince it's now connected, the information strings you prepared are now visible, providing hints to the user.

Information on TFTP settings

OTA DFU will download chunks of '<TFTP_DIRECTORY>/wisun_firmware .gbl' from fd00:6172:6d00::1/69

Information on the OTA start command (to be executed on the Border Router)

coap-client -m post -N -B 10 -t text coap://[fe80::62a4:23ff:fe37:a51d]:5683/ota/dfu -e "start"

Information on the notification settings

OTA DFU notifications enabled (every 10 chunks)

OTA DFU notifications will be POSTed to notification server coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

Information on how to follow the OTA progress

Fo llow OTA DFU progress (from notification server) using:

OTA DFU

181/602

coap-client -m get -N -B 1 -t text coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

Store the Device's IPv6 GLOBAL Address

Copy the GLOBAL IPv6 address either from the Addresses [GLOBAL : < IPv6>] section, or from the above info on the

"start" command. This is the device's IPv6 address you will need to use for OTA DFU as the WISUN_NODE_IPV6_ADDR value.

On the Border Router, set a command line variable to make it easier to repeat the OTA process for other devices:

WISUN_NODE_IPV6_ADDR=fd00:6172:6d00:0:62a4:23ff:fe37:a51d (in the example)

TIP: You need to do this for each bash window you open.

Store the Border Router's IPv6 Address

Copy the BORDER_ROUTER IPv6 address from the Addresses [BORDER_ROUTER : < IPv6>] section.

On the Border Router, set a command line variable to make it easier to repeat the OTA process for other devices:

WISUN_BR_IPV6_ADDR=fd00:6172:6d00:0:92fd:9fff:fe00:333a (in the example)

TIP: You need to do this for each bash window you open.

OTA DFU on the Linux Border Router

Copy the .gbl file to the TFTP Server Directory

Check the TFTP server directory from its config file:

sudo cat /etc/default/tftpd-hpa

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"

TFTP_DIRECTORY="/srv/tftp"

TFTP_ADDRESS="�69"

TFTP_OPTIONS="--secure"

Copy the .gbl files in the TFTP_DIRECTORY folder:

sudo cp /tmp/*.gbl /srv/tftp/.

ls -l /srv/tftp/*.gbl

-rw-r--r-- 1 root root 629476 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2.gbl

-rw-r--r-- 1 root root 544424 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2_lz4.gbl

-rw-r--r-- 1 root root 385996 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2_lzma.gbl

Copy the .gbl file of your choice to the name set as SL_WISUN_OTA_DFU_GBL_FILE in config/sl_wisun_ota_dfu_config.h .

First, start testing with the un-compressed file.

sudo cp /srv/tftp/wisun_soc_empty_version_2.gbl /srv/tftp/wisun_firmware.gbl

OTA DFU

182/602

Check the presence of the .gbl file:

ls -al /srv/tftp/*.gbl

-rw-r--r-- 1 root root 629476 Jun 29 15�41 /srv/tftp/wisun_firmware.gbl

-rw-r--r-- 1 root root 629476 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2.gbl

-rw-r--r-- 1 root root 544424 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2_lz4.gbl

-rw-r--r-- 1 root root 385996 Jun 29 15�38 /srv/tftp/wisun_soc_empty_version_2_lzma.gbl

See that the file sizes for wisun_firmware .gbl and wisun_soc_empty_version_2.gbl match, indicating that you're using the

uncompressed file for the time being.

Check that you can Ping the Border Router

ping $WISUN_BR_IPV6_ADDR -c 1

PING fd00�6172�6d00�0�92fd:9fff:fe00�333a(fd00�6172�6d00�0�92fd:9fff:fe00�333a) 56 data bytes

64 bytes from fd00�6172�6d00�0�92fd:9fff:fe00�333a: icmp_seq=1 ttl=64 time=0.214 ms

--- fd00�6172�6d00�0�92fd:9fff:fe00�333a ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.214/0.214/0.214/0.000 ms

Successfully pinging the Border Router means that it's started and the IPv6 address that you retrieved from the device is

correct.

Check that you can Ping the TFTP Server

ping fd00�6172�6d00��1

Successfully pinging the TFTP server means that it's IPv6 has been added to tun0 and it is accessible from your devices.

Check that you can Ping the Notification Server

ping fd00�6172�6d00��2

Successfully pinging the notification server means that it's IPv6 has been added to tun0 and it is accessible from your

devices and from the Border Router.

Your devices will use coap 'POST' messages to store their OTA status.

You'll use coap 'GET' messages to check the devices status.

Note that:

You're not directly asking the devices for status, because:

Doing so, you reduce the traffic on your Wi-SUN network.

If a device reboots after the upgrade, it will not be able to respond anymore to CoAP requests, while the notification

server will be able to tell if OTA was successful, since the last notification message will show the last notification

received from the device.

Check that you can Ping the Node

ping $WISUN_NODE_IPV6_ADDR -c 1

PING fd00�6172�6d00�0�62a4�23ff:fe37:a51d(fd00�6172�6d00�0�62a4�23ff:fe37:a51d) 56 data bytes

64 bytes from fd00�6172�6d00�0�62a4�23ff:fe37:a51d: icmp_seq=1 ttl=63 time=74.9 ms

--- fd00�6172�6d00�0�62a4�23ff:fe37:a51d ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 74.892/74.892/74.892/0.000 ms

OTA DFU

183/602

Successfully pinging the device means that it's connected to the Wi-SUN network and is working as expected. You can

now test OTA DFU.

Check that CoAP is Running on the Node

Send your coap-client GET method with -v 6 to get some level of debug information.

coap-client -m get coap://[$WISUN_NODE_IPV6_ADDR]�5683/ota/dfu -v 6

TIP: Here add -v 6 to add verbosity and get more details on the CoAP command. Once you get used to the

procedure, you may not want to keep using this method.

v:1 t:CON c:GET i:ded0 {} [Uri-Path:ota, Uri-Path:dfu]

v:1 t:ACK c:2.01 i:ded0 {} [Content-Format:application/json] :: '{\x0A"elapsed_t":"00�23�44",\x0A"downl_bytes"�0,\x0A"flags":

"0�00000000",\x0A"fw_update_started": 0,\x0A"fw_downloaded": 0,\x0A"fw_verified": 0,\x0A"fw_set": 0,\x0A"fw_stopped":

0,\x0A"fw_download_error": 0,\x0A"fw_verify_error": 0,\x0A"fw_set_error": 0\x0A}\x0A'

{

"elapsed_t":"00�23�44",

"downl_bytes"�0,

"flags": "0�00000000",

"fw_update_started": 0,

"fw_downloaded": 0,

"fw_verified": 0,

"fw_set": 0,

"fw_stopped": 0,

"fw_download_error": 0,

"fw_verify_error": 0,

"fw_set_error": 0

}

TIP: The "elapsed_t" value is the time since connection to the Wi-SUN network, as long as OTA DFU hasn't

been started.

On the device console, you see the CoAP 'Received packet' and 'Response packet'.

OTA DFU

184/602

[CoAP-RHND-Service: Received packet]

{

"token_len": 0,

"coap_status": 0,

"msg_code": 1,

"msg_type": 0,

"content_format": 4294967295,

"msg_id": 57040,

"payload_len": 0,

"uri_path_len": 7,

"token": "n/a",

"uri_path": "ota/dfu",

"payload": "n/a",

}

[CoAP-RHND-Service: Response packet]

{

"token_len": 0,

"coap_status": 0,

"msg_code": 65,

"msg_type": 32,

"content_format": 50,

"msg_id": 57040,

"payload_len": 224,

"uri_path_len": 0,

"token": "n/a",

"uri_path": "n/a",

"payload":

{

"elapsed_t":"00�23�44",

"downl_bytes":0,

"flags": "0�00000000",

"fw_update_started": 0,

"fw_downloaded": 0,

"fw_verified": 0,

"fw_set": 0,

"fw_stopped": 0,

"fw_download_error": 0,

"fw_verify_error": 0,

"fw_set_error": 0

}

}

TIP: You can check that the message index i:ded0 in v:1 t:CON c:GET i:ded0 matches the "msg_id": 57040 in the

Device's console (57040 = 0xded0).

Start OTA DFU for the Wi-SUN Device

At this point, you can trigger an OTA DFU for the device.

Checking coap-client Options

Use coap-client --help to get the help. Below is an abstract with the version info and options used.

coap-client --help

OTA DFU

185/602

coap-client v4.1.2 -- a small CoAP implementation

(c) 2010�2015 Olaf Bergmann <bergmann@tzi.org>

usage: coap-client [�A type...] [-t type] [-b [num,]size] [�B seconds] [-e text]

[-m method] [�N] [-o file] [�P addr[:port]] [-p port]

[-s duration] [�O num,text] [�T string] [-v num] [-a addr] [�U] URI

 URI can be an absolute or relative coap URI,

 �B seconds break operation after waiting given seconds

(default is 90)

 -e text include text as payload (use percent-encoding for

 non-ASCII characters)

 -m method request method (get|put|post|delete), default is 'get'

 �N send NON-confirmable message

 -v num verbosity level (default: 3)

Starting Firmware Download using coap-client

coap-client -m post �N �B 3 -t text coap://[$WISUN_NODE_IPV6_ADDR]�5683/ota/dfu -e "start" -v 6

OTA DFU Starting on the Border Router

v:1 t:NON c:POST i:4186 {} [Uri-Path:ota, Uri-Path:dfu, Content-Format:text/plain] :: 'start'

v:1 t:NON c:2.01 i:0000 {} [Content-Format:application/json] :: '{\x0A"elapsed_t":"00�00�00",\x0A"downl_bytes"�0,\x0A"flags":

"0�00000001",\x0A"fw_update_started": 1,\x0A"fw_downloaded": 0,\x0A"fw_verified": 0,\x0A"fw_set": 0,\x0A"fw_stopped":

0,\x0A"fw_download_error": 0,\x0A"fw_verify_error": 0,\x0A"fw_set_error": 0\x0A}\x0A'

{

"elapsed_t":"00�00�00",

"downl_bytes"�0,

"flags": "0�00000001",

"fw_update_started": 1,

"fw_downloaded": 0,

"fw_verified": 0,

"fw_set": 0,

"fw_stopped": 0,

"fw_download_error": 0,

"fw_verify_error": 0,

"fw_set_error": 0

}

The "fw_update_started": 1 flag is set!

OTA DFU Starting on the Device

OTA DFU

186/602

[CoAP-RHND-Service: Received packet]

{

"token_len": 0,

"coap_status": 0,

"msg_code": 2,

"msg_type": 16,

"content_format": 0,

"msg_id": 16774,

"payload_len": 5,

"uri_path_len": 7,

"token": "n/a",

"uri_path": "ota/dfu",

"payload": "start"}

[CoAP-RHND-Service: Response packet]

{

"token_len": 0,

"coap_status": 0,

"msg_code": 65,

"msg_type": 16,

"content_format": 50,

"msg_id": 0,

"payload_len": 224,

"uri_path_len": 0,

"token": "n/a",

"uri_path": "n/a",

"payload":

{

"elapsed_t":"00�00�00",

"downl_bytes":0,

"flags": "0�00000001",

"fw_update_started": 1,

"fw_downloaded": 0,

"fw_verified": 0,

"fw_set": 0,

"fw_stopped": 0,

"fw_download_error": 0,

"fw_verify_error": 0,

"fw_set_error": 0

}

}

[wisun-btl] (0) Storage info: version: 196608, capabilities: 0, storageType: 0, numStorageSlots: 1

[wisun-btl] (7) Firmware upgrade started

[wisun-btl] (11) notify: coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

[wisun-btl] (18) TFTP init done

[wisun-btl] (21) notify: coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

[wisun-btl] (27) TFTP download started: tftp://[fd00:6172:6d00::1]:69/wisun_firmware.gbl

[wisun-btl] (442) download: received chunk 1, offset: 0�00000000

[wisun-btl] (866) download: received chunk 2, offset: 0�00000200

[wisun-btl] (1090) download: received chunk 3, offset: 0�00000400

[wisun-btl] (1315) download: received chunk 4, offset: 0�00000600

[wisun-btl] (1739) download: received chunk 5, offset: 0�00000800

[wisun-btl] (1964) download: received chunk 6, offset: 0�00000a00

[wisun-btl] (2189) download: received chunk 7, offset: 0�00000c00

[wisun-btl] (2414) download: received chunk 8, offset: 0�00000e00

[wisun-btl] (2920) download: received chunk 9, offset: 0�00001000

[wisun-btl] (3128) notify: coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

[wisun-btl] (3153) download: received chunk 10, offset: 0�00001200

[wisun-btl] (3377) download: received chunk 11, offset: 0�00001400

[wisun-btl] (3802) download: received chunk 12, offset: 0�00001600

The "ota/dfu" "start" command has been received

The OTA DFU process started

OTA DFU

187/602

The first chunks of wisun_firmware .gbl have been received

The first two notifications have been sent to the notification server's IPV6

Monitoring OTA DFU Progress on Notification Server

coap-client -m get �N �B 1 -t text coap://[fd00�6172�6d00��2]�5685/ota/dfu_notify

TIP: A more convenient way to follow the process is to use watch as follows:

watch --interval 2 coap-client -m get -N -B 1 -t text coap://[fd00:6172:6d00::2]:5685/ota/dfu_notify

The "elapsed_t" and "downl_bytes" will increase during image download

The "fw_update_started" flag is 1 from the start

The "fw_downloaded" flag will be 1 when download is complete (several minutes at 50 kbps/1 Hop)

The "fw_verified" flag will be 1 when verification is complete (this can take an additional ~20 sec)

The "fw_set" flag will be 1 when reboot is about to be triggered (using the NVIC_SystemReset() low-level function)

Note that the device will send its last notification with "fw_set" then reboot, so whatever you retrieve from the

notification server is this message until you start a new upgrade.

Monitoring OTA DFU Progress on Device (intrusive!�

You can also check the progress using a CoAP GET method on the device, but because this is using the Wi-SUN network, it

has an impact on the OTA DFU duration if used frequently. The device will also stop responding for a while while rebooting

and reconnecting, then respond with "fw_update_started": 0 once reconnected.

coap-client -m get coap://[$WISUN_NODE_IPV6_ADDR]�5683/ota/dfu

{

"elapsed_t":"00�01�59",

"downl_bytes"�204800,

"flags": "0�00000001",

"fw_update_started": 1,

"fw_downloaded": 0,

"fw_verified": 0,

"fw_set": 0,

"fw_stopped": 0,

"fw_download_error": 0,

"fw_verify_error": 0,

"fw_set_error": 0

}

TIP: Using watch --interval 10 coap-client -m get coap://[$WISUN_NODE_IPV6_ADDR]:5683/ota/dfu , you can get the

request sent to the device every 10 seconds. This is a convenient way to follow the upgrade process, but it's

OTA DFU

188/602

even more intrusive than not using watch .

Checking OTA DFU Success on the Device

In the device console, check the startup message, looking for 'Version 2'.

Wi-SUN Empty application

Version 2. Compiled on Jul 6 2023 at 13�27�37

OTA DFU is supported

[Join state: Acquire PAN Config (3)]

[Connecting to "Linux_BZ_3_8"]

[Join state: Configure Routing (4)]

[Join state: Operational (5)]

Addresses:

[GLOBAL : fd00�6172�6d00�0:b635�22ff:fe98�2527]

[LINK_LOCAL : fe80::b635�22ff:fe98�2527]

[BORDER_ROUTER : fd00�6172�6d00�0�92fd:9fff:fe00�333a]

[25 s]

OTA DFU Cheat Sheet

Below are all items used for OTA DFU that need to match between various parts of the setup. Check these in case of

issues.

The TFTP server

The .gbl file

The CoAP Notification server

The OTA DFU component

The coap-server command

The coap-client commands

The bootloader

Below are the relationships between the settings:

Configuration Setting on Linux Host Setting on Node project

TFTP Server

IPv6 address

Command line:

sudo ip address add fd00:6172:6d00::2/64 d

ev tun0

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_NOTIFY_HOST_ADDR "fd00:6172:6d00::2"

TFTP Server

Port

TFTP Server configuration file:

/etc/default/tftpd-hpa

TFTP_ADDRESS=":69"

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_TFTP_PORT "69U"

TFTP

Directory

TFTP Server configuration file:

/etc/default/tftpd-hpa

TFTP_DIRECTORY="/srv/tftp"

Location of .gbl files: /srv/tftp/

.gbl file

name

Command line: ls -l /srv/tftp/*.gbl OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_GBL_FILE "wisun_firmware .gbl"

OTA DFU

Notifications
Command line: coap-server... started OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_HOST_NOTIFY_ENABLED 1U

OTA DFU

189/602

Configuration Setting on Linux Host Setting on Node project

Notification server

IPv6 address

Command line:

sudo ip -6 address add fd00:6172:6d

00::2/64 dev tun0

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_NOTIFY_HOST_ADDR "fd00:6172:6d00::2"

OTA DFU notify URI

path

Command line:

coap-client -m get ... coap://[<node_

ipv6>]:<port>/ota/dfu_notify

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_NOTIFY_URI_PATH "/ota/dfu_notify"

CoAP Notification

server IPv6

Command line:

coap-server -A fd00:6172:6d00::2 ...

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_NOTIFY_HOST_ADDR "fd00:6172:6d00::2"

CoAP Notification

server UDP port

Command line:

coap-server ... -p 5685 ...

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_NOTIFY_PORT 5685U

CoAP Notification

server dynamic

resources count

Command line: coap-server ... -d 10

(dynamic resources)

Number of devices concurrently performing OTA DFU

OTA DFU control port Command line:

coap-client -m post ... coap://[<nod

e_ipv6>]:5683...

CoAP Configuration file: config/sl_wisun_coap_config.h

SL_WISUN_COAP_RESOURCE_HND_SERVICE_PORT 5683U

OTA DFU control URI

path

Command line:

coap-client -m post ... coap://[<nod

e_ipv6>]:<port>/ota/dfu ...

OTA DFU Configuration file: config/sl_wisun_ota_dfu_config.h

SL_WISUN_OTA_DFU_URI_PATH "/ota/dfu"

OTA DFU start

command

Command line:

coap-client -m post ... -e "start"

OTA DFU Source file:

<GSDK>\app\wisun\component\ota_dfu\sl_wisun_ota_dfu.c

SL_WISUN_OTA_DFU_START_PAYLOAD_STR "start"

OTA DFU stop

command

Command line:

coap-client -m post ... -e "stop"

OTA DFU Source file:

<GSDK>\app\wisun\component\ota_dfu\sl_wisun_ota_dfu.c

SL_WISUN_OTA_DFU_STOP_PAYLOAD_STR "stop"

OTA DFU boot

command

Command line:

coap-client -m post ... -e "boot"

OTA DFU Source file:

<GSDK>\app\wisun\component\ota_dfu\sl_wisun_ota_dfu.c (not

implemented in GSDK 4.3.0, uses 'auto-reboot')

Below are other items that need to be selected correctly:

Configuration Compression component project .gbl file creation

no

compression
Bootloader Compression: none commander gbl create --app <pro jectname>.s37 <pro jectname>.gbl

lz4

compression

Bootloader Component:

GBL Compression (LZ4)

commander gbl create --app <pro jectname>.s37 <pro jectname>.gbl

--compress lz4

lzma

compression

Bootloader Component:

GBL Compression (LZMA)

commander gbl create --app <pro jectname>.s37 <pro jectname>.gbl

--compress lzma

Configuration Part Bootloader Binary

Bootloader binary for Series 1 xG12 <pro jectname>-combined.s37

Bootloader binary for Series 2 xG25 or xG28 <pro jectname>.s37

NOTE: An application with OTA DFU support will crash during OTA if no OTA-capable bootloader is flashed to

the device, because the application expects certain low-level functions to be available in the bootloader. This

is a common pitfall when customers experiment with OTA DFU and start flashing their OTA DFU application to

OTA DFU

190/602

multiple devices: if they forget to also flash an OTA-capable bootloader they end up having unexpected

crashes while their first test device works fine.

Application configuration Bootloader configuration Expected behavior

Application with OTA DFU Bootloader without OTA DFU Crashes

Application with OTA DFU Bootloader with OTA DFU Okay

Application without OTA DFU Bootloader without OTA DFU Okay

Application without OTA DFU Bootloader with OTA DFU Okay

Overview

191/602

Overview

Wi-SUN Node
The contents in this section provide information about developing Wi-SUN Node application. Contents include:

Wi-SUN Developer's Guide (PDF): Covers the (Wi-SUN) stack architecture, application development flow, steps to configure

the application Wi-SUN radio settings and advanced debug features.

Wi-SUN Configurator: The Wi-SUN Configurator provides an interface to the Wi-SUN application's main settings through

three panels: Application, Security, and Radio. For some examples, the Wi-Sun Configurator only displays the Radio panel.

These examples do not have the application and security infrastructure.

FAN 1.0 Node Certification: Describes how to install the Wi-SUN FAN Certification component and how to change

connection settings.

Wi-SUN Limited Function Nodes (LFN): Describes the Wi-SUN LFN architecture, supported hardware, power management,

configuration, and parenting.

https://www.silabs.com/documents/public/user-guides/ug495-wi-sun-developers-guide.pdf
https://docs.silabs.com/wisun/1.8.0/wisun-configurator
https://docs.silabs.com/wisun/1.8.0/wisun-fan-10-node-certification
https://docs.silabs.com/wisun/1.8.0/wisun-lfn

Wi-SUN Configurator

192/602

Wi-SUN Configurator

Wi-SUN Configurator
When creating a new Wi-SUN project, a Wi-SUN Configurator is added to it by default. The Wi-SUN Configurator provides

an interface to the Wi-SUN application's main settings through three panels: Application, Security, and Radio. For some

examples, the Wi-Sun Configurator only displays the Radio panel. These examples do not have the application and security

infrastructure.

The Wi-SUN Configurator tab can be displayed by opening /config/wisun/wisun_settings.wisunconf.

Application Panel

The Application panel exposes multiple Wi-SUN stack settings associated with the application, such as:

The network name the device will try to connect to

The network size setting

The device ’s TX output power

The unicast dwell interval

The device type dropdown allows you to set the device to be either an FFN or an LFN. Setting the device type to LFN

exposes the device profile dropdown, which adjusts the LFN internal behavior for better performance and battery life.

Wi-SUN Configurator

193/602

The MAC address filtering feature provides a way to force a topology on a Wi-SUN network. It is a simpler alternative than

spacing out the Wi-SUN devices or tweaking the Tx power levels to achieve the desired topology. The device interacts

only with other Wi-SUN devices part or not (depending on the allow/deny option) of the list.

Security Panel

The Security panel displays the private key and certificates used by the device to authenticate itself when connecting to a

Wi-SUN network. By default, it uses the S ilicon Labs demonstration samples. They can be modified to use a distinct

certificate infrastructure aligned with the border router or authenticator certificate.

The Generate Device Key and Certificate button helps generate a new device key and certificate different from those

used by default with the S ilicon Labs Wi-SUN sample applications. This button is disabled in case of invalid CA Key or

Certificate. CA Key and Certificate can also be generated using the button Generate CA Key and Certificate.

Generating new device key and certificate imply changing the default key and certificate on the Border router with new

ones generated with the same CA Key and Certificate used to generate the device key and certificate.

Wi-SUN Configurator

194/602

Radio Panel

The Radio panel is an interface to configure the radio profiles included in the application. It provides a user interface to

access any specified Wi-SUN FAN 1.0 PHY or FAN 1.1 PHY. A radio button allows the user to choose between the FAN 1.0

or FAN 1.1 context.

The complete list can be filtered to help you find the right PHY configuration. An application can embed several PHYs from

different regions. The PHY used by the stack is defined by the sl_wisun_ jo in() API call.

Wi-SUN Configurator

195/602

The Application’s Default PHY input defines the PHY that the application starts with. The default value depends on the

EFR32 radio board used to create the project. You can open the dropdown and select another default PHY.

Every selected Wi-SUN PHY can be edited in the Radio Configurator by clicking the pen icon. This action opens the Radio

Configurator user interface on the selected Wi-SUN PHY. Moreover, non Wi-SUN FAN PHY are listed under Other Custom

Profile for information.

The radio panel also embeds a section to modify the list of the device allowed channel. By default, the device operates in

all the PHY's channels. Modifying the list does not affect the asynchronous frames. The changes are only applied on unicast

and broadcast frames for the border router.

The channel mask will not affect asynchronous frames, as it is only applied on unicast traffic. For broadcast frames, the

routers follow the border router's configuration.

FAN 1.0 Node Certification

196/602

FAN 1.0 Node Certification

Wi-SUN FAN 1.0 Node Certification
The S ilicon Labs Wi-SUN stack provides a component through S implicity Studio 5 to help our customers certify their Wi-

SUN FAN 1.0 routers. The Wi-SUN FAN Certification component can only be used with the Wi-SUN - CLI example, which

sets up the WiSUN Alliance certificates with the certification configuration (Network name, Regulatory domain, Network

size, etc).

Installing Wi-SUN FAN Certification component

Follow these steps to add the Wi-SUN FAN Certification component to your application:

 Open S implicity Studio 5 and choose your board in Debug Adapter.

 In the Launcher perspective, click EXAMPLE AND PROJECT.

 Filter by Wi-SUN under Wireless Technology and create the Wi-SUN - CLI example app.

 After creating the project, open wisun_soc_cli.slcp and click Software Component.

 Enter wisun in the search bar to filter the components and install the Wi-SUN FAN Certification component.

FAN 1.0 Node Certification

197/602

 Build the project and flash it to the board.

Changing the connection settings

The Wi-SUN Conformance Tests specification defines four required group tests to pass the Wi-SUN FAN 1.0 Certification,

and describes the required settings for each test group.

6.2 Startup Phase

6.3 Normal Operations

6.4 Security

6.5 Error Handling

The Wi-SUN FAN Certification component sets by default the network name, regulatory domain, operating class, operating

mode, certificate chain, and allowed channels to match those required by the '6.2 Startup phase' test group.

> wisun get wisun.network_name

wisun.network_name = "WiSUN PAN"

> wisun get wisun.regulatory_domain

wisun.regulatory_domain = NA (1)

> wisun get wisun.operating_class

wisun.operating_class = 1

> wisun get wisun.operating_mode

wisun.operating_mode = 0�1b

> wisun get wisun.certificate_chain

wisun.certificate_chain = certif (1)

> wisun get wisun.allowed_channels

wisun.allowed_channels = "0"

For each test group, change the PHY settings, certificate chain, and the allowed channels. The next sections explain how

to change those settings.

PHY Configuration

FAN 1.0 Node Certification

198/602

As described in the Wi-SUN Conformance Tests specification, two PHY settings are common between the test groups. The

following table provides the PHY settings of each group.

6.2 6.3 / 6.4 /6.5

Regulatory domain NA NA

Operating class 1 2

Operating mode 0x1b 0x3

By default, the settings are set for the group '6.2 Startup phase'. Use the following commands to change the settings for

the other test groups.

wisun set wisun.operating_class 2

wisun set wisun.operating_mode 0�3

Wi-SUN Certificates

The Wi-SUN FAN Certification component adds the possibility to change the certificates used by the application from the

command line. This allows you to change the certificates without having to reflash a new binary on the DUT, especially

when running the test '6.4.2 SEC-TLS-TERMINATE-2', which requires certificates that are different than the Wi-SUN

Alliance Test certificates.

By default, the component installs Wi-SUN Alliance Test certificates with the wisun.certification_chain set to 'certif'.

> wisun get wisun.certificate_chain

wisun.certificate_chain = certif (1)

To change the certificate chain to S ilicon Labs certificates, use the following command.

wisun set wisun.certificate_chain silabs

Allowed Channels

The Startup phase tests require a fixed channel. By default, the allowed channel is 0 but can be changed to align with Test

Bed Units. Use the following command to change the allowed channel to channel 10, for example.

wisun set wisun.allowed_channels 10

The Normal Operations, Security, and Error Handling tests use Direct Hash Channel Function and do not require channel

filtering. To reset channel filtering and allow all the channels in the channel plan, use the following command.

wisun set wisun.allowed_channels 0-255

Restart the DUT

After making your changes and before starting a new test, follow this sequence to reset the DUT.

Disconnect from the Wi-SUN network

> wisun disconnect

Clear the credential cache

> wisun clear_credential_cache

Then use the following command to join the network.

Connect to the Wi-SUN network using FAN1.0 settings

> wisun join_fan10

Wi-SUN Limited Function Nodes �LFN�

199/602

Wi-SUN Limited Function Nodes �LFN�

Wi-SUN Limited Function Nodes �LFN�

Introduction

The Wi-SUN FAN stack supports Limited Function Node (LFN) functionalities specified in the Wi-SUN FAN Technical Profile

Specification version 1.1v06. The Limited Function Nodes as described in the specification must support low power

operations:

The MAC must allow for LFN battery life of 20 years.

The MAC must support a less than 2 minute response for LFNs.

Multicast operations must minimize LFN power consumption.

Architecture

LFNs provide minimum capabilities like discovering/joining a PAN and sending/receiving IPv6 packets. LFNs also implement

the same communication stack as a Full Function Node (FFN) with a limited listening schedule to conserve power. But it can

only operate within a PAN rooted at a FAN 1.1 Border Router (LFN is not part of the FAN 1.0 specification) as a child of a

FAN 1.1 Router and not a parent to any other node. See the following figure.

LFN Characteristics

An LFN employs different mechanisms than those used by an FFN to communicate, do routing, and secure the association

with the border router.

An LFN operates as an RPL Unaware Leaf (RUL) node, which differs from an FFN in that an LFN does not implement RPL

routing and relies on a parent RPL Router to provide routing capability.

LFNs employ a sampled listening technique rather than the continuous listening performed by an FFN.

LFN’s security associations with the Border Router are substantially longer lived than those of an FFN because FFNs and

LFNs use separate sets of group keys (GTK / LGTK, respectively), with longer lifetimes for the LFN group keys.

Wi-SUN Limited Function Nodes �LFN�

200/602

Those characteristics help an LFN meet the required low power capabilities described in the Wi-SUN FAN Specification.

Supported Hardware

LFN feature is supported on all the Wi-SUN capable devices listed at Wi-SUN Wireless SoCs. However, the power

optimization capabilities are only supported on the EFR32FG28 (BRD4401C) and EFR32ZG28 (BRD4400C) as the other Wi-

SUN Wireless SoCs have low energy consumption limitations in EM2 DeepS leep energy mode.

LFN in Silicon Labs Wi-SUN Stack

The Wi-SUN Stack implements all the necessary mechanisms for an LFN to be able to join a Wi-SUN Network. Also, it

supports Multicast and the power optimization capabilities.

On the latest GSDK, LFNs are supported on the following sample apps by default:

Wi-SUN – LFN CLI example

Wi-SUN – CLI example

Wi-SUN – SoC Meter

Wi-SUN – SoC Coap Meter

Wi-SUN – SoC Network Measurement

Wi-SUN – SoC Ping

Wi-SUN – SoC TCP Server

Wi-SUN – SoC UDP Server

Wi-SUN – SoC Empty

LFN Power Management

The Wi-SUN stack supports LFN power management capabilities in GSDK 4.3.1 and later. This feature allow the LFNs to go

into sleep in EM2 mode, with an average consumption of 5.23 µA with the EFR32FG28 (BRD4401C) and EFR32ZG28

(BRD4400C).

Note: The EFR32FG28 version BRD4401B and the EFR32ZG28 version BRD4400B have hardware limitations

that keep them from entering sleep mode EM2.

This power optimization level comes with some challenges, especially the CLI UART clock that we use in our sample

applications. For the Wi-SUN – LFN CLI example, the project configures the CLI UART to use the Low-Frequency clock to

be able to use the CLI in a low speed of 9600 Bauds without preventing the LFN from entering the sleep mode EM2.

For the rest of the examples, this configuration has to be done manually on the software component perspective after

creating the project. Follow the next steps to disable the UART high frequency clock and enable the power management

capabilities:

 Open the slcp file and click the SOFTWARE COMPONENTS. Then use the search bar to look for the Power Manager

component and click Install.

https://www.silabs.com/wireless/wi-sun

Wi-SUN Limited Function Nodes �LFN�

201/602

 Use the search bar to look for IO Stream: EUSART and click the on the configuration icon in front of vcom:
Switch off Enable High Frequency mode.

Set the Baud rate to 9600.

Switch off Restrict the energy mode to allow the reception if enabled.

 Search for the Micrium OS Kernel component and click the configuration icon:

Switch off Enable Round-Robin scheduling.

Switch off Enable statistics gathering task.

Switch off Enable task profiling instrumentation.

After configuring the project to enter the sleep mode EM2, configure the WPK to use 9600 vcom baud rate speed

following the next steps:

 On the Debug Adapter perspective, right-click on your board and click Launch Console.

 Click the Admin tab of the Console panel.

 Enter the command serial vcom config speed 9600 .

Wi-SUN Limited Function Nodes �LFN�

202/602

Note: This is a persistent configuration and it might be necessary to restore the previous value if the same WPK

is used with any other CLI application. To do that, enter the command serial vcom config speed 115200 .

LFN Configuration Using the CLI

The Wi-SUN - SoC CLI example supports changing the device type and the device profile using the command line interface.

By default, the device type is configured as FFN. To change the device type, use the following command that allows

setting the device type to either LFN or FFN:

wisun set wisun.device_type LFN

Note: For this command to take effect after a join either as an FFN or an LFN, a board reset is mandatory.

The device profile can also be set through the command line, using the following command that allows choosing between

three profiles:

Test: Used for testing the LFNs performance.

Balanced: Balance between LFNs performance and battery life.

Eco: Profile for high battery life performance.

wisun set wisun.device_profile balanced

Note: The profiles defined above focus on defining different time slots and intervals for the LFN parameters to

optimize performance and battery life. These three predefined modes are just for reference, and it is up to the

customer to fine tune the parameters to adapt the LFN behavior to the application use case. The three profiles

are defined under protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h.

Enabling LFN Using Wi-SUN Configurator

Except for the Wi-SUN - LFN CLI example and Wi-SUN - SoC CLI example, the other sample applications supporting LFN,

by default, use Wi-SUN Configurator to enable LFN device type.

Once the project is created, the device type is set by default to FFN. To change the device type to LFN, go to the

Application panel on the Wi-SUN Configurator and, under the Device information section, change the Device Type of the

node to LFN.

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-lfn-params-t
https://github.com/SiliconLabs/gecko_sdk/blob/gsdk_4.4/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

Wi-SUN Limited Function Nodes �LFN�

203/602

LFN Device Profiles

When LFN is selected in the Device Type dropdown, a dropdown named Device Profile is exposed on the Wi-SUN

Configurator Application's panel to allow choosing from three device profiles: Test, Balanced, and Eco.

LFN Parenting

An LFN operates as an RPL Unaware Leaf (RUL) node, which means that an LFN does not implement RPL routing and relies

on its parent Border Router or FFN to provide routing capability. In other words, LFNs won't be able to join the Network in

the following cases:

If the Border router doesn't support LFN parenting.

If the Border router supports LFN parenting and the LFN parent does not support LFN parenting.

If the Border router doesn't support LFN direct parenting and there is no router that supports LFN parenting which the LFN

can join.

Routers LFN Parenting

On the GSDK 4.3 and later, LFN parenting is supported by the sample apps listed above by default.

The number of supported LFNs by each FFN is 10 by default on all the applications supporting LFN parenting. On Wi-SUN -

CLI example, this number can be changed using the following command:

wisun set_lfn_support [Max number of LFNs]

The maximum number of LFN nodes that can be supported by an FFN is 10.

Enabling LFN Parenting

On the sample applications listed below, LFN is not supported by default.

Wi-SUN – SoC CoAP Collector

Wi-SUN – SoC Collector

Wi-SUN – SoC TCP Client

Wi-SUN Limited Function Nodes �LFN�

204/602

Wi-SUN – SoC UDP Client

To allow the LFNs to join the devices running those applications as FFNs, it is mandatory to enable LFN parenting.

LFN parenting can be enabled on those applications by installing the component Stack LFN Support Plugin. Make sure to

check the Evaluation box on the quality filter before searching for the component.

Border Routers LFN Parenting

Wi-SUN - SoC Border Router

LFN parenting is supported by default on Wi-SUN - SoC Border router, and it is disabled along side the LFN support on the

PAN by setting lfn_support_pan to 0 using the following command:

wisun set_lfn_support [lfn_limit] [lfn_support_pan]

The lfn_limit argument sets the number of locally supported LFNs by the Border Router SoC. By default, it is set to 10 and

the maximum number of LFNs that the Border Router can support is 10.

For a better LFN device battery performance and synchronization with the Border Router SoC, the LFN device profiles

have to be set also on the Border Router side using the following command:

wisun set wisun.lfn_profile [device profile]

Wi-SUN Border Router Linux

The wisun-br-linux version 1.6 and later supports LFN direct parenting by default. And it has no option to set a maximum

number of LFN devices that can connect directly to the border router.

LFN Support in The PAN Network

In version 1.7, a new configuration option was added to the configuration file wsbrd.conf named enable_lfn to allow enabling

or disabling LFN devices support in the PAN Network, hence disabling the LFN parenting.

LFN Device Profiles

Unlike the Wi-SUN - SoC Border Router that has predefined LFN device profiles, the Wi-SUN Border Router Linux

introduces two configuration options, lfn_broadcast_interval and lfn_broadcast_sync_period in wsbrd.conf to allow

https://github.com/SiliconLabs/wisun-br-linux/blob/main/examples/wsbrd.conf
https://github.com/SiliconLabs/wisun-br-linux/blob/main/examples/wsbrd.conf

Wi-SUN Limited Function Nodes �LFN�

205/602

synchronizing the LFN broadcast listening windows and the number of LFN broadcast intervals to optimize the power

consumption by the LFN devices.

Note: The wisun-br-linux supports LFN parenting by default with a limitation of not supporting direct parenting

of LFNs on the wisun-br-linux versions 1.5 to 1.5.4. To connect an LFN to wisun-br-linux using one of those

versions, an FFN connected to the network and supporting LFN parenting is mandatory.

https://github.com/SiliconLabs/wisun-br-linux

Overview

206/602

Overview

Platform Resources
When you develop in the S ilicon Labs GSDK, you have additional resources available to you through the Gecko Platform.

This section includes information on the following topics.

Bootloading: Bootloading allows you to update application firmware images on Wi-SUN devices. This section provides

background information about bootloading using the S ilicon Labs Gecko Bootloader.

Non-Volatile Memory Use : This section offers an introduction to non-volatile data storage and describes how to use NVM3

data storage.

Security: S ilicon Labs offers a range of security features depending on the part you are using and your application and

production needs. As well as the security features available, this section describes Wi-SUN-specific security design

considerations.

https://docs.silabs.com/wisun/1.8.0/wisun-bootloading-overview
https://docs.silabs.com/wisun/1.8.0/wisun-memory-use-overview
https://docs.silabs.com/wisun/1.8.0/wisun-security-overview

Overview

207/602

Overview

Bootloading Wi-SUN Applications
Bootloading allows you to update application firmware images on Wi-SUN devices. This section provides background

information about bootloading using the S ilicon Labs Gecko Bootloader.

Bootloader Fundamentals (PDF): Introduces bootloading for S ilicon Labs networking devices. Discusses the Gecko

Bootloader and bootloader file formats.

Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher (PDF): Describes the high-level implementation of the

S ilicon Labs Gecko Bootloader for EFR32 SoCs and NCPs, and provides information on how to get started using the Gecko

Bootloader with S ilicon Labs wireless protocol stacks in GSDK 4.0 and higher.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Overview

208/602

Overview

Non-Volatile Memory Use
This section offers an introduction to non-volatile data storage and describes how to use NVM3 data storage.

Non-Volatile Data Storage Fundamentals (PDF): Introduces non-volatile data storage using flash and the three different

storage implementations offered for S ilicon Labs microcontrollers and SoCs: S imulated EEPROM, PS Store, and NVM3.

Using NVM3 Data Storage (PDF): Explains how NVM3 can be used as non-volatile data storage in various protocol

implementations.

https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Overview

209/602

Overview

Security
S ilicon Labs offers a range of security features depending on the part you are using and your application and production

needs. As well as the security features available, this section describes Wi-SUN-specific security design considerations.

IoT Security Fundamentals (PDF): Introduces the security concepts that must be considered when implementing an Internet

of Things (IoT) system. Using the ioXt Alliance's eight security principles as a structure, it clearly delineates the solutions

S ilicon Labs provides to support endpoint security and what you must do outside of the S ilicon Labs framework.

Wi-SUN FAN Security Concepts and Design Considerations: Discusses security in terms of authentication, the Wi-SUN

Router, and the Wi-SUN Border Router.

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS (PDF): Describes how to integrate crypto functionality into

applications using PSA Crypto compared to Mbed TLS.

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://docs.silabs.com/wisun/1.8.0/wisun-security-concepts-design-considerations
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Security Concepts and Design Considerations

210/602

Security Concepts and Design Considerations

Wi-SUN FAN Security Concepts and Design
Considerations
Wi-SUN FAN security mechanisms are built on widely-used industry standards. Access control is based on IEEE 802.1X and

IEEE 802.11i concepts, providing mutual authentication and establishment of a security association between the joining

node and the Wi-SUN Border Router. Frame security uses AES-CCM* from IEEE 802.15.4, providing both data confidentiality

and data authenticity.

This page discusses security in terms of:

Authentication

Wi-SUN Router

Wi-SUN Border Router

Create your Own Wi-SUN Certificates

Authentication

Wi-SUN authentication is done using the Extensible Authentication Protocol - Transport Layer Security (EAP-TLS) protocol

over Extensible Authentication Protocol over LAN (EAPOL). The authentication results in a Pairwise Master Key (PMK), a

unique key shared between the border router and the device.

The PMK is used in the 4-way-handshake procedure with the border router. During the authentication, the border router

delivers up to four Group Transient Keys (GTKs) to the devices. GTKs are shared between all connected devices in the

network. The flow is described in the diagram below.

Security Concepts and Design Considerations

211/602

In the Wi-SUN FAN context, authentication is considered to be an “expensive” operation. This is reflected in the default

lifetime of various authentication keys. S ilicon Labs' Wi-SUN FAN stack stores the authentication keys and the TX frame

counter in non-volatile storage in order to make reconnection faster after a reboot or a loss of connection.

Key Default Lifetime Refresh Procedure

Pairwise Master Key (PMK) 4 months EAP-TLS

Pairwise Transient Key (PTK) 2 months 4-way-handshake

Group Transient Key (GTK) 1 month 4-way-handshake or 2-way-handshake

Wi-SUN Router

Each Wi-SUN device has a unique X.509 certificate (NIST EC P-256) signed by a Certification Authority (CA). A Wi-SUN

device must store at least two certificates:

The device certificate: Used to authenticate the device to an authentication server. The authentication server may run on

the border router or on the backhaul network.

The CA root certificate: Used by the device to verify the authentication server.

Device Certificate

Each Wi-SUN node has a secure identity based on a unique per-device X.509 certificate and its corresponding private key,

using the Secure Device Identifier (DevID) concept from IEEE 802.1AR. Wi-SUN device certificates must adhere to the

requirements in the table below.

X.509 w/ v3 Extensions

Fields and Extensions Value

version v3

serialNumber an unique serial number

Security Concepts and Design Considerations

212/602

Fields and Extensions Value

signature ecdsa-with-SHA256

issuer copied from issuer's subject field

notBefore issuing time and date in UTC (GeneralizedTime)

notAfter 99991232235959Z (GeneralizedTime)

subjectPublicKeyInfo id-ecPublicKey, namedCurve secp256r1

signatureAlgorithm ecdsa-with-SHA256

keyUsage digitalS ignature, keyAgreement

extendedKeyUsage clientAuth, id-kp-wisun-fan-device

authorityIdentifier only the keyIdentifier field

subjectAltName id-on-hardwareModuleName

id-kp-wisun-fan-device

In addition to clientAuth, all Wi-SUN device certificates must contain the id-kp-wisun-fan-device object identifier.

id-kp-wisun-fan-device OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) Wi-SUN (45605)

FieldAreaNetwork(1) }

id-on-hardwareModuleName

All Wi-SUN device certificates must contain one and only one alternative name of type OtherName of type id-on-

hardwareModuleName. The sequence is specified in RFC4108.

HardwareModuleName ::= SEQUENCE { hwType OBJECT IDENTIFIER, hwSerialNum OCTET STRING }

hwType is an object identifier that, at a minimum, identifies the manufacturer's enterprise number (IANA) but may optionally

be subtyped to contain manufacturer-specific information, such as the device model.

hwSerialNum is the serial number of the hardware module. No particular structure is imposed on the serial number. However,

the combination of the hwType and hwSerialNum uniquely identifies the hardware module.

Device Private Key

In addition to a plaintext key in the buffer, the stack also accepts a PSA key reference to the device private key. When

using the key reference, the PSA key attributes must be set according to the following table.

Attribute Value

psa_set_key_usage_flags PSA_KEY_USAGE_SIGN_HASH

psa_set_key_type PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)

psa_set_key_algorithm PSA_ALG_ECDSA(PSA_ALG_SHA_256)

Credential Cache

The device maintains a credential cache for the previously connected PAN. If the same PAN is joined again, the device will

use the stored credentials to bypass the authentication phase.

NOTE: The credential cache can be cleared before the join attempt by using the API function

sl_wisun_clear_credential_cache() but it should be used with care. Clearing the cache on the joining node may prevent it from

re-joining the same PAN. This is due to AES-CCM* replay protection security mechanism.

Wi-SUN Border Router

Security Concepts and Design Considerations

213/602

In the authentication process, the Wi-SUN border router has the Authenticator role. Depending of the architecture, the

authentication server can be hosted on the border router or on another device connected over IP. In the latter case, the

authentication server must run RADIUS (Remote Authentication Dial-In User Service). The border router/authenticator acts

as a RADIUS client while the external device acts as a RADIUS server.

Create your Own Demo Wi-SUN Certificates

As a prerequisite, install OpenSSL on your machine.

How to View a Certificate

openssl x509 -in <certificate pem> -text

How to Create the Wi-SUN Demo Certificates

First, retrieve the openssl-wisun.conf file in this Community post.

 Create the certificate database, used to track created certificates.

touch certdb.txt

 Generate a Certificate S igning Request (CSR) for the root CA.

openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1 -keyout wisun_root_ca_key.pem -out wisun_root_ca_req.pem -config

openssl-wisun.conf

 Self-sign the root CA.

openssl ca -selfsign -rand_serial -keyfile wisun_root_ca_key.pem -in wisun_root_ca_req.pem -out wisun_root_ca_cert.pem -notext -extensions

v3_root_ca -config openssl-wisun.conf -subj "/CN�Wi-SUN Demo Root CA"

 Generate a CSR for the intermediate 1 CA.

openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1 -keyout wisun_intermediate1_ca_key.pem -out

wisun_intermediate1_ca_req.pem -config openssl-wisun.conf

 S ign the intermediate 1 CA with the root CA.

openssl ca -rand_serial -cert wisun_root_ca_cert.pem -keyfile wisun_root_ca_key.pem -in wisun_intermediate1_ca_req.pem -out

wisun_intermediate1_ca_cert.pem -notext -extensions v3_ca1 -config openssl-wisun.conf -subj "/CN�Wi-SUN Demo Intermediate 1 CA"

 Generate a CSR for the intermediate 2 CA.

openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1 -keyout wisun_intermediate2_ca_key.pem -out

wisun_intermediate2_ca_req.pem -config openssl-wisun.conf

 S ign the intermediate 2 CA with the intermediate 1 CA.

openssl ca -rand_serial -cert wisun_intermediate1_ca_cert.pem -keyfile wisun_intermediate1_ca_key.pem -in wisun_intermediate2_ca_req.pem -out

wisun_intermediate2_ca_cert.pem -notext -extensions v3_ca2 -config openssl-wisun.conf -subj "/CN�Wi-SUN Demo Intermediate 2 CA"

 Generate a CSR for the border router.

openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1 -keyout wisun_br_key.pem -out wisun_br_req.pem -config openssl-

wisun.conf

https://en.wikipedia.org/wiki/RADIUS
https://www.openssl.org/
https://community.silabs.com/s/relatedlist/ka08Y000000wupqQAA/AttachedContentDocuments

Security Concepts and Design Considerations

214/602

 S ign the border router certificate with the desired CA.

openssl ca -rand_serial -cert wisun_root_ca_cert.pem -keyfile wisun_root_ca_key.pem -in wisun_br_req.pem -out wisun_br_cert.pem -notext -

extensions v3_br -config openssl-wisun.conf -subj "/CN�Wi-SUN Demo Border Router"

 Generate a CSR for the device.

openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1 -keyout wisun_device_key.pem -out wisun_device_req.pem -config

openssl-wisun.conf

 S ign the device certificate with the desired CA.

openssl ca -rand_serial -cert wisun_root_ca_cert.pem -keyfile wisun_root_ca_key.pem -in wisun_device_req.pem -out wisun_device_cert.pem -

notext -extensions v3_device -config openssl-wisun.conf -subj "/CN�Wi-SUN Demo Device"

Note that the "openssl-wisun.conf" file contains the S ilicon Labs enterprise number. You should replace it with your own (cf.

https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers).

https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers

Overview

215/602

Overview

Wi-SUN Border Router
A Wi-SUN Border Router connects a Wi-SUN network to other IP-based networks, such as Ethernet®. It also manages the

Wi-SUN mesh network connected. The Border Router provides services for devices within the Wi-SUN network, including

routing services for off-network operations. S ilicon Labs provides a Border Router binary demonstration running on a

standalone EFR32 and a production-grade Wi-SUN Linux Border Router.

This section provides additional information about using and configuring a Wi-SUN Border Router.

Wi-SUN Network Configuration: Introduces the different Wi-SUN Border Router solutions maintained by S ilicon Labs.

Provides installation instructions for a Wi-SUN Linux Border Router. Describes the Linux Border Router software architecture.

Includes the steps to establish a connection between a Wi-SUN network and an external IP network.

Wi-SUN IP Communication: This section provides guidelines to ping a Wi-SUN device from the Raspberry Pi running wsbrd.

These guidelines assume that wsbrd has been configured and is running on the Raspberry Pi.

Linux Border Router (G itHub): Contains source code and instructions for wsbrd , one part of the Linux border router solution.

Border Router Graphical User Interface: Presents the Wi-SUN Border Router Dashboard, that can be used to configure the

Wi-SUN Linux Border Router and visualize the Wi-SUN Network.

https://docs.silabs.com/wisun/1.8.0/wisun-network-configuration
https://docs.silabs.com/wisun/1.8.0/wisun-ip-communication
https://github.com/SiliconLabs/wisun-br-linux#readme
https://docs.silabs.com/wisun/1.8.0/wisun-border-router-gui

Network Configuration

216/602

Network Configuration

Network Configuration Introduction
In a Wi-SUN network, the border router oversees the network management (authentication, routing, and so on) and

provides internet connectivity to the Wi-SUN devices part of the network.

Because of the standalone RCP connectivity features, the Linux border router solution offers an easy-to-use and scalable

solution to address various Wi-SUN network deployments. This implementation relies on an external S ilicon Labs EFR32

device flashed with a dedicated Wi-SUN RCP firmware. As a result, the EFR32 is connected to the host with a serial link.

The EFR32 runs the time constrained low-level layers while the Linux host handles the memory-intensive computing of the

Wi-SUN stack upper-layers.

As an accessible and well-spread Linux platform, the Raspberry Pi is used as a default platform for the solution

demonstration (which can also run on a different Linux host), and will run the Wi-SUN Border Router Linux daemon, which is

responsible for running the Wi-SUN protocol high-level layers. The demonstration communications and connections are

described in the following figure.

Network Configuration

217/602

As an alternative, S ilicon Labs also provides a border router demonstration running on a standalone EFR32. It provides a

quicker way to evaluate the solution but does not scale into production.

Hardware Requirements

To create a Wi-SUN Network with a Wi-SUN Linux border router and one Wi-SUN Node, you need the following hardware:

A Raspberry Pi 3 Model B+ or above with an Internet connection (another Linux host should also work)

An SD card (4 GB or more) and SD card slot/dongle

2 WTSK/WPK boards

2 EFR32 radio boards with matching RF bands from the Wi-SUN capable devices listed in this link.

Software Requirements

You need the following software to complete the steps in this application note, you will need the following software:

S implicity Studio 5

Raspberry Pi imager

wsbrd source code repository

https://www.silabs.com/wireless/wi-sun
https://www.silabs.com/developers/simplicity-studio
https://www.raspberrypi.org/software/
https://github.com/SiliconLabs/wisun-br-linux

Wi-SUN SoC Border Router

218/602

Wi-SUN SoC Border Router

Wi-SUN SoC Border Router
The S ilicon Labs Wi-SUN SoC Border Router demonstration provides a Wi-SUN Border Router implementation running

entirely on the EFR32. It provides an easy and quick means to evaluate the S ilicon Labs Wi-SUN stack solution without

deploying an expensive and cumbersome production-grade Wi-SUN Border Router. A CLI (Command-Line Interface) is

exposed to facilitate the configuration.

Getting Started with the Solution

The Wi-SUN SoC Border Router Demo creates a Wi-SUN network that the other Wi-SUN nodes can join.

To get started with the demonstration, follow these steps:

 In the Debug Adapters view, select the device to be used as the Border Router.

 Navigate to the EXAMPLE PROJECTS & DEMOS tab and turn off the Example Projects filter.

 Click RUN next to the Wi-SUN – SoC Border Router project.

 In the Debug Adapter view, right click your chosen device, and click on Launch Console.

Wi-SUN SoC Border Router

219/602

 Start the Border Router with default FAN 1.1 PHY using the following command:

> wisun start_fan11

Or with default FAN 1.0 PHY using the following command:

> wisun start_fan10

Wi-SUN - SoC Border Router Solution Limitations

The Wi-SUN Border Router demonstration is delivered only in a binary format. The implementation does not scale for a

production-grade Border Router maintaining several thousand Wi-SUN nodes.

The Wi-SUN Border Router demonstration is required to use the other Wi-SUN sample applications. The Wi-SUN Border

Router creates a Wi-SUN network that the Wi-SUN nodes can join. When part of the same network, the Wi-SUN nodes can

exchange IP packets.

Wi-SUN SoC Border Router Configuration

The application provides a command-line interface to control basic configurations. To see the available commands, entre

the following command in the console:

> wisun help

The list of available commands is output on the console with the associated help. Wi-SUN SoC Border Router sample app

supports all the PHYs described in Wi-SUN PHY Specification Revision 1V09 and above.

Wi-SUN Linux Border Router

220/602

Wi-SUN Linux Border Router

Wi-SUN Linux Border Router
The S ilicon Labs Wi-SUN Linux Border Router solution “wsbrd” provides a daemon that is responsible for running the Wi-

SUN protocol high-level layers. It is paired with an RF device (RCP) handling the low-level layers and radio activities. The

S ilicon Labs RCP devices currently supported are listed under Wi-SUN Wireless SoCs.

Software Architecture

The S ilicon Labs Linux border router solution has two distinct software components:

wsbrd: the solution running on a Linux host. It supports high-level Wi-SUN FAN protocols such as 6LoWPAN, RPL, and MPL.

The solution is available in source code on G itHub: https://github.com/S iliconLabs/wisun-br-linux

Wi-SUN RCP: the solution running on an EFR32. It provides a low-level Wi-SUN implementation meant to be paired with a

Linux host running wsbrd. S ilicon Labs provides the Wi-SUN RCP application in the Gecko SDK and S implicity Studio 5.

The two solutions exchange messages using a serial link between the Linux host and the EFR32. UART is the currently

supported protocol. The solution relies on Linux services for the IPv6 communication with external IP devices. The complete

architecture of the solution is provided in the following figure.

Getting Started with the Solution

https://www.silabs.com/wireless/wi-sun
https://github.com/SiliconLabs/wisun-br-linux

Wi-SUN Linux Border Router

221/602

To use the Wi-SUN Border Router Linux install wsbrd on a Raspberry Pi (S ilicon Labs recommends this platform but you can

use another Linux host if desired) and use the solution as it would be in production. This method allows you to access the

Wi-SUN devices from the Linux host (Wi-SUN border router and the devices connected to it). However, there is no

automatic IPv6 configuration to allow another IP device (other than the Linux host) to access the Wi-SUN network. You

must configure the Linux host and the IP routing to match his external IP network configuration.

Flashing the Wi-SUN RCP

A mandatory step to evaluate the S ilicon Labs Wi-SUN Linux border router solution is to flash the Wi-SUN RCP image on an

EFR32. The first possibility is to use the image or project delivered through S implicity Studio 5. Create the Wi-SUN – RCP

project, compile, and flash it in your mainboard. To do so, complete the following steps:

 In the Debug Adapters view, select the device to be used as the Wi-SUN RCP.

 Navigate to the EXAMPLE PROJECTS & DEMOS tab and turn off the Example Projects filter.

 Click RUN next to the Wi-SUN – RCP project.

wsbrd

To install and run wsbrd on your hardware:

 Connect the EFR32 flashed with the RCP image to the Raspberry Pi through USB.

 Download the wsbrd software on your Linux device.

 Follow the guidelines provided in the repository readme (Wi-SUN Linux Border Router repository).

When starting wsbrd and if it is running as expected, you should see a similar trace on the terminal.

https://github.com/SiliconLabs/wisun-br-linux

Wi-SUN Linux Border Router

222/602

$ sudo wsbrd -F examples/wsbrd.conf -u /dev/ttyACM0

Silicon Labs Wi-SUN border router v1.0.0

Connected to RCP "0.12.0" (0.12.0), API 0.12.0

[DBG][core]: Allocate Root Tasklet

[DBG][6lo]: P.Init

Successfully registered to system DBus

[DBG][core]: NS Root task Init

[DBG][sck]: Socket Tasklet Generated

[INFO][wsbs]: WS tasklet init

In the traces, the wsbrd, RCP, and API versions are output. The wsbrd automatically checks the RCP and API versions to

confirm they are valid and supported by the wsbrd version running.

If the default configuration is used, a new border router is advertising a network with the name “Wi-SUN Network”. On the

Raspberry Pi, a new IP interface is created with the name “tun0”. Here is an example of the IP configuration once wsbrd is

running.

tun0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1500

 inet6 fd12:3456::7c3f:f8e7:55c5:e07f prefixlen 64 scopeid 0�0<global>

 inet6 fe80::d0a6:c144:ad24:9b1d prefixlen 64 scopeid 0�20<link>

 unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)

 RX packets 10 bytes 752 (752.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 3 bytes 144 (144.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The “tun0” interface can be natively used to interact with the Wi-SUN devices connected to the Linux border router.

Interact with a Running wsbrd Instance

wsbrd Command Line Interface

wsbrd provides a command line interface to interact with the Linux border router when it is running. The interface can be

used to retrieve configurations like the network name, Wi-SUN PHY configuration, PAN ID, GAK/GTK and LGAK/LGTK keys,

and the MAC Addresses of the border router and the connected nodes. You can use the “wsbrd_cli status” command to

view the list of configurations. For help, use the command “wsbrd_cli help”.

Wi-SUN Linux Border Router

223/602

$ wsbrd_cli status

network_name: Wi-SUN Network

fan_version: FAN 1.1

domain: NA

phy_mode_id: 2

chan_plan_id: 1

panid: 0�3f48

size: SMALL

GAK�0�� 0f:a7:bc:8e:fa:1f:a3�22�6b:15�30�80:dd:06�6d:e7

GAK�1�� 95�03�54�82�78:c2�01�69�79�96�96�72�9a:f9�08:b9

GAK�2�� 95�03�54�82�78:c2�01�69�79�96�96�72�9a:f9�08:b9

GAK�3�� 95�03�54�82�78:c2�01�69�79�96�96�72�9a:f9�08:b9

GTK�0�� e9:a6:e0�19�00�8d:ae:12�4a:1d:73�93:ee:53:c6�6b

GTK�1�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

GTK�2�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

GTK�3�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

LGAK�0�� a5�01:bf:df:aa:fa:da:84:a5�9d:9c:41�53�31�03�9e

LGAK�1�� 95�03�54�82�78:c2�01�69�79�96�96�72�9a:f9�08:b9

LGAK�2�� 95�03�54�82�78:c2�01�69�79�96�96�72�9a:f9�08:b9

LGTK�0�� 61:ff:86�39�6c:ec:00�52:c9:fd:27�90:f1:db:f7:f5

LGTK�1�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

LGTK�2�� 00�00�00�00�00�00�00�00�00�00�00�00�00�00�00�00

38�39�8f:ff:fe:99�9b:e4

DBus Interface

The DBus interface can also interact with the Linux border router when it’s running and retrieve static configurations. It is

also able to trigger actions like adding or revoking root certificates and revoking a Wi-SUN device access to the network.

You can execute the command busctl introspect com.silabs.Wisun.BorderRouter /com/silabs/Wisun/BorderRouter to see the list of

all the properties that can be retrieved with in the DBus interface and the methods that can be used. For example, to read

a DBus property execute the following command:

$ busctl get-property com.silabs.Wisun.BorderRouter /com/silabs/Wisun/BorderRouter com.silabs.Wisun.BorderRouter WisunNetworkName

s "Wi-SUN Network"

For additional information on the interface usage, refer to the D-Bus API documentation.

Raspberry Pi Adapter BRD8016A

BRD8016A is an excellent solution to build a Wi-SUN Linux Border Router on top of a Raspberry Pi, together with a Wi-SUN

Radio Board used as the Wi-SUN device. The Wi-SUN Linux Border Router is ultimately made of 3 boards stacked together:

• Raspberry Pi (Linux host)

• BDR8016A (Adapter Board)

https://github.com/SiliconLabs/wisun-br-linux/blob/main/DBUS.md#d-bus-api-documentation

Wi-SUN Linux Border Router

224/602

• Radio Board (RCP: Radio Co-Processor)

This setup is an alternative to connecting the Raspberry Pi to the Radio Board over USB via a WSTK/WPK mainboard, as

initially described in the Wi-SUN Linux Border Router README.

wsbrd configuration

This setup uses the Normal UART instead of UART over USB usually used with the WSTK/WPK. For the wsbrd to use the

Normal UART, change the following option in the wsbrd.conf file:

uart_device = /dev/ttyAMA0

Raspberry Pi Boot Configuration

To use the Normal UART by the Raspberry Pi, change the configuration in /boot/config.txt . Because of the way Raspberry

Pi 2/3/4 are wired, to get a good UART clock, it is required to disable Bluetooth and use GPIOs 14 and 15 for /dev/ttyAMA0.

See the Raspberry Pi documentation for details. To achieve this, the following changes need to be added at the end of

/boot/config.txt :

[all]

dtoverlay=disable-bt

enable_uart=1

gpio=23=op,dh

It is required to reboot the Raspberry Pi following such changes:

sudo reboot

https://www.raspberrypi.com/documentation/computers/configuration.html#configuring-uarts

Wi-SUN Linux Border Router

225/602

After rebooting your Raspberry Pi, follow these steps to enable shell messages on the serial connection and disable the

login shell over serial:

Open Raspberry Pi configuration GUI:

sudo raspi-config

Select 3 Interface Options Configure connections to peripherals

Select I6 Serial Port Enable/disable shell messages on the serial connection

Answer “No” to the question “Would you like a login shell to be accessible over serial?”

Answer “Yes” to the question “Would you like the serial port hardware to be enabled?”

Choose to reboot your Raspberry Pi

Now that the Raspberry Pi is configured, connect the RCP to the adapter and start wsbrd.

Note that the switch on the adapter (BRD8016A) must be on High Power (LDO) to use 5V from the Raspberry Pi to

generate a regulated 3.3V supply.

CPCD and wsbrd

226/602

CPCD and wsbrd

Using Co-Processor Communication Daemon with
wsbrd

Overview

Co-Processor Communication (CPC) enables one host system to communicate with a Network co-processor device (NCP),

by physical transport (UART, SPI, and so on). In CPC, data transfers between processors are segmented in sequential

packets. Transfers are guaranteed to be error-free and sent in order. Multiple applications can send or receive on the same

endpoint without worrying about collisions. A CPC daemon (CPCd) is provided to allow applications on Linux to interact with

a secondary running CPC.

For the purpose of having S ilicon Labs Wi-SUN stack running in harmony with other services such as Bluetooth, ZigBee, or

others on the same Co-Processor, S ilicon Labs added support of CPCd to wsbrd.

The next sections explain how to install and configure CPCd and wsbrd, and also how to set up an RCP with the CPC

Secondary Service component in S implicity Studio v5. This chapter only covers UART communication between a WSTK and

Raspberry Pi.

Setting Up the RCP with CPC Secondary Service

To use the Wi-SUN – RCP sample application as CPC secondary device, users should enable the Co-Processor

Communication components in the Wi-SUN – RCP project in S implicity Studio v5.

Components Installation

After creating a Wi-SUN – RCP project, open the slcp file and select the Software Component tab. In the search box, enter

”cpc” to filter the components and install the following components:

 Install CPC Secondary – UART, enter a name for the component instance in the Create a Component Instance pop-up, and

click Done.

CPCD and wsbrd

227/602

 Install Secondary Device (Co-Processor) if it wasn’t installed automatically after installing CPC Secondary.

 CPC SECURITY component will be installed automatically after installing the Secondary Device (Co-Processor) component.

If you wish to disabled security to reduce memory footprint, install CPC SECURITY NONE.

Secondary Device Configuration

CPC Secondary - UART Component

After installing all the components, configure the created instance with the desired Flow control and Baud rate. Select your

created instance in the slcp perspective, and then click Configure.

In the configuration perspective, the recommended EUSART Baudrate value is 115200. Concerning the Flow Control, it is

set by default to CTS/RTS. S ilicon Labs recommends this default; do not set it to None.

WSTK Configuration

The WSTK boards are factory programmed to support 115200bps with no flow control. To align the WSTK configuration with

the Chosen component configuration, follow the next steps:

 In Debug Adapters, right-click your device and click Launch Console…

 On the console, select the Admin tab, and enter the following commands:

serial vcom config handshake rtscts

The following figures shows the resulting console output.

CPCD and wsbrd

228/602

After finishing these steps, you can Run your project and flash it to the device.

CPCd Installation and Configuration

CPCd Installation

CPCd is delivered as a CMake project. The minimum version of CMake required to generate the project is 3.10. CPCd

requires MbedTLS to encrypt the endpoints. The minimal version required for Mbed-TLS is 2.7.0. libmbedtls-dev must be

installed to compile from sources.

Refer to cpc-deamon readme , sections Compiling CPCd and Installing CPCd and CPC library to install CPCd.

CPCd Configuration

After installing CPCd, a configuration file can be found under “/usr/local/etc/cpcd.conf”. This file can be accessed using the

following command:

sudo nano /usr/local/etc/cpcd.conf

The modifications that need to be applied to this file to configure CPCd for a secured UART communication between a

WSTK and Raspberry Pi are:

instance_name: cpcd_0

bus_type: UART

uart_device_file: /dev/ttyACM0

uart_device_baud: 921600

disable_encryption: false

Note that the uart_device_file and uart_device_baud values above are examples and can be changed to suit your use case.

If the security was disabled on the secondary device by installing the CPC SECURITY NONE component, the value of

disable_encryption must be set to true.

wsbrd Configuration

CPC is supported by wsbrd version 1.4 and above. Make sure to update and re-build wsbrd if you are running an older

version. In case of reinstalling wsbrd, make sure to delete the file /wisun-br-linux/CMakeCache.txt.

In the wsbrd.conf file that can be found under wisun-br-linux/examples, comment-out cpc_ instance and give it the same

value as instance_name in cpcd.conf and comment the option uart_device.

https://github.com/SiliconLabs/cpc-daemon/blob/main/readme.md

CPCD and wsbrd

229/602

Launch CPDC and wsbrd

Before starting CPCd and wsbrd, connect the RCP to your Raspberry Pi. Then you can start the CPCd using the following

command:

$sudo cpcd

.

..

..

Info : Daemon startup was successful. Waiting for client connections

After the line indicating that the deamon startup was successful appears in the logs, use a separate terminal to launch

wsbrd using the command:

sudo wsbrd -F examples/wsbrd.conf

External Servers

230/602

External Servers

External Servers
S ilicon Labs provides external DHCPv6 and authentication servers with configuration examples to give you the possibility of

managing your network at a large scale, and to avoid using the internal default server that is meant for an out-of-the-box

experience, and doesn’t allow too much flexibility in configuration.

The external DHCPv6 servers can help you unify the IPv6 routing around all your nodes, instead of having different prefixes

set by each of your border routers. And having an external authentication server, will let you manage authentication on all

your network using one server.

Refer to Wi-SUN Linux Border Router repository Readme and follow the guidelines to use the configuration examples.

https://github.com/SiliconLabs/wisun-br-linux

IP Communication

231/602

IP Communication

IP Communication
This section provides guidelines to ping a Wi-SUN device from the Raspberry Pi running wsbrd. These guidelines assume

that wsbrd has been configured and is running on the Raspberry Pi.

Ping and UDP: Detailed guidelines to ping the nodes after they are connected to the Border Router and perform UDP

communication between using Netcat.

CoAP: Get the Wi-SUN Meter temperature and humidity values and control the boards LEDs using CoAP.

Wi-SUN Multicast: S ilicon Labs Wi-SUN stack implements Multicast Protocol for Low-Power and Lossy Networks (MPL) as

described in RFC7731, to support multicast packets messaging specified in the Wi-SUN FAN Technical Profile Specification

version 1.1v06.

https://docs.silabs.com/wisun/1.8.0/wisun-security-concepts-design-considerations
https://github.com/SiliconLabs/wisun-br-linux#readme
https://github.com/SiliconLabs/wisun-br-gui

Ping and UDP

232/602

Ping and UDP

Ping and UDP
To complete the following steps correctly, you need a Wi-SUN node running the Wi-SUN – SoC Ping application on the

network. For more information, see QSG181: Silicon Labs Wi-SUN SDK Quick-Start Guide for details on how to bring-up the

Wi-SUN Ping project.

Connect a Wi-SUN Node to the Border Router

After the project is flashed and running on the Wi-SUN device, connect to the CLI interface. From this interface, retrieve

the Wi-SUN border router IP address and the Wi-SUN node IP address by executing wisun get wisun. They are available

only if the device is successfully connected. If this is not the case, wait for the connection process to complete. If the

connection is not successful, verify the border router and router configurations match (network name, Wi-SUN PHY,

certificates, and so on). You should get the following trace on the console.

> wisun get wisun

wisun.network_name = Wi-SUN Network

wisun.phy_config_type = FAN 1.1 (1)

wisun.network_size = small (1)

wisun.tx_power = 20

wisun.regulatory_domain = NA (1)

wisun.operating_class = 0 (unused)

wisun.operating_mode = 0�0 (unused)

wisun.chan_plan_id = 1

wisun.phy_mode_id = 2

wisun.ch0_frequency = 0 (unused)

wisun.number_of_channels = 0 (unused)

wisun.channel_spacing = 100kHz (0) (unused)

wisun.join_state = Operational (5)

wisun.ip_address_global = fd12:3456::be33:acff:fef6:3161

wisun.ip_address_link_local = fe80::be33:acff:fef6:3161

wisun.ip_address_border_router = fd12:3456::86fd:27ff:fefe:55bd

wisun.ip_address_primary_parent = fd12:3456::86fd:27ff:fefe:55bd

wisun.regulation = none (0)

wisun.regulation_warning_threshold = 85

wisun.regulation_alert_threshold = 95

The Wi-SUN border router IP address is fd12:3456::86fd:27ff:fefe:55bd (wisun.ip_address_border_router value). The Wi-SUN

node IP address is fd12:3456::be33:acff:fef6:3161 (wisun.ip_address_global value). These IP addresses are used in the

following steps to address the devices.

Check the Communication Between the Raspberry Pi and the Node

From the same Linux terminal, ping the Wi-SUN node.

Ping and UDP

233/602

$ ping fd12:3456::be33:acff:fef6:3161

PING fd12:3456::be33:acff:fef6:3161(fd12:3456::be33:acff:fef6:3161) 56 data bytes

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=1 ttl=64 time=675 ms

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=2 ttl=64 time=680 ms

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=3 ttl=64 time=705 ms

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=4 ttl=64 time=925 ms

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=5 ttl=64 time=281 ms

64 bytes from fd12:3456::be33:acff:fef6:3161: icmp_seq=6 ttl=64 time=149 ms

This communication goes through the Linux IP interface to the communication bus. It is then received by the EFR32 running

the RCP image and sent over the air using the Wi-SUN protocol. Finally, the packet is received by the Wi-SUN node which

replies with its own packet. The new packet takes the same route the other way round. The latency is the accumulation of

all the step durations.

You have successfully opened an upstream communication between the Wi-SUN network and a device in the backhaul

network. To go further, you can use this new communication link to open TCP/UDP sockets between a Wi-SUN node and

the Linux host.

Send and Receive UDP Data

Assuming that you have retrieved the iPv6 addresses of the border router and the node, as explained in the beginning of

this page. And you have a Wi-SUN node running Wi-SUN – SoC CLI project. You can send and receive UDP data using

netcat server.

Send UDP data

To send data, make sure to open a UDP server port on your node first, using the following command:

wisun udp_server [port]

And on your Linux host, use netcat command to send UDP data:

$nc -u [Wi-SUN node IP address] [port]

Receive UDP Data

To receive data on your Linux host, open a UDP server port using netcat command:

$nc -6 -lu [port]

Then you can send data from your node with the following commands:

wisun udp_client [Wi-SUN border router IP address] [port]

wisun socket_write [Socket ID] [Wi-SUN border router IP address] [Port] [Message]

Note that the Socket ID value, will be returned with command wisun udp_client .

CoAP

234/602

CoAP

CoAP Communication

Get the Metering Data

The Raspberry Pi gets CoAP metering data from the CoAP meter node using the libcoap client, if you have a node running

Wi-SUN SoC CoAP Meter in the same network with the Linux Border Router. Follow the steps below to get CoAP metering

data on your Raspberry Pi:

 Install the libcoap library.

 $sudo apt-get install libcoap-1-0

 $sudo apt-get install libcoap-1-0-bin

 From the node cli, make sure that you are connected to the network.

> wisun get wisun.join_state

wisun.connection_state = Operational (5)

 Get your node global address.

> wisun get wisun.ip_address_global

wisun.ip_address_global = fd12:3456::be33:acff:fef6:3161

Discover the Available Resources

The CoAP protocol supports an interoperable discovery feature. A CoAP client can request the attributes hosted by a CoAP

server. In the case of the CoAP Meter application, the available resources can be retrieved using the libcoap GET method

with the standard discovery entry-point. The following command shows the sensor and LED resources.

$coap-client -m get -N coap://[fd12:3456::be33:acff:fef6:3161]:5683/.well-known/core

</gpio>;ct=40,</sensor>;ct=40,</gpio/led>;rt="led";if="gpio",</sensor/light>;rt="light";if="sensor",</sensor/humidity>;rt="humidity";if="sensor",

</sensor/temperature>;rt="temperature";if="sensor",</sensor/all>;rt="all";if="sensor"

Get the CoAP Meter Sensor Data

On your raspberry Pi, get the CoAP meter sensor data using libcoap with the following command:

$coap-client -m get -N coap://[fd12:3456::be33:acff:fef6:3161]:5683/sensor/all

{

"id": 0,

"temp": 28.18,

"hum": 46.36,

"lx": 512

}

CoAP

235/602

Each sensor data value can be retrieved alone if you specify the corresponding resource in the libcoap command. To

retrieve the humidity value, the user can use the following command:

$coap-client -m get -N coap://[fd12:3456::be33:acff:fef6:3161]:5683/sensor/humidity

46.59 %

Note that any machine that has a CoAP client and an IPv6 connectivity with the CoAP Meter node can get the metering

data.

Toggle the LEDs

The libcoap PUT method allows you to toggle the CoAP Meter node LEDs remotely. Use the following command to toggle

the LED0.

$coap-client -t text -m put -N -B 1 coap://[fd12:3456::be33:acff:fef6:3161]:5683/gpio/led -e "LED0%00"

LED1 can also be toggled with changing the payload to “LED1%00”.

Multicast

236/602

Multicast

Wi-SUN Multicast
S ilicon Labs Wi-SUN stack implements Multicast Protocol for Low-Power and Lossy Networks (MPL) as described in

RFC7731, to support multicast packets messaging specified in the Wi-SUN FAN Technical Profile Specification version

1.1v06.

This page goes over the different aspects of Wi-SUN multicast aspects to allow users sending multicast messages over

their Wi-SUN Network.

Wi-SUN Multicast Scopes

A scope zone as described by [RFC 4007] is a topological span within which the address may be used as a unique identifier

for an interface or set of interfaces.

The Wi-SUN FAN Specification requires subscription to a couple of multicast addresses which covers two different scopes:

The Link Local scope (FF02::): which includes all neighbors in the limit of 1 hop.

The Realm Local scope (FF03::): which includes all the network nodes at any limit of hops.

With the S ilicon Labs Wi-SUN FAN Stack, FFNs are able to originate multicast messages destined for the required scopes

listed above or any other scope. They are also able to forward multicast messages, whether they originate from the same

PAN or from another host.

As the figure below shows, other hosts can send multicast packets destined to multicast groups to which PAN nodes are

subscribed. The border router must join those multicast groups to enable forwarding the multicast packets of other hosts

into the PAN.

Wi-SUN Multicast Addresses

Multicast

237/602

By default, all the Wi-SUN devices subscribe to the ALL_MPL_FORWARDERS address with a realm-local scope: FF03::FC as

shown in the figure below.

In addition to the ALL_MPL_FORWARDERS address, the Border Router and the FFNs join their FAN interface to several

predefined IPv6 multicast groups by default:

ff02::1 : targets all the nodes in the link local scope.

ff02::2 : targets all the routers in the link local scope.

ff03::1 : targets all the nodes in a Realm local scope.

ff03::2 : targets all the routers in a Realm local scope.

The Border Router and FFNs are also able to join other specific Multicast groups different than the ones joined by default.

Sending a Multicast Packet in Wi-SUN Network

This section explains how to send a multicast message from the Wi-SUN Linux Border Router (wsbrd) to the FFN nodes,

using a socket created by the python script at the end of this section.

Setting Up The Nodes

 Run the Wi_SUN - SoC CLI example sample application on your nodes.

 Start a UDP server on the nodes.

 wisun udp_server 1234

For multicast addresses other than the default ones listed in the section Wi-Sun Multicast Addresses, run the

command below to join a multicast group.

 wisun socket_set_option [socket id] join_multicast_group [multicast address]

Setting Up The Border Router

For multicast addresses other than the default ones listed in the section Wi-Sun Multicast Addresses, run the command

below to join a multicast group (eg: ff03::db8:0:0). Check D-Bus API documentation for more information.

sudo busctl --system call com.silabs.Wisun.BorderRouter /com/silabs/Wisun/BorderRouter com.silabs.Wisun.BorderRouter JoinMulticastGroup "ay"

16 0xff 0�03 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�00 0�0d 0xb8 0�00 0�00 0�00 0�00

The multicast socket must be bound to the wsbrd interface in order to reach the Wi-SUN PAN. The script used

in this document binds the socket to interface tun0 using the socket option SO_BINDTODEVICE.

Send the Multicast Message

Run the following command to send a message to all the routers in the Realm Local scope of the Border Router using the

script multicast_packet_send.py.

python3 multicast_packet_send.py ff03��2 1234 "Hello World!!"

The script sets the socket limit to 10 hops being that the default value on Linux is 1 hop. The number of hops

can be changed by setting the socket option IPV6_MULTICAST_HOPS to a different value.

https://github.com/SiliconLabs/wisun-br-linux
https://github.com/SiliconLabs/wisun-br-linux/blob/main/DBUS.md
https://man7.org/linux/man-pages/man7/socket.7.html#:~:text=since%20Linux%204.6.-,SO_BINDTODEVICE,-Bind%20this%20socket

Multicast

238/602

multicast_packet_send.py

import socket

import sys

import time

if len(sys.argv) !� 3�

 print(

 'Usage: python3 multicast_packet_send.py [dest IPv6� [dest port] [message]')

 exit(1)

sock = socket.socket(socket.AddressFamily.AF_INET6,

 socket.SocketKind.SOCK_DGRAM�

sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_MULTICAST_HOPS, 10�

sock.setsockopt(socket.SOL_SOCKET, socket.SO_BINDTODEVICE, bytes("tun0", 'ascii'))

sock.sendto(sys.argv[3], (sys.argv[1], int(sys.argv[2])))

print('packet sent')

Border Router GUI

239/602

Border Router GUI

Wi-SUN Border Router GUI
The Wi-SUN border router GUI is a companion tool for S ilicon Labs' Wi-SUN border router reference design, wsbrd. The

tool helps manage the network by enabling a remote border router configuration and provides a visual representation of the

connected Wi-SUN devices. For more information about the installation of the tool and the quick start guide, refer to the

wisun-br-gui repository.

Wi-SUN Dashboard

The Wi-SUN border router GUI provides a user interface to configure the border router by modifying the wsbrd.conf file and

allows the user to start, restart, and stop the Wi-SUN border router service. In the same interface, the tool shows the

running configuration on the border router (Network name, PanID, S ize, Domain, Class, Mode, and the GAK/GTK Keys).

Wi-SUN Topology

The Wi-SUN Topology tool draws your implemented Wi-SUN network in the form of a graph constructed of nodes and

edges linking each child to its parent. The tool also lists properties of each device when it is selected in a separate box.

https://github.com/SiliconLabs/wisun-br-gui

Border Router GUI

240/602

Overview

241/602

Overview

Network Performance
This section introduces ways to optimize a Wi-SUN network's performance.

Using the Wi-SUN Network Measurement Application (PDF): Describes how to use the Wi-SUN Network Measurement

Application to test S ilicon Labs Wi-SUN FAN stack performance.

Silicon Labs Wi-SUN Mesh Network Performance (PDF): Details methods for testing the Wi-SUN FAN stack network

performance compared to other mesh networks available. When selecting a network or device, designers need to know the

network’s performance and behavior characteristics such as battery life, network connection time and latency, and the

impact of network size on scalability and reliability.

https://www.silabs.com/documents/public/application-notes/an1364-wi-sun-network-performance-measurement-app.pdf
https://www.silabs.com/documents/public/application-notes/an1330-wi-sun-network-performance.pdf

Wi-SUN Overview

242/602

Wi-SUN Overview

Wi-SUN Overview

Wi-SUN Stack
The Wi-SUN stack API is the primary Application Programming Interface (API) for applications running on S ilicon Labs EFR32

Wireless Gecko SoCs to interact with the S ilicon Labs Wi-SUN FAN wireless stack. It allows the application to manage the

connection to a Wi-SUN FAN network as well as to communicate with other devices in the network using a socket-based

communication interface.

See the Wi-SUN Stack API for more details.

Stack Plugins
Wi-SUN stack plugin components are software modules tightly linked to the stack that provide means to customize it:

debug, manufacturing or Wi-SUN specific optional features. They can have significant impact on key capabilities and

footprint.

RF Test provides low-level APIs to produce an RF tone or a modulated packet and calibrate the radio.

Stack Trace and Debug provides extended trace capabilities to the stack and stack plugin components.

Service Components
The following software components are provided to help and accelerate Wi-SUN application developments by offering

common functionalities. They can easily be added to an existing Wi-SUN application through S implicity Studio graphical

interface. The components are shared in source code in the Gecko SDK.

Application Core provides a set of high-level helper APIs designed to ease the application development.

Util Functions provides utility functions.

CoAP provides a CoAP (Constrained Application Protocol) implementation running on top of the Wi-SUN stack.

Ping provides a ping implementation based on the ICMPv6 protocol.

iPerf provides an iPerf2 implementation to test the throughput over UDP.

Over-The-Air Device Firmware Upgrade (Alpha) provides an Over-The-Air Device Firmware Upgrade solution for Wi-SUN

devices.

S ilicon Labs socket API (deprecated) provides a compatibility with S ilicon Labs former socket API.

Versioning
S ilicon Labs Wi-SUN solution follows the Semantic Versioning guidelines for release cycle transparency and to maintain

backward compatibility.

Wi-SUN Services

243/602

Wi-SUN Services

Wi-SUN Services
The Wi-SUN service software components are provided to help and accelerate Wi-SUN application developments by

offering common functionalities. They can easily be added to an existing Wi-SUN application through S implicity Studio

graphical interface. The components are shared in source code in the Gecko SDK.

The service components are especially useful to build upon the Wi-SUN - SoC Empty project and start as close as possible

to a final application targeted by a developer.

The following diagram shows the software components available for users to leverage in their Wi-SUN application.

Moreover, it highlights each component dependencies to other software components.

Modules

Util Functions

Application Core

CoAP

Ping

iPerf

Wi-SUN Services

244/602

Over-The-Air Device Firmware Upgrade (Alpha)

S ilicon Labs socket API (deprecated)

Util Functions

245/602

Util Functions

Util Functions
The Util Functions component provides helper functions to inform the application about the Wi-SUN PHY configured in the

RAIL configuration file.

Functions

sl_status_t sl_wisun_util_get_rf_settings(uint8_t *reg_domain, uint8_t *op_class, uint16_t *op_mode)
SL_DEPRECATED_API_SDK_4_2
Get frequency band settings of the first RAIL configuration listed in RAIL's channelConfigs array.

sl_status_t sl_wisun_util_get_phy_config(sl_wisun_phy_config_t *phy_config)
Get PHY settings of the first RAIL configuration listed in RAIL's channelConfigs array.

sl_status_t sl_wisun_util_connect(const uint8_t *network_name)
Connect to a Wi-SUN network.

Function Documentation

sl_wisun_util_get_rf_settings

sl_status_t sl_wisun_util_get_rf_settings (uint8_t *reg_domain, uint8_t *op_class, uint16_t *op_mode)
SL_DEPRECATED_API_SDK_4_2

Get frequency band settings of the first RAIL configuration listed in RAIL's channelConfigs array.

Parameters

[out] reg_domain Regulatory domain of the Wi-SUN network

[out] op_class Operational class of the Wi-SUN network

[out] op_mode Operational mode of the Wi-SUN network

Returns

SL_STATUS_OK if successful, an error code otherwise

One of the following:

SL_STATUS_OK if successful

SL_STATUS_INVALID_CONFIGURATION if a configuration that cannot be managed by the plugin is used

SL_STATUS_FAIL if an other error occured

Warnings

Do not call this function while the Wi-SUN stack is started.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See sl_wisun_util_get_phy_config() for

a replacement.

Definition at line 62 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_util.h

sl_wisun_util_get_phy_config

Util Functions

246/602

sl_status_t sl_wisun_util_get_phy_config (sl_wisun_phy_config_t *phy_config)

Get PHY settings of the first RAIL configuration listed in RAIL's channelConfigs array.

Parameters

[out] phy_config Pointer to PHY configuration

Returns

SL_STATUS_OK if successful, an error code otherwise

One of the following:

SL_STATUS_OK if successful

SL_STATUS_INVALID_CONFIGURATION if a configuration that cannot be managed by the plugin is used

SL_STATUS_FAIL if an other error occured

Warnings

Do not call this function while the Wi-SUN stack is started.

Definition at line 79 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_util.h

sl_wisun_util_connect

sl_status_t sl_wisun_util_connect (const uint8_t *network_name)

Connect to a Wi-SUN network.

Parameters

[in] network_name Name of the Wi-SUN network as a zero-terminated string

Returns

SL_STATUS_OK if successful, an error code otherwise

One of the following:

SL_STATUS_OK if successful

SL_STATUS_INVALID_CONFIGURATION if a configuration that cannot be managed by the plugin is used

SL_STATUS_FAIL if an other error occured

S ince Wi-SUN frequency band settings are deduced from first RAIL configuration listed in RAIL's channelConfigs array, using

this function is not recommended if more than one RAIL configuration is described.

Definition at line 97 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_util.h

Application Core

247/602

Application Core

Application Core
The Application Core component provides utilities common to most Wi-SUN applications with the following features:

A Wi-SUN connection helper function app_wisun_network_connect() configures the network size setting, the TX output

power, the certificates, and keys. The last function action is to start the Wi-SUN connection process. The

app_wisun_network_ is_connected() function provides a simple connection status getter too.

Event handlers for basic Wi-SUN network events component includes the basic event handler implementations.

Available addresses. Retrieve known IPv6 addresses with the app_wisun_get_current_addresses() function.

Error Getter. Use app_wisun_core_get_error() function to get the status of the Stack API calls.

To use the component in your application, add it to your project and initialize it with app_wisun_core_ init().

Modules

Application Core API type definitions

void app_wisun_project_info_init(const char *app_name)
Initialize Wi-SUN pro ject information.

void app_wisun_project_info_print(const bool json_format)
Print Wi-SUN pro ject information.

const
app_project_info_t

*

app_wisun_project_info_get(void)
Get Wi-SUN Pro ject info.

void app_wisun_wait_for_connection(void)
Wait for the connection.

void app_wisun_connect_and_wait(void)
Connect and wait for connection.

bool app_wisun_network_is_connected(void)
The network is connected.

void app_wisun_dispatch_thread(void)
Thread dispatch function.

Functions

void app_wisun_core_init(void)
Initialize Wi-SUN application core .

bool app_wisun_core_get_error(app_core_error_state_flag_t flag)
Get application core error.

void app_wisun_network_connect(void)
Connect to the Wi-SUN network.

Application Core

248/602

void app_wisun_get_current_addresses(current_addr_t *const dest_addresses)
Get the current addresses.

void app_wisun_set_regulation_active(bool enabled)
Set the regional regulation to active or passive .

bool app_wisun_get_regulation_active(void)
Return the state of the regional regulation.

bool app_wisun_get_remaining_tx_budget(uint32_t *const budget_out)
Get the remaining budget from the transmission quota.

void app_wisun_set_regulation_thresholds(const int8_t warning_level, const int8_t alert_level)
Set up warning and alert thresho lds for the regional regulation.

bool app_wisun_get_regulation_thresholds(regulation_thresholds_t *thresholds_out)
Get the warning and alert levels for approaching/exceeded the TX budget.

sl_wisun_ join_stat
e_t

app_wisun_get_ join_state(void)
Get Wi-SUN jo in state .

void app_wisun_get_time_stat(app_core_time_stat_t *const tstat)
Get time statistic.

undefined Documentation

app_wisun_project_info_init

void app_wisun_project_info_init (const char *app_name)

Initialize Wi-SUN project information.

Parameters

[in] app_name Application name

Init internal instance

Definition at line 94 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

app_wisun_project_info_print

void app_wisun_project_info_print (const bool json_format)

Print Wi-SUN project information.

Parameters

[in] json_format Json format required indicator

Print project info in pretty or json format.

Definition at line 101 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

app_wisun_project_info_get

const app_project_info_t * app_wisun_project_info_get (void)

Application Core

249/602

Get Wi-SUN Project info.

Parameters

N/A

Get a constant instance of internal Wi-SUN project info Returns

app_project_ info_t * Project info

Definition at line 108 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

app_wisun_wait_for_connection

void app_wisun_wait_for_connection (void)

Wait for the connection.

Parameters

N/A

This function doesn't call the app_wisun_network_connect() function. The function provides a delay loop with optional heart

beat printing till the connection state has not been changed.

Definition at line 116 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

app_wisun_connect_and_wait

void app_wisun_connect_and_wait (void)

Connect and wait for connection.

Parameters

N/A

The function calls app_wisun_network_connect() function and app_wisun_wait_for_connection() function. It can be useful at

the beginning of application thread.

Definition at line 124 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

app_wisun_network_is_connected

bool app_wisun_network_is_connected (void)

The network is connected.

Parameters

N/A

Wrapper function of join state getter Returns

true Connected

false Not connected

Definition at line 132 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

Application Core

250/602

app_wisun_dispatch_thread

void app_wisun_dispatch_thread (void)

Thread dispatch function.

Parameters

N/A

For low power LFN mode, the delay value is 'APP_THREAD_LP_DISPATCH_MS ', for FFN mode, the delay is 1ms

Definition at line 139 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core_util.h

Function Documentation

app_wisun_core_init

void app_wisun_core_init (void)

Initialize Wi-SUN application core.

Parameters

N/A

Initializing mutex, socket handler and set Wi-SUN settings.

Definition at line 145 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_core_get_error

bool app_wisun_core_get_error (app_core_error_state_flag_t flag)

Get application core error.

Parameters

[in] flag is the indicator of the error

The function retrieves the application core error status based on the flag. Returns

bool True if error flag is set, otherwise false

Definition at line 154 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_network_connect

void app_wisun_network_connect (void)

Connect to the Wi-SUN network.

Parameters

N/A

Application Core

251/602

Network initialization and connection. The function initializes the network with parameters (Network name, TX Power,

Network size, etc.) by the stored settings in NVM if the settings component is added to the project, otherwise with the

default settings.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_current_addresses

void app_wisun_get_current_addresses (current_addr_t *const dest_addresses)

Get the current addresses.

Parameters

[out] dest_addresses Destination

Copy cached addresses into destination.

Definition at line 172 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_set_regulation_active

void app_wisun_set_regulation_active (bool enabled)

Set the regional regulation to active or passive.

Parameters

[in] enabled (true = active, false = not active)

After a stack API call for regional regulation, this function can be used to store the status of the regulation (active or not).

Definition at line 180 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_regulation_active

bool app_wisun_get_regulation_active (void)

Return the state of the regional regulation.

Parameters

N/A

This function tells the caller if a regulation is currently active. Returns

Boolean indicating if a regional regulation is currently active.

Definition at line 187 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_remaining_tx_budget

bool app_wisun_get_remaining_tx_budget (uint32_t *const budget_out)

Get the remaining budget from the transmission quota.

Application Core

252/602

Parameters

[out] budget_out pointer to return the remaining budget to.

Returns the state of the regional regulation and the remaining budget in ms if applicable, or zero budget if exceeded or not

regulated. Returns

Boolean to indicate if the returned value reflects a usable value.

Definition at line 196 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_set_regulation_thresholds

void app_wisun_set_regulation_thresholds (const int8_t warning_level, const int8_t alert_level)

Set up warning and alert thresholds for the regional regulation.

Parameters

[in] warning_level new percentage for the warning threshold

[in] alert_level new percentage for the alert threshold

Sets up the percentages of warnings and alerts where the regulation indicate that the transmission quota is

approached/exceeded.

Definition at line 205 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_regulation_thresholds

bool app_wisun_get_regulation_thresholds (regulation_thresholds_t *thresholds_out)

Get the warning and alert levels for approaching/exceeded the TX budget.

Parameters

[out] thresholds_out pointer to the struct to hold the thresholds

Values representing percentages of the allowed transmission quota in ms are returned for the warning and alert levels,

respectively. Returns

Boolean to indicate if the operation was successful

Definition at line 214 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_ join_state

sl_wisun_ join_state_t app_wisun_get_ join_state (void)

Get Wi-SUN join state.

Parameters

N/A

Thread-safe getter to get connection state. Join state is stored in appropriate event callback. Returns

sl_wisun_ join_state_t Join state value.

Application Core

253/602

Definition at line 222 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_wisun_get_time_stat

void app_wisun_get_time_stat (app_core_time_stat_t *const tstat)

Get time statistic.

Parameters

[out] tstat Time statistic structure

Create a copy of time statistic storage with up-to-date values

Definition at line 229 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

Application Core API type definitions

254/602

Application Core API type definitions

Application Core API type definitions

Modules

current_addr

regulation_thresholds

app_core_time_stat

Enumerations

enum app_core_error_state_flag {

SETTING_ERROR_FLAG_BIT = 0
CONNECTION_FAILED_ERROR_FLAG_BIT
SET_NETWORK_SIZE_ERROR_FLAG_BIT
SET_TX_POWER_ERROR_FLAG_BIT
SET_DWELL_INTERVAL_ERROR_FLAG_BIT
SET_MAC_ADDR_ERROR_FLAG_BIT
SET_ALLOW_MAC_ADDR_ERROR_FLAG_BIT
SET_DENY_MAC_ADDR_ERROR_FLAG_BIT
SET_TRUSTED_CERTIFICATE_ERROR_FLAG_BIT
SET_DEVICE_CERTIFICATE_ERROR_FLAG_BIT
SET_DEVICE_PRIVATE_KEY_ERROR_FLAG_BIT
GET_RF_SETTINGS_ERROR_FLAG_BIT

}
Error flag bits enum type definition.

Typedefs

typedef enum
app_core_error_st

ate_flag

app_core_error_state_flag_t
Error flag bits enum type definition.

typedef struct
current_addr

current_addr_t
Current address storage structure definition.

typedef struct
regulation_thresh

olds

regulation_thresholds_t
Regulation thresho lds.

typedef struct
app_core_time_st

at

app_core_time_stat_t
Application time statistic.

Enumeration Documentation

app_core_error_state_flag

Application Core API type definitions

255/602

app_core_error_state_flag

Error flag bits enum type definition.

Enumerator

SETTING_ERROR_FLAG_BIT Setting Error Flag bit.

CONNECTION_FAILED_ERROR_FLAG_BIT Connection Failed Error Flag bit.

SET_NETWORK_SIZE_ERROR_FLAG_BIT Network S ize Error Flag bit.

SET_TX_POWER_ERROR_FLAG_BIT TX Power Error Flag bit.

SET_DWELL_INTERVAL_ERROR_FLAG_BIT Dwel interval Error flag bit.

SET_MAC_ADDR_ERROR_FLAG_BIT Setting MAC address Error Flag bit.

SET_ALLOW_MAC_ADDR_ERROR_FLAG_BIT setting Allow mac address Error Flag bit

SET_DENY_MAC_ADDR_ERROR_FLAG_BIT setting Deny mac address Error Flag bit

SET_TRUSTED_CERTIFICATE_ERROR_FLAG_BIT Trusted Certificate Error Flag bit.

SET_DEVICE_CERTIFICATE_ERROR_FLAG_BIT Device Certificate Error Flag bit.

SET_DEVICE_PRIVATE_KEY_ERROR_FLAG_BIT Device Private Key Error Flag bit.

GET_RF_SETTINGS_ERROR_FLAG_BIT Get RF Setting Error Flag bit.

Definition at line 67 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

Typedef Documentation

app_core_error_state_flag_t

typedef enum app_core_error_state_flag app_core_error_state_flag_t

Error flag bits enum type definition.

Definition at line 92 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

current_addr_t

typedef struct current_addr current_addr_t

Current address storage structure definition.

Definition at line 106 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

regulation_thresholds_t

typedef struct regulation_thresholds regulation_thresholds_t

Regulation thresholds.

Definition at line 114 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_core_time_stat_t

Application Core API type definitions

256/602

typedef struct app_core_time_stat app_core_time_stat_t

Application time statistic.

Definition at line 130 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

current_addr

257/602

current_addr

Current address storage structure definition.

Public Attributes

in6_addr_t link_local
Link local address.

in6_addr_t global
Global address.

in6_addr_t border_router
Border Router address.

in6_addr_t primary_parent
Primary Parent address.

in6_addr_t secondary_parent
Secondary Parent address.

Public Attribute Documentation

link_local

in6_addr_t current_addr::link_local

Link local address.

Definition at line 97 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

global

in6_addr_t current_addr::global

Global address.

Definition at line 99 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

border_router

in6_addr_t current_addr::border_router

Border Router address.

Definition at line 101 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

primary_parent

current_addr

258/602

in6_addr_t current_addr::primary_parent

Primary Parent address.

Definition at line 103 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

secondary_parent

in6_addr_t current_addr::secondary_parent

Secondary Parent address.

Definition at line 105 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

regulation_thresholds

259/602

regulation_thresholds

Regulation thresholds.

Public Attributes

int8_t warning_threshold
Warning thresho lds.

int8_t alert_threshold
Alert thresho lds.

Public Attribute Documentation

warning_threshold

int8_t regulation_thresholds::warning_threshold

Warning thresholds.

Definition at line 111 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

alert_threshold

int8_t regulation_thresholds::alert_threshold

Alert thresholds.

Definition at line 113 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_core_time_stat

260/602

app_core_time_stat

Application time statistic.

Public Attributes

uint64_t curr_ms
Current ms.

uint64_t connected_ms
Last connected ms.

uint64_t tot_connected_ms
Total connected ms.

uint64_t disconnected_ms
Last disconnected ms.

uint64_t tot_disconnected_ms
Total disconnected ms.

uint32_t conn_cnt
Connection counter.

Public Attribute Documentation

curr_ms

uint64_t app_core_time_stat::curr_ms

Current ms.

Definition at line 119 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

connected_ms

uint64_t app_core_time_stat::connected_ms

Last connected ms.

Definition at line 121 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

tot_connected_ms

uint64_t app_core_time_stat::tot_connected_ms

Total connected ms.

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

app_core_time_stat

261/602

disconnected_ms

uint64_t app_core_time_stat::disconnected_ms

Last disconnected ms.

Definition at line 125 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

tot_disconnected_ms

uint64_t app_core_time_stat::tot_disconnected_ms

Total disconnected ms.

Definition at line 127 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

conn_cnt

uint32_t app_core_time_stat::conn_cnt

Connection counter.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/app_core/sl_wisun_app_core.h

CoAP

262/602

CoAP

CoAP
The Wi-SUN CoAP component provides an application layer implementation on top of the Wi-SUN stack and its socket API.

The CoAP protocol is designed as a specialized Internet Application Protocol for constrained devices in lossy networks (see

RFC 7252 for additional information). Wi-SUN FAN networks fit this definition. The CoAP implementation relies on the UDP

transport layer to send and receive packets.

A number of helper functions are part of the component to help build CoAP payloads, parse CoAP packets, free CoAP

packets, and more.

The CoAP Resource Handler service handles registered resources. Resource Discovery request provides an interface to get

information about available resources. Resource has more attributes over URI (Uniform Resource Identifier) path, which can

be filtered by particular Resource Discovery request.

The CoAP Notification service provides an interface to create and schedule notifications to the remote host. Schedule time

and send condition can be customized depending on the application.

To use the CoAP component in your application, add it to your project and initialize it with sl_wisun_coap_ init().

Modules

CoAP type definitions

Functions

void sl_wisun_coap_init(const sl_wisun_coap_tx_callback tx_callback, const sl_wisun_coap_rx_callback rx_callback,
const sl_wisun_coap_version_t version)
Initialize Wi-SUN CoAP.

__STATIC_INLINE
void

sl_wisun_coap_init_default(void)
Initialize Wi-SUN CoAP default.

void * sl_wisun_coap_malloc(uint16_t size)
Implement malloc.

void sl_wisun_coap_free(void *addr)
Free Wi-SUN CoAP.

sl_wisun_coap_pa
cket_t *

sl_wisun_coap_parser(uint16_t packet_data_len, uint8_t *packet_data)
CoAP parser wrapper function.

uint16_t sl_wisun_coap_builder_calc_size(const sl_wisun_coap_packet_t *message)
CoAP packet calc size wrapper.

int16_t sl_wisun_coap_builder(uint8_t *dest_buff, const sl_wisun_coap_packet_t *message)
CoAP message builder Wi-SUN.

sl_wisun_coap_pa
cket_t *

sl_wisun_coap_build_response(const sl_wisun_coap_packet_t *req, sl_wisun_coap_message_code_t
msg_code)
Build generic response for request wrapper function.

void sl_wisun_coap_print_packet(const sl_wisun_coap_packet_t *packet, const bool hex_format)
Print CoAP packets and all of attached buffer, payload, token, uri_path.

CoAP

263/602

char * sl_wisun_coap_get_uri_path_str(const sl_wisun_coap_packet_t *const packet)
Prepare URI path string.

__STATIC_INLINE
void

sl_wisun_coap_destroy_uri_path_str(char *uri_str)
Destroy URI path string.

const
sl_wisun_coap_ha

ndle_t *

sl_wisun_coap_get_lib_handler(void)
Get the library handler po inter from the internal handler structure .

void sl_wisun_coap_destroy_packet(sl_wisun_coap_packet_t *packet)
Destroy packet.

char * sl_wisun_coap_get_payload_str(const sl_wisun_coap_packet_t *const packet)
Prepare payload string.

__STATIC_INLINE
void

sl_wisun_coap_destroy_payload_str(char *str)
Destroy payload string.

Macros

#define SL_COAP_SERVICE_LOOP ()
CoAP Service loop.

Function Documentation

sl_wisun_coap_init

void sl_wisun_coap_init (const sl_wisun_coap_tx_callback tx_callback, const sl_wisun_coap_rx_callback rx_callback, const
sl_wisun_coap_version_t version)

Initialize Wi-SUN CoAP.

Parameters

[in] tx_callback TX callback, if it's NULL, the default callback is applied

[in] rx_callback RX callback, if it's NULL, the default callback is applied

[in] version CoAP version

Set the Wi-SUN CoAP internal descriptor.

Definition at line 172 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_init_default

__STATIC_INLINE void sl_wisun_coap_init_default (void)

Initialize Wi-SUN CoAP default.

Parameters

N/A

Initializes the internal descriptor with default values.

Definition at line 180 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_malloc

CoAP

264/602

void * sl_wisun_coap_malloc (uint16_t size)

Implement malloc.

Parameters

N/A size size for malloc

OS-dependent thread-safe implementation. Returns

void* the memory pointer

Definition at line 191 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_free

void sl_wisun_coap_free (void *addr)

Free Wi-SUN CoAP.

Parameters

N/A addr address ptr

OS-dependent thread-safe implementation.

Definition at line 198 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

Referenced by sl_wisun_coap_destroy_payload_str , and sl_wisun_coap_destroy_uri_path_str

sl_wisun_coap_parser

sl_wisun_coap_packet_t * sl_wisun_coap_parser (uint16_t packet_data_len, uint8_t *packet_data)

CoAP parser wrapper function.

Parameters

[in] packet_data_len packet data size

[in] packet_data packet data ptr

Used sn_coap_parser Returns

sl_wisun_coap_packet_t* Parsed packet pointer

Definition at line 207 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_builder_calc_size

uint16_t sl_wisun_coap_builder_calc_size (const sl_wisun_coap_packet_t *message)

CoAP packet calc size wrapper.

Parameters

[in] message message ptr

http://localhost:28080/wisun/sl-wisun-coap-api#sl-wisun-coap-destroy-payload-str
http://localhost:28080/wisun/sl-wisun-coap-api#sl-wisun-coap-destroy-uri-path-str

CoAP

265/602

Used sn_coap_builder_calc_needed_packet_data_size. Returns

uint16_t size

Definition at line 216 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_builder

int16_t sl_wisun_coap_builder (uint8_t *dest_buff, const sl_wisun_coap_packet_t *message)

CoAP message builder Wi-SUN.

Parameters

[out] dest_buff destination buffer for raw message

[in] message message structure

Used sl_wisun_coap_builder. Returns

int16_t On success bytes of built message, on failure -1 if CoAP header structure is wrong -2 if NULL ptr set as argument

Definition at line 227 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_build_response

sl_wisun_coap_packet_t * sl_wisun_coap_build_response (const sl_wisun_coap_packet_t *req,
sl_wisun_coap_message_code_t msg_code)

Build generic response for request wrapper function.

Parameters

[in] req request

[in] msg_code message code to build

Used sn_coap_build_response. Returns

sl_wisun_coap_header_t* built packet ptr on the heap

Definition at line 237 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_print_packet

void sl_wisun_coap_print_packet (const sl_wisun_coap_packet_t *packet, const bool hex_format)

Print CoAP packets and all of attached buffer, payload, token, uri_path.

Parameters

[in] packet packet to print

[in] hex_format hex format bool to decide buffer print format

Pretty printer function, with hex format option for buffers

Definition at line 246 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

CoAP

266/602

sl_wisun_coap_get_uri_path_str

char * sl_wisun_coap_get_uri_path_str (const sl_wisun_coap_packet_t *const packet)

Prepare URI path string.

Parameters

[in] packet Packet

'\0' terminated string in the heap, it must be freed Returns

char* URI path string, NULL on error

Definition at line 255 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_destroy_uri_path_str

__STATIC_INLINE void sl_wisun_coap_destroy_uri_path_str (char *uri_str)

Destroy URI path string.

Parameters

[in] uri_str URI string ptr

Call free on allocated pointer

Definition at line 262 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_get_lib_handler

const sl_wisun_coap_handle_t * sl_wisun_coap_get_lib_handler (void)

Get the library handler pointer from the internal handler structure.

Parameters

N/A

Not thread safe! It is needed only to use Pelion mbed-coap library functions Returns

const sl_wisun_coap_handle_t* pointer to the lib handler

Definition at line 272 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_destroy_packet

void sl_wisun_coap_destroy_packet (sl_wisun_coap_packet_t *packet)

Destroy packet.

Parameters

N/A packet packet

It must be used to avoid memory leaks! Free the all of allocated buffer for packet

CoAP

267/602

Definition at line 280 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_get_payload_str

char * sl_wisun_coap_get_payload_str (const sl_wisun_coap_packet_t *const packet)

Prepare payload string.

Parameters

[in] packet Packet

'\0' terminated string in the heap, it must be freed Returns

char* payload string, NULL on error

Definition at line 288 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_destroy_payload_str

__STATIC_INLINE void sl_wisun_coap_destroy_payload_str (char *str)

Destroy payload string.

Parameters

[in] str String

'\0' terminated string in the heap, it must be freed

Definition at line 295 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

Macro Definition Documentation

SL_COAP_SERVICE_LOOP

#define SL_COAP_SERVICE_LOOP

Value:

()

CoAP Service loop.

Definition at line 64 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

CoAP type definitions

268/602

CoAP type definitions

CoAP type definitions

Modules

sl_wisun_coap

Typedefs

typedef struct
coap_s

sl_wisun_coap_handle_t
Wi-SUN CoAP handler for Wi-SUN component.

typedef void *(* sl_wisun_coap_malloc_t)(uint16_t size)
Wi-SUN CoAP malloc function po inter typedef.

typedef void(* sl_wisun_coap_free_t)(void *mem)
Wi-SUN CoAP free function po inter typedef.

typedef
coap_version_e

sl_wisun_coap_version_t
Wi-SUN CoAP version typedef.

typedef uint8_t(* sl_wisun_coap_tx_callback)(uint8_t *packet_data, uint16_t packet_data_size, sn_nsdl_addr_s *addr, void
*param)
Wi-SUN CoAP TX callback function po inter typedef.

typedef int8_t(* sl_wisun_coap_rx_callback)(sn_coap_hdr_s *header, sn_nsdl_addr_s *addr, void *param)
Wi-SUN CoAP RX callback function po inter typedef.

typedef
sn_coap_hdr_s

sl_wisun_coap_packet_t
Wi-SUN CoAP message typedef.

typedef
sn_coap_msg_cod

e_e

sl_wisun_coap_message_code_t
Wi-SUN CoAP message code typedef.

typedef
sn_coap_msg_typ

e_e

sl_wisun_coap_message_type_t
Wi-SUN CoAP message type typedef.

typedef
sn_coap_option_n

umbers_e

sl_wisun_coap_option_num_t
Wi-SUN CoAP option number typedef.

typedef
sn_coap_options_li

st_s

sl_wisun_coap_option_list_t
Wi-SUN CoAP option list typedef.

typedef struct
sl_wisun_coap

sl_wisun_coap_t
Wi-SUN CoAP descriptor structure .

Macros

CoAP type definitions

269/602

#define SL_WISUN_COAP_URI_PATH_MAX_SIZE �128U�
Maximum size of the URI path string.

Typedef Documentation

sl_wisun_coap_handle_t

typedef struct coap_s sl_wisun_coap_handle_t

Wi-SUN CoAP handler for Wi-SUN component.

Definition at line 77 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_malloc_t

typedef void *(* sl_wisun_coap_malloc_t) (uint16_t size))(uint16_t size)

Wi-SUN CoAP malloc function pointer typedef.

Definition at line 80 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_free_t

typedef void(* sl_wisun_coap_free_t) (void *mem))(void *mem)

Wi-SUN CoAP free function pointer typedef.

Definition at line 83 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_version_t

typedef coap_version_e sl_wisun_coap_version_t

Wi-SUN CoAP version typedef.

Definition at line 86 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_tx_callback

typedef uint8_t(* sl_wisun_coap_tx_callback) (uint8_t *packet_data, uint16_t packet_data_size, sn_nsdl_addr_s *addr, void
*param))(uint8_t *packet_data, uint16_t packet_data_size, sn_nsdl_addr_s *addr, void *param)

Wi-SUN CoAP TX callback function pointer typedef.

Definition at line 89 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_rx_callback

CoAP type definitions

270/602

typedef int8_t(* sl_wisun_coap_rx_callback) (sn_coap_hdr_s *header, sn_nsdl_addr_s *addr, void *param))(sn_coap_hdr_s
*header, sn_nsdl_addr_s *addr, void *param)

Wi-SUN CoAP RX callback function pointer typedef.

Definition at line 92 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_packet_t

typedef sn_coap_hdr_s sl_wisun_coap_packet_t

Wi-SUN CoAP message typedef.

Definition at line 95 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_message_code_t

typedef sn_coap_msg_code_e sl_wisun_coap_message_code_t

Wi-SUN CoAP message code typedef.

Definition at line 98 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_message_type_t

typedef sn_coap_msg_type_e sl_wisun_coap_message_type_t

Wi-SUN CoAP message type typedef.

Definition at line 101 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_option_num_t

typedef sn_coap_option_numbers_e sl_wisun_coap_option_num_t

Wi-SUN CoAP option number typedef.

Definition at line 104 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap_option_list_t

typedef sn_coap_options_list_s sl_wisun_coap_option_list_t

Wi-SUN CoAP option list typedef.

Definition at line 107 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

CoAP type definitions

271/602

sl_wisun_coap_t

typedef struct sl_wisun_coap sl_wisun_coap_t

Wi-SUN CoAP descriptor structure.

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

Macro Definition Documentation

SL_WISUN_COAP_URI_PATH_MAX_SIZE

#define SL_WISUN_COAP_URI_PATH_MAX_SIZE

Value:

�128U�

Maximum size of the URI path string.

Definition at line 74 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap

272/602

sl_wisun_coap

Wi-SUN CoAP descriptor structure.

Public Attributes

sl_wisun_coap_ha
ndle_t *

handler
lib handler

sl_wisun_coap_ma
lloc_t

malloc
malloc function

sl_wisun_coap_fre
e_t

free
free function

sl_wisun_coap_tx_
callback

tx_callback
TX callback.

sl_wisun_coap_rx_
callback

rx_callback
RX callback.

sl_wisun_coap_ver
sion_t

version
CoAP version.

Public Attribute Documentation

handler

sl_wisun_coap_handle_t* sl_wisun_coap::handler

lib handler

Definition at line 112 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

malloc

sl_wisun_coap_malloc_t sl_wisun_coap::malloc

malloc function

Definition at line 114 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

free

sl_wisun_coap_free_t sl_wisun_coap::free

free function

Definition at line 116 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

sl_wisun_coap

273/602

tx_callback

sl_wisun_coap_tx_callback sl_wisun_coap::tx_callback

TX callback.

Definition at line 118 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

rx_callback

sl_wisun_coap_rx_callback sl_wisun_coap::rx_callback

RX callback.

Definition at line 120 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

version

sl_wisun_coap_version_t sl_wisun_coap::version

CoAP version.

Definition at line 122 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/coap/sl_wisun_coap.h

Ping

274/602

Ping

Ping
The Ping component implements a ping service based on the ICMPv6 protocol. The component sends ICMPv6 packets,

receives the associated responses, and computes the round-trip latency. Using the sl_wisun_ping_request() API, an

application emits a single ping packet. To receive the pong response, the application can then call the

sl_wisun_ping_response() API.

The sl_wisun_ping() function provides a simple solution to periodically send and receive ping packets. To stop the process,

call the sl_wisun_ping_stop() function. A ping test is configurable in size, number of pings sent, and timeout if a response is

not received. Ping service supports multicast group addresses, where multiple response can be received from different

addresses.

To initialize the component, call sl_wisun_ping_ init() function.

Modules

Ping API type definitions

Functions

void sl_wisun_ping_init(void)
Initialize the ping service module .

void sl_wisun_ping_request(const sl_wisun_ping_info_t *const ping_request)
Send a ping request.

void sl_wisun_ping_response(sl_wisun_ping_info_t *const ping_response)
Retrieve a ping response .

sl_status_t sl_wisun_ping(const sockaddr_in6_t *const remote_addr, const uint16_t packet_count, const uint16_t
packet_length, sl_wisun_ping_stat_hnd_t stat_hnd, sl_wisun_ping_req_resp_done_hnd_t req_resp_sent_hnd)
Provide a high level ping API.

void sl_wisun_ping_stop(void)
Stop the current ping process.

Function Documentation

sl_wisun_ping_init

void sl_wisun_ping_init (void)

Initialize the ping service module.

Parameters

N/A

This function initializes the service thread, mutex, and message queues.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

Ping

275/602

sl_wisun_ping_request

void sl_wisun_ping_request (const sl_wisun_ping_info_t *const ping_request)

Send a ping request.

Parameters

[in] ping_request Ping Request Information

The function sends a single ICMPv6 request.

Definition at line 172 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_response

void sl_wisun_ping_response (sl_wisun_ping_info_t *const ping_response)

Retrieve a ping response.

Parameters

[out] ping_response Ping Response Information

The function retrieves a ping response information.

Definition at line 179 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping

sl_status_t sl_wisun_ping (const sockaddr_in6_t *const remote_addr, const uint16_t packet_count, const uint16_t
packet_length, sl_wisun_ping_stat_hnd_t stat_hnd, sl_wisun_ping_req_resp_done_hnd_t req_resp_sent_hnd)

Provide a high level ping API.

Parameters

[in] remote_addr Remote destination address

[in] packet_count Count of packets

[in] packet_length ICMPv6 packet length including header

[in] stat_hnd Custom statistic handler function

[in] req_resp_sent_hnd Request/Response sent handler function

The function provides an interface for periodically sending and receiving ping ICMPv6 packets, and collecting statistic data.

Returns

sl_status_t SL_STATUS_OK on success, otherwise SL_STATUS_FAIL or SL_STATUS_ABORT

Definition at line 192 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_stop

void sl_wisun_ping_stop (void)

Stop the current ping process.

Ping

276/602

Parameters

N/A

Reset request and response queues and send a special ping request with interrupt ping status.

Definition at line 203 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

Ping API type definitions

277/602

Ping API type definitions

Ping API type definitions

Modules

sl_wisun_ping_echo_request

sl_wisun_ping_ info

sl_wisun_ping_stat

Typedefs

typedef struct
sl_wisun_ping_ech

o_request

sl_wisun_ping_echo_request_t
Ping echo request packed structure type definitions.

typedef
sl_wisun_ping_ech

o_request_t

sl_wisun_ping_echo_response_t
Ping response type definition.

typedef struct
sl_wisun_ping_info

sl_wisun_ping_info_t
Ping info structure type definition.

typedef struct
sl_wisun_ping_stat

sl_wisun_ping_stat_t
Statistic ping type definition.

typedef void(* sl_wisun_ping_stat_hnd_t)(sl_wisun_ping_stat_t *stat)
Ping statistic typedef.

typedef void(* sl_wisun_ping_req_resp_done_hnd_t)(sl_wisun_ping_info_t *req, sl_wisun_ping_info_t *resp)
Ping request/response sent handler.

Macros

#define SL_WISUN_PING_MAX_REQUEST_RESPONSE �128U�
Maximum count of ping request/response for message queues.

#define SL_WISUN_PING_MIN_PACKET_LENGTH �9U�
Minimum packet length with 1 byte payload.

#define SL_WISUN_PING_MAX_PACKET_LENGTH �SL_WISUN_PING_MIN_PACKET_LENGTH - 1 +
SL_WISUN_PING_MAX_PAYLOAD_LENGTH�
Max packet length.

#define SL_WISUN_PING_TYPE_ECHO_REQUEST �128U�
Ping echo request type field value .

#define SL_WISUN_PING_TYPE_ECHO_RESPONSE �129U�
Ping echo response type field value .

#define SL_WISUN_PING_CODE_ECHO_REQUEST �0U�
Ping echo request code field value .

Ping API type definitions

278/602

#define SL_WISUN_PING_CODE_ECHO_RESPONSE �0U�
Ping echo response code field value .

#define SL_WISUN_PING_ICMP_PORT �0U�
Dedicated port for ICMPv6 echo messages.

Typedef Documentation

sl_wisun_ping_echo_request_t

typedef struct sl_wisun_ping_echo_request sl_wisun_ping_echo_request_t

Ping echo request packed structure type definitions.

Definition at line 100 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_echo_response_t

typedef sl_wisun_ping_echo_request_t sl_wisun_ping_echo_response_t

Ping response type definition.

Definition at line 104 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_info_t

typedef struct sl_wisun_ping_info sl_wisun_ping_info_t

Ping info structure type definition.

Definition at line 124 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_stat_t

typedef struct sl_wisun_ping_stat sl_wisun_ping_stat_t

Statistic ping type definition.

Definition at line 142 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_stat_hnd_t

typedef void(* sl_wisun_ping_stat_hnd_t) (sl_wisun_ping_stat_t *stat))(sl_wisun_ping_stat_t *stat)

Ping statistic typedef.

Definition at line 145 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_req_resp_done_hnd_t

Ping API type definitions

279/602

typedef void(* sl_wisun_ping_req_resp_done_hnd_t) (sl_wisun_ping_info_t *req, sl_wisun_ping_info_t *resp))
(sl_wisun_ping_info_t *req, sl_wisun_ping_info_t *resp)

Ping request/response sent handler.

Definition at line 148 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

Macro Definition Documentation

SL_WISUN_PING_MAX_REQUEST_RESPONSE

#define SL_WISUN_PING_MAX_REQUEST_RESPONSE

Value:

�128U�

Maximum count of ping request/response for message queues.

Definition at line 62 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_MIN_PACKET_LENGTH

#define SL_WISUN_PING_MIN_PACKET_LENGTH

Value:

�9U�

Minimum packet length with 1 byte payload.

Definition at line 65 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_MAX_PACKET_LENGTH

#define SL_WISUN_PING_MAX_PACKET_LENGTH

Value:

�SL_WISUN_PING_MIN_PACKET_LENGTH - 1 + SL_WISUN_PING_MAX_PAYLOAD_LENGTH�

Max packet length.

Definition at line 68 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_TYPE_ECHO_REQUEST

#define SL_WISUN_PING_TYPE_ECHO_REQUEST

Value:

�128U�

Ping API type definitions

280/602

Ping echo request type field value.

Definition at line 71 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_TYPE_ECHO_RESPONSE

#define SL_WISUN_PING_TYPE_ECHO_RESPONSE

Value:

�129U�

Ping echo response type field value.

Definition at line 74 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_CODE_ECHO_REQUEST

#define SL_WISUN_PING_CODE_ECHO_REQUEST

Value:

�0U�

Ping echo request code field value.

Definition at line 77 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_CODE_ECHO_RESPONSE

#define SL_WISUN_PING_CODE_ECHO_RESPONSE

Value:

�0U�

Ping echo response code field value.

Definition at line 80 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

SL_WISUN_PING_ICMP_PORT

#define SL_WISUN_PING_ICMP_PORT

Value:

�0U�

Dedicated port for ICMPv6 echo messages.

Definition at line 83 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_echo_request

281/602

sl_wisun_ping_echo_request

Ping echo request packed structure type definitions.

Public Attributes

uint8_t type
type

uint8_t code
Code .

uint16_t checksum
Checksum.

uint16_t identifier
Identifier.

uint16_t sequence_number
Sequence number.

uint8_t payload
Payload array.

Public Attribute Documentation

type

uint8_t sl_wisun_ping_echo_request::type

type

Definition at line 89 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

code

uint8_t sl_wisun_ping_echo_request::code

Code.

Definition at line 91 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

checksum

uint16_t sl_wisun_ping_echo_request::checksum

Checksum.

Definition at line 93 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_echo_request

282/602

identifier

uint16_t sl_wisun_ping_echo_request::identifier

Identifier.

Definition at line 95 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sequence_number

uint16_t sl_wisun_ping_echo_request::sequence_number

Sequence number.

Definition at line 97 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

payload

uint8_t sl_wisun_ping_echo_request::payload[SL_WISUN_PING_MAX_PAYLOAD_LENGTH�

Payload array.

Definition at line 99 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_ info

283/602

sl_wisun_ping_info

Ping info structure type definition.

Public Attributes

uint16_t identifier
Identifier.

uint16_t sequence_number
Sequence number.

uint16_t packet_length
ICMPv6 packet length including header.

uint32_t response_time_ms
Response time millisecond.

sockaddr_in6_t remote_addr
Wi-SUN remote address.

uint32_t start_time_stamp
Start time stamp.

uint32_t stop_time_stamp
Stop time stamp.

bool lost
Lost packet flag.

Public Attribute Documentation

identifier

uint16_t sl_wisun_ping_info::identifier

Identifier.

Definition at line 109 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sequence_number

uint16_t sl_wisun_ping_info::sequence_number

Sequence number.

Definition at line 111 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

packet_length

sl_wisun_ping_ info

284/602

uint16_t sl_wisun_ping_info::packet_length

ICMPv6 packet length including header.

Definition at line 113 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

response_time_ms

uint32_t sl_wisun_ping_info::response_time_ms

Response time millisecond.

Definition at line 115 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

remote_addr

sockaddr_in6_t sl_wisun_ping_info::remote_addr

Wi-SUN remote address.

Definition at line 117 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

start_time_stamp

uint32_t sl_wisun_ping_info::start_time_stamp

Start time stamp.

Definition at line 119 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

stop_time_stamp

uint32_t sl_wisun_ping_info::stop_time_stamp

Stop time stamp.

Definition at line 121 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

lost

bool sl_wisun_ping_info::lost

Lost packet flag.

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

sl_wisun_ping_stat

285/602

sl_wisun_ping_stat

Statistic ping type definition.

Public Attributes

sockaddr_in6_t remote_addr
Wi-SUN remote address.

uint16_t packet_count
Packet count.

uint16_t packet_length
Packet length.

uint16_t lost
Lost packet count.

uint32_t min_time_ms
Minimum echo time millisecond.

uint32_t max_time_ms
Maximum echo time millisecond.

uint32_t avg_time_ms
Average echo time millisecond.

Public Attribute Documentation

remote_addr

sockaddr_in6_t sl_wisun_ping_stat::remote_addr

Wi-SUN remote address.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

packet_count

uint16_t sl_wisun_ping_stat::packet_count

Packet count.

Definition at line 131 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

packet_length

uint16_t sl_wisun_ping_stat::packet_length

sl_wisun_ping_stat

286/602

Packet length.

Definition at line 133 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

lost

uint16_t sl_wisun_ping_stat::lost

Lost packet count.

Definition at line 135 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

min_time_ms

uint32_t sl_wisun_ping_stat::min_time_ms

Minimum echo time millisecond.

Definition at line 137 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

max_time_ms

uint32_t sl_wisun_ping_stat::max_time_ms

Maximum echo time millisecond.

Definition at line 139 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

avg_time_ms

uint32_t sl_wisun_ping_stat::avg_time_ms

Average echo time millisecond.

Definition at line 141 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ping/sl_wisun_ping.h

iPerf

287/602

iPerf

iPerf
The iPerf component provides an iPerf2-compatible solution to measure UDP throughput. It has a full UDP support and

implements a server and client modes, which are capable of sending and receiving packets to measure the bandwidth

performance, the inter-arrival jitter, and packet loss.

The component relies on different functions to help configure and run your iPerf test. It allows you to set up your server

and client port, your preferred bandwidth, number of packets, remote peer address, and so on. At the end of every iPerf

test, an iPerf report is output. Multicast target measurement is supported also. The component can be used with any

network stack because it has a portable custom network interface.

To use the iPerf component in your application, add it to your project and initialize it with sl_ iperf_service_ init().

Modules

iPerf type definitions

Functions

void sl_iperf_service_init(void)
Initialize the iPerf service .

void sl_iperf_test_init(sl_iperf_test_t *const test, sl_iperf_mode_t mode, sl_iperf_protocol_t protocol)
Initialize the iPerf test.

void sl_iperf_test_set_default_logger(sl_iperf_test_t *const test)
Set the default internal logger for the test descriptor.

void sl_iperf_test_set_default_buff(sl_iperf_test_t *const test)
Set the default internal test buffer.

bool sl_iperf_test_add(sl_iperf_test_t *const test)
Add the iPerf test to the execution queue .

bool sl_iperf_test_get(sl_iperf_test_t *const test, const uint32_t timeout_ms)
Get the iPerf test from the result queue .

void sl_iperf_test_udp_client(sl_iperf_test_t *test)
Execute the iPerf UDP client test.

void sl_iperf_test_udp_server(sl_iperf_test_t *test)
Execute the iPerf UDP server test.

Function Documentation

sl_iperf_service_init

void sl_iperf_service_init (void)

Initialize the iPerf service.

https://sourceforge.net/projects/iperf2/

iPerf

288/602

Parameters

N/A

Init OS objects and default contents

Definition at line 108 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_init

void sl_iperf_test_init (sl_iperf_test_t *const test, sl_iperf_mode_t mode, sl_iperf_protocol_t protocol)

Initialize the iPerf test.

Parameters

[inout] test Test descriptor

[in] mode Mode

[in] protocol Protocol

Initialize a test descriptor with default content

Definition at line 117 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_set_default_logger

void sl_iperf_test_set_default_logger (sl_iperf_test_t *const test)

Set the default internal logger for the test descriptor.

Parameters

[out] test Test descriptor

Helper function

Definition at line 126 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_set_default_buff

void sl_iperf_test_set_default_buff (sl_iperf_test_t *const test)

Set the default internal test buffer.

Parameters

[out] test Test descriptor

Helper function

Definition at line 133 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_add

bool sl_iperf_test_add (sl_iperf_test_t *const test)

iPerf

289/602

Add the iPerf test to the execution queue.

Parameters

[in] test Test descriptor

Add test to the input messagequeue. Returns

true On Success

false On Failure

Definition at line 143 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_get

bool sl_iperf_test_get (sl_iperf_test_t *const test, const uint32_t timeout_ms)

Get the iPerf test from the result queue.

Parameters

[out] test Destination test descriptor

[in] timeout_ms Timeout for getting test from messagequeue

Get the test from the output messagequeue. Returns

true On Success

false On Failure

Definition at line 153 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

sl_iperf_test_udp_client

void sl_iperf_test_udp_client (sl_iperf_test_t *test)

Execute the iPerf UDP client test.

Parameters

[inout] test Test descriptor

iPerf UDP client test.

Definition at line 66 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_udp_clnt.h

sl_iperf_test_udp_server

void sl_iperf_test_udp_server (sl_iperf_test_t *test)

Execute the iPerf UDP server test.

Parameters

[inout] test Test descriptor

iPerf UDP server test.

iPerf

290/602

Definition at line 66 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_udp_srv.h

iPerf type definitions

291/602

iPerf type definitions

iPerf type definitions

Modules

sl_ iperf_opt

sl_ iperf_stats

sl_ iperf_conn

sl_ iperf_log_str_buff

sl_ iperf_log

sl_ iperf_test

sl_ iperf_udp_datagram

sl_ iperf_udp_srv_hdr

sl_ iperf_udp_clnt_hdr_v1

sl_ iperf_clnt_hdr_ext

sl_ iperf_clnt_hdr_ isoch_payload

sl_ iperf_clnt_hdr_ext_starttime_fq

sl_ iperf_clnt_hdr_ext_ isoch_settings

sl_ iperf_udp_clnt_hdr

Enumerations

enum sl_iperf_mode {

SL_IPERF_MODE_SERVER
SL_IPERF_MODE_CLIENT

}
Iperf mode .

enum sl_iperf_status {

SL_IPERF_TEST_STATUS_FREE
SL_IPERF_TEST_STATUS_QUEUED
SL_IPERF_TEST_STATUS_RUNNING
SL_IPERF_TEST_STATUS_DONE
SL_IPERF_TEST_STATUS_ERR

}
Test status type definition.

iPerf type definitions

292/602

enum sl_iperf_opt_bw_format {

SL_IPERF_OPT_BW_FORMAT_BITS_PER_SEC
SL_IPERF_OPT_BW_FORMAT_KBITS_PER_SEC
SL_IPERF_OPT_BW_FORMAT_MBITS_PER_SEC
SL_IPERF_OPT_BW_FORMAT_GBITS_PER_SEC
SL_IPERF_OPT_BW_FORMAT_BYTES_PER_SEC
SL_IPERF_OPT_BW_FORMAT_KBYTES_PER_SEC
SL_IPERF_OPT_BW_FORMAT_MBYTES_PER_SEC
SL_IPERF_OPT_BW_FORMAT_GBYTES_PER_SEC

}
Bandwidth format enumeration type definition.

enum sl_iperf_err {

SL_IPERF_ERR_NONE
SL_IPERF_ERR_NETWORK_CONNECTION
SL_IPERF_ERR_SERVER_SOCK_BIND
SL_IPERF_ERR_SERVER_SOCK_OPEN
SL_IPERF_ERR_SERVER_SOCK_CLOSE
SL_IPERF_ERR_SERVER_SOCK_LISTEN
SL_IPERF_ERR_SERVER_SOCK_ACCEPT
SL_IPERF_ERR_SERVER_SOCK_RX
SL_IPERF_ERR_SERVER_SOCK_WIN_SIZE
SL_IPERF_ERR_CLIENT_SOCK_OPEN
SL_IPERF_ERR_CLIENT_SOCK_BIND
SL_IPERF_ERR_CLIENT_SOCK_CONN
SL_IPERF_ERR_CLIENT_SOCK_TX
SL_IPERF_ERR_CLIENT_SOCK_TX_INV_ARG
SL_IPERF_ERR_CLIENT_SOCK_CLOSE

}
iPerf error enumeration type definition

Typedefs

typedef enum
sl_iperf_mode

sl_iperf_mode_t
Iperf mode .

typedef uint16_t sl_iperf_test_id_t
Test ID type definition.

typedef enum
sl_iperf_status

sl_iperf_status_t
Test status type definition.

typedef enum
sl_iperf_opt_bw_f

ormat

sl_iperf_opt_bw_format
Bandwidth format enumeration type definition.

typedef struct
sl_iperf_opt

sl_iperf_opt_t
iPerf test option type definition

typedef struct
sl_iperf_stats

sl_iperf_stats_t
iPerf statistic data type definition

typedef struct
sl_iperf_conn

sl_iperf_conn_t
iPerf connection descriptor type definition

typedef enum
sl_iperf_err

sl_iperf_error_t
iPerf error enumeration type definition

typedef struct
sl_iperf_log_str_bu

ff

sl_iperf_log_str_buff_t
Log string buffer type definition.

iPerf type definitions

293/602

typedef struct
sl_iperf_log

sl_iperf_log_t
iPerf log type definition

typedef int32_t(* sl_iperf_log_print_t)(sl_iperf_log_t *const log, const char *format,...)
Printer function type definition.

typedef struct
sl_iperf_test

sl_iperf_test_t
iPerf test descriptor

typedef void(* sl_iperf_test_callback_t)(sl_iperf_test_t *)
iPerf Test callback type definition

typedef struct
sl_iperf_udp_data

gram

sl_iperf_udp_datagram_t
iPerf UDP datagram structure type definition

typedef struct
sl_iperf_udp_srv_h

dr

sl_iperf_udp_srv_hdr_t
iPerf server header

typedef struct
sl_iperf_udp_clnt_

hdr_v1

sl_iperf_clnt_hdr_v1_t
iPerf CLient Header v1

typedef struct
sl_iperf_clnt_hdr_e

xt

sl_iperf_clnt_hdr_ext_t
iPerf Client Header extended

typedef struct
sl_iperf_clnt_hdr_i
soch_payload

sl_iperf_clnt_hdr_isoch_payload_t
iPerf Client Isochronus payload

typedef struct
sl_iperf_clnt_hdr_e
xt_starttime_fq

sl_iperf_clnt_hdr_ext_starttime_fq_t
iPerf Client header extended FQ start time

typedef struct
sl_iperf_clnt_hdr_e
xt_isoch_settings

sl_iperf_clnt_hdr_ext_isoch_settings_t
iPerf Client Isochronus settings

typedef struct
sl_iperf_udp_clnt_

hdr

sl_iperf_udp_clnt_hdr_t
iPerf Client UDP header

Macros

#define SL_IPERF_UDP_SERVER_FIN_ACK_SIZE �128U�
iPerf UDP server final ack size

#define SL_IPERF_HEADER_VERSION1 �0�80000000UL�
iPerf header version1 mask

#define SL_IPERF_HEADER_VERSION2 �0�04000000UL�
iPerf header version2 mask

#define SL_IPERF_HEADER_EXTEND �0�40000000UL�
iPerf header extended mask

#define SL_IPERF_HEADER_SEQNO64B �0�08000000UL�
iPerf header seqno 64bit mask

iPerf type definitions

294/602

#define SL_IPERF_HEADER_UDPTEST �0�20000000UL�
iPerf header UDP test mask

#define SL_IPERF_HEADER_EPOCH_START �0�00001000UL�
iPerf header epoch start mask

#define SL_IPERF_HEADER_TRIPTIME �0�00000010UL�
iPerf header triptime mask

#define SL_IPERF_HEADER_TIME_MODE �0�80000000UL�
iPerf header time mode mask

#define SL_IPERF_SERVER_UDP_TX_FINACK_COUNT �10U�
iPerf Server TX FINACK max count to retry

#define SL_IPERF_IP_STR_BUFF_LEN �40U�
iPerf ip address string max length definition

Enumeration Documentation

sl_iperf_mode

sl_iperf_mode

Iperf mode.

Enumerator

SL_IPERF_MODE_SERVER Server mode.

SL_IPERF_MODE_CLIENT Client mode.

Definition at line 65 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_status

sl_iperf_status

Test status type definition.

Enumerator

SL_IPERF_TEST_STATUS_FREE Test unused.

SL_IPERF_TEST_STATUS_QUEUED Test queued.

SL_IPERF_TEST_STATUS_RUNNING Test running.

SL_IPERF_TEST_STATUS_DONE Test done with no error.

SL_IPERF_TEST_STATUS_ERR Test done with error.

Definition at line 76 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_opt_bw_format

sl_iperf_opt_bw_format

Bandwidth format enumeration type definition.

Enumerator

iPerf type definitions

295/602

SL_IPERF_OPT_BW_FORMAT_BITS_PER_SEC Bits/sec format.

SL_IPERF_OPT_BW_FORMAT_KBITS_PER_SEC KBits/sec format.

SL_IPERF_OPT_BW_FORMAT_MBITS_PER_SEC MBits/sec format.

SL_IPERF_OPT_BW_FORMAT_GBITS_PER_SEC GBits/sec format.

SL_IPERF_OPT_BW_FORMAT_BYTES_PER_SEC Bytes/sec format.

SL_IPERF_OPT_BW_FORMAT_KBYTES_PER_SEC KBytes/sec format.

SL_IPERF_OPT_BW_FORMAT_MBYTES_PER_SEC MBytes/sec format.

SL_IPERF_OPT_BW_FORMAT_GBYTES_PER_SEC GBytes/sec format.

Definition at line 93 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_err

sl_iperf_err

iPerf error enumeration type definition

Enumerator

SL_IPERF_ERR_NONE No error.

SL_IPERF_ERR_NETWORK_CONNECTION Network connection error.

SL_IPERF_ERR_SERVER_SOCK_BIND Server socket bind error.

SL_IPERF_ERR_SERVER_SOCK_OPEN Server socket open error.

SL_IPERF_ERR_SERVER_SOCK_CLOSE Server socket close error.

SL_IPERF_ERR_SERVER_SOCK_LISTEN Server socket listen error.

SL_IPERF_ERR_SERVER_SOCK_ACCEPT Server socket accept error.

SL_IPERF_ERR_SERVER_SOCK_RX Server socket RX error.

SL_IPERF_ERR_SERVER_SOCK_WIN_SIZE Server socket windows size error.

SL_IPERF_ERR_CLIENT_SOCK_OPEN Client socket open error.

SL_IPERF_ERR_CLIENT_SOCK_BIND Client socket bind error.

SL_IPERF_ERR_CLIENT_SOCK_CONN Client socket connect error.

SL_IPERF_ERR_CLIENT_SOCK_TX Client socket TX error.

SL_IPERF_ERR_CLIENT_SOCK_TX_INV_ARG Client socket TX invalid argument error.

SL_IPERF_ERR_CLIENT_SOCK_CLOSE Client socket socket close error.

Definition at line 213 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

Typedef Documentation

sl_iperf_mode_t

typedef enum sl_iperf_mode sl_iperf_mode_t

Iperf mode.

Definition at line 70 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_test_id_t

iPerf type definitions

296/602

typedef uint16_t sl_iperf_test_id_t

Test ID type definition.

Definition at line 73 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_status_t

typedef enum sl_iperf_status sl_iperf_status_t

Test status type definition.

Definition at line 87 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_opt_bw_format

typedef enum sl_iperf_opt_bw_format sl_iperf_opt_bw_format

Bandwidth format enumeration type definition.

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_opt_t

typedef struct sl_iperf_opt sl_iperf_opt_t

iPerf test option type definition

Definition at line 140 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_stats_t

typedef struct sl_iperf_stats sl_iperf_stats_t

iPerf statistic data type definition

Definition at line 192 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_conn_t

typedef struct sl_iperf_conn sl_iperf_conn_t

iPerf connection descriptor type definition

Definition at line 210 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_error_t

iPerf type definitions

297/602

typedef enum sl_iperf_err sl_iperf_error_t

iPerf error enumeration type definition

Definition at line 244 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_log_str_buff_t

typedef struct sl_iperf_log_str_buff sl_iperf_log_str_buff_t

Log string buffer type definition.

Definition at line 254 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_log_t

typedef struct sl_iperf_log sl_iperf_log_t

iPerf log type definition

Definition at line 268 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_log_print_t

typedef int32_t(* sl_iperf_log_print_t) (sl_iperf_log_t *const log, const char *format,...))(sl_iperf_log_t *const log, const
char *format,...)

Printer function type definition.

Definition at line 271 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_test_t

typedef struct sl_iperf_test sl_iperf_test_t

iPerf test descriptor

Definition at line 291 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_test_callback_t

typedef void(* sl_iperf_test_callback_t) (sl_iperf_test_t *))(sl_iperf_test_t *)

iPerf Test callback type definition

Definition at line 294 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

iPerf type definitions

298/602

sl_iperf_udp_datagram_t

typedef struct sl_iperf_udp_datagram sl_iperf_udp_datagram_t

iPerf UDP datagram structure type definition

Definition at line 309 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_udp_srv_hdr_t

typedef struct sl_iperf_udp_srv_hdr sl_iperf_udp_srv_hdr_t

iPerf server header

Definition at line 335 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_clnt_hdr_v1_t

typedef struct sl_iperf_udp_clnt_hdr_v1 sl_iperf_clnt_hdr_v1_t

iPerf CLient Header v1

Definition at line 351 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_clnt_hdr_ext_t

typedef struct sl_iperf_clnt_hdr_ext sl_iperf_clnt_hdr_ext_t

iPerf Client Header extended

Definition at line 377 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_clnt_hdr_isoch_payload_t

typedef struct sl_iperf_clnt_hdr_isoch_payload sl_iperf_clnt_hdr_isoch_payload_t

iPerf Client Isochronus payload

Definition at line 397 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_clnt_hdr_ext_starttime_fq_t

typedef struct sl_iperf_clnt_hdr_ext_starttime_fq sl_iperf_clnt_hdr_ext_starttime_fq_t

iPerf Client header extended FQ start time

Definition at line 411 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

iPerf type definitions

299/602

sl_iperf_clnt_hdr_ext_isoch_settings_t

typedef struct sl_iperf_clnt_hdr_ext_isoch_settings sl_iperf_clnt_hdr_ext_isoch_settings_t

iPerf Client Isochronus settings

Definition at line 431 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_iperf_udp_clnt_hdr_t

typedef struct sl_iperf_udp_clnt_hdr sl_iperf_udp_clnt_hdr_t

iPerf Client UDP header

Definition at line 447 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

Macro Definition Documentation

SL_IPERF_UDP_SERVER_FIN_ACK_SIZE

#define SL_IPERF_UDP_SERVER_FIN_ACK_SIZE

Value:

�128U�

iPerf UDP server final ack size

Definition at line 65 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_VERSION1

#define SL_IPERF_HEADER_VERSION1

Value:

�0�80000000UL�

iPerf header version1 mask

Definition at line 68 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_VERSION2

#define SL_IPERF_HEADER_VERSION2

Value:

�0�04000000UL�

iPerf header version2 mask

iPerf type definitions

300/602

Definition at line 71 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_EXTEND

#define SL_IPERF_HEADER_EXTEND

Value:

�0�40000000UL�

iPerf header extended mask

Definition at line 74 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_SEQNO64B

#define SL_IPERF_HEADER_SEQNO64B

Value:

�0�08000000UL�

iPerf header seqno 64bit mask

Definition at line 77 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_UDPTEST

#define SL_IPERF_HEADER_UDPTEST

Value:

�0�20000000UL�

iPerf header UDP test mask

Definition at line 80 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_EPOCH_START

#define SL_IPERF_HEADER_EPOCH_START

Value:

�0�00001000UL�

iPerf header epoch start mask

Definition at line 83 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_TRIPTIME

iPerf type definitions

301/602

#define SL_IPERF_HEADER_TRIPTIME

Value:

�0x00000010UL�

iPerf header triptime mask

Definition at line 86 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_HEADER_TIME_MODE

#define SL_IPERF_HEADER_TIME_MODE

Value:

�0�80000000UL�

iPerf header time mode mask

Definition at line 89 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_SERVER_UDP_TX_FINACK_COUNT

#define SL_IPERF_SERVER_UDP_TX_FINACK_COUNT

Value:

�10U�

iPerf Server TX FINACK max count to retry

Definition at line 92 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf.h

SL_IPERF_IP_STR_BUFF_LEN

#define SL_IPERF_IP_STR_BUFF_LEN

Value:

�40U�

iPerf ip address string max length definition

Definition at line 90 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_opt

302/602

sl_iperf_opt

iPerf test option type definition

Public Attributes

sl_iperf_mode_t mode
Server or client mode .

sl_iperf_protocol_
t

protocol
UDP or TCP protoco l.

uint16_t port
Server or client port.

char remote_addr
Remote address for TX.

uint32_t bandwidth
expected bandwidth in bits/sec

uint16_t packet_nbr
Nbr of packets to tx.

uint16_t buf_len
Buf len to tx or rx.

uint16_t duration_ms
Time in sec to tx.

uint16_t win_size
Win size to tx or rx.

bool persistent
Server in persistent mode .

uint16_t interval_ms
Interval (ms) between bandwidth update .

sl_iperf_opt_bw_f
ormat

bw_format
Bandwidth format.

bool multicast
Jo in multicast group (address is stored in 'remote_addr')

Public Attribute Documentation

mode

sl_iperf_mode_t sl_iperf_opt::mode

Server or client mode.

Definition at line 115 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_opt

303/602

protocol

sl_iperf_protocol_t sl_iperf_opt::protocol

UDP or TCP protocol.

Definition at line 117 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

port

uint16_t sl_iperf_opt::port

Server or client port.

Definition at line 119 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

remote_addr

char sl_iperf_opt::remote_addr[SL_IPERF_IP_STR_BUFF_LEN�

Remote address for TX.

Definition at line 121 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

bandwidth

uint32_t sl_iperf_opt::bandwidth

expected bandwidth in bits/sec

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

packet_nbr

uint16_t sl_iperf_opt::packet_nbr

Nbr of packets to tx.

Definition at line 125 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buf_len

uint16_t sl_iperf_opt::buf_len

Buf len to tx or rx.

Definition at line 127 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_opt

304/602

duration_ms

uint16_t sl_iperf_opt::duration_ms

Time in sec to tx.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

win_size

uint16_t sl_iperf_opt::win_size

Win size to tx or rx.

Definition at line 131 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

persistent

bool sl_iperf_opt::persistent

Server in persistent mode.

Definition at line 133 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

interval_ms

uint16_t sl_iperf_opt::interval_ms

Interval (ms) between bandwidth update.

Definition at line 135 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

bw_format

sl_iperf_opt_bw_format sl_iperf_opt::bw_format

Bandwidth format.

Definition at line 137 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

multicast

bool sl_iperf_opt::multicast

Join multicast group (address is stored in 'remote_addr')

Definition at line 139 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_stats

305/602

sl_iperf_stats

iPerf statistic data type definition

Public Attributes

uint32_t nbr_calls
Nbr of I/O sys calls.

uint32_t bytes
Nbr of bytes rx'd or tx'd on net.

uint32_t tot_packets
Nbr of rx'd or tx'd and lost packets.

uint32_t nbr_rcv_snt_packets
Nbr of rx'd or tx'd packets.

uint32_t errs
Nbr of rx or tx errs.

uint32_t transitory_error_cnts
Nbr of transitory err.

uint32_t last_recv_pkt_cnt
Last received packets (for update)

sl_iperf_ts_ms_t ts_curr_recv_ms
Current received packet timestamp.

sl_iperf_ts_ms_t ts_prev_recv_ms
Previous received packt timestamp.

sl_iperf_ts_ms_t ts_curr_sent_ms
Current sent packet timestamp.

sl_iperf_ts_ms_t ts_prev_sent_ms
Previous sent packet timestamp.

int64_t udp_ jitter
UDP jitter.

int32_t udp_rx_last_pkt
Prev pkt ID rx'd.

uint32_t udp_lost_pkt
Nbr of UDP pkt lost.

uint32_t udp_out_of_order
Nbr of pkt rx'd out of order.

uint32_t udp_dup_pkt
Nbr of pkt ID rx'd more than once .

bool udp_async_error
First UDP pkt rx'd.

sl_ iperf_stats

306/602

bool end_err
Err with UDP FIN or FINACK.

sl_iperf_ts_ms_t ts_start_ms
Start timestamp (ms).

sl_iperf_ts_ms_t ts_end_ms
End timestamp (ms).

uint32_t bandwidth
Rx or Tx cur bandwidth in bits/s.

uint32_t finack_tot_len
Total length of received bytes in Final ACK.

sl_iperf_ts_ms_t finack_duration_ms
Time duration in Final ACK.

uint32_t finack_pkt
Packet count in Final ACK.

Public Attribute Documentation

nbr_calls

uint32_t sl_iperf_stats::nbr_calls

Nbr of I/O sys calls.

Definition at line 145 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

bytes

uint32_t sl_iperf_stats::bytes

Nbr of bytes rx'd or tx'd on net.

Definition at line 147 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

tot_packets

uint32_t sl_iperf_stats::tot_packets

Nbr of rx'd or tx'd and lost packets.

Definition at line 149 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

nbr_rcv_snt_packets

uint32_t sl_iperf_stats::nbr_rcv_snt_packets

Nbr of rx'd or tx'd packets.

sl_ iperf_stats

307/602

Definition at line 151 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

errs

uint32_t sl_iperf_stats::errs

Nbr of rx or tx errs.

Definition at line 153 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

transitory_error_cnts

uint32_t sl_iperf_stats::transitory_error_cnts

Nbr of transitory err.

Definition at line 155 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

last_recv_pkt_cnt

uint32_t sl_iperf_stats::last_recv_pkt_cnt

Last received packets (for update)

Definition at line 157 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_curr_recv_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_curr_recv_ms

Current received packet timestamp.

Definition at line 159 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_prev_recv_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_prev_recv_ms

Previous received packt timestamp.

Definition at line 161 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_curr_sent_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_curr_sent_ms

Current sent packet timestamp.

sl_ iperf_stats

308/602

Definition at line 163 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_prev_sent_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_prev_sent_ms

Previous sent packet timestamp.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_ jitter

int64_t sl_iperf_stats::udp_ jitter

UDP jitter.

Definition at line 167 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_rx_last_pkt

int32_t sl_iperf_stats::udp_rx_last_pkt

Prev pkt ID rx'd.

Definition at line 169 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_lost_pkt

uint32_t sl_iperf_stats::udp_lost_pkt

Nbr of UDP pkt lost.

Definition at line 171 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_out_of_order

uint32_t sl_iperf_stats::udp_out_of_order

Nbr of pkt rx'd out of order.

Definition at line 173 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_dup_pkt

uint32_t sl_iperf_stats::udp_dup_pkt

Nbr of pkt ID rx'd more than once.

sl_ iperf_stats

309/602

Definition at line 175 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

udp_async_error

bool sl_iperf_stats::udp_async_error

First UDP pkt rx'd.

Definition at line 177 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

end_err

bool sl_iperf_stats::end_err

Err with UDP FIN or FINACK.

Definition at line 179 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_start_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_start_ms

Start timestamp (ms).

Definition at line 181 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

ts_end_ms

sl_iperf_ts_ms_t sl_iperf_stats::ts_end_ms

End timestamp (ms).

Definition at line 183 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

bandwidth

uint32_t sl_iperf_stats::bandwidth

Rx or Tx cur bandwidth in bits/s.

Definition at line 185 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

finack_tot_len

uint32_t sl_iperf_stats::finack_tot_len

Total length of received bytes in Final ACK.

sl_ iperf_stats

310/602

Definition at line 187 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

finack_duration_ms

sl_iperf_ts_ms_t sl_iperf_stats::finack_duration_ms

Time duration in Final ACK.

Definition at line 189 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

finack_pkt

uint32_t sl_iperf_stats::finack_pkt

Packet count in Final ACK.

Definition at line 191 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_conn

311/602

sl_iperf_conn

iPerf connection descriptor type definition

Public Attributes

int32_t socket_id
local socket id

int32_t socket_id_clnt
Accepted sock used by TCP server to rx.

sl_iperf_socket_a
ddr_t

srv_addr
Server sock addr IP.

sl_iperf_socket_a
ddr_t

clnt_addr
Client sock addr IP.

bool run
Server (rx'd) or client (tx'd) started.

uint8_t * buff
Buffer ptr to receive/transmit.

size_t buff_size
RX/TX buffer transmit.

Public Attribute Documentation

socket_id

int32_t sl_iperf_conn::socket_id

local socket id

Definition at line 197 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

socket_id_clnt

int32_t sl_iperf_conn::socket_id_clnt

Accepted sock used by TCP server to rx.

Definition at line 199 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

srv_addr

sl_iperf_socket_addr_t sl_iperf_conn::srv_addr

sl_ iperf_conn

312/602

Server sock addr IP.

Definition at line 201 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

clnt_addr

sl_iperf_socket_addr_t sl_iperf_conn::clnt_addr

Client sock addr IP.

Definition at line 203 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

run

bool sl_iperf_conn::run

Server (rx'd) or client (tx'd) started.

Definition at line 205 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buff

uint8_t* sl_iperf_conn::buff

Buffer ptr to receive/transmit.

Definition at line 207 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buff_size

size_t sl_iperf_conn::buff_size

RX/TX buffer transmit.

Definition at line 209 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_log_str_buff

313/602

sl_iperf_log_str_buff

Log string buffer type definition.

Public Attributes

char * pos
Position ptr.

char * buff
Buff ptr.

size_t size
Size .

Public Attribute Documentation

pos

char* sl_iperf_log_str_buff::pos

Position ptr.

Definition at line 249 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buff

char* sl_iperf_log_str_buff::buff

Buff ptr.

Definition at line 251 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

size

size_t sl_iperf_log_str_buff::size

S ize.

Definition at line 253 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_log

314/602

sl_iperf_log

iPerf log type definition

Public Attributes

bool colored
Co lored.

bool buffered
Buffered.

int32_t last_res
Last result.

int32_t(* print
Stdout and buffer printer.

sl_iperf_log_str_bu
ff_t

buff
Buff string instance .

Public Attribute Documentation

colored

bool sl_iperf_log::colored

Colored.

Definition at line 259 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buffered

bool sl_iperf_log::buffered

Buffered.

Definition at line 261 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

last_res

int32_t sl_iperf_log::last_res

Last result.

Definition at line 263 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

print

sl_ iperf_log

315/602

int32_t(* sl_iperf_log::print) (struct sl_iperf_log *const log, const char *format,...)

Stdout and buffer printer.

Definition at line 265 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

buff

sl_iperf_log_str_buff_t sl_iperf_log::buff

Buff string instance.

Definition at line 267 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_test

316/602

sl_iperf_test

iPerf test descriptor

Public Attributes

sl_iperf_test_id_t id
Test ID.

sl_iperf_status_t status
Status.

sl_iperf_error_t err
Error.

sl_iperf_opt_t opt
Options.

sl_iperf_stats_t statistic
Statistics.

sl_iperf_conn_t conn
Connection.

void(* cb
Callback.

sl_iperf_log_t * log
Log object ptr.

Public Attribute Documentation

id

sl_iperf_test_id_t sl_iperf_test::id

Test ID.

Definition at line 276 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

status

sl_iperf_status_t sl_iperf_test::status

Status.

Definition at line 278 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

err

sl_iperf_error_t sl_iperf_test::err

sl_ iperf_test

317/602

Error.

Definition at line 280 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

opt

sl_iperf_opt_t sl_iperf_test::opt

Options.

Definition at line 282 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

statistic

sl_iperf_stats_t sl_iperf_test::statistic

Statistics.

Definition at line 284 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

conn

sl_iperf_conn_t sl_iperf_test::conn

Connection.

Definition at line 286 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

cb

void(* sl_iperf_test::cb) (struct sl_iperf_test *)

Callback.

Definition at line 288 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

log

sl_iperf_log_t* sl_iperf_test::log

Log object ptr.

Definition at line 290 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_udp_datagram

318/602

sl_iperf_udp_datagram

iPerf UDP datagram structure type definition

Public Attributes

int32_t id
Packet id.

uint32_t time_var_sec
Time variable for sec.

uint32_t time_var_usec
Time variable for usec.

int32_t id2
Packet id.

Public Attribute Documentation

id

int32_t sl_iperf_udp_datagram::id

Packet id.

Definition at line 302 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

time_var_sec

uint32_t sl_iperf_udp_datagram::time_var_sec

Time variable for sec.

Definition at line 304 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

time_var_usec

uint32_t sl_iperf_udp_datagram::time_var_usec

Time variable for usec.

Definition at line 306 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

id2

sl_ iperf_udp_datagram

319/602

int32_t sl_iperf_udp_datagram::id2

Packet id.

Definition at line 308 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_udp_srv_hdr

320/602

sl_iperf_udp_srv_hdr

iPerf server header

Public Attributes

sl_iperf_udp_data
gram_t

dtg
Udp datagram.

int32_t flags
Server flag.

uint32_t tot_len_u
Tot bytes rx'd hi part.

uint32_t tot_len_l
Tot bytes rx'd low part.

uint32_t stop_sec
Stop time in sec.

uint32_t stop_usec
Stop time in usec.

uint32_t lost_pkt_cnt
Lost pkt cnt.

uint32_t out_of_order_cnt
Rx pkt out of order cnt.

uint32_t packet_cnt
Packet count.

uint32_t jitter_sec
Jitter hi.

uint32_t jitter_usec
Jitter low.

Public Attribute Documentation

dtg

sl_iperf_udp_datagram_t sl_iperf_udp_srv_hdr::dtg

Udp datagram.

Definition at line 314 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

flags

int32_t sl_iperf_udp_srv_hdr::flags

Server flag.

sl_ iperf_udp_srv_hdr

321/602

Definition at line 316 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

tot_len_u

uint32_t sl_iperf_udp_srv_hdr::tot_len_u

Tot bytes rx'd hi part.

Definition at line 318 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

tot_len_l

uint32_t sl_iperf_udp_srv_hdr::tot_len_l

Tot bytes rx'd low part.

Definition at line 320 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

stop_sec

uint32_t sl_iperf_udp_srv_hdr::stop_sec

Stop time in sec.

Definition at line 322 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

stop_usec

uint32_t sl_iperf_udp_srv_hdr::stop_usec

Stop time in usec.

Definition at line 324 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

lost_pkt_cnt

uint32_t sl_iperf_udp_srv_hdr::lost_pkt_cnt

Lost pkt cnt.

Definition at line 326 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

out_of_order_cnt

uint32_t sl_iperf_udp_srv_hdr::out_of_order_cnt

Rx pkt out of order cnt.

sl_ iperf_udp_srv_hdr

322/602

Definition at line 328 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

packet_cnt

uint32_t sl_iperf_udp_srv_hdr::packet_cnt

Packet count.

Definition at line 330 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

jitter_sec

uint32_t sl_iperf_udp_srv_hdr::jitter_sec

Jitter hi.

Definition at line 332 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

jitter_usec

uint32_t sl_iperf_udp_srv_hdr::jitter_usec

Jitter low.

Definition at line 334 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_udp_clnt_hdr_v1

323/602

sl_iperf_udp_clnt_hdr_v1

iPerf CLient Header v1

Public Attributes

int32_t flags
Flags.

int32_t num_threads
Number of threads.

int32_t port
Port.

int32_t buf_len
Buffer Length.

int32_t win_band
Win band.

int32_t amount
Amount.

Public Attribute Documentation

flags

int32_t sl_iperf_udp_clnt_hdr_v1::flags

Flags.

Definition at line 340 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

num_threads

int32_t sl_iperf_udp_clnt_hdr_v1::num_threads

Number of threads.

Definition at line 342 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

port

int32_t sl_iperf_udp_clnt_hdr_v1::port

Port.

Definition at line 344 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_udp_clnt_hdr_v1

324/602

buf_len

int32_t sl_iperf_udp_clnt_hdr_v1::buf_len

Buffer Length.

Definition at line 346 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

win_band

int32_t sl_iperf_udp_clnt_hdr_v1::win_band

Win band.

Definition at line 348 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

amount

int32_t sl_iperf_udp_clnt_hdr_v1::amount

Amount.

Definition at line 350 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_clnt_hdr_ext

325/602

sl_iperf_clnt_hdr_ext

iPerf Client Header extended

Public Attributes

int32_t type
Type .

int32_t length
Length.

int16_t u_flags
Upper flags.

int16_t l_flags
Lower flags.

uint32_t u_version
Upper version.

uint32_t l_version
Lower version.

uint16_t reserved
Reserved.

uint16_t tos
Tos.

uint32_t l_rate
Lower rate .

uint32_t u_rate
Upper rate .

uint32_t tcp_write_prefetch
TCP write prefetch.

Public Attribute Documentation

type

int32_t sl_iperf_clnt_hdr_ext::type

Type.

Definition at line 356 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

length

int32_t sl_iperf_clnt_hdr_ext::length

Length.

sl_ iperf_clnt_hdr_ext

326/602

Definition at line 358 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_flags

int16_t sl_iperf_clnt_hdr_ext::u_flags

Upper flags.

Definition at line 360 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_flags

int16_t sl_iperf_clnt_hdr_ext::l_flags

Lower flags.

Definition at line 362 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_version

uint32_t sl_iperf_clnt_hdr_ext::u_version

Upper version.

Definition at line 364 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_version

uint32_t sl_iperf_clnt_hdr_ext::l_version

Lower version.

Definition at line 366 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

reserved

uint16_t sl_iperf_clnt_hdr_ext::reserved

Reserved.

Definition at line 368 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

tos

uint16_t sl_iperf_clnt_hdr_ext::tos

Tos.

sl_ iperf_clnt_hdr_ext

327/602

Definition at line 370 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_rate

uint32_t sl_iperf_clnt_hdr_ext::l_rate

Lower rate.

Definition at line 372 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_rate

uint32_t sl_iperf_clnt_hdr_ext::u_rate

Upper rate.

Definition at line 374 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

tcp_write_prefetch

uint32_t sl_iperf_clnt_hdr_ext::tcp_write_prefetch

TCP write prefetch.

Definition at line 376 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_clnt_hdr_ isoch_payload

328/602

sl_iperf_clnt_hdr_isoch_payload

iPerf Client Isochronus payload

Public Attributes

uint32_t burst_period
period units microseconds

uint32_t start_tv_sec
Start sec.

uint32_t start_tv_usec
Start usec.

uint32_t prev_frameid
Previous frame ID.

uint32_t frame_id
Frame ID.

uint32_t burst_size
Burst size .

uint32_t remaining
Remaining.

uint32_t reserved
Reserved.

Public Attribute Documentation

burst_period

uint32_t sl_iperf_clnt_hdr_isoch_payload::burst_period

period units microseconds

Definition at line 382 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

start_tv_sec

uint32_t sl_iperf_clnt_hdr_isoch_payload::start_tv_sec

Start sec.

Definition at line 384 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

start_tv_usec

sl_ iperf_clnt_hdr_ isoch_payload

329/602

uint32_t sl_iperf_clnt_hdr_isoch_payload::start_tv_usec

Start usec.

Definition at line 386 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

prev_frameid

uint32_t sl_iperf_clnt_hdr_isoch_payload::prev_frameid

Previous frame ID.

Definition at line 388 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

frame_id

uint32_t sl_iperf_clnt_hdr_isoch_payload::frame_id

Frame ID.

Definition at line 390 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

burst_size

uint32_t sl_iperf_clnt_hdr_isoch_payload::burst_size

Burst size.

Definition at line 392 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

remaining

uint32_t sl_iperf_clnt_hdr_isoch_payload::remaining

Remaining.

Definition at line 394 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

reserved

uint32_t sl_iperf_clnt_hdr_isoch_payload::reserved

Reserved.

Definition at line 396 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_clnt_hdr_ext_starttime_fq

330/602

sl_iperf_clnt_hdr_ext_starttime_fq

iPerf Client header extended FQ start time

Public Attributes

uint32_t reserved
Reserved.

uint32_t start_tv_sec
Start sec.

uint32_t start_tv_usec
Start usec.

uint32_t l_fq_rate
Lower FQ rate .

uint32_t u_fq_rate
Upper FQ rate .

Public Attribute Documentation

reserved

uint32_t sl_iperf_clnt_hdr_ext_starttime_fq::reserved

Reserved.

Definition at line 402 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

start_tv_sec

uint32_t sl_iperf_clnt_hdr_ext_starttime_fq::start_tv_sec

Start sec.

Definition at line 404 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

start_tv_usec

uint32_t sl_iperf_clnt_hdr_ext_starttime_fq::start_tv_usec

Start usec.

Definition at line 406 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_fq_rate

sl_ iperf_clnt_hdr_ext_starttime_fq

331/602

uint32_t sl_iperf_clnt_hdr_ext_starttime_fq::l_fq_rate

Lower FQ rate.

Definition at line 408 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_fq_rate

uint32_t sl_iperf_clnt_hdr_ext_starttime_fq::u_fq_rate

Upper FQ rate.

Definition at line 410 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_clnt_hdr_ext_ isoch_settings

332/602

sl_iperf_clnt_hdr_ext_isoch_settings

iPerf Client Isochronus settings

Public Attributes

int32_t l_fps
Lower FPS.

int32_t u_fps
Upper FPS.

int32_t l_mean
Lower Mean.

int32_t u_mean
Upper Mean.

int32_t l_variance
Lower Variance .

int32_t u_variance
Upper Variance .

int32_t l_burst_ipg
Lower Burst IPG.

int32_t u_burst_ipg
Upper Burst IPG.

Public Attribute Documentation

l_fps

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::l_fps

Lower FPS.

Definition at line 416 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_fps

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::u_fps

Upper FPS.

Definition at line 418 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_mean

sl_ iperf_clnt_hdr_ext_ isoch_settings

333/602

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::l_mean

Lower Mean.

Definition at line 420 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_mean

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::u_mean

Upper Mean.

Definition at line 422 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_variance

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::l_variance

Lower Variance.

Definition at line 424 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_variance

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::u_variance

Upper Variance.

Definition at line 426 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

l_burst_ipg

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::l_burst_ipg

Lower Burst IPG.

Definition at line 428 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

u_burst_ipg

int32_t sl_iperf_clnt_hdr_ext_isoch_settings::u_burst_ipg

Upper Burst IPG.

Definition at line 430 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

sl_ iperf_udp_clnt_hdr

334/602

sl_iperf_udp_clnt_hdr

iPerf Client UDP header

Public Attributes

sl_iperf_udp_data
gram_t

dtg
Datagram.

sl_iperf_clnt_hdr_v
1_t

base
Base v1 header.

sl_iperf_clnt_hdr_e
xt_t

extend
Extended header.

sl_iperf_clnt_hdr_i
soch_payload_t

isoch
Isochronus payload.

sl_iperf_clnt_hdr_e
xt_starttime_fq_t

start_fq
Extended start FQ.

sl_iperf_clnt_hdr_e
xt_isoch_settings_

t

isoch_settings
Isochronus settings.

Public Attribute Documentation

dtg

sl_iperf_udp_datagram_t sl_iperf_udp_clnt_hdr::dtg

Datagram.

Definition at line 436 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

base

sl_iperf_clnt_hdr_v1_t sl_iperf_udp_clnt_hdr::base

Base v1 header.

Definition at line 438 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

extend

sl_iperf_clnt_hdr_ext_t sl_iperf_udp_clnt_hdr::extend

Extended header.

sl_ iperf_udp_clnt_hdr

335/602

Definition at line 440 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

isoch

sl_iperf_clnt_hdr_isoch_payload_t sl_iperf_udp_clnt_hdr::isoch

Isochronus payload.

Definition at line 442 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

start_fq

sl_iperf_clnt_hdr_ext_starttime_fq_t sl_iperf_udp_clnt_hdr::start_fq

Extended start FQ.

Definition at line 444 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

isoch_settings

sl_iperf_clnt_hdr_ext_isoch_settings_t sl_iperf_udp_clnt_hdr::isoch_settings

Isochronus settings.

Definition at line 446 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/iperf/sl_iperf_types.h

Over-The-Air Device Firmware Upgrade �Alpha)

336/602

Over-The-Air Device Firmware Upgrade �Alpha)

Over-The-Air Device Firmware Upgrade �Alpha)
Wi-SUN Over-The-Air Device Firmware Upgrade (OTA DFU) service is implemented for updating Wi-SUN device's firmware.

The component uses the Gecko Bootloader API to perform firmware write, verify, and set to bootload operations.

A Trivial File Transfer Protocol (TFTP) client provides downloader solution to obtain a new Gecko Bootloader File (GBL) file

from remote host Over-The-Air, using the Wi-SUN network. The connection to the TFTP remote host can be configured in

component configuration file. The entire firmware upgrade session can be managed over CoAP. The service includes

notification and status request capabilities.

Modules

Type definitions

Functions

void sl_wisun_ota_dfu_init(void)
Initialize the device firmware upgrade service .

sl_status_t sl_wisun_ota_dfu_start_fw_update(void)
Start firmware update .

sl_status_t sl_wisun_ota_dfu_stop_fw_update(void)
Stop firmware update .

sl_status_t sl_wisun_ota_dfu_reboot_and_install(void)
Reboot device .

uint32_t sl_wisun_ota_dfu_get_fw_update_status(void)
Get the status value .

const char * sl_wisun_ota_dfu_get_fw_update_status_ json_str(void)
Get the status string in JSON format.

void sl_wisun_ota_dfu_free_fw_update_status_ json_str(const char *str)
Free the status string buffer.

bool sl_wisun_ota_dfu_get_fw_update_status_flag(const sl_wisun_ota_dfu_status_t status_flag)
Get the status flag value .

void sl_wisun_ota_dfu_error_hnd(const sl_wisun_ota_dfu_error_code_t error_code, sl_wisun_ota_dfu_error_ctx_t
*const ctx)
OTA DFU error handler (weak implementation)

Function Documentation

sl_wisun_ota_dfu_init

void sl_wisun_ota_dfu_init (void)

Over-The-Air Device Firmware Upgrade �Alpha)

337/602

Initialize the device firmware upgrade service.

Parameters

N/A

Initialize Wi-SUN OTA Device Firmware Upgrade service.

Definition at line 144 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_start_fw_update

sl_status_t sl_wisun_ota_dfu_start_fw_update (void)

Start firmware update.

Parameters

N/A

Start firmware update by setting SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STARTED flag Returns

sl_status_t SL_STATUS_OK on success, otherwise SL_STATUS_FAIL

Definition at line 152 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_stop_fw_update

sl_status_t sl_wisun_ota_dfu_stop_fw_update (void)

Stop firmware update.

Parameters

N/A

Stop firmware update by setting SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STOPPED flag Returns

sl_status_t SL_STATUS_OK on success, otherwise SL_STATUS_FAIL

Definition at line 160 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_reboot_and_install

sl_status_t sl_wisun_ota_dfu_reboot_and_install (void)

Reboot device.

Parameters

N/A

Reboot device with calling corresponding gecko bootloader 'bootloader_rebootAndInstall' API This functions is available if

auto-reboot mode is disabled. Returns

sl_status_t SL_STATUS_OK on success, otherwise SL_STATUS_FAIL

Definition at line 170 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

Over-The-Air Device Firmware Upgrade �Alpha)

338/602

sl_wisun_ota_dfu_get_fw_update_status

uint32_t sl_wisun_ota_dfu_get_fw_update_status (void)

Get the status value.

Parameters

N/A

Returning the value of event flags Returns

uint32_t Status

Definition at line 178 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_get_fw_update_status_ json_str

const char * sl_wisun_ota_dfu_get_fw_update_status_ json_str (void)

Get the status string in JSON format.

Parameters

N/A

String buffer is allocated in heap by CoAP allocator Returns

const char * Allocated string pointer on success, otherwise NULL

Definition at line 185 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_free_fw_update_status_ json_str

void sl_wisun_ota_dfu_free_fw_update_status_ json_str (const char *str)

Free the status string buffer.

Parameters

[in] str String ptr

Call CoAP free to release allocated memory

Definition at line 192 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_get_fw_update_status_flag

bool sl_wisun_ota_dfu_get_fw_update_status_flag (const sl_wisun_ota_dfu_status_t status_flag)

Get the status flag value.

Parameters

[in] status_flag Status flag enum

Bool representation of status variable bit value Returns

Over-The-Air Device Firmware Upgrade �Alpha)

339/602

bool true if the flag is set, otherwise false

Definition at line 200 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_hnd

void sl_wisun_ota_dfu_error_hnd (const sl_wisun_ota_dfu_error_code_t error_code, sl_wisun_ota_dfu_error_ctx_t *const ctx)

OTA DFU error handler (weak implementation)

Parameters

[in] error_code Error code

[in] ctx Error context with error details

Catch error in different stages of boot load.

Definition at line 208 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

Type definitions

340/602

Type definitions

Type definitions

Modules

sl_wisun_ota_dfu_error_ctx_fw_download

sl_wisun_ota_dfu_error_ctx_btl_fw_verify

sl_wisun_ota_dfu_error_ctx_btl_fw_set

sl_wisun_ota_dfu_error_ctx

Enumerations

enum sl_wisun_ota_dfu_status {

SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STARTED = 0
SL_WISUN_OTA_DFU_STATUS_FW_DOWNLOADED
SL_WISUN_OTA_DFU_STATUS_FW_VERIFIED
SL_WISUN_OTA_DFU_STATUS_FW_SET
SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STOPPED
SL_WISUN_OTA_DFU_STATUS_FW_DOWNLOAD_ERROR
SL_WISUN_OTA_DFU_STATUS_FW_VERIFY_ERROR
SL_WISUN_OTA_DFU_STATUS_FW_SET_ERROR

}
Wi-SUN OTA DFU Status enumeration.

enum sl_wisun_ota_dfu_error_code {

SL_WISUN_OTA_DFU_ERROR_FW_DOWNLOAD = 1001UL
SL_WISUN_OTA_DFU_ERROR_FW_VERIFY
SL_WISUN_OTA_DFU_ERROR_FW_SET

}
Wi-SUN OTA DFU error code enumeration.

Typedefs

typedef enum
sl_wisun_ota_dfu_

status

sl_wisun_ota_dfu_status_t
Wi-SUN OTA DFU Status enumeration.

typedef enum
sl_wisun_ota_dfu_

error_code

sl_wisun_ota_dfu_error_code_t
Wi-SUN OTA DFU error code enumeration.

typedef struct
sl_wisun_ota_dfu_
error_ctx_fw_dow

nload

sl_wisun_ota_dfu_error_ctx_fw_download_t
Wi-SUN OTA DFU download error context definition.

Type definitions

341/602

typedef struct
sl_wisun_ota_dfu_
error_ctx_btl_fw_v

erify

sl_wisun_ota_dfu_error_ctx_btl_fw_verify_t
Wi-SUN OTA DFU verify error context definition.

typedef struct
sl_wisun_ota_dfu_
error_ctx_btl_fw_s

et

sl_wisun_ota_dfu_error_ctx_btl_fw_set_t
Wi-SUN OTA DFU set error context definition.

typedef union
sl_wisun_ota_dfu_

error_ctx

sl_wisun_ota_dfu_error_ctx_t
Wi-SUN OTA DFU error context definition.

Enumeration Documentation

sl_wisun_ota_dfu_status

sl_wisun_ota_dfu_status

Wi-SUN OTA DFU Status enumeration.

Enumerator

SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STARTED Firmware update started.

SL_WISUN_OTA_DFU_STATUS_FW_DOWNLOADED Firmware downloaded.

SL_WISUN_OTA_DFU_STATUS_FW_VERIFIED Firmware verified.

SL_WISUN_OTA_DFU_STATUS_FW_SET Firmware set.

SL_WISUN_OTA_DFU_STATUS_FW_UPDATE_STOPPED

SL_WISUN_OTA_DFU_STATUS_FW_DOWNLOAD_ERROR Firmware Download error.

SL_WISUN_OTA_DFU_STATUS_FW_VERIFY_ERROR Firmware Verify error.

SL_WISUN_OTA_DFU_STATUS_FW_SET_ERROR Firmware Set error.

Definition at line 73 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_code

sl_wisun_ota_dfu_error_code

Wi-SUN OTA DFU error code enumeration.

Enumerator

SL_WISUN_OTA_DFU_ERROR_FW_DOWNLOAD Firmware downloaded error code.

SL_WISUN_OTA_DFU_ERROR_FW_VERIFY Firmware verify error code.

SL_WISUN_OTA_DFU_ERROR_FW_SET Firmware set error code.

Definition at line 93 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

Typedef Documentation

sl_wisun_ota_dfu_status_t

typedef enum sl_wisun_ota_dfu_status sl_wisun_ota_dfu_status_t

Type definitions

342/602

Wi-SUN OTA DFU Status enumeration.

Definition at line 90 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_code_t

typedef enum sl_wisun_ota_dfu_error_code sl_wisun_ota_dfu_error_code_t

Wi-SUN OTA DFU error code enumeration.

Definition at line 100 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_fw_download_t

typedef struct sl_wisun_ota_dfu_error_ctx_fw_download sl_wisun_ota_dfu_error_ctx_fw_download_t

Wi-SUN OTA DFU download error context definition.

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_btl_fw_verify_t

typedef struct sl_wisun_ota_dfu_error_ctx_btl_fw_verify sl_wisun_ota_dfu_error_ctx_btl_fw_verify_t

Wi-SUN OTA DFU verify error context definition.

Definition at line 116 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_btl_fw_set_t

typedef struct sl_wisun_ota_dfu_error_ctx_btl_fw_set sl_wisun_ota_dfu_error_ctx_btl_fw_set_t

Wi-SUN OTA DFU set error context definition.

Definition at line 122 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_t

typedef union sl_wisun_ota_dfu_error_ctx sl_wisun_ota_dfu_error_ctx_t

Wi-SUN OTA DFU error context definition.

Definition at line 132 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_fw_download

343/602

sl_wisun_ota_dfu_error_ctx_fw_download

Wi-SUN OTA DFU download error context definition.

Public Attributes

int32_t ret_val
Return value of API call.

uint32_t offset
Offset of GBL file .

uint16_t data_size
Data size .

Public Attribute Documentation

ret_val

int32_t sl_wisun_ota_dfu_error_ctx_fw_download::ret_val

Return value of API call.

Definition at line 105 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

offset

uint32_t sl_wisun_ota_dfu_error_ctx_fw_download::offset

Offset of GBL file.

Definition at line 107 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

data_size

uint16_t sl_wisun_ota_dfu_error_ctx_fw_download::data_size

Data size.

Definition at line 109 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_btl_fw_verify

344/602

sl_wisun_ota_dfu_error_ctx_btl_fw_verify

Wi-SUN OTA DFU verify error context definition.

Public Attributes

int32_t ret_val
Return value of API call.

Public Attribute Documentation

ret_val

int32_t sl_wisun_ota_dfu_error_ctx_btl_fw_verify::ret_val

Return value of API call.

Definition at line 115 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx_btl_fw_set

345/602

sl_wisun_ota_dfu_error_ctx_btl_fw_set

Wi-SUN OTA DFU set error context definition.

Public Attributes

int32_t ret_val
Return value of API call.

Public Attribute Documentation

ret_val

int32_t sl_wisun_ota_dfu_error_ctx_btl_fw_set::ret_val

Return value of API call.

Definition at line 121 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

sl_wisun_ota_dfu_error_ctx

346/602

sl_wisun_ota_dfu_error_ctx

Wi-SUN OTA DFU error context definition.

Public Attributes

sl_wisun_ota_dfu_
error_ctx_fw_dow

nload_t

download
Download error context.

sl_wisun_ota_dfu_
error_ctx_btl_fw_v

erify_t

verify
Verify error context.

sl_wisun_ota_dfu_
error_ctx_btl_fw_s

et_t

set
Set error context.

Public Attribute Documentation

download

sl_wisun_ota_dfu_error_ctx_fw_download_t sl_wisun_ota_dfu_error_ctx::download

Download error context.

Definition at line 127 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

verify

sl_wisun_ota_dfu_error_ctx_btl_fw_verify_t sl_wisun_ota_dfu_error_ctx::verify

Verify error context.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

set

sl_wisun_ota_dfu_error_ctx_btl_fw_set_t sl_wisun_ota_dfu_error_ctx::set

Set error context.

Definition at line 131 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/app/wisun/component/ota_dfu/sl_wisun_ota_dfu.h

Silicon Labs socket API (deprecated)

347/602

Silicon Labs socket API (deprecated)

Silicon Labs socket API (deprecated)
S ilicon Labs socket API is deprecated. This component is provided as a temporary solution to maintain a compatility with

v1.7 and older.

Functions

sl_status_t sl_wisun_open_socket(sl_wisun_socket_protocol_t protocol, sl_wisun_socket_id_t *socket_id)
SL_DEPRECATED_API_SDK_4_4
Open a socket.

sl_status_t sl_wisun_close_socket(sl_wisun_socket_id_t socket_id) SL_DEPRECATED_API_SDK_4_4
Close a socket.

sl_status_t sl_wisun_sendto_on_socket(sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *remote_address,
uint16_t remote_port, uint16_t data_length, const uint8_t *data) SL_DEPRECATED_API_SDK_4_4
Write data to an unconnected socket.

sl_status_t sl_wisun_listen_on_socket(sl_wisun_socket_id_t socket_id) SL_DEPRECATED_API_SDK_4_4
Set a TCP socket to listening state .

sl_status_t sl_wisun_accept_on_socket(sl_wisun_socket_id_t socket_id, sl_wisun_socket_id_t *remote_socket_id,
sl_wisun_ip_address_t *remote_address, uint16_t *remote_port) SL_DEPRECATED_API_SDK_4_4
Accept a pending connection request on a TCP socket.

sl_status_t sl_wisun_connect_socket(sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *remote_address,
uint16_t remote_port) SL_DEPRECATED_API_SDK_4_4
Initiate a connection from a socket to a remote peer socket.

sl_status_t sl_wisun_bind_socket(sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *local_address, uint16_t
local_port) SL_DEPRECATED_API_SDK_4_4
Bind a socket to a specific local address and/or a port number.

sl_status_t sl_wisun_send_on_socket(sl_wisun_socket_id_t socket_id, uint16_t data_length, const uint8_t *data)
SL_DEPRECATED_API_SDK_4_4
Write data to a connected socket.

sl_status_t sl_wisun_receive_on_socket(sl_wisun_socket_id_t socket_id, sl_wisun_ip_address_t *remote_address, uint16_t
*remote_port, uint16_t *data_length, uint8_t *data) SL_DEPRECATED_API_SDK_4_4
Read data from a socket.

sl_status_t sl_wisun_set_socket_option(sl_wisun_socket_id_t socket_id, sl_wisun_socket_option_t option, const
sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4
Set a socket option.

sl_status_t sl_wisun_get_socket_option(sl_wisun_socket_id_t socket_id, sl_wisun_socket_option_t option,
sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4
Get a socket option.

Function Documentation

sl_wisun_open_socket

sl_status_t sl_wisun_open_socket (sl_wisun_socket_protocol_t protocol, sl_wisun_socket_id_t *socket_id)

Silicon Labs socket API (deprecated)

348/602

SL_DEPRECATED_API_SDK_4_4

Open a socket.

Parameters

[in] protocol Protocol type of the socket

[out] socket_id ID of the opened socket

Returns

SL_STATUS_OK if successful, an error code otherwise

This function opens a socket. Up to 10 sockets may be open at any given time, including those opened implicitly via

sl_wisun_accept_on_socket().

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See socket() for a replacement.

Definition at line 55 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_close_socket

sl_status_t sl_wisun_close_socket (sl_wisun_socket_id_t socket_id) SL_DEPRECATED_API_SDK_4_4

Close a socket.

Parameters

[in] socket_id ID of the socket

Returns

SL_STATUS_OK if successful, an error code otherwise

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See close() for a replacement.

Definition at line 67 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_sendto_on_socket

sl_status_t sl_wisun_sendto_on_socket (sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *remote_address,
uint16_t remote_port, uint16_t data_length, const uint8_t *data) SL_DEPRECATED_API_SDK_4_4

Write data to an unconnected socket.

Parameters

[in] socket_id ID of the socket

[in] remote_address IP address of the remote peer

[in] remote_port Port number of the remote peer

[in] data_length Amount of data to write

[in] data Pointer to the data

Returns

SL_STATUS_OK if successful, an error code otherwise

This function initiates a data transmission to a remote peer and can only be used on an unconnected UDP or ICMP socket.

Completion of the transmission is indicated with a SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID event. The function takes

Silicon Labs socket API (deprecated)

349/602

a copy of the data, so the caller may free the resource when the function returns.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See sendto() for a replacement.

Definition at line 88 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_listen_on_socket

sl_status_t sl_wisun_listen_on_socket (sl_wisun_socket_id_t socket_id) SL_DEPRECATED_API_SDK_4_4

Set a TCP socket to listening state.

Parameters

[in] socket_id ID of the socket

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets a TCP socket to listening state, allowing it to act as a server socket, i.e., to receive connection requests

from clients. Connection requests are indicated with SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID events

and accepted using sl_wisun_accept_on_socket(). This function can only be used on an unconnected TCP socket.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See listen() for a replacement.

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_accept_on_socket

sl_status_t sl_wisun_accept_on_socket (sl_wisun_socket_id_t socket_id, sl_wisun_socket_id_t *remote_socket_id,
sl_wisun_ip_address_t *remote_address, uint16_t *remote_port) SL_DEPRECATED_API_SDK_4_4

Accept a pending connection request on a TCP socket.

Parameters

[in] socket_id ID of the socket on listening state

[out] remote_socket_id ID of the new connected socket

[out] remote_address IP address of the remote peer

[out] remote_port Port number of the remote peer

Returns

SL_STATUS_OK if successful, an error code otherwise

This function accepts a pending connection request from a remote peer and creates a new connected TCP socket for the

connection. To decline a connection request, the request must be accepted and then closed using sl_wisun_close_socket().

The function can only be used on a TCP socket in listening state.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See accept() for a replacement.

Definition at line 130 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_connect_socket

sl_status_t sl_wisun_connect_socket (sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *remote_address,
uint16_t remote_port) SL_DEPRECATED_API_SDK_4_4

Silicon Labs socket API (deprecated)

350/602

Initiate a connection from a socket to a remote peer socket.

Parameters

[in] socket_id ID of the socket

[in] remote_address IP address of the remote peer

[in] remote_port Port number of the remote peer

Returns

SL_STATUS_OK if successful, an error code otherwise

This function initiates a connection from a local socket to to a remote peer socket. The result of the connection is

indicated with a SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID event. Connecting a socket is mandatory for TCP client

sockets but may be also used on other types of sockets. A connected socket can only receive and transmit data with the

designated peer. This function can only be used on an unconnected TCP or UDP socket.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See connect() for a replacement.

Definition at line 154 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_bind_socket

sl_status_t sl_wisun_bind_socket (sl_wisun_socket_id_t socket_id, const sl_wisun_ip_address_t *local_address, uint16_t
local_port) SL_DEPRECATED_API_SDK_4_4

Bind a socket to a specific local address and/or a port number.

Parameters

[in] socket_id ID of the socket

[in] local_address Local IP address to use on the socket. NULL if not bound.

[in] local_port Local port number to use on the socket. Zero if not bound.

Returns

SL_STATUS_OK if successful, an error code otherwise

This function binds the local address and/or the port of a socket. When the local address is bound, the socket will only

accept traffic sent to the specified address and the transmitted packets will use the address as the source address. If not

bound, the socket will accept data sent to any valid address of the device. The source address is selected by the stack.

Binding the local port number sets the port number for received and transmitted packets. If not bound, the stack will select

a port number automatically. This function can only be used on an unconnected TCP or UDP socket. Once bound to a

specific address and/or port, the value cannot be changed.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See bind() for a replacement.

Definition at line 180 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_send_on_socket

sl_status_t sl_wisun_send_on_socket (sl_wisun_socket_id_t socket_id, uint16_t data_length, const uint8_t *data)
SL_DEPRECATED_API_SDK_4_4

Write data to a connected socket.

Parameters

Silicon Labs socket API (deprecated)

351/602

[in] socket_id ID of the socket

[in] data_length Amount of data to write

[in] data Pointer to the data

Returns

SL_STATUS_OK if successful, an error code otherwise

This function initiates transmission of data to a connected remote peer and can only be used on a connected socket.

Completion of the transmission is indicated with a SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID event. The function takes

a copy of the data, so the caller may free the resource when the function returns.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See send() for a replacement.

Definition at line 201 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_receive_on_socket

sl_status_t sl_wisun_receive_on_socket (sl_wisun_socket_id_t socket_id, sl_wisun_ip_address_t *remote_address, uint16_t
*remote_port, uint16_t *data_length, uint8_t *data) SL_DEPRECATED_API_SDK_4_4

Read data from a socket.

Parameters

[in] socket_id ID of the socket

[out] remote_address IP address of the remote peer

[out] remote_port Port number of the remote peer

[inout] data_length Amount of data to read on input, amount of data read on output

[in] data Pointer to where the read data is stored

Returns

SL_STATUS_OK if successful, an error code otherwise

This function reads buffered data from a socket. When reading data from a UDP or ICMP socket, the entire packet must be

read. Any data left unread is discarded after this call. TCP sockets allow reading only a part of the buffered data.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See recvfrom() for a replacement.

Definition at line 223 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_set_socket_option

sl_status_t sl_wisun_set_socket_option (sl_wisun_socket_id_t socket_id, sl_wisun_socket_option_t option, const
sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4

Set a socket option.

Parameters

[in] socket_id ID of the socket

Silicon Labs socket API (deprecated)

352/602

[in] option Socket option to set

SL_WISUN_SOCKET_OPTION_EVENT_MODE: Event mode

SL_WISUN_SOCKET_OPTION_MULTICAST_GROUP: Multicast group

SL_WISUN_SOCKET_OPTION_SEND_BUFFER_LIMIT: Tx buffer limit

SL_WISUN_SOCKET_OPTION_EDFE_MODE: Enable/disable EDFE mode

SL_WISUN_SOCKET_OPTION_UNICAST_HOP_LIMIT: Socket unicast hop limit

SL_WISUN_SOCKET_OPTION_MULTICAST_HOP_LIMIT: Socket multicast hop limit

[in] option_data Socket option specific data

Returns

SL_STATUS_OK if successful, an error code otherwise

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See setsockopt() for a replacement.

Definition at line 246 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

sl_wisun_get_socket_option

sl_status_t sl_wisun_get_socket_option (sl_wisun_socket_id_t socket_id, sl_wisun_socket_option_t option,
sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4

Get a socket option.

Parameters

[in] socket_id ID of the socket

[in] option Socket option to get

SL_WISUN_SOCKET_OPTION_SEND_BUFFER_LIMIT: Send buffer limit

[out] option_data Socket option specific data

Returns

SL_STATUS_OK if successful, an error code otherwise

This function retrieves the value of a socket option.

DeprecatedThis function will be removed in the future versions of the Wi-SUN stack. See getsockopt() for a replacement.

Definition at line 264 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/plugin/sl_wisun_legacy_socket_wrapper.h

Wi-SUN Stack Plugin

353/602

Wi-SUN Stack Plugin

Wi-SUN Stack Plugin
The Wi-SUN stack plugin components are software modules tightly linked to the stack that provide means to customize it:

debug, manufacturing, or Wi-SUN-specific optional features. They can have significant impact on key capabilities and

memory footprint.

Modules

Stack Trace and Debug

RF Test

Stack Trace and Debug

354/602

Stack Trace and Debug

Stack Trace and Debug
The Trace and Debug component adds tracing capabilities to the stack and stack plugin components. The component

provides APIs to configure or filter out the debug traces output.

Functions

sl_status_t sl_wisun_set_trace_level(uint8_t group_count, sl_wisun_trace_group_config_t *trace_config)
Set the trace level.

sl_status_t sl_wisun_set_trace_filter(uint8_t filter[SL_WISUN_FILTER_BITFIELD_SIZE��
Set the trace filter.

Function Documentation

sl_wisun_set_trace_level

sl_status_t sl_wisun_set_trace_level (uint8_t group_count, sl_wisun_trace_group_config_t *trace_config)

Set the trace level.

Parameters

[in] group_count Number of groups to configure. If 0, enable all levels for all groups. Maximum

SL_WISUN_TRACE_GROUP_COUNT.

[in] trace_config Table with group_count element filled. It indicates the trace level to be displayed for each group.

Returns

One of the following:

SL_STATUS_NOT_AVAILABLE if the Stack Trace and Debug component is not installed

SL_STATUS_OK if successful, an error code otherwise

Definition at line 59 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_trace_api.h

sl_wisun_set_trace_filter

sl_status_t sl_wisun_set_trace_filter (uint8_t filter[SL_WISUN_FILTER_BITFIELD_SIZE��

Set the trace filter.

Parameters

[in] filter Bit mask of trace group IDs. First byte of the array represents IDs 0 - 7, with bit 0 being ID 0. Second byte

represents IDs 8 - 15 and so forth. If a bit is set, the corresponding trace group ID is selected for tracing. 0

means the particular trace group ID is disabled. Bit enumeration is defined in sl_wisun_trace_group_t.

Indicate which trace group will be displayed.

Returns

Stack Trace and Debug

355/602

One of the following:

SL_STATUS_NOT_AVAILABLE if the Stack Trace and Debug component is not installed

SL_STATUS_OK if successful, an error code otherwise

Definition at line 74 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_trace_api.h

RF Test

356/602

RF Test

RF Test
The RF Test component provides low-level APIs to produce an RF tone or a modulated packet. The RF Test component

cannot run simultaneously with the Wi-SUN stack and is only meant for production calibration.

Functions

sl_status_t sl_wisun_start_stream(uint16_t channel)
Start transmitting a random stream of characters to enable the measurement of radio modulation.

sl_status_t sl_wisun_stop_stream()
Stop a previously started stream of characters.

sl_status_t sl_wisun_start_tone(uint16_t channel)
Start transmitting an unmodulated tone .

sl_status_t sl_wisun_stop_tone()
Stop a previously started tone .

sl_status_t sl_wisun_set_test_tx_power(int8_t tx_power)
Set transmit power.

bool sl_wisun_is_running_rf_test()
Return the current status of the RF test plugin.

Function Documentation

sl_wisun_start_stream

sl_status_t sl_wisun_start_stream (uint16_t channel)

Start transmitting a random stream of characters to enable the measurement of radio modulation.

Parameters

[in] channel Name of the Wi-SUN network as a zero-terminated string

Returns

One of the following:

SL_STATUS_OK if the stream transmission started successfully.

SL_STATUS_NOT_READY if called before the stack initialization.

SL_STATUS_BUSY if a test is already running.

SL_STATUS_NETWORK_UP if a connection is already established or in progress.

SL_STATUS_INVALID_PARAMETER if an invalid channel is configured.

Transmit a PN9 bytes sequence. See RAIL_StartTxStream() for more information.

Definition at line 55 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

sl_wisun_stop_stream

RF Test

357/602

sl_status_t sl_wisun_stop_stream ()

Stop a previously started stream of characters.

Parameters

[in] channel Name of the Wi-SUN network as a zero-terminated string

Returns

One of the following:

SL_STATUS_OK if the stream transmission stopped successfully.

SL_STATUS_INVALID_STATE if while not transmitting a stream.

See RAIL_StopTxStream() for more information.

Definition at line 68 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

sl_wisun_start_tone

sl_status_t sl_wisun_start_tone (uint16_t channel)

Start transmitting an unmodulated tone.

Parameters

[in] channel Name of the Wi-SUN network as a zero-terminated string

Returns

One of the following:

SL_STATUS_OK if the stream transmission started successfully.

SL_STATUS_NOT_READY if called before the stack initialization.

SL_STATUS_BUSY if a test is already running.

SL_STATUS_NETWORK_UP if a connection is already established or in progress.

SL_STATUS_INVALID_PARAMETER if an invalid channel is configured.

Transmit a PN9 bytes sequence. See RAIL_StartTxStream() for more information.

Definition at line 84 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

sl_wisun_stop_tone

sl_status_t sl_wisun_stop_tone ()

Stop a previously started tone.

Parameters

[in] channel Name of the Wi-SUN network as a zero-terminated string

Returns

One of the following:

SL_STATUS_OK if the tone stopped successfully.

SL_STATUS_INVALID_STATE if while not transmitting a tone.

See RAIL_StopTxStream() for more information.

RF Test

358/602

Definition at line 96 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

sl_wisun_set_test_tx_power

sl_status_t sl_wisun_set_test_tx_power (int8_t tx_power)

Set transmit power.

Parameters

[in] tx_power Transmit power in units of dBm, can be negative.

Returns

always SL_STATUS_OK

Definition at line 104 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

sl_wisun_is_running_rf_test

bool sl_wisun_is_running_rf_test ()

Return the current status of the RF test plugin.

Returns

One of the following:

True if a test is running.

False otherwise.

Definition at line 113 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_rf_test.h

Wi-SUN Stack API

359/602

Wi-SUN Stack API

Wi-SUN Stack API
Wi-SUN Stack API is based on requests from the application to the stack and events from the stack to the application.

Requests are made using function calls, where a function call either performs the required action immediately or initiates an

internal operation within the stack, which terminates with an event. All events contain a status code, indicating the result of

the requested operation. Events are also used by the stack to notify the application of any important information, such as

the state of the connection.

The application is expected to override sl_wisun_on_event() to handle events from the stack. Because all events share a

common header, the function may be implemented as a switch statement. The event-specific data can be accessed

through the sl_wisun_evt_t::evt union.

void sl_wisun_on_event(sl_wisun_evt_t *evt)

{

 switch (evt->header.id) {

 case SL_WISUN_MSG_CONNECTED_IND_ID:

handle_connected_event(evt->evt.connected);

break;

 default:

break;

}

}

The API is thread-safe, which means can be called from multiple RTOS tasks. The stack guarantees that only a single

request is executed at a time and that requests are handled in the order they were made. Event callback is executed in a

different context than the request, so the API functions may be called from the event callback.

Modules

Wi-SUN API events

Wi-SUN API type definitions

Socket API

Callbacks

void sl_wisun_on_event(sl_wisun_evt_t *evt)
Callback handler for a single event.

Functions

sl_status_t sl_wisun_ join(const uint8_t *name, sl_wisun_phy_config_t *phy_config)
Initiate a connection to a Wi-SUN network.

sl_status_t sl_wisun_get_ip_address(sl_wisun_ip_address_type_t address_type, in6_addr_t *address)
Read an IP address.

Wi-SUN Stack API

360/602

sl_status_t sl_wisun_disconnect()
Disconnect from the Wi-SUN network.

sl_status_t sl_wisun_set_trusted_certificate(uint16_t certificate_options, uint16_t certificate_length, const uint8_t
*certificate)
Set a trusted certificate used to verify the authentication server certificate .

sl_status_t sl_wisun_set_device_certificate(uint16_t certificate_options, uint16_t certificate_length, const uint8_t
*certificate)
Set the device certificate used to authenticate to the authentication server.

sl_status_t sl_wisun_set_device_private_key(uint16_t key_options, uint16_t key_length, const uint8_t *key)
Set the private key of the device certificate .

sl_status_t sl_wisun_get_statistics(sl_wisun_statistics_type_t statistics_type, sl_wisun_statistics_t *statistics)
Read a set of statistics.

sl_status_t sl_wisun_set_tx_power(int8_t tx_power)
Set the maximum TX power.

sl_status_t sl_wisun_set_allowed_channel_mask(const sl_wisun_channel_mask_t *channel_mask)
Set a mask of operating channels.

sl_status_t sl_wisun_set_channel_mask(const sl_wisun_channel_mask_t *channel_mask)
Set a mask of operating channels.

sl_status_t sl_wisun_allow_mac_address(const sl_wisun_mac_address_t *address)
Add a MAC address to the list of allowed addresses.

sl_status_t sl_wisun_deny_mac_address(const sl_wisun_mac_address_t *address)
Add a MAC address to the list of denied addresses.

sl_status_t sl_wisun_get_ join_state(sl_wisun_ join_state_t *join_state)
Get the current jo in state .

sl_status_t sl_wisun_clear_credential_cache()
Clear the credential cache .

sl_status_t sl_wisun_get_mac_address(sl_wisun_mac_address_t *address)
Get the current device MAC address in use .

sl_status_t sl_wisun_set_mac_address(const sl_wisun_mac_address_t *address)
Set the device MAC address to be used.

sl_status_t sl_wisun_reset_statistics(sl_wisun_statistics_type_t statistics_type)
Reset a set of statistics in the stack.

sl_status_t sl_wisun_get_neighbor_count(uint8_t *neighbor_count)
Get the number of RPL neighbors (parents and children).

sl_status_t sl_wisun_get_neighbors(uint8_t *neighbor_count, sl_wisun_mac_address_t *neighbor_mac_addresses)
Get a list of RPL neighbor (parents and children) MAC addresses.

sl_status_t sl_wisun_get_neighbor_info(const sl_wisun_mac_address_t *neighbor_mac_address, sl_wisun_neighbor_info_t
*neighbor_info)
Get information about a RPL neighbor (parent or child).

sl_status_t sl_wisun_set_unicast_settings(uint8_t dwell_interval_ms)
Set unicast settings.

sl_status_t sl_wisun_set_device_private_key_id(uint32_t key_id)
Set the private key of the device certificate .

Wi-SUN Stack API

361/602

sl_status_t sl_wisun_set_regulation(sl_wisun_regulation_t regulation)
Set the regional regulation.

sl_status_t sl_wisun_set_regulation_tx_thresholds(int8_t warning_threshold, int8_t alert_threshold)
Set the thresho lds for transmission duration level event.

sl_status_t sl_wisun_set_advert_fragment_duration(uint32_t fragment_duration_ms)
Set the async transmission fragmentation parameters.

sl_status_t sl_wisun_set_unicast_tx_mode(uint8_t mode)
Enable an algorithm that trades off unicast communication reliability for latency.

sl_status_t sl_wisun_set_device_type(sl_wisun_device_type_t device_type)
Set the device type .

sl_status_t sl_wisun_config_mode_switch(uint8_t mode, uint8_t phy_mode_id, const sl_wisun_mac_address_t
*neighbor_address, bool reserved)
Set the mode switch configuration.

sl_status_t sl_wisun_set_mode_switch(uint8_t mode, uint8_t phy_mode_id, const sl_wisun_mac_address_t
*neighbor_address)
Set the PHY mode switch configuration.

sl_status_t sl_wisun_set_connection_parameters(const sl_wisun_connection_params_t *params)
Configure the FFN parameter set.

sl_status_t sl_wisun_set_pom_ie(uint8_t phy_mode_id_count, uint8_t
phy_mode_ids[SL_WISUN_MAX_PHY_MODE_ID_COUNT�, uint8_t is_mdr_command_capable)
Set the POM-IE configuration.

sl_status_t sl_wisun_get_pom_ie(uint8_t *phy_mode_id_count, uint8_t *phy_mode_ids, uint8_t *is_mdr_command_capable)
Get the POM-IE configuration.

sl_status_t sl_wisun_get_stack_version(uint8_t *major, uint8_t *minor, uint8_t *patch, uint16_t *build)
Get the Wi-SUN stack version.

sl_status_t sl_wisun_set_lfn_parameters(const sl_wisun_lfn_params_t *params)
Configure the LFN parameter set.

sl_status_t sl_wisun_set_lfn_support(uint8_t lfn_limit)
Set the maximum number of LFN children.

sl_status_t sl_wisun_set_pti_state(bool pti_state)
Set the PTI state .

sl_status_t sl_wisun_trigger_frame(sl_wisun_frame_type_t frame_type)
Trigger the transmission of a frame (FAN Discovery, RPL).

sl_status_t sl_wisun_set_security_state(uint32_t security_state)
Set the security state .

sl_status_t sl_wisun_get_network_info(sl_wisun_network_info_t *network_info)
Get the Wi-SUN network information.

sl_status_t sl_wisun_get_rpl_info(sl_wisun_rpl_info_t *rpl_info)
Get RPL information.

sl_status_t sl_wisun_get_excluded_channel_mask(sl_wisun_channel_mask_type_t type, sl_wisun_channel_mask_t
*channel_mask, uint8_t *channel_count)
Get the mask of channels excluded from channel plan.

Callbacks Documentation

Wi-SUN Stack API

362/602

sl_wisun_on_event

void sl_wisun_on_event (sl_wisun_evt_t *evt)

Callback handler for a single event.

Parameters

N/A evt The event to be handled

This function is called when the stack sends an event to the application. The application can declare its own version this

function to customize event handling. The default implementation discards all events.

See Also

Wi-SUN API events

Definition at line 98 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

Function Documentation

sl_wisun_ join

sl_status_t sl_wisun_ join (const uint8_t *name, sl_wisun_phy_config_t *phy_config)

Initiate a connection to a Wi-SUN network.

Parameters

[in] name Name of the Wi-SUN network as a zero-terminated string

[in] phy_config Pointer to PHY configuration

Returns

SL_STATUS_OK if successful, an error code otherwise

This function initiates connection to a Wi-SUN network. Completion of the request is indicated with a

SL_WISUN_MSG_CONNECTED_IND_ID event.

Definition at line 114 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_ip_address

sl_status_t sl_wisun_get_ip_address (sl_wisun_ip_address_type_t address_type, in6_addr_t *address)

Read an IP address.

Parameters

Wi-SUN Stack API

363/602

[in] address_type Type of the IP address to read

SL_WISUN_IP_ADDRESS_TYPE_LINK_LOCAL: Link-local IPv6 address of the device

SL_WISUN_IP_ADDRESS_TYPE_GLOBAL: Global unicast IPv6 address of the device

SL_WISUN_IP_ADDRESS_TYPE_BORDER_ROUTER: Global unicast IPv6 address of the border

router

SL_WISUN_IP_ADDRESS_TYPE_PRIMARY_PARENT: Link-local IPv6 address of the primary

parent

SL_WISUN_IP_ADDRESS_TYPE_SECONDARY_PARENT: Link-local IPv6 address of the

secondary parent

[out] address IP address to read

Returns

SL_STATUS_OK if successful, an error code otherwise.

Definition at line 128 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_disconnect

sl_status_t sl_wisun_disconnect ()

Disconnect from the Wi-SUN network.

Returns

SL_STATUS_OK if successful, an error code otherwise

This function disconnects an active connection or cancels an ongoing connection attempt.

Definition at line 139 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_trusted_certificate

sl_status_t sl_wisun_set_trusted_certificate (uint16_t certificate_options, uint16_t certificate_length, const uint8_t
*certificate)

Set a trusted certificate used to verify the authentication server certificate.

Parameters

[in] certificate_options Options for the certificate

SL_WISUN_CERTIFICATE_OPTION_APPEND: Append the certificate to the list of trusted

certificates instead of replacing the previous entries

SL_WISUN_CERTIFICATE_OPTION_IS_REF: The application guarantees the certificate data

will remain in scope and can therefore be referenced instead of copied

[in] certificate_length S ize of the certificate data

[in] certificate Pointer to the certificate data

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 153 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

Wi-SUN Stack API

364/602

sl_wisun_set_device_certificate

sl_status_t sl_wisun_set_device_certificate (uint16_t certificate_options, uint16_t certificate_length, const uint8_t
*certificate)

Set the device certificate used to authenticate to the authentication server.

Parameters

[in] certificate_options Options for the certificate.

SL_WISUN_CERTIFICATE_OPTION_APPEND: Append the certificate to the list of device

certificates instead of replacing the previous entries

SL_WISUN_CERTIFICATE_OPTION_IS_REF: The application guarantees the certificate data

will remain in scope and can therefore be referenced instead of copied

SL_WISUN_CERTIFICATE_OPTION_HAS_KEY: The certificate has a private key

[in] certificate_length S ize of the certificate data

[in] certificate Pointer to the certificate data

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 170 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_device_private_key

sl_status_t sl_wisun_set_device_private_key (uint16_t key_options, uint16_t key_length, const uint8_t *key)

Set the private key of the device certificate.

Parameters

[in] key_options Options for the private key

SL_WISUN_PRIVATE_KEY_OPTION_IS_REF: The application guarantees the private key data will

remain in scope and can therefore be referenced instead of copied

[in] key_length S ize of the private key data

[in] key Pointer to the private key data

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 184 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_statistics

sl_status_t sl_wisun_get_statistics (sl_wisun_statistics_type_t statistics_type, sl_wisun_statistics_t *statistics)

Read a set of statistics.

Parameters

Wi-SUN Stack API

365/602

[in] statistics_type Type of statistics to read

SL_WISUN_STATISTICS_TYPE_PHY: PHY/RF statistics

SL_WISUN_STATISTICS_TYPE_MAC: MAC statistics

SL_WISUN_STATISTICS_TYPE_FHSS: Frequency hopping statistics

SL_WISUN_STATISTICS_TYPE_WISUN: Wi-SUN statistics

SL_WISUN_STATISTICS_TYPE_NETWORK: 6LoWPAN/IP stack statistics

SL_WISUN_STATISTICS_TYPE_REGULATION: Regional regulation statistics

SL_WISUN_STATISTICS_TYPE_HEAP: Heap usage statistics

[out] statistics Set of statistics read

Returns

SL_STATUS_OK if successful, an error code otherwise.

This function reads a set of statistics from the stack. Statistics are cumulative and reset when a connection is initiated or

by calling sl_wisun_reset_statistics().

Definition at line 206 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_tx_power

sl_status_t sl_wisun_set_tx_power (int8_t tx_power)

Set the maximum TX power.

Parameters

[in] tx_power TX power in dBm

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the maximum TX power. The device may use a lower value based on internal decision making or hardware

limitations but will never exceed the given value.

Definition at line 219 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_allowed_channel_mask

sl_status_t sl_wisun_set_allowed_channel_mask (const sl_wisun_channel_mask_t *channel_mask)

Set a mask of operating channels.

Parameters

[in] channel_mask Mask of operating channels

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets a mask of channels the device is allowed to operate in for unicast frequency hopping. By default, all

channels in the channel plan are allowed. The mask can only be used to further restrict the channels. Channels outside the

channel plan or channels internally excluded are ignored. This mask will be used in the following connections.

Warnings

Wi-SUN Stack API

366/602

By comparison to the Wi-SUN FAN specification, the channel mask logic is inverted. The specification references a mask of

excluded channels.

Definition at line 237 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_channel_mask

sl_status_t sl_wisun_set_channel_mask (const sl_wisun_channel_mask_t *channel_mask)

Set a mask of operating channels.

Parameters

[in] channel_mask Mask of operating channels

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets a mask of channels the device is allowed to operate in for unicast frequency hopping. By default, all

channels in the channel plan are allowed. The mask can only be used to further restrict the channels. Channels outside the

channel plan or channels internally excluded are ignored. This mask will be used in the following connections.

Definition at line 251 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_allow_mac_address

sl_status_t sl_wisun_allow_mac_address (const sl_wisun_mac_address_t *address)

Add a MAC address to the list of allowed addresses.

Parameters

[in] address MAC address

sl_wisun_broadcast_mac: allow all MAC addresses

unicast address: allow the given MAC address

Returns

SL_STATUS_OK if successful, an error code otherwise

This function adds a MAC address to the list of allowed addresses. When the first address is added to the list, the list of

denied addresses is cleared and the device will start preventing communication with any device whose MAC address does

not match any of addresses on the list. By default, all MAC addresses are allowed. Up to 10 MAC addresses may be added

to the list. The access list affects only directly connected nodes such as parents, children, and neighbors.

Definition at line 269 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_deny_mac_address

sl_status_t sl_wisun_deny_mac_address (const sl_wisun_mac_address_t *address)

Add a MAC address to the list of denied addresses.

Parameters

Wi-SUN Stack API

367/602

[in] address MAC address

sl_wisun_broadcast_mac: deny all MAC addresses

unicast address: deny the given MAC address

Returns

SL_STATUS_OK if successful, an error code otherwise

This function adds a MAC address to the list of denied addresses. When the first address is added to the list, the list of

allowed addresses is cleared and the device will start preventing communication with any device whose MAC address

matches any of the addresses on the list. By default, all MAC addresses are allowed. Up to 10 MAC addresses may be

added to the list. The access list affects only directly connected nodes such as parents, children, and neighbors.

Definition at line 287 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_ join_state

sl_status_t sl_wisun_get_ join_state (sl_wisun_ join_state_t *join_state)

Get the current join state.

Parameters

[out] join_state Join state

Returns

SL_STATUS_OK if successful, an error code otherwise

This function retrieves the current state of the connection process. The function can only be used once a connection has

been initiated.

Definition at line 298 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_clear_credential_cache

sl_status_t sl_wisun_clear_credential_cache ()

Clear the credential cache.

Returns

SL_STATUS_OK if successful, an error code otherwise

This function clears the cached authentication credentials stored in non-volatile storage. The function is intended for test

purposes. Note that clearing the credential cache may prevent the node from reconnecting to the same parent until the

corresponding cache entry has expired on the parent.

Definition at line 310 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_mac_address

sl_status_t sl_wisun_get_mac_address (sl_wisun_mac_address_t *address)

Get the current device MAC address in use.

Parameters

Wi-SUN Stack API

368/602

[out] address MAC address

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 318 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_mac_address

sl_status_t sl_wisun_set_mac_address (const sl_wisun_mac_address_t *address)

Set the device MAC address to be used.

Parameters

[in] address MAC address

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the MAC address for use in the following connections. By default, the device will use the built-in unique

device MAC address. The address is reset to the built-in value upon power up.

Definition at line 330 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_reset_statistics

sl_status_t sl_wisun_reset_statistics (sl_wisun_statistics_type_t statistics_type)

Reset a set of statistics in the stack.

Parameters

[in] statistics_type Type of statistics to reset

SL_WISUN_STATISTICS_TYPE_PHY: PHY/RF statistics

SL_WISUN_STATISTICS_TYPE_MAC: MAC statistics

SL_WISUN_STATISTICS_TYPE_FHSS: Frequency hopping statistics

SL_WISUN_STATISTICS_TYPE_WISUN: Wi-SUN statistics

SL_WISUN_STATISTICS_TYPE_NETWORK: 6LoWPAN/IP stack statistics

Returns

SL_STATUS_OK if successful, an error code otherwise.

Definition at line 343 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_neighbor_count

sl_status_t sl_wisun_get_neighbor_count (uint8_t *neighbor_count)

Get the number of RPL neighbors (parents and children).

Parameters

Wi-SUN Stack API

369/602

[out] neighbor_count Number of neighbors

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 351 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_neighbors

sl_status_t sl_wisun_get_neighbors (uint8_t *neighbor_count, sl_wisun_mac_address_t *neighbor_mac_addresses)

Get a list of RPL neighbor (parents and children) MAC addresses.

Parameters

[inout] neighbor_count Maximum number of neighbors to read on input, number of neighbors read on output

[out] neighbor_mac_addresses Pointer to memory where to store neighbor MAC addresses

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 362 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_neighbor_info

sl_status_t sl_wisun_get_neighbor_info (const sl_wisun_mac_address_t *neighbor_mac_address, sl_wisun_neighbor_info_t
*neighbor_info)

Get information about a RPL neighbor (parent or child).

Parameters

[in] neighbor_mac_address Pointer to neighbor MAC address

[out] neighbor_info Pointer to where the read information is stored

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 372 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_unicast_settings

sl_status_t sl_wisun_set_unicast_settings (uint8_t dwell_interval_ms)

Set unicast settings.

Parameters

[in] dwell_interval_ms Unicast Dwell Interval (15-255 ms)

Returns

SL_STATUS_OK if successful, an error code otherwise

Wi-SUN Stack API

370/602

This function sets the parameters for unicast channel hopping to be used in the following connections. The Unicast Dwell

Interval specifies the duration which the node will listen to a channel within its listening schedule. The default value is 255

ms.

Definition at line 386 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_device_private_key_id

sl_status_t sl_wisun_set_device_private_key_id (uint32_t key_id)

Set the private key of the device certificate.

Parameters

[in] key_id Key ID of the private key

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the device private key using a key identifier, referencing a key stored in PSA cryptography module. The

corresponding device certificate must still be set using sl_wisun_set_device_certificate(). The stored key must have correct

PSA key attributes, see the Wi-SUN FAN Security Concepts and Design Considerations document for details.

Definition at line 401 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_regulation

sl_status_t sl_wisun_set_regulation (sl_wisun_regulation_t regulation)

Set the regional regulation.

Parameters

[in] regulation Regional regulation

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the regional regulation for use in the following connections. The selected regional regulation will impact

both the Wi-SUN stack performance and its behavior. See regulation standards for details. No regulation is set by default.

Definition at line 414 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_regulation_tx_thresholds

sl_status_t sl_wisun_set_regulation_tx_thresholds (int8_t warning_threshold, int8_t alert_threshold)

Set the thresholds for transmission duration level event.

Parameters

[in] warning_threshold Warning threshold in percent or -1 to disable

[in] alert_threshold Alert threshold in percent or -1 to disable

Returns

Wi-SUN Stack API

371/602

SL_STATUS_OK if successful, an error code otherwise

This function sets the thresholds for transmission duration level event. When set and when a regional regulation is enabled

using sl_wisun_set_regulation(), a SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID event is sent when one of the

configured thresholds is exceeded. This can be used by the application to prevent exceeding the total transmission duration

allowed in the regional regulation. Thresholds are defined as a percentage of the maximum transmission duration permitted

by the regional regulation.

Definition at line 431 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_advert_fragment_duration

sl_status_t sl_wisun_set_advert_fragment_duration (uint32_t fragment_duration_ms)

Set the async transmission fragmentation parameters.

Parameters

[in] fragment_duration_ms Max duration of a fragment in ms (min 500 ms)

Returns

SL_STATUS_OK if successful, an error code otherwise

Async transmissions, such as Wi-SUN PAN advertisement packets, are sent to every allowed operating channel and may

therefore block broadcast and unicast traffic. This impact can be reduced by splitting the channel list into fragments based

on the maximum transmission duration and by forcing a delay between the fragments, allowing other traffic to occur. This

function sets the maximum duration of a PA, PAS, PC, and PCS advertisement period fragments. A small value trades off

longer connection times for shorter latencies. Setting the duration to SL_WISUN_ADVERT_FRAGMENT_DISABLE disables

async transmission fragmentation.

By default, the maximum fragment duration is set to 500 ms.

Definition at line 452 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_unicast_tx_mode

sl_status_t sl_wisun_set_unicast_tx_mode (uint8_t mode)

Enable an algorithm that trades off unicast communication reliability for latency.

Parameters

[in] mode Transmission mode to use

SL_WISUN_UNICAST_TX_MODE_DEFAULT: Default transmission mode.

SL_WISUN_UNICAST_TX_MODE_SLOT: High reliability, high latency.

Returns

SL_STATUS_OK if successful, an error code otherwise

Enable an algorithm that trades off unicast communication reliability for latency. The mechanism is only effective when all

the neighbors are enabled. Enabling this option is detrimental when used with unaware Wi-SUN devices.

Definition at line 467 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_device_type

Wi-SUN Stack API

372/602

sl_status_t sl_wisun_set_device_type (sl_wisun_device_type_t device_type)

Set the device type.

Parameters

[in] device_type Type of the device

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the operational mode of the node.

Definition at line 477 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_config_mode_switch

sl_status_t sl_wisun_config_mode_switch (uint8_t mode, uint8_t phy_mode_id, const sl_wisun_mac_address_t
*neighbor_address, bool reserved)

Set the mode switch configuration.

Parameters

[in] mode Mode switch configuration of the neighbor. If set to SL_WISUN_MODE_SWITCH_DEFAULT, the

configuration of the neighbor is reset back to the default mode switch behavior.

[in] phy_mode_id PhyModeId to use when mode is set to SL_WISUN_MODE_SWITCH_ENABLED, ignored

otherwise.

[in] neighbor_address MAC address of the neighbor to configure. If set to sl_wisun_broadcast_mac, configures the

default mode switch behavior for all non-configured neighbors.

[in] reserved Reserved for future use, set to false.

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 495 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_mode_switch

sl_status_t sl_wisun_set_mode_switch (uint8_t mode, uint8_t phy_mode_id, const sl_wisun_mac_address_t
*neighbor_address)

Set the PHY mode switch configuration.

Parameters

[in] mode Mode switch configuration of the neighbor. If set to SL_WISUN_MODE_SWITCH_DEFAULT, the

configuration of the neighbor is reset back to the default mode switch behavior.

[in] phy_mode_id PhyModeId to use when mode is set to SL_WISUN_MODE_SWITCH_ENABLED, ignored

otherwise.

[in] neighbor_address MAC address of the neighbor to configure. If set to sl_wisun_broadcast_mac, configures the

default mode switch behavior for all non-configured neighbors.

Returns

Wi-SUN Stack API

373/602

SL_STATUS_OK if successful, an error code otherwise

Definition at line 515 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_connection_parameters

sl_status_t sl_wisun_set_connection_parameters (const sl_wisun_connection_params_t *params)

Configure the FFN parameter set.

Parameters

[in] params Parameter set to use

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the FFN parameter set. These parameters impact connection time, bandwidth usage, and latency. Use of

a predefined parameter set is recommended (Predefined FFN parameter sets). The function must be called before initiating

a connection.

Definition at line 530 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_pom_ie

sl_status_t sl_wisun_set_pom_ie (uint8_t phy_mode_id_count, uint8_t
phy_mode_ids[SL_WISUN_MAX_PHY_MODE_ID_COUNT�, uint8_t is_mdr_command_capable)

Set the POM-IE configuration.

Parameters

[in] phy_mode_id_count Number of PhyModeId to configure

[in] phy_mode_ids List of phy_mode_ id_count PhyModeId. It must contain the base operating mode.

[in] is_mdr_command_capable Indicate if the device supports MAC mode switch. Feature currently unsupported, must

be set to 0.

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the PHY operating mode information advertised to neighboring nodes. By default the PhyModeId list

contains the first fifteen PhyModeId listed in radio multi-PHY configuration, MAC mode switch is disabled.

Definition at line 546 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_pom_ie

sl_status_t sl_wisun_get_pom_ie (uint8_t *phy_mode_id_count, uint8_t *phy_mode_ids, uint8_t *is_mdr_command_capable)

Get the POM-IE configuration.

Parameters

[out] phy_mode_id_count Number of PhyModeId retrieved

Wi-SUN Stack API

374/602

[out] phy_mode_ids List of phy_mode_ id_count PhyModeId. Caller must allocate space for at least

SL_WISUN_MAX_PHY_MODE_ID_COUNT entries.

[out] is_mdr_command_capable Set to 1 if the device supports MAC mode switch, 0 otherwise

Returns

SL_STATUS_OK if successful, an error code otherwise

This function retrieves the PHY operating mode information advertised to neighboring nodes.

Definition at line 563 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_stack_version

sl_status_t sl_wisun_get_stack_version (uint8_t *major, uint8_t *minor, uint8_t *patch, uint16_t *build)

Get the Wi-SUN stack version.

Parameters

[out] major Wi-SUN stack version major

[out] minor Wi-SUN stack version minor

[out] patch Wi-SUN stack version patch

[out] build Build number, set to 0 in public versions

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 576 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_lfn_parameters

sl_status_t sl_wisun_set_lfn_parameters (const sl_wisun_lfn_params_t *params)

Configure the LFN parameter set.

Parameters

[in] params Parameter set to use

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the LFN parameter set. These parameters impact connection time, bandwidth usage, power consumption,

and latency. Use of a predefined parameter set is recommended (Predefined LFN parameter sets). The function must be

called before initiating a connection.

Definition at line 593 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_lfn_support

sl_status_t sl_wisun_set_lfn_support (uint8_t lfn_limit)

Set the maximum number of LFN children.

Wi-SUN Stack API

375/602

Parameters

[in] lfn_limit Maximum number of LFN children [0, 10]

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets the maximum number of LFN children this node can parent.

Definition at line 604 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_pti_state

sl_status_t sl_wisun_set_pti_state (bool pti_state)

Set the PTI state.

Parameters

[in] pti_state PTI state

true: PTI is enabled

false: PTI is disabled

Returns

SL_STATUS_OK if successful, an error code otherwise

This function sets Packet Trace Interface (PTI) state. PTI is enabled by default.

Definition at line 617 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_trigger_frame

sl_status_t sl_wisun_trigger_frame (sl_wisun_frame_type_t frame_type)

Trigger the transmission of a frame (FAN Discovery, RPL).

Parameters

[in] frame_type Type of frame

Returns

SL_STATUS_OK if successful, an error code otherwise

No frame is transmitted if the associated Trickle timer is not started, if exists.

Definition at line 628 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_set_security_state

sl_status_t sl_wisun_set_security_state (uint32_t security_state)

Set the security state.

Parameters

Wi-SUN Stack API

376/602

[in] security_state Security state

0: Security is disabled

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 637 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_network_info

sl_status_t sl_wisun_get_network_info (sl_wisun_network_info_t *network_info)

Get the Wi-SUN network information.

Parameters

[out] network_info Pointer to network information

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 645 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_rpl_info

sl_status_t sl_wisun_get_rpl_info (sl_wisun_rpl_info_t *rpl_info)

Get RPL information.

Parameters

[out] rpl_info Pointer to RPL information

Returns

SL_STATUS_OK if successful, an error code otherwise

Definition at line 653 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

sl_wisun_get_excluded_channel_mask

sl_status_t sl_wisun_get_excluded_channel_mask (sl_wisun_channel_mask_type_t type, sl_wisun_channel_mask_t
*channel_mask, uint8_t *channel_count)

Get the mask of channels excluded from channel plan.

Parameters

[in] type Type of channel mask

[out] channel_mask Pointer to mask

[out] channel_count Number of channels in mask

Returns

Wi-SUN Stack API

377/602

SL_STATUS_OK if successful, an error code otherwise

Definition at line 663 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_api.h

Wi-SUN API events

378/602

Wi-SUN API events

Wi-SUN API events

Modules

sl_wisun_evt_t

sl_wisun_msg_connected_ ind

sl_wisun_msg_network_update_ ind

sl_wisun_msg_socket_data_ ind

sl_wisun_msg_socket_data_available_ ind

sl_wisun_msg_socket_connected_ ind

sl_wisun_msg_socket_connection_available_ ind

sl_wisun_msg_socket_closing_ ind

sl_wisun_msg_disconnected_ ind

sl_wisun_msg_connection_lost_ ind

sl_wisun_msg_socket_data_sent_ ind

sl_wisun_msg_error_ ind

sl_wisun_msg_ join_state_ ind

sl_wisun_msg_regulation_tx_level_ ind

sl_wisun_mode_switch_fallback_level_ ind

sl_wisun_msg_rx_frame_ ind

sl_wisun_msg_lfn_wake_up_ ind

sl_wisun_msg_lfn_multicast_reg_ ind

Enumerations

Wi-SUN API events

379/602

enum sl_wisun_msg_ind_id_t {

SL_WISUN_MSG_CONNECTED_IND_ID = 0�81
SL_WISUN_MSG_SOCKET_DATA_IND_ID = 0�82
SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID = 0�83
SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID = 0�84
SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID = 0�85
SL_WISUN_MSG_SOCKET_CLOSING_IND_ID = 0�86
SL_WISUN_MSG_DISCONNECTED_IND_ID = 0�87
SL_WISUN_MSG_CONNECTION_LOST_IND_ID = 0�88
SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID = 0�89
SL_WISUN_MSG_ERROR_IND_ID = 0�8A
SL_WISUN_MSG_JOIN_STATE_IND_ID = 0�8B
SL_WISUN_MSG_NETWORK_UPDATE_IND_ID = 0�8C
SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID = 0�8D
SL_WISUN_MSG_MODE_SWITCH_FALLBACK_IND_ID = 0�8E
SL_WISUN_MSG_RX_FRAME_IND_ID = 0�8F
SL_WISUN_MSG_LFN_WAKE_UP_IND_ID = 0�90
SL_WISUN_MSG_LFN_MULTICAST_REG_IND_ID = 0�91

}
Wi-SUN Message API indication IDs.

Enumeration Documentation

sl_wisun_msg_ind_id_t

sl_wisun_msg_ind_id_t

Wi-SUN Message API indication IDs.

Enumerator

SL_WISUN_MSG_CONNECTED_IND_ID This indication is sent when a connection request has been

completed.

SL_WISUN_MSG_SOCKET_DATA_IND_ID This indication is sent when data has been received on a

socket.

SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID This indication is sent when there is buffered data available

on a socket.

SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID This indication is sent when a socket connect request has

been completed.

SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID This indication is sent when there is a socket connection

request waiting.

SL_WISUN_MSG_SOCKET_CLOSING_IND_ID This event is sent when a socket is waiting to be closed.

SL_WISUN_MSG_DISCONNECTED_IND_ID This event is sent when a disconnection request has been

completed.

SL_WISUN_MSG_CONNECTION_LOST_IND_ID This event is sent when a connection to Wi-SUN network

has been lost and the device is trying to regain the

connection.

SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID This event is sent when part of the buffered socket data

has been sent.

SL_WISUN_MSG_ERROR_IND_ID This event is sent when an internal stack error has occurred.

SL_WISUN_MSG_JOIN_STATE_IND_ID This event is sent when the join state changes.

SL_WISUN_MSG_NETWORK_UPDATE_IND_ID This event is sent when the network has been updated.

SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID This event is sent when regional regulation transmission

level changes.

SL_WISUN_MSG_MODE_SWITCH_FALLBACK_IND_ID This event is sent when the mode switch is disabled.

Wi-SUN API events

380/602

SL_WISUN_MSG_RX_FRAME_IND_ID This event is sent on frame receptions.

SL_WISUN_MSG_LFN_WAKE_UP_IND_ID This event is sent on LFN Wake Up.

SL_WISUN_MSG_LFN_MULTICAST_REG_IND_ID Indicate a multicast group registration finishes.

Definition at line 43 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_evt_t

381/602

sl_wisun_evt_t

Wi-SUN event definitions.

This structure contains a Wi-SUN API event and its associated data.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common event header.

sl_wisun_msg_con
nected_ind_body_

t

connected
SL_WISUN_MSG_CONNECTED_IND_ID event data

sl_wisun_msg_soc
ket_data_ind_bod

y_t

socket_data
SL_WISUN_MSG_SOCKET_DATA_IND_ID event data

sl_wisun_msg_soc
ket_data_available

_ind_body_t

socket_data_available
SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID event data

sl_wisun_msg_soc
ket_connected_in

d_body_t

socket_connected
SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID event data

sl_wisun_msg_soc
ket_connection_a
vailable_ind_body

_t

socket_connection_available
SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID event data

sl_wisun_msg_soc
ket_closing_ind_b

ody_t

socket_closing
SL_WISUN_MSG_SOCKET_CLOSING_IND_ID event data

sl_wisun_msg_disc
onnected_ind_bo

dy_t

disconnected
SL_WISUN_MSG_DISCONNECTED_IND_ID event data

sl_wisun_msg_con
nection_lost_ind_

body_t

connection_lost
SL_WISUN_MSG_CONNECTION_LOST_IND_ID event data

sl_wisun_msg_soc
ket_data_sent_ind

_body_t

socket_data_sent
SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID event data

sl_wisun_msg_err
or_ind_body_t

error
SL_WISUN_MSG_ERROR_IND_ID event data

sl_wisun_msg_ join
_state_ind_body_t

join_state
SL_WISUN_MSG_JOIN_STATE_IND_ID event data

sl_wisun_msg_net
work_update_ind_

body_t

network_update
SL_WISUN_MSG_NETWORK_UPDATE_IND_ID event data

sl_wisun_msg_reg
ulation_tx_level_in

‑

sl_wisun_evt_t

382/602

d_body_t
regulation_tx_level
SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID event data

sl_wisun_msg_mo
de_switch_fallbac

k_ind_body_t

mode_switch_fallback
SL_WISUN_MSG_MODE_SWITCH_FALLBACK_IND_ID event data

sl_wisun_msg_rx_f
rame_ind_body_t

rx_frame
SL_WISUN_MSG_RX_FRAME_IND_ID event data

sl_wisun_msg_lfn_
wake_up_ind_bod

y_t

lfn_wake_up
SL_WISUN_MSG_LFN_WAKE_UP_IND_ID event data

sl_wisun_msg_lfn_
multicast_reg_ind_

body_t

lfn_multicast_reg
SL_WISUN_MSG_LFN_MULTICAST_REG_IND_ID event data

union
sl_wisun_evt_t::@

0

evt
Event-specific data.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_evt_t::header

Common event header.

This structure contains common information for all events. ID of the event is stored in the sl_wisun_msg_header_t.id field

and is one of the values of sl_wisun_msg_ ind_ id_t. The other fields can be ignored.

Definition at line 568 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

connected

sl_wisun_msg_connected_ind_body_t sl_wisun_evt_t::connected

SL_WISUN_MSG_CONNECTED_IND_ID event data

Definition at line 573 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_data

sl_wisun_msg_socket_data_ind_body_t sl_wisun_evt_t::socket_data

SL_WISUN_MSG_SOCKET_DATA_IND_ID event data

Definition at line 575 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_data_available

sl_wisun_evt_t

383/602

sl_wisun_msg_socket_data_available_ind_body_t sl_wisun_evt_t::socket_data_available

SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID event data

Definition at line 577 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_connected

sl_wisun_msg_socket_connected_ind_body_t sl_wisun_evt_t::socket_connected

SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID event data

Definition at line 579 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_connection_available

sl_wisun_msg_socket_connection_available_ind_body_t sl_wisun_evt_t::socket_connection_available

SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID event data

Definition at line 581 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_closing

sl_wisun_msg_socket_closing_ind_body_t sl_wisun_evt_t::socket_closing

SL_WISUN_MSG_SOCKET_CLOSING_IND_ID event data

Definition at line 583 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

disconnected

sl_wisun_msg_disconnected_ind_body_t sl_wisun_evt_t::disconnected

SL_WISUN_MSG_DISCONNECTED_IND_ID event data

Definition at line 585 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

connection_lost

sl_wisun_msg_connection_lost_ind_body_t sl_wisun_evt_t::connection_lost

SL_WISUN_MSG_CONNECTION_LOST_IND_ID event data

Definition at line 587 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_data_sent

sl_wisun_evt_t

384/602

sl_wisun_msg_socket_data_sent_ind_body_t sl_wisun_evt_t::socket_data_sent

SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID event data

Definition at line 589 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

error

sl_wisun_msg_error_ind_body_t sl_wisun_evt_t::error

SL_WISUN_MSG_ERROR_IND_ID event data

Definition at line 591 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

join_state

sl_wisun_msg_ join_state_ind_body_t sl_wisun_evt_t::join_state

SL_WISUN_MSG_JOIN_STATE_IND_ID event data

Definition at line 593 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

network_update

sl_wisun_msg_network_update_ind_body_t sl_wisun_evt_t::network_update

SL_WISUN_MSG_NETWORK_UPDATE_IND_ID event data

Definition at line 595 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

regulation_tx_level

sl_wisun_msg_regulation_tx_level_ind_body_t sl_wisun_evt_t::regulation_tx_level

SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID event data

Definition at line 597 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

mode_switch_fallback

sl_wisun_msg_mode_switch_fallback_ind_body_t sl_wisun_evt_t::mode_switch_fallback

SL_WISUN_MSG_MODE_SWITCH_FALLBACK_IND_ID event data

Definition at line 599 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

rx_frame

sl_wisun_evt_t

385/602

sl_wisun_msg_rx_frame_ind_body_t sl_wisun_evt_t::rx_frame

SL_WISUN_MSG_RX_FRAME_IND_ID event data

Definition at line 601 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

lfn_wake_up

sl_wisun_msg_lfn_wake_up_ind_body_t sl_wisun_evt_t::lfn_wake_up

SL_WISUN_MSG_LFN_WAKE_UP_IND_ID event data

Definition at line 603 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

lfn_multicast_reg

sl_wisun_msg_lfn_multicast_reg_ind_body_t sl_wisun_evt_t::lfn_multicast_reg

SL_WISUN_MSG_LFN_MULTICAST_REG_IND_ID event data

Definition at line 605 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

evt

union sl_wisun_evt_t::@0 sl_wisun_evt_t::evt

Event-specific data.

This structure contains the event-specific data.

Definition at line 606 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_connected_ ind

386/602

sl_wisun_msg_connected_ind

sl_wisun_msg_connected_ind

Modules

sl_wisun_msg_connected_ ind_body_t

sl_wisun_msg_connected_ ind_t

sl_wisun_msg_connected_ ind_body_t

387/602

sl_wisun_msg_connected_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_connected_ind_body_t::status

Status of the indication.

Definition at line 90 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_connected_ ind_t

388/602

sl_wisun_msg_connected_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_con
nected_ind_body_

t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_connected_ind_t::header

Common message header.

Definition at line 98 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_connected_ind_body_t sl_wisun_msg_connected_ind_t::body

Indication message body.

Definition at line 100 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_network_update_ ind

389/602

sl_wisun_msg_network_update_ind

sl_wisun_msg_network_update_ind

Modules

sl_wisun_msg_network_update_ ind_body_t

sl_wisun_msg_network_update_ ind_t

sl_wisun_msg_network_update_ ind_body_t

390/602

sl_wisun_msg_network_update_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t flags
Bit mask indicating the changes.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_network_update_ind_body_t::status

Status of the indication.

Definition at line 115 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

flags

uint32_t sl_wisun_msg_network_update_ind_body_t::flags

Bit mask indicating the changes.

bit SL_WISUN_NETWORK_UPDATE_FLAGS_GLOBAL_IP: Global IP address has changed

bit SL_WISUN_NETWORK_UPDATE_FLAGS_PRIMARY_PARENT: primary parent has changed

bit SL_WISUN_NETWORK_UPDATE_FLAGS_SECONDARY_PARENT: secondary parent has changed

Definition at line 120 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_network_update_ ind_t

391/602

sl_wisun_msg_network_update_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_net
work_update_ind_

body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_network_update_ind_t::header

Common message header.

Definition at line 128 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_network_update_ind_body_t sl_wisun_msg_network_update_ind_t::body

Indication message body.

Definition at line 130 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_ ind

392/602

sl_wisun_msg_socket_data_ind

sl_wisun_msg_socket_data_ind

Modules

sl_wisun_msg_socket_data_ ind_body_t

sl_wisun_msg_socket_data_ ind_t

sl_wisun_msg_socket_data_ ind_body_t

393/602

sl_wisun_msg_socket_data_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

int32_t socket_id
ID of the socket.

in6_addr_t remote_address
IP address of the sender.

uint16_t remote_port
Port number of the sender.

uint16_t data_length
Amount of received data.

uint8_t data
Received data.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_data_ind_body_t::status

Status of the indication.

Definition at line 145 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

int32_t sl_wisun_msg_socket_data_ind_body_t::socket_id

ID of the socket.

Definition at line 147 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

remote_address

in6_addr_t sl_wisun_msg_socket_data_ind_body_t::remote_address

IP address of the sender.

Definition at line 149 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_ ind_body_t

394/602

remote_port

uint16_t sl_wisun_msg_socket_data_ind_body_t::remote_port

Port number of the sender.

Definition at line 151 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

data_length

uint16_t sl_wisun_msg_socket_data_ind_body_t::data_length

Amount of received data.

Definition at line 153 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

data

uint8_t sl_wisun_msg_socket_data_ind_body_t::data[]

Received data.

Definition at line 155 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_ ind_t

395/602

sl_wisun_msg_socket_data_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_data_ind_bod

y_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_data_ind_t::header

Common message header.

Definition at line 163 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_data_ind_body_t sl_wisun_msg_socket_data_ind_t::body

Indication message body.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_available_ ind

396/602

sl_wisun_msg_socket_data_available_ind

sl_wisun_msg_socket_data_available_ind

Modules

sl_wisun_msg_socket_data_available_ ind_body_t

sl_wisun_msg_socket_data_available_ ind_t

sl_wisun_msg_socket_data_available_ ind_body_t

397/602

sl_wisun_msg_socket_data_available_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t socket_id
ID of the socket.

uint16_t data_length
Amount of data that can be read.

uint16_t reserved
Reserved, set to zero.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_data_available_ind_body_t::status

Status of the indication.

Definition at line 180 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

uint32_t sl_wisun_msg_socket_data_available_ind_body_t::socket_id

ID of the socket.

Definition at line 182 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

data_length

uint16_t sl_wisun_msg_socket_data_available_ind_body_t::data_length

Amount of data that can be read.

Definition at line 184 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

reserved

sl_wisun_msg_socket_data_available_ ind_body_t

398/602

uint16_t sl_wisun_msg_socket_data_available_ind_body_t::reserved

Reserved, set to zero.

Definition at line 186 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_available_ ind_t

399/602

sl_wisun_msg_socket_data_available_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_data_available

_ind_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_data_available_ind_t::header

Common message header.

Definition at line 194 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_data_available_ind_body_t sl_wisun_msg_socket_data_available_ind_t::body

Indication message body.

Definition at line 196 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_connected_ ind

400/602

sl_wisun_msg_socket_connected_ind

sl_wisun_msg_socket_connected_ind

Modules

sl_wisun_msg_socket_connected_ ind_body_t

sl_wisun_msg_socket_connected_ ind_t

sl_wisun_msg_socket_connected_ ind_body_t

401/602

sl_wisun_msg_socket_connected_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t socket_id
ID of the socket.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_connected_ind_body_t::status

Status of the indication.

Definition at line 211 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

uint32_t sl_wisun_msg_socket_connected_ind_body_t::socket_id

ID of the socket.

Definition at line 213 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_connected_ ind_t

402/602

sl_wisun_msg_socket_connected_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_connected_in

d_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_connected_ind_t::header

Common message header.

Definition at line 221 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_connected_ind_body_t sl_wisun_msg_socket_connected_ind_t::body

Indication message body.

Definition at line 223 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_connection_available_ ind

403/602

sl_wisun_msg_socket_connection_available_ind

sl_wisun_msg_socket_connection_available_ind

Modules

sl_wisun_msg_socket_connection_available_ ind_body_t

sl_wisun_msg_socket_connection_available_ ind_t

sl_wisun_msg_socket_connection_available_ ind_body_t

404/602

sl_wisun_msg_socket_connection_available_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t socket_id
ID of the socket.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_connection_available_ind_body_t::status

Status of the indication.

Definition at line 238 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

uint32_t sl_wisun_msg_socket_connection_available_ind_body_t::socket_id

ID of the socket.

Definition at line 240 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_connection_available_ ind_t

405/602

sl_wisun_msg_socket_connection_available_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_connection_a
vailable_ind_body

_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_connection_available_ind_t::header

Common message header.

Definition at line 248 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_connection_available_ind_body_t sl_wisun_msg_socket_connection_available_ind_t::body

Indication message body.

Definition at line 250 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_closing_ ind

406/602

sl_wisun_msg_socket_closing_ind

sl_wisun_msg_socket_closing_ind

Modules

sl_wisun_msg_socket_closing_ ind_body_t

sl_wisun_msg_socket_closing_ ind_t

sl_wisun_msg_socket_closing_ ind_body_t

407/602

sl_wisun_msg_socket_closing_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t socket_id
ID of the socket.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_closing_ind_body_t::status

Status of the indication.

Definition at line 265 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

uint32_t sl_wisun_msg_socket_closing_ind_body_t::socket_id

ID of the socket.

Definition at line 267 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_closing_ ind_t

408/602

sl_wisun_msg_socket_closing_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_closing_ind_b

ody_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_closing_ind_t::header

Common message header.

Definition at line 275 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_closing_ind_body_t sl_wisun_msg_socket_closing_ind_t::body

Indication message body.

Definition at line 277 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_disconnected_ ind

409/602

sl_wisun_msg_disconnected_ind

sl_wisun_msg_disconnected_ind

Modules

sl_wisun_msg_disconnected_ ind_body_t

sl_wisun_msg_disconnected_ ind_t

sl_wisun_msg_disconnected_ ind_body_t

410/602

sl_wisun_msg_disconnected_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_disconnected_ind_body_t::status

Status of the indication.

Definition at line 292 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_disconnected_ ind_t

411/602

sl_wisun_msg_disconnected_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_disc
onnected_ind_bo

dy_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_disconnected_ind_t::header

Common message header.

Definition at line 300 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_disconnected_ind_body_t sl_wisun_msg_disconnected_ind_t::body

Indication message body.

Definition at line 302 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_connection_lost_ ind

412/602

sl_wisun_msg_connection_lost_ind

sl_wisun_msg_connection_lost_ind

Modules

sl_wisun_msg_connection_lost_ ind_body_t

sl_wisun_msg_connection_lost_ ind_t

sl_wisun_msg_connection_lost_ ind_body_t

413/602

sl_wisun_msg_connection_lost_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_connection_lost_ind_body_t::status

Status of the indication.

Definition at line 317 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_connection_lost_ ind_t

414/602

sl_wisun_msg_connection_lost_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_con
nection_lost_ind_

body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_connection_lost_ind_t::header

Common message header.

Definition at line 325 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_connection_lost_ind_body_t sl_wisun_msg_connection_lost_ind_t::body

Indication message body.

Definition at line 327 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_sent_ ind

415/602

sl_wisun_msg_socket_data_sent_ind

sl_wisun_msg_socket_data_sent_ind

Modules

sl_wisun_msg_socket_data_sent_ ind_body_t

sl_wisun_msg_socket_data_sent_ ind_t

sl_wisun_msg_socket_data_sent_ ind_body_t

416/602

sl_wisun_msg_socket_data_sent_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

int32_t socket_id
ID of the socket.

uint32_t socket_space_left
Amount of free space in the transmission buffer.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_socket_data_sent_ind_body_t::status

Status of the indication.

Definition at line 342 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_id

int32_t sl_wisun_msg_socket_data_sent_ind_body_t::socket_id

ID of the socket.

Definition at line 344 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

socket_space_left

uint32_t sl_wisun_msg_socket_data_sent_ind_body_t::socket_space_left

Amount of free space in the transmission buffer.

Definition at line 346 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_socket_data_sent_ ind_t

417/602

sl_wisun_msg_socket_data_sent_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_soc
ket_data_sent_ind

_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_socket_data_sent_ind_t::header

Common message header.

Definition at line 354 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_socket_data_sent_ind_body_t sl_wisun_msg_socket_data_sent_ind_t::body

Indication message body.

Definition at line 356 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_error_ ind

418/602

sl_wisun_msg_error_ind

sl_wisun_msg_error_ind

Modules

sl_wisun_msg_error_ ind_body_t

sl_wisun_msg_error_ ind_t

sl_wisun_msg_error_ ind_body_t

419/602

sl_wisun_msg_error_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_error_ind_body_t::status

Status of the indication.

Definition at line 371 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_error_ ind_t

420/602

sl_wisun_msg_error_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_err
or_ind_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_error_ind_t::header

Common message header.

Definition at line 379 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_error_ind_body_t sl_wisun_msg_error_ind_t::body

Indication message body.

Definition at line 381 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_ join_state_ ind

421/602

sl_wisun_msg_ join_state_ind

sl_wisun_msg_ join_state_ind

Modules

sl_wisun_msg_ join_state_ ind_body_t

sl_wisun_msg_ join_state_ ind_t

sl_wisun_msg_ join_state_ ind_body_t

422/602

sl_wisun_msg_ join_state_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t join_state
Jo in state .

Public Attribute Documentation

status

uint32_t sl_wisun_msg_ join_state_ind_body_t::status

Status of the indication.

Definition at line 396 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

join_state

uint32_t sl_wisun_msg_ join_state_ind_body_t::join_state

Join state.

Definition at line 398 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_ join_state_ ind_t

423/602

sl_wisun_msg_ join_state_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_ join
_state_ind_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_ join_state_ind_t::header

Common message header.

Definition at line 406 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_ join_state_ind_body_t sl_wisun_msg_ join_state_ind_t::body

Indication message body.

Definition at line 408 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_regulation_tx_level_ ind

424/602

sl_wisun_msg_regulation_tx_level_ind

sl_wisun_msg_regulation_tx_level_ind

Modules

sl_wisun_msg_regulation_tx_level_ ind_body_t

sl_wisun_msg_regulation_tx_level_ ind_t

sl_wisun_msg_regulation_tx_level_ ind_body_t

425/602

sl_wisun_msg_regulation_tx_level_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t tx_duration_ms
Sum of transmission durations during last hour in milliseconds.

uint8_t tx_level
Transmission level, one value of sl_wisun_regulation_tx_level_t.

uint8_t reserved
Reserved.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_regulation_tx_level_ind_body_t::status

Status of the indication.

Definition at line 423 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

tx_duration_ms

uint32_t sl_wisun_msg_regulation_tx_level_ind_body_t::tx_duration_ms

Sum of transmission durations during last hour in milliseconds.

Definition at line 425 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

tx_level

uint8_t sl_wisun_msg_regulation_tx_level_ind_body_t::tx_level

Transmission level, one value of sl_wisun_regulation_tx_level_t.

Definition at line 427 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

reserved

sl_wisun_msg_regulation_tx_level_ ind_body_t

426/602

uint8_t sl_wisun_msg_regulation_tx_level_ind_body_t::reserved[3]

Reserved.

Definition at line 429 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_regulation_tx_level_ ind_t

427/602

sl_wisun_msg_regulation_tx_level_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_reg
ulation_tx_level_in

d_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_regulation_tx_level_ind_t::header

Common message header.

Definition at line 437 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_regulation_tx_level_ind_body_t sl_wisun_msg_regulation_tx_level_ind_t::body

Indication message body.

Definition at line 439 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_mode_switch_fallback_level_ ind

428/602

sl_wisun_mode_switch_fallback_level_ind

sl_wisun_mode_switch_fallback_level_ind

Modules

sl_wisun_msg_mode_switch_fallback_ ind_body_t

sl_wisun_msg_mode_switch_fallback_ ind_t

sl_wisun_msg_mode_switch_fallback_ ind_body_t

429/602

sl_wisun_msg_mode_switch_fallback_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

sl_wisun_mac_add
ress_t

address
MAC address of the peer triggering the fallback.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_mode_switch_fallback_ind_body_t::status

Status of the indication.

Definition at line 454 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

address

sl_wisun_mac_address_t sl_wisun_msg_mode_switch_fallback_ind_body_t::address

MAC address of the peer triggering the fallback.

Definition at line 456 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_mode_switch_fallback_ ind_t

430/602

sl_wisun_msg_mode_switch_fallback_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_mo
de_switch_fallbac

k_ind_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_mode_switch_fallback_ind_t::header

Common message header.

Definition at line 464 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_mode_switch_fallback_ind_body_t sl_wisun_msg_mode_switch_fallback_ind_t::body

Indication message body.

Definition at line 466 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_rx_frame_ ind

431/602

sl_wisun_msg_rx_frame_ind

sl_wisun_msg_rx_frame_ind

Modules

sl_wisun_msg_rx_frame_ ind_body_t

sl_wisun_msg_rx_frame_ ind_t

sl_wisun_msg_rx_frame_ ind_body_t

432/602

sl_wisun_msg_rx_frame_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint64_t timestamp_us
Timestamp in microseconds.

uint16_t length
Frame length in bytes.

uint8_t frame
Received frame .

Public Attribute Documentation

status

uint32_t sl_wisun_msg_rx_frame_ind_body_t::status

Status of the indication.

Definition at line 481 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

timestamp_us

uint64_t sl_wisun_msg_rx_frame_ind_body_t::timestamp_us

Timestamp in microseconds.

Definition at line 483 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

length

uint16_t sl_wisun_msg_rx_frame_ind_body_t::length

Frame length in bytes.

Definition at line 485 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

frame

sl_wisun_msg_rx_frame_ ind_body_t

433/602

uint8_t sl_wisun_msg_rx_frame_ind_body_t::frame[]

Received frame.

Definition at line 487 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_rx_frame_ ind_t

434/602

sl_wisun_msg_rx_frame_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_rx_f
rame_ind_body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_rx_frame_ind_t::header

Common message header.

Definition at line 495 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_rx_frame_ind_body_t sl_wisun_msg_rx_frame_ind_t::body

Indication message body.

Definition at line 497 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_lfn_wake_up_ ind

435/602

sl_wisun_msg_lfn_wake_up_ind

sl_wisun_msg_lfn_wake_up_ind

Modules

sl_wisun_msg_lfn_wake_up_ ind_body_t

sl_wisun_msg_lfn_wake_up_ ind_t

sl_wisun_msg_lfn_wake_up_ ind_body_t

436/602

sl_wisun_msg_lfn_wake_up_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

uint32_t wup_duration_us
Expected wake-up duration in microseconds.

uint64_t next_wup_us
Expected time to next wake-up in microseconds.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_lfn_wake_up_ind_body_t::status

Status of the indication.

Definition at line 512 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

wup_duration_us

uint32_t sl_wisun_msg_lfn_wake_up_ind_body_t::wup_duration_us

Expected wake-up duration in microseconds.

Definition at line 514 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

next_wup_us

uint64_t sl_wisun_msg_lfn_wake_up_ind_body_t::next_wup_us

Expected time to next wake-up in microseconds.

Definition at line 516 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_lfn_wake_up_ ind_t

437/602

sl_wisun_msg_lfn_wake_up_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_lfn_
wake_up_ind_bod

y_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_lfn_wake_up_ind_t::header

Common message header.

Definition at line 524 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_lfn_wake_up_ind_body_t sl_wisun_msg_lfn_wake_up_ind_t::body

Indication message body.

Definition at line 526 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_lfn_multicast_reg_ ind

438/602

sl_wisun_msg_lfn_multicast_reg_ind

sl_wisun_msg_lfn_multicast_reg_ind

Modules

sl_wisun_msg_lfn_multicast_reg_ ind_body_t

sl_wisun_msg_lfn_multicast_reg_ ind_t

sl_wisun_msg_lfn_multicast_reg_ ind_body_t

439/602

sl_wisun_msg_lfn_multicast_reg_ind_body_t

Indication message body.

Public Attributes

uint32_t status
Status of the indication.

in6_addr_t ip_address
Registered multicast IP address.

Public Attribute Documentation

status

uint32_t sl_wisun_msg_lfn_multicast_reg_ind_body_t::status

Status of the indication.

Definition at line 541 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

ip_address

in6_addr_t sl_wisun_msg_lfn_multicast_reg_ind_body_t::ip_address

Registered multicast IP address.

Definition at line 543 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

sl_wisun_msg_lfn_multicast_reg_ ind_t

440/602

sl_wisun_msg_lfn_multicast_reg_ind_t

Indication message.

Public Attributes

sl_wisun_msg_hea
der_t

header
Common message header.

sl_wisun_msg_lfn_
multicast_reg_ind_

body_t

body
Indication message body.

Public Attribute Documentation

header

sl_wisun_msg_header_t sl_wisun_msg_lfn_multicast_reg_ind_t::header

Common message header.

Definition at line 551 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

body

sl_wisun_msg_lfn_multicast_reg_ind_body_t sl_wisun_msg_lfn_multicast_reg_ind_t::body

Indication message body.

Definition at line 553 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_events.h

Wi-SUN API type definitions

441/602

Wi-SUN API type definitions

Wi-SUN API type definitions

Modules

sl_wisun_msg_header_t

sl_wisun_statistics_phy_t

sl_wisun_statistics_mac_t

sl_wisun_statistics_fhss_t

sl_wisun_statistics_wisun_t

sl_wisun_statistics_network_t

sl_wisun_statistics_arib_regulation_t

sl_wisun_statistics_regulation_t

sl_wisun_statistics_heap_t

sl_wisun_statistics_t

sl_wisun_phy_config_fan10_t

sl_wisun_phy_config_fan11_t

sl_wisun_phy_config_explicit_t

sl_wisun_phy_config_ ids_t

sl_wisun_phy_config_custom_fsk_t

sl_wisun_phy_config_custom_ofdm_t

sl_wisun_phy_config_custom_oqpsk_t

sl_wisun_phy_config_t

sl_wisun_mac_address_t

sl_wisun_channel_mask_t

sl_wisun_socket_option_event_mode_t

sl_wisun_socket_option_multicast_group_t

sl_wisun_socket_option_send_buffer_limit_t

sl_wisun_socket_option_edfe_mode_t

sl_wisun_socket_option_unicast_hop_limit

sl_wisun_socket_option_multicast_hop_limit

sl_wisun_socket_option_data_t

Wi-SUN API type definitions

442/602

sl_wisun_neighbor_ info_t

sl_wisun_trace_group_config_t

sl_wisun_network_ info_t

sl_wisun_rpl_ info_t

sl_wisun_trickle_params_t

sl_wisun_params_discovery

sl_wisun_params_eapol

sl_wisun_params_configuration

sl_wisun_params_rpl

sl_wisun_params_mpl

sl_wisun_params_misc

sl_wisun_connection_params_t

sl_wisun_lfn_params_connection_t

sl_wisun_lfn_params_data_layer_t

sl_wisun_lfn_params_network_t

sl_wisun_lfn_params_power_t

sl_wisun_lfn_params_t

Predefined FFN parameter sets

Predefined LFN parameter sets

Enumerations

enum sl_wisun_device_type_t {

SL_WISUN_ROUTER = 0
SL_WISUN_LFN = 1
SL_WISUN_BORDER_ROUTER = 2

}
Enumerations for device type .

enum sl_wisun_network_size_t {

SL_WISUN_NETWORK_SIZE_AUTOMATIC = 0
SL_WISUN_NETWORK_SIZE_SMALL = 1
SL_WISUN_NETWORK_SIZE_MEDIUM = 2
SL_WISUN_NETWORK_SIZE_LARGE = 3
SL_WISUN_NETWORK_SIZE_TEST = 4
SL_WISUN_NETWORK_SIZE_CERTIFICATION = 5

}
Enumerations for network size .

Wi-SUN API type definitions

443/602

enum sl_wisun_ip_address_type_t {

SL_WISUN_IP_ADDRESS_TYPE_LINK_LOCAL = 0
SL_WISUN_IP_ADDRESS_TYPE_GLOBAL = 1
SL_WISUN_IP_ADDRESS_TYPE_BORDER_ROUTER = 2
SL_WISUN_IP_ADDRESS_TYPE_PRIMARY_PARENT = 3
SL_WISUN_IP_ADDRESS_TYPE_SECONDARY_PARENT = 4

}
Enumerations for IP address type .

enum sl_wisun_certificate_option_t {

SL_WISUN_CERTIFICATE_OPTION_NONE = 0
SL_WISUN_CERTIFICATE_OPTION_APPEND = 1
SL_WISUN_CERTIFICATE_OPTION_IS_REF = 2
SL_WISUN_CERTIFICATE_OPTION_HAS_KEY = 4

}
Enumerations for certificate options.

enum sl_wisun_private_key_option_t {

SL_WISUN_PRIVATE_KEY_OPTION_NONE = 0
SL_WISUN_PRIVATE_KEY_OPTION_IS_REF = 1

}
Enumerations for private key options.

enum sl_wisun_statistics_type_t {

SL_WISUN_STATISTICS_TYPE_PHY = 0
SL_WISUN_STATISTICS_TYPE_MAC = 1
SL_WISUN_STATISTICS_TYPE_FHSS = 2
SL_WISUN_STATISTICS_TYPE_WISUN = 3
SL_WISUN_STATISTICS_TYPE_NETWORK = 4
SL_WISUN_STATISTICS_TYPE_REGULATION = 5
SL_WISUN_STATISTICS_TYPE_HEAP = 6

}
Enumerations for statistics type .

enum sl_wisun_regulatory_domain_t {

SL_WISUN_REGULATORY_DOMAIN_WW = 0
SL_WISUN_REGULATORY_DOMAIN_NA = 1
SL_WISUN_REGULATORY_DOMAIN_JP = 2
SL_WISUN_REGULATORY_DOMAIN_EU = 3
SL_WISUN_REGULATORY_DOMAIN_CN = 4
SL_WISUN_REGULATORY_DOMAIN_IN = 5
SL_WISUN_REGULATORY_DOMAIN_MX = 6
SL_WISUN_REGULATORY_DOMAIN_BZ = 7
SL_WISUN_REGULATORY_DOMAIN_AZ = 8
SL_WISUN_REGULATORY_DOMAIN_NZ = 8
SL_WISUN_REGULATORY_DOMAIN_KR = 9
SL_WISUN_REGULATORY_DOMAIN_PH = 10
SL_WISUN_REGULATORY_DOMAIN_MY = 11
SL_WISUN_REGULATORY_DOMAIN_HK = 12
SL_WISUN_REGULATORY_DOMAIN_SG = 13
SL_WISUN_REGULATORY_DOMAIN_TH = 14
SL_WISUN_REGULATORY_DOMAIN_VN = 15
SL_WISUN_REGULATORY_DOMAIN_APP = 255

}
Enumerations for regulatory domain.

Wi-SUN API type definitions

444/602

enum sl_wisun_operating_class_t {

SL_WISUN_OPERATING_CLASS_1 = 1
SL_WISUN_OPERATING_CLASS_2 = 2
SL_WISUN_OPERATING_CLASS_3 = 3
SL_WISUN_OPERATING_CLASS_4 = 4
SL_WISUN_OPERATING_CLASS_5 = 5
SL_WISUN_OPERATING_CLASS_APP = 255

}
Enumerations for operating class.

enum sl_wisun_operating_mode_t {

SL_WISUN_OPERATING_MODE_1A = 0�1a
SL_WISUN_OPERATING_MODE_1B = 0�1b
SL_WISUN_OPERATING_MODE_2A = 0�2a
SL_WISUN_OPERATING_MODE_2B = 0�2b
SL_WISUN_OPERATING_MODE_3 = 0�03
SL_WISUN_OPERATING_MODE_4A = 0�4a
SL_WISUN_OPERATING_MODE_4B = 0�4b
SL_WISUN_OPERATING_MODE_5 = 0�05

}
Enumerations for operating mode .

enum sl_wisun_multicast_group_action_t {

SL_WISUN_MULTICAST_GROUP_ACTION_JOIN = 0
SL_WISUN_MULTICAST_GROUP_ACTION_LEAVE = 1

}
Enumerations for multicast group action.

enum sl_wisun_channel_spacing_t {

SL_WISUN_CHANNEL_SPACING_100KHZ = 0
SL_WISUN_CHANNEL_SPACING_200KHZ = 1
SL_WISUN_CHANNEL_SPACING_400KHZ = 2
SL_WISUN_CHANNEL_SPACING_600KHZ = 3
SL_WISUN_CHANNEL_SPACING_250KHZ = 4
SL_WISUN_CHANNEL_SPACING_800KHZ = 5
SL_WISUN_CHANNEL_SPACING_1200KHZ = 6

}
Enumerations for channel spacing.

enum sl_wisun_ join_state_t {

SL_WISUN_JOIN_STATE_DISCONNECTED = 0
SL_WISUN_JOIN_STATE_SELECT_PAN = 1
SL_WISUN_JOIN_STATE_AUTHENTICATE = 2
SL_WISUN_JOIN_STATE_ACQUIRE_PAN_CONFIG = 3
SL_WISUN_JOIN_STATE_CONFIGURE_ROUTING = 4
SL_WISUN_JOIN_STATE_OPERATIONAL = 5
SL_WISUN_JOIN_STATE_PARENT_SELECT = 41
SL_WISUN_JOIN_STATE_DHCP = 42
SL_WISUN_JOIN_STATE_EARO = 43
SL_WISUN_JOIN_STATE_DAO = 44

}
Enumerations for jo in state .

enum sl_wisun_network_update_flags_t {

SL_WISUN_NETWORK_UPDATE_FLAGS_GLOBAL_IP = 0
SL_WISUN_NETWORK_UPDATE_FLAGS_PRIMARY_PARENT = 1
SL_WISUN_NETWORK_UPDATE_FLAGS_SECONDARY_PARENT = 2

}
Enumerations for network update flags.

Wi-SUN API type definitions

445/602

enum sl_wisun_phy_config_type_t {

SL_WISUN_PHY_CONFIG_FAN10 = 0
SL_WISUN_PHY_CONFIG_FAN11 = 1
SL_WISUN_PHY_CONFIG_EXPLICIT = 2
SL_WISUN_PHY_CONFIG_IDS = 3
SL_WISUN_PHY_CONFIG_CUSTOM_FSK = 4
SL_WISUN_PHY_CONFIG_CUSTOM_OFDM = 5
SL_WISUN_PHY_CONFIG_CUSTOM_OQPSK = 6

}
Enumerations for PHY config type .

enum sl_wisun_lfn_profile_t {

SL_WISUN_LFN_PROFILE_TEST = 0
SL_WISUN_LFN_PROFILE_BALANCED = 1
SL_WISUN_LFN_PROFILE_ECO = 2

}
Enumeration for LFN configuration profile .

enum sl_wisun_crc_type_t {

SL_WISUN_NO_CRC = 0
SL_WISUN_2_BYTES_CRC = 1
SL_WISUN_4_BYTES_CRC = 2

}
Enumeration for CRC type .

enum sl_wisun_socket_protocol_t {

SL_WISUN_SOCKET_PROTOCOL_UDP = 0
SL_WISUN_SOCKET_PROTOCOL_TCP = 1
SL_WISUN_SOCKET_PROTOCOL_ICMP = 2

}
Enumerations for socket protoco l Deprecated.

enum sl_wisun_socket_option_t {

SL_WISUN_SOCKET_OPTION_EVENT_MODE = 0
SL_WISUN_SOCKET_OPTION_MULTICAST_GROUP = 1
SL_WISUN_SOCKET_OPTION_SEND_BUFFER_LIMIT = 2
SL_WISUN_SOCKET_OPTION_EDFE_MODE = 3
SL_WISUN_SOCKET_OPTION_UNICAST_HOP_LIMIT = 4
SL_WISUN_SOCKET_OPTION_MULTICAST_HOP_LIMIT = 5

}
Enumerations for socket option Deprecated.

enum sl_wisun_neighbor_type_t {

SL_WISUN_NEIGHBOR_TYPE_PRIMARY_PARENT = 0
SL_WISUN_NEIGHBOR_TYPE_SECONDARY_PARENT = 1
SL_WISUN_NEIGHBOR_TYPE_CHILD = 2

}
Enumeration for RPL neighbor types.

Wi-SUN API type definitions

446/602

enum sl_wisun_trace_group_t {

SL_WISUN_TRACE_GROUP_MAC = 0
SL_WISUN_TRACE_GROUP_NW = 1
SL_WISUN_TRACE_GROUP_LLC = 2
SL_WISUN_TRACE_GROUP_6LO = 3
SL_WISUN_TRACE_GROUP_IPV6 = 4
SL_WISUN_TRACE_GROUP_TCP = 5
SL_WISUN_TRACE_GROUP_UDP = 6
SL_WISUN_TRACE_GROUP_ICMP = 7
SL_WISUN_TRACE_GROUP_DHCP = 8
SL_WISUN_TRACE_GROUP_MPL = 9
SL_WISUN_TRACE_GROUP_DNS = 10
SL_WISUN_TRACE_GROUP_RPL = 11
SL_WISUN_TRACE_GROUP_TRIC = 12
SL_WISUN_TRACE_GROUP_WS = 15
SL_WISUN_TRACE_GROUP_BOOT = 16
SL_WISUN_TRACE_GROUP_WSR = 17
SL_WISUN_TRACE_GROUP_WSBR = 18
SL_WISUN_TRACE_GROUP_SEC = 19
SL_WISUN_TRACE_GROUP_TIME = 20
SL_WISUN_TRACE_GROUP_NEIGH = 21
SL_WISUN_TRACE_GROUP_STAT = 22
SL_WISUN_TRACE_GROUP_BUFF = 23
SL_WISUN_TRACE_GROUP_ADDR = 24
SL_WISUN_TRACE_GROUP_MON = 25
SL_WISUN_TRACE_GROUP_SOCK = 26
SL_WISUN_TRACE_GROUP_DENY = 27
SL_WISUN_TRACE_GROUP_ETX = 28
SL_WISUN_TRACE_GROUP_FHSS = 29
SL_WISUN_TRACE_GROUP_ROUT = 30
SL_WISUN_TRACE_GROUP_EVLP = 31
SL_WISUN_TRACE_GROUP_NVM = 32
SL_WISUN_TRACE_GROUP_CRYPTO = 33
SL_WISUN_TRACE_GROUP_RF = 34
Sl_WISUN_TRACE_GROUP_WSIE = 35
SL_WISUN_TRACE_GROUP_CONFIG = 36
SL_WISUN_TRACE_GROUP_TIM_SRV = 37
SL_WISUN_TRACE_GROUP_LFN_TIM = 38
SL_WISUN_TRACE_GROUP_INT = 63
SL_WISUN_TRACE_GROUP_COUNT = 64

}
Enumeration for trace group.

enum sl_wisun_trace_level_t {

SL_WISUN_TRACE_LEVEL_NONE = 0
SL_WISUN_TRACE_LEVEL_ERROR = 1
SL_WISUN_TRACE_LEVEL_WARN = 2
SL_WISUN_TRACE_LEVEL_INFO = 3
SL_WISUN_TRACE_LEVEL_DEBUG = 4

}
Enumerations for trace level.

enum sl_wisun_regulation_t {

SL_WISUN_REGULATION_NONE = 0
SL_WISUN_REGULATION_ARIB = 1

}
Enumerations for regional regulation.

Wi-SUN API type definitions

447/602

enum sl_wisun_mode_switch_mode_t {

SL_WISUN_MODE_SWITCH_DISABLED = 0
SL_WISUN_MODE_SWITCH_ENABLED = 1
SL_WISUN_MODE_SWITCH_DEFAULT = 2

}
Enumeration for Mode Switch mode .

enum sl_wisun_regulation_tx_level_t {

SL_WISUN_REGULATION_TX_LEVEL_LOW = 0
SL_WISUN_REGULATION_TX_LEVEL_WARNING = 1
SL_WISUN_REGULATION_TX_LEVEL_ALERT = 2

}
Enumeration for regional regulation transmission level.

enum sl_wisun_unicast_tx_mode_t {

SL_WISUN_UNICAST_TX_MODE_DEFAULT = 0
SL_WISUN_UNICAST_TX_MODE_SLOT = 1

}
Enumeration for unicast transmission mode .

enum sl_wisun_channel_exclusion_mode_t {

SL_WISUN_CHANNEL_EXCLUSION_MODE_BY_RANGE = 1
SL_WISUN_CHANNEL_EXCLUSION_MODE_BY_MASK = 2

}
Enumeration for channel exlusion modes.

enum sl_wisun_frame_type_t {

SL_WISUN_FRAME_TYPE_PAS = 0
SL_WISUN_FRAME_TYPE_PA = 1
SL_WISUN_FRAME_TYPE_PCS = 2
SL_WISUN_FRAME_TYPE_PC = 3
SL_WISUN_FRAME_TYPE_DIS = 4
SL_WISUN_FRAME_TYPE_DIO = 5

}
Enumeration for types of frame that can be triggered.

enum sl_wisun_channel_mask_type_t {

SL_WISUN_CHANNEL_MASK_TYPE_REGIONAL
SL_WISUN_CHANNEL_MASK_TYPE_ADVERTISED_UNICAST
SL_WISUN_CHANNEL_MASK_TYPE_ADVERTISED_BROADCAST
SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_ASYNC
SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_UNICAST
SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_BROADCAST

}
Enumeration for channel mask types.

Typedefs

typedef
in6_addr_t

sl_wisun_ip_address_t

Variables

const
sl_wisun_mac_add

ress_t

sl_wisun_broadcast_mac
Broadcast MAC address.

Wi-SUN API type definitions

448/602

Macros

#define SL_WISUN_NETWORK_NAME_SIZE 32
Maximum size of the Wi-SUN network name .

#define SL_WISUN_MAC_ADDRESS_SIZE 8
Size of a MAC address.

#define SL_WISUN_CHANNEL_MASK_SIZE 32
Size of a channel mask.

#define SL_WISUN_FILTER_BITFIELD_SIZE ��SL_WISUN_TRACE_GROUP_COUNT + 7� / 8�
Size of the filter bitfield.

#define SL_WISUN_ADVERT_FRAGMENT_DISABLE UINT32_MAX
Maximum fragment duration. Disables advert fragmentation.

#define SL_WISUN_MAX_PHY_MODE_ID_COUNT 15
Maximum number of PhyMode Id allowed in POM-IE.

#define SL_WISUN_CHANNEL_SPACING_100HZ SL_WISUN_CHANNEL_SPACING_100KHZ
Channel spacing 100 kHz for backward compatibility.

#define SL_WISUN_CHANNEL_SPACING_200HZ SL_WISUN_CHANNEL_SPACING_200KHZ
Channel spacing 200 kHz for backward compatibility.

#define SL_WISUN_CHANNEL_SPACING_400HZ SL_WISUN_CHANNEL_SPACING_400KHZ
Channel spacing 400 kHz for backward compatibility.

#define SL_WISUN_CHANNEL_SPACING_600HZ SL_WISUN_CHANNEL_SPACING_600KHZ
Channel spacing 600 kHz for backward compatibility.

#define SL_WISUN_TRACE_THREAD_WISUN "WS"
Thread identifier "Wi-SUN Task".

#define SL_WISUN_TRACE_THREAD_EVENT_TASK "EVT"
Thread identifier "Wi-SUN Event Task".

#define SL_WISUN_TRACE_THREAD_EVENT_LOOP "EVL"
Thread identifier "Wi-SUN Event Loop Task".

#define SL_WISUN_TRACE_THREAD_MAC "MAC"
Thread identifier "Wi-SUN RF Task".

Enumeration Documentation

sl_wisun_device_type_t

sl_wisun_device_type_t

Enumerations for device type.

Enumerator

SL_WISUN_ROUTER FFN Router.

SL_WISUN_LFN LFN Router (experimental, for evaluation purposes only)

SL_WISUN_BORDER_ROUTER Border Router.

Definition at line 58 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

Wi-SUN API type definitions

449/602

sl_wisun_network_size_t

sl_wisun_network_size_t

Enumerations for network size.

Enumerator

SL_WISUN_NETWORK_SIZE_AUTOMATIC Determine the size from PAN advertisements.

SL_WISUN_NETWORK_SIZE_SMALL Small size (less than 100 nodes)

SL_WISUN_NETWORK_SIZE_MEDIUM Medium size (100 to 800 nodes)

SL_WISUN_NETWORK_SIZE_LARGE Large size (800 to 1500 nodes)

SL_WISUN_NETWORK_SIZE_TEST Test network (a few nodes)

SL_WISUN_NETWORK_SIZE_CERTIFICATION Certification configuration.

Definition at line 68 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_ip_address_type_t

sl_wisun_ip_address_type_t

Enumerations for IP address type.

Enumerator

SL_WISUN_IP_ADDRESS_TYPE_LINK_LOCAL Device link-local address.

SL_WISUN_IP_ADDRESS_TYPE_GLOBAL Device global unicast address.

SL_WISUN_IP_ADDRESS_TYPE_BORDER_ROUTER Border router global unicast address.

SL_WISUN_IP_ADDRESS_TYPE_PRIMARY_PARENT Link-local address of the primary parent.

SL_WISUN_IP_ADDRESS_TYPE_SECONDARY_PARENT Link-local address of the secondary parent.

Definition at line 84 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_certificate_option_t

sl_wisun_certificate_option_t

Enumerations for certificate options.

Enumerator

SL_WISUN_CERTIFICATE_OPTION_NONE Empty option.

SL_WISUN_CERTIFICATE_OPTION_APPEND Certificate is appended to a chain.

SL_WISUN_CERTIFICATE_OPTION_IS_REF Certificate data will remain in scope.

SL_WISUN_CERTIFICATE_OPTION_HAS_KEY Certificate has a private key.

Definition at line 98 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_private_key_option_t

sl_wisun_private_key_option_t

Wi-SUN API type definitions

450/602

Enumerations for private key options.

Enumerator

SL_WISUN_PRIVATE_KEY_OPTION_NONE Empty option.

SL_WISUN_PRIVATE_KEY_OPTION_IS_REF Private key data will remain in scope.

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_type_t

sl_wisun_statistics_type_t

Enumerations for statistics type.

Enumerator

SL_WISUN_STATISTICS_TYPE_PHY PHY/RF statistics.

SL_WISUN_STATISTICS_TYPE_MAC MAC statistics.

SL_WISUN_STATISTICS_TYPE_FHSS Frequency hopping statistics.

SL_WISUN_STATISTICS_TYPE_WISUN Wi-SUN statistics.

SL_WISUN_STATISTICS_TYPE_NETWORK 6LoWPAN/IP stack statistics

SL_WISUN_STATISTICS_TYPE_REGULATION Regional regulation.

SL_WISUN_STATISTICS_TYPE_HEAP Heap usage.

Definition at line 118 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_regulatory_domain_t

sl_wisun_regulatory_domain_t

Enumerations for regulatory domain.

Enumerator

SL_WISUN_REGULATORY_DOMAIN_WW World-wide (2.4 GHz)

SL_WISUN_REGULATORY_DOMAIN_NA North America.

SL_WISUN_REGULATORY_DOMAIN_JP Japan.

SL_WISUN_REGULATORY_DOMAIN_EU Europe.

SL_WISUN_REGULATORY_DOMAIN_CN China.

SL_WISUN_REGULATORY_DOMAIN_IN India.

SL_WISUN_REGULATORY_DOMAIN_MX Mexico.

SL_WISUN_REGULATORY_DOMAIN_BZ Brazil.

SL_WISUN_REGULATORY_DOMAIN_AZ Australia.

SL_WISUN_REGULATORY_DOMAIN_NZ New Zealand.

SL_WISUN_REGULATORY_DOMAIN_KR South Korea.

SL_WISUN_REGULATORY_DOMAIN_PH Philippines.

SL_WISUN_REGULATORY_DOMAIN_MY Malaysia.

SL_WISUN_REGULATORY_DOMAIN_HK Hong Kong.

SL_WISUN_REGULATORY_DOMAIN_SG S ingapore.

Wi-SUN API type definitions

451/602

SL_WISUN_REGULATORY_DOMAIN_TH Thailand.

SL_WISUN_REGULATORY_DOMAIN_VN Vietnam.

SL_WISUN_REGULATORY_DOMAIN_APP Application-specific domain.

Definition at line 136 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_operating_class_t

sl_wisun_operating_class_t

Enumerations for operating class.

Enumerator

SL_WISUN_OPERATING_CLASS_1 Operating class# 1.

SL_WISUN_OPERATING_CLASS_2 Operating class# 2.

SL_WISUN_OPERATING_CLASS_3 Operating class# 3.

SL_WISUN_OPERATING_CLASS_4 Operating class# 4.

SL_WISUN_OPERATING_CLASS_5 Operating class# 5.

SL_WISUN_OPERATING_CLASS_APP Application-specific class.

Definition at line 176 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_operating_mode_t

sl_wisun_operating_mode_t

Enumerations for operating mode.

Enumerator

SL_WISUN_OPERATING_MODE_1A Operating mode# 1a.

SL_WISUN_OPERATING_MODE_1B Operating mode# 1b.

SL_WISUN_OPERATING_MODE_2A Operating mode# 2a.

SL_WISUN_OPERATING_MODE_2B Operating mode# 2b.

SL_WISUN_OPERATING_MODE_3 Operating mode# 3.

SL_WISUN_OPERATING_MODE_4A Operating mode# 4a.

SL_WISUN_OPERATING_MODE_4B Operating mode# 4b.

SL_WISUN_OPERATING_MODE_5 Operating mode# 5.

Definition at line 192 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_multicast_group_action_t

sl_wisun_multicast_group_action_t

Enumerations for multicast group action.

Enumerator

SL_WISUN_MULTICAST_GROUP_ACTION_JOIN Join a multicast group.

SL_WISUN_MULTICAST_GROUP_ACTION_LEAVE Leave a multicast group.

Wi-SUN API type definitions

452/602

Definition at line 212 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_channel_spacing_t

sl_wisun_channel_spacing_t

Enumerations for channel spacing.

Enumerator

SL_WISUN_CHANNEL_SPACING_100KHZ 100 kHz

SL_WISUN_CHANNEL_SPACING_200KHZ 200 kHz

SL_WISUN_CHANNEL_SPACING_400KHZ 400 kHz

SL_WISUN_CHANNEL_SPACING_600KHZ 600 kHz

SL_WISUN_CHANNEL_SPACING_250KHZ 250 kHz

SL_WISUN_CHANNEL_SPACING_800KHZ 800 kHz

SL_WISUN_CHANNEL_SPACING_1200KHZ 1200 kHz

Definition at line 220 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_ join_state_t

sl_wisun_ join_state_t

Enumerations for join state.

Enumerator

SL_WISUN_JOIN_STATE_DISCONNECTED Join state 0: Disconnected.

SL_WISUN_JOIN_STATE_SELECT_PAN Join state 1: Select PAN.

SL_WISUN_JOIN_STATE_AUTHENTICATE Join state 2: Authenticate.

SL_WISUN_JOIN_STATE_ACQUIRE_PAN_CONFIG Join state 3: Acquire PAN config.

SL_WISUN_JOIN_STATE_CONFIGURE_ROUTING Join state 4: Configure routing.

SL_WISUN_JOIN_STATE_OPERATIONAL Join state 5: Operational.

SL_WISUN_JOIN_STATE_PARENT_SELECT Join state 4: Preferred parent selection.

SL_WISUN_JOIN_STATE_DHCP Join state 4: DHCP address acquisition.

SL_WISUN_JOIN_STATE_EARO Join state 4: Address registration.

SL_WISUN_JOIN_STATE_DAO Join state 4: DAO registration.

Definition at line 250 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_network_update_flags_t

sl_wisun_network_update_flags_t

Enumerations for network update flags.

Enumerator

SL_WISUN_NETWORK_UPDATE_FLAGS_GLOBAL_IP Global IP modification flag bit.

SL_WISUN_NETWORK_UPDATE_FLAGS_PRIMARY_PARENT Primary Parent modification flag bit.

SL_WISUN_NETWORK_UPDATE_FLAGS_SECONDARY_PARENT Secondary parent modification flag bit.

Wi-SUN API type definitions

453/602

Definition at line 274 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_type_t

sl_wisun_phy_config_type_t

Enumerations for PHY config type.

Enumerator

SL_WISUN_PHY_CONFIG_FAN10 FAN1.0 configuration.

SL_WISUN_PHY_CONFIG_FAN11 FAN1.1 configuration.

SL_WISUN_PHY_CONFIG_EXPLICIT Explicit configuration.

SL_WISUN_PHY_CONFIG_IDS Specific RAIL channel configuration.

SL_WISUN_PHY_CONFIG_CUSTOM_FSK FSK customization.

SL_WISUN_PHY_CONFIG_CUSTOM_OFDM OFDM customization.

SL_WISUN_PHY_CONFIG_CUSTOM_OQPSK OQPSK customization.

Definition at line 284 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_lfn_profile_t

sl_wisun_lfn_profile_t

Enumeration for LFN configuration profile.

Enumerator

SL_WISUN_LFN_PROFILE_TEST Profile for test usage, best performance but highest power consumption.

SL_WISUN_LFN_PROFILE_BALANCED Profile providing balance between power consumption and performance.

SL_WISUN_LFN_PROFILE_ECO Profile optimized for low power consumption.

Definition at line 302 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_crc_type_t

sl_wisun_crc_type_t

Enumeration for CRC type.

Enumerator

SL_WISUN_NO_CRC No CRC (OFDM and OQPSK only)

SL_WISUN_2_BYTES_CRC 2 bytes CRC

SL_WISUN_4_BYTES_CRC 4 bytes CRC

Definition at line 312 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_protocol_t

sl_wisun_socket_protocol_t

Enumerations for socket protocol Deprecated.

Wi-SUN API type definitions

454/602

Enumerator

SL_WISUN_SOCKET_PROTOCOL_UDP User Datagram Protocol (UDP)

SL_WISUN_SOCKET_PROTOCOL_TCP Transmission Control Protocol (TCP)

SL_WISUN_SOCKET_PROTOCOL_ICMP Internet Control Message Protocol (ICMP)

Definition at line 652 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_t

sl_wisun_socket_option_t

Enumerations for socket option Deprecated.

Enumerator

SL_WISUN_SOCKET_OPTION_EVENT_MODE Option for socket event mode.

SL_WISUN_SOCKET_OPTION_MULTICAST_GROUP Option for multicast group.

SL_WISUN_SOCKET_OPTION_SEND_BUFFER_LIMIT Option for send buffer limit.

SL_WISUN_SOCKET_OPTION_EDFE_MODE Option to enable/disable Extended Directed Frame Exchange

mode.

SL_WISUN_SOCKET_OPTION_UNICAST_HOP_LIMIT Option to set socket unicast hop limit.

SL_WISUN_SOCKET_OPTION_MULTICAST_HOP_LIMIT Option to set socket multicast hop limit.

Definition at line 663 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_neighbor_type_t

sl_wisun_neighbor_type_t

Enumeration for RPL neighbor types.

Enumerator

SL_WISUN_NEIGHBOR_TYPE_PRIMARY_PARENT Primary parent.

SL_WISUN_NEIGHBOR_TYPE_SECONDARY_PARENT Secondary parent.

SL_WISUN_NEIGHBOR_TYPE_CHILD Child.

Definition at line 757 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_trace_group_t

sl_wisun_trace_group_t

Enumeration for trace group.

Enumerator

SL_WISUN_TRACE_GROUP_MAC Mac.

SL_WISUN_TRACE_GROUP_NW Network.

SL_WISUN_TRACE_GROUP_LLC LLC.

SL_WISUN_TRACE_GROUP_6LO 6lowpan

Wi-SUN API type definitions

455/602

SL_WISUN_TRACE_GROUP_IPV6 IPV6.

SL_WISUN_TRACE_GROUP_TCP TCP.

SL_WISUN_TRACE_GROUP_UDP UDP.

SL_WISUN_TRACE_GROUP_ICMP ICMP.

SL_WISUN_TRACE_GROUP_DHCP DHCP.

SL_WISUN_TRACE_GROUP_MPL MPL.

SL_WISUN_TRACE_GROUP_DNS DNS.

SL_WISUN_TRACE_GROUP_RPL RPL.

SL_WISUN_TRACE_GROUP_TRIC Trickle.

SL_WISUN_TRACE_GROUP_WS Wi-SUN Stack.

SL_WISUN_TRACE_GROUP_BOOT Wi-SUN Bootstrap.

SL_WISUN_TRACE_GROUP_WSR Wi-SUN Router.

SL_WISUN_TRACE_GROUP_WSBR Border router.

SL_WISUN_TRACE_GROUP_SEC Security.

SL_WISUN_TRACE_GROUP_TIME Time and timers.

SL_WISUN_TRACE_GROUP_NEIGH Neighbor.

SL_WISUN_TRACE_GROUP_STAT Statistics.

SL_WISUN_TRACE_GROUP_BUFF Dynamic Buffer.

SL_WISUN_TRACE_GROUP_ADDR Address Manipulation.

SL_WISUN_TRACE_GROUP_MON Monitoring.

SL_WISUN_TRACE_GROUP_SOCK Socket.

SL_WISUN_TRACE_GROUP_DENY Deny list.

SL_WISUN_TRACE_GROUP_ETX ETX.

SL_WISUN_TRACE_GROUP_FHSS FHSS.

SL_WISUN_TRACE_GROUP_ROUT Routing table.

SL_WISUN_TRACE_GROUP_EVLP Event loop.

SL_WISUN_TRACE_GROUP_NVM NVM.

SL_WISUN_TRACE_GROUP_CRYPTO Crypto.

SL_WISUN_TRACE_GROUP_RF Wi-SUN RF Driver.

Sl_WISUN_TRACE_GROUP_WSIE Wi-SUN IE.

SL_WISUN_TRACE_GROUP_CONFIG Configuration.

SL_WISUN_TRACE_GROUP_TIM_SRV Timer service.

SL_WISUN_TRACE_GROUP_LFN_TIM LFN timing measurement.

SL_WISUN_TRACE_GROUP_INT Internal usage.

SL_WISUN_TRACE_GROUP_COUNT Max number of trace group in this enum.

Definition at line 815 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_trace_level_t

sl_wisun_trace_level_t

Enumerations for trace level.

Wi-SUN API type definitions

456/602

Enumerator

SL_WISUN_TRACE_LEVEL_NONE No trace.

SL_WISUN_TRACE_LEVEL_ERROR Error only.

SL_WISUN_TRACE_LEVEL_WARN Warning + error.

SL_WISUN_TRACE_LEVEL_INFO Info + warning + error.

SL_WISUN_TRACE_LEVEL_DEBUG Debug + info + warning + error.

Definition at line 868 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_regulation_t

sl_wisun_regulation_t

Enumerations for regional regulation.

Enumerator

SL_WISUN_REGULATION_NONE No regulation.

SL_WISUN_REGULATION_ARIB ARIB, can only be used with JP regulatory domain.

Definition at line 891 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_mode_switch_mode_t

sl_wisun_mode_switch_mode_t

Enumeration for Mode Switch mode.

Enumerator

SL_WISUN_MODE_SWITCH_DISABLED Mode switch is not allowed.

SL_WISUN_MODE_SWITCH_ENABLED Mode switch is allowed for all unicast data frames. Specified PhyModeId is used.

SL_WISUN_MODE_SWITCH_DEFAULT Mode switch is allowed for all unicast data frames. Default PhyModeId is used.

Definition at line 899 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_regulation_tx_level_t

sl_wisun_regulation_tx_level_t

Enumeration for regional regulation transmission level.

Thresholds are define with sl_wisun_set_regulation_tx_thresholds.

Enumerator

SL_WISUN_REGULATION_TX_LEVEL_LOW Transmission duration is compliant with regional regulation.

SL_WISUN_REGULATION_TX_LEVEL_WARNING Transmission duration is above warning threshold.

SL_WISUN_REGULATION_TX_LEVEL_ALERT Transmission duration is above alert threshold.

Definition at line 910 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_unicast_tx_mode_t

Wi-SUN API type definitions

457/602

sl_wisun_unicast_tx_mode_t

Enumeration for unicast transmission mode.

Enumerator

SL_WISUN_UNICAST_TX_MODE_DEFAULT Default unicast transmission.

SL_WISUN_UNICAST_TX_MODE_SLOT Allow unicast transmission only on a slot.

Definition at line 920 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_channel_exclusion_mode_t

sl_wisun_channel_exclusion_mode_t

Enumeration for channel exlusion modes.

Enumerator

SL_WISUN_CHANNEL_EXCLUSION_MODE_BY_RANGE Channels are excluded by range if possible (3 ranges maximum),

otherwise channels will be excluded by mask.

SL_WISUN_CHANNEL_EXCLUSION_MODE_BY_MASK Channels are excluded by mask.

Definition at line 931 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_frame_type_t

sl_wisun_frame_type_t

Enumeration for types of frame that can be triggered.

Enumerator

SL_WISUN_FRAME_TYPE_PAS

SL_WISUN_FRAME_TYPE_PA

SL_WISUN_FRAME_TYPE_PCS

SL_WISUN_FRAME_TYPE_PC

SL_WISUN_FRAME_TYPE_DIS

SL_WISUN_FRAME_TYPE_DIO

Definition at line 940 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_channel_mask_type_t

sl_wisun_channel_mask_type_t

Enumeration for channel mask types.

Enumerator

SL_WISUN_CHANNEL_MASK_TYPE_REGIONAL Regional excluded channel mask (not advertised)

SL_WISUN_CHANNEL_MASK_TYPE_ADVERTISED_UNICAST Excluded channel mask advertised in us-ie.

SL_WISUN_CHANNEL_MASK_TYPE_ADVERTISED_BROADCAST Excluded channel mask advertised in bs-ie.

Wi-SUN API type definitions

458/602

SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_ASYNC Excluded channel mask applied to async frames.

SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_UNICAST Excluded channel mask applied to unicast frequency

hopping.

SL_WISUN_CHANNEL_MASK_TYPE_EFFECTIVE_BROADCAST Excluded channel mask applied to broadcast frequency

hopping.

Definition at line 1007 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

Typedef Documentation

sl_wisun_ip_address_t

typedef in6_addr_t sl_wisun_ip_address_t

Definition at line 685 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

Variable Documentation

sl_wisun_broadcast_mac

const sl_wisun_mac_address_t sl_wisun_broadcast_mac

Broadcast MAC address.

Definition at line 928 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

Macro Definition Documentation

SL_WISUN_NETWORK_NAME_SIZE

#define SL_WISUN_NETWORK_NAME_SIZE

Value:

32

Maximum size of the Wi-SUN network name.

Definition at line 45 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_MAC_ADDRESS_SIZE

#define SL_WISUN_MAC_ADDRESS_SIZE

Value:

8

S ize of a MAC address.

Definition at line 47 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

Wi-SUN API type definitions

459/602

SL_WISUN_CHANNEL_MASK_SIZE

#define SL_WISUN_CHANNEL_MASK_SIZE

Value:

32

S ize of a channel mask.

Definition at line 49 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_FILTER_BITFIELD_SIZE

#define SL_WISUN_FILTER_BITFIELD_SIZE

Value:

��SL_WISUN_TRACE_GROUP_COUNT + 7� / 8�

S ize of the filter bitfield.

Definition at line 51 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_ADVERT_FRAGMENT_DISABLE

#define SL_WISUN_ADVERT_FRAGMENT_DISABLE

Value:

UINT32_MAX

Maximum fragment duration. Disables advert fragmentation.

Definition at line 53 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_MAX_PHY_MODE_ID_COUNT

#define SL_WISUN_MAX_PHY_MODE_ID_COUNT

Value:

15

Maximum number of PhyModeId allowed in POM-IE.

Definition at line 55 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_CHANNEL_SPACING_100HZ

#define SL_WISUN_CHANNEL_SPACING_100HZ

Value:

Wi-SUN API type definitions

460/602

SL_WISUN_CHANNEL_SPACING_100KHZ

Channel spacing 100 kHz for backward compatibility.

Definition at line 238 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_CHANNEL_SPACING_200HZ

#define SL_WISUN_CHANNEL_SPACING_200HZ

Value:

SL_WISUN_CHANNEL_SPACING_200KHZ

Channel spacing 200 kHz for backward compatibility.

Definition at line 241 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_CHANNEL_SPACING_400HZ

#define SL_WISUN_CHANNEL_SPACING_400HZ

Value:

SL_WISUN_CHANNEL_SPACING_400KHZ

Channel spacing 400 kHz for backward compatibility.

Definition at line 244 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_CHANNEL_SPACING_600HZ

#define SL_WISUN_CHANNEL_SPACING_600HZ

Value:

SL_WISUN_CHANNEL_SPACING_600KHZ

Channel spacing 600 kHz for backward compatibility.

Definition at line 247 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_TRACE_THREAD_WISUN

#define SL_WISUN_TRACE_THREAD_WISUN

Value:

"WS"

Thread identifier "Wi-SUN Task".

Wi-SUN API type definitions

461/602

Definition at line 859 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_TRACE_THREAD_EVENT_TASK

#define SL_WISUN_TRACE_THREAD_EVENT_TASK

Value:

"EVT"

Thread identifier "Wi-SUN Event Task".

Definition at line 861 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_TRACE_THREAD_EVENT_LOOP

#define SL_WISUN_TRACE_THREAD_EVENT_LOOP

Value:

"EVL"

Thread identifier "Wi-SUN Event Loop Task".

Definition at line 863 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

SL_WISUN_TRACE_THREAD_MAC

#define SL_WISUN_TRACE_THREAD_MAC

Value:

"MAC"

Thread identifier "Wi-SUN RF Task".

Definition at line 865 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_msg_header_t

462/602

sl_wisun_msg_header_t

Wi-SUN Message API common header.

Public Attributes

uint16_t length
Total length of the message in bytes, this field included.

uint8_t id
ID (request, confirmation, indication) of the message .

uint8_t info
Processing metadata for the message .

Public Attribute Documentation

length

uint16_t sl_wisun_msg_header_t::length

Total length of the message in bytes, this field included.

Definition at line 325 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

id

uint8_t sl_wisun_msg_header_t::id

ID (request, confirmation, indication) of the message.

Definition at line 327 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

info

uint8_t sl_wisun_msg_header_t::info

Processing metadata for the message.

Definition at line 329 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_phy_t

463/602

sl_wisun_statistics_phy_t

PHY/RF statistics.

Public Attributes

uint32_t crc_fails
Number of CRC failures on reception.

uint32_t tx_timeouts
Number of transmission timeouts.

uint32_t rx_timeouts
Number of reception timeouts.

Public Attribute Documentation

crc_fails

uint32_t sl_wisun_statistics_phy_t::crc_fails

Number of CRC failures on reception.

Definition at line 336 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_timeouts

uint32_t sl_wisun_statistics_phy_t::tx_timeouts

Number of transmission timeouts.

Definition at line 338 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_timeouts

uint32_t sl_wisun_statistics_phy_t::rx_timeouts

Number of reception timeouts.

Definition at line 340 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_mac_t

464/602

sl_wisun_statistics_mac_t

MAC statistics.

Public Attributes

uint16_t tx_queue_size
Current number of frames in the MAC transmission queue .

uint16_t tx_queue_peak
Highest number of frames in the MAC transmission queue .

uint32_t rx_count
Number of successfully received MAC frames.

uint32_t tx_count
Number of transmitted MAC frames.

uint32_t bc_rx_count
Number of successfully received broadcast MAC frames.

uint32_t bc_tx_count
Number of transmitted broadcast MAC frames.

uint32_t rx_drop_count
Number of successfully received MAC frames discarded during processing.

uint32_t tx_bytes
Amount of transmitted MAC data in bytes. FCS is not included.

uint32_t rx_bytes
Amount of successfully received MAC data in bytes. FCS is not included.

uint32_t tx_failed_count
Number of failed MAC transmissions.

uint32_t retry_count
Number of retried MAC transmissions.

uint32_t cca_attempts_count
Number of MAC CCA attempts.

uint32_t failed_cca_count
Number of failed MAC transmissions due to CCA.

uint32_t rx_ms_count
Number of successfully received MAC frames using mode_switch.

uint32_t tx_ms_count
Number of transmitted MAC frames using mode switch.

uint32_t rx_ms_failed_count
Number of failed reception using mode switch (no data after PHR or MDR Command).

uint32_t tx_ms_failed_count
Number of failed MAC frames transmission using mode switch.

sl_wisun_statistics_mac_t

465/602

Public Attribute Documentation

tx_queue_size

uint16_t sl_wisun_statistics_mac_t::tx_queue_size

Current number of frames in the MAC transmission queue.

Definition at line 346 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_queue_peak

uint16_t sl_wisun_statistics_mac_t::tx_queue_peak

Highest number of frames in the MAC transmission queue.

Definition at line 348 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_count

uint32_t sl_wisun_statistics_mac_t::rx_count

Number of successfully received MAC frames.

Definition at line 350 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_count

uint32_t sl_wisun_statistics_mac_t::tx_count

Number of transmitted MAC frames.

Definition at line 352 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

bc_rx_count

uint32_t sl_wisun_statistics_mac_t::bc_rx_count

Number of successfully received broadcast MAC frames.

Definition at line 354 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

bc_tx_count

uint32_t sl_wisun_statistics_mac_t::bc_tx_count

Number of transmitted broadcast MAC frames.

sl_wisun_statistics_mac_t

466/602

Definition at line 356 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_drop_count

uint32_t sl_wisun_statistics_mac_t::rx_drop_count

Number of successfully received MAC frames discarded during processing.

Definition at line 358 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_bytes

uint32_t sl_wisun_statistics_mac_t::tx_bytes

Amount of transmitted MAC data in bytes. FCS is not included.

Definition at line 360 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_bytes

uint32_t sl_wisun_statistics_mac_t::rx_bytes

Amount of successfully received MAC data in bytes. FCS is not included.

Definition at line 362 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_failed_count

uint32_t sl_wisun_statistics_mac_t::tx_failed_count

Number of failed MAC transmissions.

Definition at line 364 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

retry_count

uint32_t sl_wisun_statistics_mac_t::retry_count

Number of retried MAC transmissions.

Definition at line 366 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

cca_attempts_count

uint32_t sl_wisun_statistics_mac_t::cca_attempts_count

Number of MAC CCA attempts.

sl_wisun_statistics_mac_t

467/602

Definition at line 368 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

failed_cca_count

uint32_t sl_wisun_statistics_mac_t::failed_cca_count

Number of failed MAC transmissions due to CCA.

Definition at line 370 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_ms_count

uint32_t sl_wisun_statistics_mac_t::rx_ms_count

Number of successfully received MAC frames using mode_switch.

Definition at line 372 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_ms_count

uint32_t sl_wisun_statistics_mac_t::tx_ms_count

Number of transmitted MAC frames using mode switch.

Definition at line 374 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rx_ms_failed_count

uint32_t sl_wisun_statistics_mac_t::rx_ms_failed_count

Number of failed reception using mode switch (no data after PHR or MDR Command).

Definition at line 376 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

tx_ms_failed_count

uint32_t sl_wisun_statistics_mac_t::tx_ms_failed_count

Number of failed MAC frames transmission using mode switch.

Definition at line 378 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_fhss_t

468/602

sl_wisun_statistics_fhss_t

Frequency hopping statistics.

Public Attributes

int16_t drift_compensation
Estimated clock drift to the parent in microseconds.

uint16_t hop_count
Estimated number of hops to the border router based on RPL rank.

uint16_t synch_interval
Number of seconds since last timing information from the parent.

int16_t prev_avg_synch_fix
Deprecated.

uint32_t synch_lost
Deprecated.

uint32_t unknown_neighbor
Number of times a transmission attempt has failed due to lack of timing information.

Public Attribute Documentation

drift_compensation

int16_t sl_wisun_statistics_fhss_t::drift_compensation

Estimated clock drift to the parent in microseconds.

Definition at line 384 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

hop_count

uint16_t sl_wisun_statistics_fhss_t::hop_count

Estimated number of hops to the border router based on RPL rank.

Definition at line 386 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

synch_interval

uint16_t sl_wisun_statistics_fhss_t::synch_interval

Number of seconds since last timing information from the parent.

Definition at line 388 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_fhss_t

469/602

prev_avg_synch_fix

int16_t sl_wisun_statistics_fhss_t::prev_avg_synch_fix

Deprecated.

Definition at line 390 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

synch_lost

uint32_t sl_wisun_statistics_fhss_t::synch_lost

Deprecated.

Definition at line 392 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

unknown_neighbor

uint32_t sl_wisun_statistics_fhss_t::unknown_neighbor

Number of times a transmission attempt has failed due to lack of timing information.

Definition at line 394 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_wisun_t

470/602

sl_wisun_statistics_wisun_t

Wi-SUN statistics.

Public Attributes

uint32_t pan_control_rx_count
Number of received PAN contro l frames.

uint32_t pan_control_tx_count
Number of completed PAN contro l transmission requests.

Public Attribute Documentation

pan_control_rx_count

uint32_t sl_wisun_statistics_wisun_t::pan_control_rx_count

Number of received PAN control frames.

Definition at line 400 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

pan_control_tx_count

uint32_t sl_wisun_statistics_wisun_t::pan_control_tx_count

Number of completed PAN control transmission requests.

Definition at line 402 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_network_t

471/602

sl_wisun_statistics_network_t

6LoWPAN/IP stack statistics

Public Attributes

uint32_t ip_rx_count
Number of received IP6 packets.

uint32_t ip_tx_count
Number of transmitted IPv6 packets.

uint32_t ip_rx_drop
Number of discarded IPv6 packets during processing.

uint32_t ip_cksum_error
Number of discarded IPv6 packets due to a checksum error.

uint32_t ip_tx_bytes
Amount of transmitted IPv6 data in bytes.

uint32_t ip_rx_bytes
Amount received IPv6 data in bytes.

uint32_t ip_routed_up
Amount of forwarded IPv6 data in bytes.

uint32_t ip_no_route
Number of discarded IPv6 packets due to lack routing information.

uint32_t frag_rx_errors
Number of fragmentation errors in received IPv6 packets.

uint32_t frag_tx_errors
Number of fragmentation errors in transmitted IPv6 packets.

uint32_t rpl_route_routecost_better_change
Number of RPL parent changes due to better route cost.

uint32_t ip_routeloop_detect
Number of RPL packet forwarding errors due to inconsistent routing information.

uint32_t rpl_memory_overflow
Sum of RPL object sizes that have failed allocation in bytes.

uint32_t rpl_parent_tx_fail
Number of failed RPL transmissions to the parent.

uint32_t rpl_unknown_instance
Number of discarded RPL packets due to an unknown DODAG instance .

uint32_t rpl_local_repair
Number of times a local repair procedure has been triggered by the node .

uint32_t rpl_global_repair
Number of times a global repair has been triggered by the border router.

sl_wisun_statistics_network_t

472/602

uint32_t rpl_malformed_message
Number of discarded RPL packets due to malformed content.

uint32_t rpl_time_no_next_hop
Number of seconds without an RPL parent.

uint32_t rpl_total_memory
Amount of memory currently allocated for RPL objects in bytes.

uint32_t buf_alloc
Number of data buffer allocation attempts.

uint32_t buf_headroom_realloc
Number of times data buffers have been resized due to lack of header space .

uint32_t buf_headroom_shuffle
Number of times data buffers have been reorganized due to lack of header space .

uint32_t buf_headroom_fail
Number of times data buffer resizing has failed.

uint16_t etx_1st_parent
ETX of the primary parent.

uint16_t etx_2nd_parent
ETX of the secondary parent.

uint16_t adapt_layer_tx_queue_size
Current number of frames in the adaptation layer transmission queue .

uint16_t adapt_layer_tx_queue_peak
Highest number of frames in the adaptation layer transmission queue .

Public Attribute Documentation

ip_rx_count

uint32_t sl_wisun_statistics_network_t::ip_rx_count

Number of received IP6 packets.

Definition at line 408 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_tx_count

uint32_t sl_wisun_statistics_network_t::ip_tx_count

Number of transmitted IPv6 packets.

Definition at line 410 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_rx_drop

uint32_t sl_wisun_statistics_network_t::ip_rx_drop

sl_wisun_statistics_network_t

473/602

Number of discarded IPv6 packets during processing.

Definition at line 412 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_cksum_error

uint32_t sl_wisun_statistics_network_t::ip_cksum_error

Number of discarded IPv6 packets due to a checksum error.

Definition at line 414 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_tx_bytes

uint32_t sl_wisun_statistics_network_t::ip_tx_bytes

Amount of transmitted IPv6 data in bytes.

Definition at line 416 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_rx_bytes

uint32_t sl_wisun_statistics_network_t::ip_rx_bytes

Amount received IPv6 data in bytes.

Definition at line 418 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_routed_up

uint32_t sl_wisun_statistics_network_t::ip_routed_up

Amount of forwarded IPv6 data in bytes.

Definition at line 420 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_no_route

uint32_t sl_wisun_statistics_network_t::ip_no_route

Number of discarded IPv6 packets due to lack routing information.

Definition at line 422 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

frag_rx_errors

uint32_t sl_wisun_statistics_network_t::frag_rx_errors

sl_wisun_statistics_network_t

474/602

Number of fragmentation errors in received IPv6 packets.

Definition at line 424 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

frag_tx_errors

uint32_t sl_wisun_statistics_network_t::frag_tx_errors

Number of fragmentation errors in transmitted IPv6 packets.

Definition at line 426 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_route_routecost_better_change

uint32_t sl_wisun_statistics_network_t::rpl_route_routecost_better_change

Number of RPL parent changes due to better route cost.

Definition at line 428 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ip_routeloop_detect

uint32_t sl_wisun_statistics_network_t::ip_routeloop_detect

Number of RPL packet forwarding errors due to inconsistent routing information.

Definition at line 430 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_memory_overflow

uint32_t sl_wisun_statistics_network_t::rpl_memory_overflow

Sum of RPL object sizes that have failed allocation in bytes.

Definition at line 432 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_parent_tx_fail

uint32_t sl_wisun_statistics_network_t::rpl_parent_tx_fail

Number of failed RPL transmissions to the parent.

Definition at line 434 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_unknown_instance

uint32_t sl_wisun_statistics_network_t::rpl_unknown_instance

sl_wisun_statistics_network_t

475/602

Number of discarded RPL packets due to an unknown DODAG instance.

Definition at line 436 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_local_repair

uint32_t sl_wisun_statistics_network_t::rpl_local_repair

Number of times a local repair procedure has been triggered by the node.

Definition at line 438 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_global_repair

uint32_t sl_wisun_statistics_network_t::rpl_global_repair

Number of times a global repair has been triggered by the border router.

Definition at line 440 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_malformed_message

uint32_t sl_wisun_statistics_network_t::rpl_malformed_message

Number of discarded RPL packets due to malformed content.

Definition at line 442 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_time_no_next_hop

uint32_t sl_wisun_statistics_network_t::rpl_time_no_next_hop

Number of seconds without an RPL parent.

Definition at line 444 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_total_memory

uint32_t sl_wisun_statistics_network_t::rpl_total_memory

Amount of memory currently allocated for RPL objects in bytes.

Definition at line 446 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

buf_alloc

uint32_t sl_wisun_statistics_network_t::buf_alloc

sl_wisun_statistics_network_t

476/602

Number of data buffer allocation attempts.

Definition at line 448 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

buf_headroom_realloc

uint32_t sl_wisun_statistics_network_t::buf_headroom_realloc

Number of times data buffers have been resized due to lack of header space.

Definition at line 450 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

buf_headroom_shuffle

uint32_t sl_wisun_statistics_network_t::buf_headroom_shuffle

Number of times data buffers have been reorganized due to lack of header space.

Definition at line 452 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

buf_headroom_fail

uint32_t sl_wisun_statistics_network_t::buf_headroom_fail

Number of times data buffer resizing has failed.

Definition at line 454 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

etx_1st_parent

uint16_t sl_wisun_statistics_network_t::etx_1st_parent

ETX of the primary parent.

Definition at line 456 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

etx_2nd_parent

uint16_t sl_wisun_statistics_network_t::etx_2nd_parent

ETX of the secondary parent.

Definition at line 458 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

adapt_layer_tx_queue_size

uint16_t sl_wisun_statistics_network_t::adapt_layer_tx_queue_size

sl_wisun_statistics_network_t

477/602

Current number of frames in the adaptation layer transmission queue.

Definition at line 460 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

adapt_layer_tx_queue_peak

uint16_t sl_wisun_statistics_network_t::adapt_layer_tx_queue_peak

Highest number of frames in the adaptation layer transmission queue.

Definition at line 462 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_arib_regulation_t

478/602

sl_wisun_statistics_arib_regulation_t

ARIB regulation statistics.

Public Attributes

uint32_t tx_duration_ms
Sum of transmission durations during the last hour in milliseconds.

Public Attribute Documentation

tx_duration_ms

uint32_t sl_wisun_statistics_arib_regulation_t::tx_duration_ms

Sum of transmission durations during the last hour in milliseconds.

Definition at line 467 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_regulation_t

479/602

sl_wisun_statistics_regulation_t

Regional regulation statistics.

Public Attributes

sl_wisun_statistics
_arib_regulation_t

arib
ARIB statistics.

Public Attribute Documentation

arib

sl_wisun_statistics_arib_regulation_t sl_wisun_statistics_regulation_t::arib

ARIB statistics.

Definition at line 473 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_heap_t

480/602

sl_wisun_statistics_heap_t

Heap usage statistics.

Public Attributes

uint32_t arena
Heap arena.

uint32_t uordblks
Current heap usage .

Public Attribute Documentation

arena

uint32_t sl_wisun_statistics_heap_t::arena

Heap arena.

Definition at line 479 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

uordblks

uint32_t sl_wisun_statistics_heap_t::uordblks

Current heap usage.

Definition at line 481 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_statistics_t

481/602

sl_wisun_statistics_t

Statistics.

Public Attributes

sl_wisun_statistics
_phy_t

phy
PHY/RF statistics.

sl_wisun_statistics
_mac_t

mac
MAC statistics.

sl_wisun_statistics
_fhss_t

fhss
Frequency hopping statistics.

sl_wisun_statistics
_wisun_t

wisun
Wi-SUN statistics.

sl_wisun_statistics
_network_t

network
6LoWPAN/IP stack statistics

sl_wisun_statistics
_regulation_t

regulation
Regional regulation statistics.

sl_wisun_statistics
_heap_t

heap
Heap usage statistics.

Public Attribute Documentation

phy

sl_wisun_statistics_phy_t sl_wisun_statistics_t::phy

PHY/RF statistics.

Definition at line 487 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac

sl_wisun_statistics_mac_t sl_wisun_statistics_t::mac

MAC statistics.

Definition at line 489 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

fhss

sl_wisun_statistics_fhss_t sl_wisun_statistics_t::fhss

sl_wisun_statistics_t

482/602

Frequency hopping statistics.

Definition at line 491 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

wisun

sl_wisun_statistics_wisun_t sl_wisun_statistics_t::wisun

Wi-SUN statistics.

Definition at line 493 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

network

sl_wisun_statistics_network_t sl_wisun_statistics_t::network

6LoWPAN/IP stack statistics

Definition at line 495 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

regulation

sl_wisun_statistics_regulation_t sl_wisun_statistics_t::regulation

Regional regulation statistics.

Definition at line 497 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

heap

sl_wisun_statistics_heap_t sl_wisun_statistics_t::heap

Heap usage statistics.

Definition at line 499 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_fan10_t

483/602

sl_wisun_phy_config_fan10_t

FAN1.0 PHY configuration.

Public Attributes

uint8_t reg_domain
Regulatory domain (sl_wisun_regulatory_domain_t)

uint8_t op_class
Operating class (sl_wisun_operating_class_t)

uint8_t op_mode
Operating mode (sl_wisun_operating_mode_t)

uint8_t fec
1 if FEC is enabled, 0 if not

Public Attribute Documentation

reg_domain

uint8_t sl_wisun_phy_config_fan10_t::reg_domain

Regulatory domain (sl_wisun_regulatory_domain_t)

Definition at line 505 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

op_class

uint8_t sl_wisun_phy_config_fan10_t::op_class

Operating class (sl_wisun_operating_class_t)

Definition at line 507 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

op_mode

uint8_t sl_wisun_phy_config_fan10_t::op_mode

Operating mode (sl_wisun_operating_mode_t)

Definition at line 509 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

fec

sl_wisun_phy_config_fan10_t

484/602

uint8_t sl_wisun_phy_config_fan10_t::fec

1 if FEC is enabled, 0 if not

Definition at line 511 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_fan11_t

485/602

sl_wisun_phy_config_fan11_t

FAN1.1 PHY configuration.

Public Attributes

uint8_t reg_domain
Regulatory domain (sl_wisun_regulatory_domain_t)

uint8_t chan_plan_id
Channel plan ID.

uint8_t phy_mode_id
PHY mode ID.

Public Attribute Documentation

reg_domain

uint8_t sl_wisun_phy_config_fan11_t::reg_domain

Regulatory domain (sl_wisun_regulatory_domain_t)

Definition at line 517 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

chan_plan_id

uint8_t sl_wisun_phy_config_fan11_t::chan_plan_id

Channel plan ID.

Definition at line 519 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

uint8_t sl_wisun_phy_config_fan11_t::phy_mode_id

PHY mode ID.

Definition at line 521 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_explicit_t

486/602

sl_wisun_phy_config_explicit_t

Explicit PHY configuration.

Public Attributes

uint32_t ch0_frequency_khz
Ch0 center frequency in kHz.

uint16_t number_of_channels
Number of channels.

uint8_t channel_spacing
Channel spacing (sl_wisun_channel_spacing_t)

uint8_t phy_mode_id
PHY mode ID.

Public Attribute Documentation

ch0_frequency_khz

uint32_t sl_wisun_phy_config_explicit_t::ch0_frequency_khz

Ch0 center frequency in kHz.

Definition at line 527 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

number_of_channels

uint16_t sl_wisun_phy_config_explicit_t::number_of_channels

Number of channels.

Definition at line 529 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

channel_spacing

uint8_t sl_wisun_phy_config_explicit_t::channel_spacing

Channel spacing (sl_wisun_channel_spacing_t)

Definition at line 531 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

sl_wisun_phy_config_explicit_t

487/602

uint8_t sl_wisun_phy_config_explicit_t::phy_mode_id

PHY mode ID.

Definition at line 533 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_ ids_t

488/602

sl_wisun_phy_config_ids_t

Explicit RAIL configuration.

Public Attributes

uint16_t protocol_id
Protoco l ID.

uint16_t channel_id
Channel ID.

uint8_t phy_mode_id
PHY mode ID.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

protocol_id

uint16_t sl_wisun_phy_config_ids_t::protocol_id

Protocol ID.

Definition at line 539 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

channel_id

uint16_t sl_wisun_phy_config_ids_t::channel_id

Channel ID.

Definition at line 541 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

uint8_t sl_wisun_phy_config_ids_t::phy_mode_id

PHY mode ID.

Definition at line 543 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

sl_wisun_phy_config_ ids_t

489/602

uint8_t sl_wisun_phy_config_ids_t::reserved[3]

Reserved, set to zero.

Definition at line 545 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_custom_fsk_t

490/602

sl_wisun_phy_config_custom_fsk_t

Custom FSK PHY configuration.

Public Attributes

uint32_t ch0_frequency_khz
Ch0 center frequency in kHz.

uint16_t channel_spacing_khz
Channel spacing in kHz.

uint16_t number_of_channels
Number of channels.

uint8_t phy_mode_id
PHY mode ID.

uint8_t crc_type
FSK CRC type (sl_wisun_crc_type_t)

uint8_t preamble_length
FSK preamble length in bits.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

ch0_frequency_khz

uint32_t sl_wisun_phy_config_custom_fsk_t::ch0_frequency_khz

Ch0 center frequency in kHz.

Definition at line 551 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

channel_spacing_khz

uint16_t sl_wisun_phy_config_custom_fsk_t::channel_spacing_khz

Channel spacing in kHz.

Definition at line 553 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

number_of_channels

uint16_t sl_wisun_phy_config_custom_fsk_t::number_of_channels

sl_wisun_phy_config_custom_fsk_t

491/602

Number of channels.

Definition at line 555 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

uint8_t sl_wisun_phy_config_custom_fsk_t::phy_mode_id

PHY mode ID.

Definition at line 557 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

crc_type

uint8_t sl_wisun_phy_config_custom_fsk_t::crc_type

FSK CRC type (sl_wisun_crc_type_t)

Definition at line 559 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

preamble_length

uint8_t sl_wisun_phy_config_custom_fsk_t::preamble_length

FSK preamble length in bits.

Definition at line 561 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint8_t sl_wisun_phy_config_custom_fsk_t::reserved[1]

Reserved, set to zero.

Definition at line 563 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_custom_ofdm_t

492/602

sl_wisun_phy_config_custom_ofdm_t

Custom OFDM PHY configuration.

Public Attributes

uint32_t ch0_frequency_khz
Ch0 center frequency in kHz.

uint16_t channel_spacing_khz
Channel spacing in kHz.

uint16_t number_of_channels
Number of channels.

uint8_t phy_mode_id
PHY mode ID.

uint8_t crc_type
OFDM CRC type (sl_wisun_crc_type_t)

uint8_t stf_length
STF length in number of symbo ls.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

ch0_frequency_khz

uint32_t sl_wisun_phy_config_custom_ofdm_t::ch0_frequency_khz

Ch0 center frequency in kHz.

Definition at line 569 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

channel_spacing_khz

uint16_t sl_wisun_phy_config_custom_ofdm_t::channel_spacing_khz

Channel spacing in kHz.

Definition at line 571 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

number_of_channels

uint16_t sl_wisun_phy_config_custom_ofdm_t::number_of_channels

sl_wisun_phy_config_custom_ofdm_t

493/602

Number of channels.

Definition at line 573 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

uint8_t sl_wisun_phy_config_custom_ofdm_t::phy_mode_id

PHY mode ID.

Definition at line 575 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

crc_type

uint8_t sl_wisun_phy_config_custom_ofdm_t::crc_type

OFDM CRC type (sl_wisun_crc_type_t)

Definition at line 577 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

stf_length

uint8_t sl_wisun_phy_config_custom_ofdm_t::stf_length

STF length in number of symbols.

Definition at line 579 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint8_t sl_wisun_phy_config_custom_ofdm_t::reserved[1]

Reserved, set to zero.

Definition at line 581 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_custom_oqpsk_t

494/602

sl_wisun_phy_config_custom_oqpsk_t

Custom QPSK PHY configuration.

Public Attributes

uint32_t ch0_frequency_khz
Ch0 center frequency in kHz.

uint16_t channel_spacing_khz
Channel spacing in kHz.

uint16_t number_of_channels
Number of channels.

uint8_t phy_mode_id
PHY mode ID.

uint8_t crc_type
OFDM CRC type (sl_wisun_crc_type_t)

uint8_t preamble_length
OQPSK preamble length in bits.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

ch0_frequency_khz

uint32_t sl_wisun_phy_config_custom_oqpsk_t::ch0_frequency_khz

Ch0 center frequency in kHz.

Definition at line 587 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

channel_spacing_khz

uint16_t sl_wisun_phy_config_custom_oqpsk_t::channel_spacing_khz

Channel spacing in kHz.

Definition at line 589 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

number_of_channels

uint16_t sl_wisun_phy_config_custom_oqpsk_t::number_of_channels

sl_wisun_phy_config_custom_oqpsk_t

495/602

Number of channels.

Definition at line 591 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id

uint8_t sl_wisun_phy_config_custom_oqpsk_t::phy_mode_id

PHY mode ID.

Definition at line 593 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

crc_type

uint8_t sl_wisun_phy_config_custom_oqpsk_t::crc_type

OFDM CRC type (sl_wisun_crc_type_t)

Definition at line 595 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

preamble_length

uint8_t sl_wisun_phy_config_custom_oqpsk_t::preamble_length

OQPSK preamble length in bits.

Definition at line 597 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint8_t sl_wisun_phy_config_custom_oqpsk_t::reserved[1]

Reserved, set to zero.

Definition at line 599 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_t

496/602

sl_wisun_phy_config_t

PHY configuration.

Public Attributes

uint32_t type
Configuration type (sl_wisun_phy_config_type_t)

sl_wisun_phy_conf
ig_fan10_t

fan10
Configuration for SL_WISUN_PHY_CONFIG_FAN10 type .

sl_wisun_phy_conf
ig_fan11_t

fan11
Configuration for SL_WISUN_PHY_CONFIG_FAN11 type .

sl_wisun_phy_conf
ig_explicit_t

explicit_plan
Configuration for SL_WISUN_PHY_CONFIG_EXPLICIT type .

sl_wisun_phy_conf
ig_ids_t

ids
Configuration for SL_WISUN_PHY_CONFIG_IDS type .

sl_wisun_phy_conf
ig_custom_fsk_t

custom_fsk
Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_FSK type .

sl_wisun_phy_conf
ig_custom_ofdm_t

custom_ofdm
Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_OFDM type .

sl_wisun_phy_conf
ig_custom_oqpsk_

t

custom_oqpsk
Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_OQPSK type .

union
sl_wisun_phy_conf

ig_t::@1

config
Configuration.

Public Attribute Documentation

type

uint32_t sl_wisun_phy_config_t::type

Configuration type (sl_wisun_phy_config_type_t)

Definition at line 606 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

fan10

sl_wisun_phy_config_fan10_t sl_wisun_phy_config_t::fan10

Configuration for SL_WISUN_PHY_CONFIG_FAN10 type.

Definition at line 610 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_t

497/602

fan11

sl_wisun_phy_config_fan11_t sl_wisun_phy_config_t::fan11

Configuration for SL_WISUN_PHY_CONFIG_FAN11 type.

Definition at line 612 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

explicit_plan

sl_wisun_phy_config_explicit_t sl_wisun_phy_config_t::explicit_plan

Configuration for SL_WISUN_PHY_CONFIG_EXPLICIT type.

Definition at line 614 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ids

sl_wisun_phy_config_ids_t sl_wisun_phy_config_t::ids

Configuration for SL_WISUN_PHY_CONFIG_IDS type.

Definition at line 616 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

custom_fsk

sl_wisun_phy_config_custom_fsk_t sl_wisun_phy_config_t::custom_fsk

Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_FSK type.

Definition at line 618 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

custom_ofdm

sl_wisun_phy_config_custom_ofdm_t sl_wisun_phy_config_t::custom_ofdm

Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_OFDM type.

Definition at line 620 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

custom_oqpsk

sl_wisun_phy_config_custom_oqpsk_t sl_wisun_phy_config_t::custom_oqpsk

Configuration for SL_WISUN_PHY_CONFIG_CUSTOM_OQPSK type.

Definition at line 622 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_phy_config_t

498/602

config

union sl_wisun_phy_config_t::@1 sl_wisun_phy_config_t::config

Configuration.

Definition at line 623 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_mac_address_t

499/602

sl_wisun_mac_address_t

MAC address.

Public Attributes

uint8_t address
MAC address.

Public Attribute Documentation

address

uint8_t sl_wisun_mac_address_t::address[SL_WISUN_MAC_ADDRESS_SIZE�

MAC address.

This field contains a MAC address (EUI-64) stored in canonical format where the first byte of the array is the most-

significant byte of the MAC address.

Definition at line 634 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_channel_mask_t

500/602

sl_wisun_channel_mask_t

Channel mask.

Public Attributes

uint8_t mask
Bit mask of channels.

Public Attribute Documentation

mask

uint8_t sl_wisun_channel_mask_t::mask[SL_WISUN_CHANNEL_MASK_SIZE�

Bit mask of channels.

This field specifies a bit mask of channels, one bit per channel. First byte of the array represents channel numbers 0 - 7,

with bit 0 being channel 0. Second byte represents channel numbers 8 - 15 and so forth.

Definition at line 646 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_event_mode_t

501/602

sl_wisun_socket_option_event_mode_t

Socket option for event mode Deprecated.

Public Attributes

uint32_t mode
Socket event mode .

Public Attribute Documentation

mode

uint32_t sl_wisun_socket_option_event_mode_t::mode

Socket event mode.

Definition at line 682 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_multicast_group_t

502/602

sl_wisun_socket_option_multicast_group_t

Socket option for multicast group Deprecated.

Public Attributes

uint32_t action
Multicast group action.

sl_wisun_ip_addre
ss_t

address
Multicast group address.

Public Attribute Documentation

action

uint32_t sl_wisun_socket_option_multicast_group_t::action

Multicast group action.

Definition at line 691 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

address

sl_wisun_ip_address_t sl_wisun_socket_option_multicast_group_t::address

Multicast group address.

Definition at line 693 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_send_buffer_limit_t

503/602

sl_wisun_socket_option_send_buffer_limit_t

Socket option for send buffer limit Deprecated.

Public Attributes

uint32_t limit
Send buffer limit.

Public Attribute Documentation

limit

uint32_t sl_wisun_socket_option_send_buffer_limit_t::limit

Send buffer limit.

Definition at line 700 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_edfe_mode_t

504/602

sl_wisun_socket_option_edfe_mode_t

Socket option for EDFE mode Deprecated.

Public Attributes

uint32_t mode
Socket EDFE mode (1 to enable , 0 to disable)

Public Attribute Documentation

mode

uint32_t sl_wisun_socket_option_edfe_mode_t::mode

Socket EDFE mode (1 to enable, 0 to disable)

Definition at line 707 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_unicast_hop_limit

505/602

sl_wisun_socket_option_unicast_hop_limit

Socket option for socket unicast hop limit Deprecated.

Public Attributes

int16_t hop_limit
Socket unicast hop limit (0 to 255 hops, -1 to use default)

uint16_t reserved
Reserved, set to 0.

Public Attribute Documentation

hop_limit

int16_t sl_wisun_socket_option_unicast_hop_limit::hop_limit

Socket unicast hop limit (0 to 255 hops, -1 to use default)

Definition at line 714 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint16_t sl_wisun_socket_option_unicast_hop_limit::reserved

Reserved, set to 0.

Definition at line 716 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_multicast_hop_limit

506/602

sl_wisun_socket_option_multicast_hop_limit

Socket option for socket multicast hop limit Deprecated.

Public Attributes

int16_t hop_limit
Socket multicast hop limit (0 to 255 hops, -1 to use default)

uint16_t reserved
Reserved, set to 0.

Public Attribute Documentation

hop_limit

int16_t sl_wisun_socket_option_multicast_hop_limit::hop_limit

Socket multicast hop limit (0 to 255 hops, -1 to use default)

Definition at line 723 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint16_t sl_wisun_socket_option_multicast_hop_limit::reserved

Reserved, set to 0.

Definition at line 725 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_data_t

507/602

sl_wisun_socket_option_data_t

socket options

Public Attributes

sl_wisun_socket_o
ption_event_mod

e_t

event_mode
Socket event mode Deprecated.

sl_wisun_socket_o
ption_multicast_gr

oup_t

multicast_group
Socket multicast group Deprecated.

sl_wisun_socket_o
ption_send_buffer

_limit_t

send_buffer_limit
Socket send buffer limit Deprecated.

sl_wisun_socket_o
ption_edfe_mode_

t

edfe_mode
Socket EDFE mode Deprecated.

sl_wisun_socket_o
ption_unicast_hop

_limit

unicast_hop_limit
Socket unicast hop limit Deprecated.

sl_wisun_socket_o
ption_multicast_h

op_limit

multicast_hop_limit
Socket multicast hop limit Deprecated.

int32_t value
Option-specific value .

in6_addr_t ipv6_address
IPv6 address.

Public Attribute Documentation

event_mode

sl_wisun_socket_option_event_mode_t sl_wisun_socket_option_data_t::event_mode

Socket event mode Deprecated.

Definition at line 733 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

multicast_group

sl_wisun_socket_option_multicast_group_t sl_wisun_socket_option_data_t::multicast_group

Socket multicast group Deprecated.

Definition at line 736 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_socket_option_data_t

508/602

send_buffer_limit

sl_wisun_socket_option_send_buffer_limit_t sl_wisun_socket_option_data_t::send_buffer_limit

Socket send buffer limit Deprecated.

Definition at line 739 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

edfe_mode

sl_wisun_socket_option_edfe_mode_t sl_wisun_socket_option_data_t::edfe_mode

Socket EDFE mode Deprecated.

Definition at line 742 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

unicast_hop_limit

sl_wisun_socket_option_unicast_hop_limit sl_wisun_socket_option_data_t::unicast_hop_limit

Socket unicast hop limit Deprecated.

Definition at line 745 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

multicast_hop_limit

sl_wisun_socket_option_multicast_hop_limit sl_wisun_socket_option_data_t::multicast_hop_limit

Socket multicast hop limit Deprecated.

Definition at line 748 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

value

int32_t sl_wisun_socket_option_data_t::value

Option-specific value.

Definition at line 750 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

ipv6_address

in6_addr_t sl_wisun_socket_option_data_t::ipv6_address

IPv6 address.

Definition at line 752 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_neighbor_ info_t

509/602

sl_wisun_neighbor_info_t

RPL neighbor information.

Public Attributes

in6_addr_t link_local_address
Link-local address.

in6_addr_t global_address
ULA/GUA address (unspecified address :: if unknown)

uint32_t type
Neighbor type (sl_wisun_neighbor_type_t)

uint32_t lifetime
Remaining lifetime (Link lifetime for parents, EARO lifetime for children) in seconds.

uint32_t mac_tx_count
MAC TX packet count.

uint32_t mac_tx_failed_count
MAC TX failed count.

uint32_t mac_tx_ms_count
MAC TX packet count using mode switch.

uint32_t mac_tx_ms_failed_count
MAC TX failed count using mode switch.

uint32_t mac_rx_count
MAC RX packet count.

uint16_t rpl_rank
RPL Rank value for parents (0xffff if unknown or child)

uint16_t etx
Measured ETX value if known (0xffff if unknown)

uint16_t routing_cost
ETX to Border Router.

uint16_t pan_size
Number devices connected to Border Router.

uint8_t rsl_out
Parent RSSI Out measured RSSI value (0xff if unknown) Calculated using EWMA specified by Wi-SUN from range of -174

(0) to +80 (254) dBm.

uint8_t rsl_in
Parent RSSI In measured RSSI value (0xff if unknown) Calculated using EWMA specified by Wi-SUN from range of -174

(0) to +80 (254) dBm.

int8_t rssi
RSSI of the last received packet in integer dBm. */.

sl_wisun_neighbor_ info_t

510/602

uint8_t is_lfn
Indicate if the device is an LFN. 1 = LFN, 0 = FFN.

uint8_t phy_mode_id_count
Number of PhyMode Id supported.

uint8_t phy_mode_ids
List of phy_mode_id_count PhyMode Id.

uint8_t is_mdr_command_capable
Indicate if the neighbor supports MAC mode switch.

Public Attribute Documentation

link_local_address

in6_addr_t sl_wisun_neighbor_info_t::link_local_address

Link-local address.

Definition at line 770 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

global_address

in6_addr_t sl_wisun_neighbor_info_t::global_address

ULA/GUA address (unspecified address :: if unknown)

Definition at line 772 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

type

uint32_t sl_wisun_neighbor_info_t::type

Neighbor type (sl_wisun_neighbor_type_t)

Definition at line 774 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

lifetime

uint32_t sl_wisun_neighbor_info_t::lifetime

Remaining lifetime (Link lifetime for parents, EARO lifetime for children) in seconds.

Definition at line 776 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac_tx_count

uint32_t sl_wisun_neighbor_info_t::mac_tx_count

sl_wisun_neighbor_ info_t

511/602

MAC TX packet count.

Definition at line 778 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac_tx_failed_count

uint32_t sl_wisun_neighbor_info_t::mac_tx_failed_count

MAC TX failed count.

Definition at line 780 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac_tx_ms_count

uint32_t sl_wisun_neighbor_info_t::mac_tx_ms_count

MAC TX packet count using mode switch.

Definition at line 782 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac_tx_ms_failed_count

uint32_t sl_wisun_neighbor_info_t::mac_tx_ms_failed_count

MAC TX failed count using mode switch.

Definition at line 784 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mac_rx_count

uint32_t sl_wisun_neighbor_info_t::mac_rx_count

MAC RX packet count.

Definition at line 786 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rpl_rank

uint16_t sl_wisun_neighbor_info_t::rpl_rank

RPL Rank value for parents (0xffff if unknown or child)

Definition at line 788 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

etx

uint16_t sl_wisun_neighbor_info_t::etx

sl_wisun_neighbor_ info_t

512/602

Measured ETX value if known (0xffff if unknown)

Definition at line 790 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

routing_cost

uint16_t sl_wisun_neighbor_info_t::routing_cost

ETX to Border Router.

Definition at line 792 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

pan_size

uint16_t sl_wisun_neighbor_info_t::pan_size

Number devices connected to Border Router.

Definition at line 794 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rsl_out

uint8_t sl_wisun_neighbor_info_t::rsl_out

Parent RSSI Out measured RSSI value (0xff if unknown) Calculated using EWMA specified by Wi-SUN from range of -174

(0) to +80 (254) dBm.

Definition at line 797 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rsl_in

uint8_t sl_wisun_neighbor_info_t::rsl_in

Parent RSSI In measured RSSI value (0xff if unknown) Calculated using EWMA specified by Wi-SUN from range of -174 (0)

to +80 (254) dBm.

Definition at line 800 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

rssi

int8_t sl_wisun_neighbor_info_t::rssi

RSSI of the last received packet in integer dBm. */.

Definition at line 802 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

is_lfn

sl_wisun_neighbor_ info_t

513/602

uint8_t sl_wisun_neighbor_info_t::is_lfn

Indicate if the device is an LFN. 1 = LFN, 0 = FFN.

Definition at line 804 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_id_count

uint8_t sl_wisun_neighbor_info_t::phy_mode_id_count

Number of PhyModeId supported.

Definition at line 806 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

phy_mode_ids

uint8_t sl_wisun_neighbor_info_t::phy_mode_ids[SL_WISUN_MAX_PHY_MODE_ID_COUNT�

List of phy_mode_ id_count PhyModeId.

Definition at line 808 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

is_mdr_command_capable

uint8_t sl_wisun_neighbor_info_t::is_mdr_command_capable

Indicate if the neighbor supports MAC mode switch.

Definition at line 810 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_trace_group_config_t

514/602

sl_wisun_trace_group_config_t

Configure the trace level of 1 group.

Public Attributes

uint8_t group_id
Trace Group ID. Coded with enum sl_wisun_trace_group_t.

uint8_t trace_level
Maximum trace level to display for this group.

Public Attribute Documentation

group_id

uint8_t sl_wisun_trace_group_config_t::group_id

Trace Group ID. Coded with enum sl_wisun_trace_group_t.

Definition at line 884 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

trace_level

uint8_t sl_wisun_trace_group_config_t::trace_level

Maximum trace level to display for this group.

It is coded using enum sl_wisun_trace_level_t.

Definition at line 887 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_network_ info_t

515/602

sl_wisun_network_info_t

Wi-SUN network information.

Public Attributes

uint16_t pan_id
PAN ID.

Public Attribute Documentation

pan_id

uint16_t sl_wisun_network_info_t::pan_id

PAN ID.

Definition at line 953 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_rpl_ info_t

516/602

sl_wisun_rpl_info_t

RPL information.

Public Attributes

uint16_t dodag_rank
DODAG rank or the node .

uint16_t dag_max_rank_increase
DAG max rank increase , the allowable increase in Rank in support of local repair (0 to disable the mechanism)

uint16_t min_hop_rank_increase
Min hop rank increase , minimum increase in Rank between a node and any of its DODAG parents.

uint16_t lifetime_unit
Lifetime unit, unit in seconds that is used to express route lifetimes in RPL.

uint8_t instance_id
Instance ID, set by the DODAG root, it indicates of which RPL Instance the DODAG is a part.

uint8_t dodag_version_number
DODAG version number, set by the DODAG root.

uint8_t grounded
Grounded, indicates whether the DODAG advertised can satisfy the application-defined goal.

uint8_t mode_of_operation
Mode of Operation (MOP), must be 1 for Non-Storing Mode of Operation.

uint8_t dodag_preference
DODAG Preference , defines how preferable the root of this DODAG is compared to other DODAG roots within the

instance .

uint8_t dodag_dtsn
Destination Advertisement Trigger Sequence Number (DTSN)

uint8_t dio_interval_min
DIO minimum interval, used to configure Imin of the DIO Trickle timer.

uint8_t dio_interval_doublings
DIO interval doublings, used to configure Imax of the DIO Trickle timer.

uint8_t dio_redundancy_constant
DIO redundancy constant, used to configure k of the DIO Trickle timer.

uint8_t default_lifetime
Default lifetime , lifetime that is used as default for all RPL routes.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

dodag_rank

sl_wisun_rpl_ info_t

517/602

uint16_t sl_wisun_rpl_info_t::dodag_rank

DODAG rank or the node.

Definition at line 961 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dag_max_rank_increase

uint16_t sl_wisun_rpl_info_t::dag_max_rank_increase

DAG max rank increase, the allowable increase in Rank in support of local repair (0 to disable the mechanism)

Definition at line 964 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

min_hop_rank_increase

uint16_t sl_wisun_rpl_info_t::min_hop_rank_increase

Min hop rank increase, minimum increase in Rank between a node and any of its DODAG parents.

Definition at line 967 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

lifetime_unit

uint16_t sl_wisun_rpl_info_t::lifetime_unit

Lifetime unit, unit in seconds that is used to express route lifetimes in RPL.

Definition at line 970 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

instance_id

uint8_t sl_wisun_rpl_info_t::instance_id

Instance ID, set by the DODAG root, it indicates of which RPL Instance the DODAG is a part.

Definition at line 973 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dodag_version_number

uint8_t sl_wisun_rpl_info_t::dodag_version_number

DODAG version number, set by the DODAG root.

Definition at line 975 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

grounded

sl_wisun_rpl_ info_t

518/602

uint8_t sl_wisun_rpl_info_t::grounded

Grounded, indicates whether the DODAG advertised can satisfy the application-defined goal.

If set, the DODAG is grounded. If cleared, the DODAG is floating.

Definition at line 979 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

mode_of_operation

uint8_t sl_wisun_rpl_info_t::mode_of_operation

Mode of Operation (MOP), must be 1 for Non-Storing Mode of Operation.

Definition at line 981 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dodag_preference

uint8_t sl_wisun_rpl_info_t::dodag_preference

DODAG Preference, defines how preferable the root of this DODAG is compared to other DODAG roots within the instance.

DAGPreference ranges from 0x00 (least preferred) to 0x07 (most preferred).

Definition at line 986 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dodag_dtsn

uint8_t sl_wisun_rpl_info_t::dodag_dtsn

Destination Advertisement Trigger Sequence Number (DTSN)

Definition at line 988 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dio_interval_min

uint8_t sl_wisun_rpl_info_t::dio_interval_min

DIO minimum interval, used to configure Imin of the DIO Trickle timer.

Definition at line 991 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

dio_interval_doublings

uint8_t sl_wisun_rpl_info_t::dio_interval_doublings

DIO interval doublings, used to configure Imax of the DIO Trickle timer.

Definition at line 994 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_rpl_ info_t

519/602

dio_redundancy_constant

uint8_t sl_wisun_rpl_info_t::dio_redundancy_constant

DIO redundancy constant, used to configure k of the DIO Trickle timer.

Definition at line 997 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

default_lifetime

uint8_t sl_wisun_rpl_info_t::default_lifetime

Default lifetime, lifetime that is used as default for all RPL routes.

Expressed in units of Lifetime Units.

Definition at line 1000 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

reserved

uint8_t sl_wisun_rpl_info_t::reserved[2]

Reserved, set to zero.

Definition at line 1002 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_types.h

sl_wisun_trickle_params_t

520/602

sl_wisun_trickle_params_t

Trickle parameter set.

Public Attributes

uint16_t imin_s
Minimum interval size (seconds)

uint16_t imax_s
Maximum interval size (seconds)

uint8_t k
Redundancy constant (0 for infinity)

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

imin_s

uint16_t sl_wisun_trickle_params_t::imin_s

Minimum interval size (seconds)

Definition at line 51 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

imax_s

uint16_t sl_wisun_trickle_params_t::imax_s

Maximum interval size (seconds)

Definition at line 53 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

k

uint8_t sl_wisun_trickle_params_t::k

Redundancy constant (0 for infinity)

Definition at line 55 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

reserved

sl_wisun_trickle_params_t

521/602

uint8_t sl_wisun_trickle_params_t::reserved[3]

Reserved, set to zero.

Definition at line 57 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_discovery

522/602

sl_wisun_params_discovery

PAN discovery parameter set.

Public Attributes

sl_wisun_trickle_p
arams_t

trickle_pa
PAN Advertisement trickle timer.

sl_wisun_trickle_p
arams_t

trickle_pas
PAN Advertisement So licit trickle timer.

uint8_t eapol_target_min_sens
Minimum signal level for a node to be selected as the EAPOL target for authentication immediately after a PAN

Advertisement reception.

uint8_t allow_skip
If true , allow jo in state 1 to be skipped using cached information from the previous connection.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

trickle_pa

sl_wisun_trickle_params_t sl_wisun_params_discovery::trickle_pa

PAN Advertisement trickle timer.

Definition at line 65 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

trickle_pas

sl_wisun_trickle_params_t sl_wisun_params_discovery::trickle_pas

PAN Advertisement Solicit trickle timer.

Definition at line 67 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

eapol_target_min_sens

uint8_t sl_wisun_params_discovery::eapol_target_min_sens

Minimum signal level for a node to be selected as the EAPOL target for authentication immediately after a PAN

Advertisement reception.

Range from -174 (0) to +80 (254) dBm, 255 to disable feature.

sl_wisun_params_discovery

523/602

Definition at line 71 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

allow_skip

uint8_t sl_wisun_params_discovery::allow_skip

If true, allow join state 1 to be skipped using cached information from the previous connection.

Definition at line 74 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

reserved

uint8_t sl_wisun_params_discovery::reserved[2]

Reserved, set to zero.

Definition at line 76 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_eapol

524/602

sl_wisun_params_eapol

Authentication parameter set.

Public Attributes

sl_wisun_trickle_p
arams_t

sec_prot_trickle
Security protoco l trickle timer.

uint32_t pmk_lifetime_m
PMK lifetime (minutes)

uint32_t ptk_lifetime_m
PTK lifetime (minutes)

uint16_t sec_prot_retry_timeout_s
Security protoco l retry timeout (seconds)

uint16_t initial_key_min_s
Initial EAPOL-Key first Tx min delay (seconds)

uint16_t initial_key_max_s
Initial EAPOL-Key first Tx max delay (seconds)

uint16_t initial_key_retry_min_s
Initial EAPOL-Key retry exponential backoff min (seconds)

uint16_t initial_key_retry_max_s
Initial EAPOL-Key retry exponential backoff max (seconds)

uint16_t initial_key_retry_max_limit_s
Initial EAPOL-Key retry exponential backoff max limit (seconds)

uint16_t temp_min_timeout_s
Temporary neighbor link minimum timeout (seconds)

uint16_t gtk_request_imin_m
GTK_REQUEST_IMIN (minutes)

uint16_t gtk_request_imax_m
GTK_REQUEST_IMAX (minutes)

uint16_t gtk_max_mismatch_m
GTK_MAX_MISMATCH (minutes)

uint16_t lgtk_max_mismatch_m
LGTK_MAX_MISMATCH (minutes)

uint8_t sec_prot_trickle_expirations
Security protoco l trickle timer expirations.

uint8_t initial_key_retry_limit
Initial EAPOL-Key retry limit.

uint8_t allow_skip
If true , allow jo in state 2 to be skipped using cached credentials from the previous connection.

sl_wisun_params_eapol

525/602

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

sec_prot_trickle

sl_wisun_trickle_params_t sl_wisun_params_eapol::sec_prot_trickle

Security protocol trickle timer.

Definition at line 84 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

pmk_lifetime_m

uint32_t sl_wisun_params_eapol::pmk_lifetime_m

PMK lifetime (minutes)

Definition at line 86 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

ptk_lifetime_m

uint32_t sl_wisun_params_eapol::ptk_lifetime_m

PTK lifetime (minutes)

Definition at line 88 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sec_prot_retry_timeout_s

uint16_t sl_wisun_params_eapol::sec_prot_retry_timeout_s

Security protocol retry timeout (seconds)

Definition at line 90 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_min_s

uint16_t sl_wisun_params_eapol::initial_key_min_s

Initial EAPOL-Key first Tx min delay (seconds)

Definition at line 92 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_max_s

sl_wisun_params_eapol

526/602

uint16_t sl_wisun_params_eapol::initial_key_max_s

Initial EAPOL-Key first Tx max delay (seconds)

Definition at line 94 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_retry_min_s

uint16_t sl_wisun_params_eapol::initial_key_retry_min_s

Initial EAPOL-Key retry exponential backoff min (seconds)

Definition at line 96 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_retry_max_s

uint16_t sl_wisun_params_eapol::initial_key_retry_max_s

Initial EAPOL-Key retry exponential backoff max (seconds)

Definition at line 98 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_retry_max_limit_s

uint16_t sl_wisun_params_eapol::initial_key_retry_max_limit_s

Initial EAPOL-Key retry exponential backoff max limit (seconds)

Definition at line 100 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

temp_min_timeout_s

uint16_t sl_wisun_params_eapol::temp_min_timeout_s

Temporary neighbor link minimum timeout (seconds)

Definition at line 102 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

gtk_request_imin_m

uint16_t sl_wisun_params_eapol::gtk_request_imin_m

GTK_REQUEST_IMIN (minutes)

Definition at line 104 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

gtk_request_imax_m

sl_wisun_params_eapol

527/602

uint16_t sl_wisun_params_eapol::gtk_request_imax_m

GTK_REQUEST_IMAX (minutes)

Definition at line 106 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

gtk_max_mismatch_m

uint16_t sl_wisun_params_eapol::gtk_max_mismatch_m

GTK_MAX_MISMATCH (minutes)

Definition at line 108 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

lgtk_max_mismatch_m

uint16_t sl_wisun_params_eapol::lgtk_max_mismatch_m

LGTK_MAX_MISMATCH (minutes)

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sec_prot_trickle_expirations

uint8_t sl_wisun_params_eapol::sec_prot_trickle_expirations

Security protocol trickle timer expirations.

Definition at line 112 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

initial_key_retry_limit

uint8_t sl_wisun_params_eapol::initial_key_retry_limit

Initial EAPOL-Key retry limit.

Definition at line 114 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

allow_skip

uint8_t sl_wisun_params_eapol::allow_skip

If true, allow join state 2 to be skipped using cached credentials from the previous connection.

Definition at line 117 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

reserved

sl_wisun_params_eapol

528/602

uint8_t sl_wisun_params_eapol::reserved[3]

Reserved, set to zero.

Definition at line 119 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_configuration

529/602

sl_wisun_params_configuration

PAN configuration parameter set.

Public Attributes

sl_wisun_trickle_p
arams_t

trickle_pc
PAN Configuration trickle timer.

sl_wisun_trickle_p
arams_t

trickle_pcs
PAN Configuration So licit trickle timer.

Public Attribute Documentation

trickle_pc

sl_wisun_trickle_params_t sl_wisun_params_configuration::trickle_pc

PAN Configuration trickle timer.

Definition at line 127 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

trickle_pcs

sl_wisun_trickle_params_t sl_wisun_params_configuration::trickle_pcs

PAN Configuration Solicit trickle timer.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_rpl

530/602

sl_wisun_params_rpl

RPL parameter set.

Public Attributes

uint16_t dis_max_delay_first_s
RPL first DIS maximum delay (seconds)

uint16_t dis_max_delay_s
RPL DIS maximum delay (seconds)

uint16_t init_parent_selection_s
Delay for preferred parent selection after first DIO reception (seconds)

uint16_t etx_probe_period_max_s
Maximum period of NS probes used to get samples for ETX calculation (seconds)

uint8_t etx_samples_init
Number of samples used to calculate ETX during jo in state 4.

uint8_t etx_samples_refresh
Number of samples used to refresh ETX.

uint8_t candidate_parents_max
RPL max candidate parents.

uint8_t parents_max
RPL max parents.

Public Attribute Documentation

dis_max_delay_first_s

uint16_t sl_wisun_params_rpl::dis_max_delay_first_s

RPL first DIS maximum delay (seconds)

Definition at line 137 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

dis_max_delay_s

uint16_t sl_wisun_params_rpl::dis_max_delay_s

RPL DIS maximum delay (seconds)

Definition at line 139 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

init_parent_selection_s

sl_wisun_params_rpl

531/602

uint16_t sl_wisun_params_rpl::init_parent_selection_s

Delay for preferred parent selection after first DIO reception (seconds)

Definition at line 141 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

etx_probe_period_max_s

uint16_t sl_wisun_params_rpl::etx_probe_period_max_s

Maximum period of NS probes used to get samples for ETX calculation (seconds)

Definition at line 143 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

etx_samples_init

uint8_t sl_wisun_params_rpl::etx_samples_init

Number of samples used to calculate ETX during join state 4.

Definition at line 145 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

etx_samples_refresh

uint8_t sl_wisun_params_rpl::etx_samples_refresh

Number of samples used to refresh ETX.

Definition at line 147 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

candidate_parents_max

uint8_t sl_wisun_params_rpl::candidate_parents_max

RPL max candidate parents.

Definition at line 149 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

parents_max

uint8_t sl_wisun_params_rpl::parents_max

RPL max parents.

Definition at line 151 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_mpl

532/602

sl_wisun_params_mpl

MPL parameter set.

Public Attributes

sl_wisun_trickle_p
arams_t

trickle
MPL trickle timer.

uint16_t seed_set_entry_lifetime_s
MPL seed set entry lifetime (seconds)

uint8_t trickle_expirations
MPL trickle timer expirations.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

trickle

sl_wisun_trickle_params_t sl_wisun_params_mpl::trickle

MPL trickle timer.

Definition at line 159 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

seed_set_entry_lifetime_s

uint16_t sl_wisun_params_mpl::seed_set_entry_lifetime_s

MPL seed set entry lifetime (seconds)

Definition at line 161 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

trickle_expirations

uint8_t sl_wisun_params_mpl::trickle_expirations

MPL trickle timer expirations.

Definition at line 163 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

reserved

sl_wisun_params_mpl

533/602

uint8_t sl_wisun_params_mpl::reserved

Reserved, set to zero.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_params_misc

534/602

sl_wisun_params_misc

Misc parameter set.

Public Attributes

uint16_t temp_link_min_timeout_s
Temporary neighbor link minimum timeout.

uint8_t pan_timeout_m
Border router communication timeout PAN_TIMEOUT.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

temp_link_min_timeout_s

uint16_t sl_wisun_params_misc::temp_link_min_timeout_s

Temporary neighbor link minimum timeout.

Definition at line 173 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

pan_timeout_m

uint8_t sl_wisun_params_misc::pan_timeout_m

Border router communication timeout PAN_TIMEOUT.

Definition at line 175 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

reserved

uint8_t sl_wisun_params_misc::reserved

Reserved, set to zero.

Definition at line 177 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_connection_params_t

535/602

sl_wisun_connection_params_t

FFN parameter set.

Public Attributes

uint32_t version
Version of this API.

sl_wisun_params_
discovery

discovery
PAN discovery parameter set.

sl_wisun_params_
configuration

configuration
PAN configuration parameter set.

sl_wisun_params_
eapol

eapol
Authentication parameter set.

sl_wisun_params_r
pl

rpl
RPL parameter set.

sl_wisun_params_
mpl

mpl
MPL parameter set.

sl_wisun_params_
misc

misc
Misc parameter set.

Public Attribute Documentation

version

uint32_t sl_wisun_connection_params_t::version

Version of this API.

This field allows to store the parameters in an NVM and check on reload that they are compatible with the stack if there

was an update.

Definition at line 190 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

discovery

sl_wisun_params_discovery sl_wisun_connection_params_t::discovery

PAN discovery parameter set.

Definition at line 192 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

configuration

sl_wisun_connection_params_t

536/602

sl_wisun_params_configuration sl_wisun_connection_params_t::configuration

PAN configuration parameter set.

Definition at line 194 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

eapol

sl_wisun_params_eapol sl_wisun_connection_params_t::eapol

Authentication parameter set.

Definition at line 196 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

rpl

sl_wisun_params_rpl sl_wisun_connection_params_t::rpl

RPL parameter set.

Definition at line 198 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

mpl

sl_wisun_params_mpl sl_wisun_connection_params_t::mpl

MPL parameter set.

Definition at line 200 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

misc

sl_wisun_params_misc sl_wisun_connection_params_t::misc

Misc parameter set.

Definition at line 202 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

sl_wisun_lfn_params_connection_t

537/602

sl_wisun_lfn_params_connection_t

LFN connection parameters.

Public Attributes

uint8_t discovery_slot_time_ms
Duration of LFN PAN Advertisement (LPA) listening slot (millisecond) Specification range [15, 255].

uint8_t discovery_slots
Number of LPA slots for which an LFN shall listen for LPA frames Specification range [1, 255].

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

discovery_slot_time_ms

uint8_t sl_wisun_lfn_params_connection_t::discovery_slot_time_ms

Duration of LFN PAN Advertisement (LPA) listening slot (millisecond) Specification range [15, 255].

Definition at line 52 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

discovery_slots

uint8_t sl_wisun_lfn_params_connection_t::discovery_slots

Number of LPA slots for which an LFN shall listen for LPA frames Specification range [1, 255].

Definition at line 55 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

reserved

uint8_t sl_wisun_lfn_params_connection_t::reserved[2]

Reserved, set to zero.

Definition at line 57 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_data_layer_t

538/602

sl_wisun_lfn_params_data_layer_t

LFN data layer parameters.

Public Attributes

uint32_t unicast_interval_ms
Initial LFN Unicast interval proposed by the LFN (milliseconds).

uint32_t unicast_interval_min_ms
Minimum acceptable LFN unicast interval (milliseconds)

uint32_t unicast_interval_max_ms
Maximum acceptable LFN unicast interval (milliseconds)

uint8_t lfn_maintain_parent_time
The LFN assumes its parent is lost after [lfn_maintain_parent_time] number of Broadcast sync periods with no message

received from its parent.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

unicast_interval_ms

uint32_t sl_wisun_lfn_params_data_layer_t::unicast_interval_ms

Initial LFN Unicast interval proposed by the LFN (milliseconds).

The real unicast interval duration is negotiated with the LFN parent, between unicast_ interval_min_ms and

unicast_ interval_max_ms.

Definition at line 67 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

unicast_interval_min_ms

uint32_t sl_wisun_lfn_params_data_layer_t::unicast_interval_min_ms

Minimum acceptable LFN unicast interval (milliseconds)

Definition at line 69 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

unicast_interval_max_ms

uint32_t sl_wisun_lfn_params_data_layer_t::unicast_interval_max_ms

Maximum acceptable LFN unicast interval (milliseconds)

sl_wisun_lfn_params_data_layer_t

539/602

Definition at line 71 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

lfn_maintain_parent_time

uint8_t sl_wisun_lfn_params_data_layer_t::lfn_maintain_parent_time

The LFN assumes its parent is lost after [lfn_maintain_parent_time] number of Broadcast sync periods with no message

received from its parent.

Specification range [1, 60]

Definition at line 75 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

reserved

uint8_t sl_wisun_lfn_params_data_layer_t::reserved[3]

Reserved, set to zero.

Definition at line 77 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_network_t

540/602

sl_wisun_lfn_params_network_t

LFN network parameters.

Public Attributes

uint16_t lfn_registration_lifetime_m
Address registration lifetime (IPv6 lease duration) the LFN requires to the Border Router (minutes).

uint8_t lfn_na_wait_duration_m
Duration for which an LFN waits for a registration confirmation (minutes).

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

lfn_registration_lifetime_m

uint16_t sl_wisun_lfn_params_network_t::lfn_registration_lifetime_m

Address registration lifetime (IPv6 lease duration) the LFN requires to the Border Router (minutes).

Specification range [1440, 5040]

Definition at line 87 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

lfn_na_wait_duration_m

uint8_t sl_wisun_lfn_params_network_t::lfn_na_wait_duration_m

Duration for which an LFN waits for a registration confirmation (minutes).

Specification range [30, 120]

Definition at line 90 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

reserved

uint8_t sl_wisun_lfn_params_network_t::reserved

Reserved, set to zero.

Definition at line 92 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_power_t

541/602

sl_wisun_lfn_params_power_t

LFN power parameters.

Public Attributes

uint16_t listening_window_min_us
Minimum duration of the listening window.

uint16_t window_margin_min_us
Minimum margin added to the listening window (before and after).

uint8_t broadcast_lts_only
If true , the LFN wakes up only for broadcast slots containing synchronization information.

uint8_t reserved
Reserved, set to zero.

Public Attribute Documentation

listening_window_min_us

uint16_t sl_wisun_lfn_params_power_t::listening_window_min_us

Minimum duration of the listening window.

Applies to both Unicast and Broadcast slots.

Definition at line 101 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

window_margin_min_us

uint16_t sl_wisun_lfn_params_power_t::window_margin_min_us

Minimum margin added to the listening window (before and after).

The real margin increases with aging synchronization info.

Definition at line 104 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

broadcast_lts_only

uint8_t sl_wisun_lfn_params_power_t::broadcast_lts_only

If true, the LFN wakes up only for broadcast slots containing synchronization information.

If false, the node wakes up on every LFN broadcast slot.

Definition at line 108 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_power_t

542/602

reserved

uint8_t sl_wisun_lfn_params_power_t::reserved[3]

Reserved, set to zero.

Definition at line 110 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_t

543/602

sl_wisun_lfn_params_t

LFN parameter set.

Public Attributes

uint32_t version
Version of this API.

sl_wisun_lfn_para
ms_connection_t

connection
LFN connection parameters.

sl_wisun_lfn_para
ms_data_layer_t

data_layer
LFN data layer parameters.

sl_wisun_lfn_para
ms_network_t

network
LFN network parameters.

sl_wisun_lfn_para
ms_power_t

power
LFN power parameters.

Public Attribute Documentation

version

uint32_t sl_wisun_lfn_params_t::version

Version of this API.

This field allows to store the parameters in an NVM and check on reload that they are compatible with the stack if there

was an update.

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

connection

sl_wisun_lfn_params_connection_t sl_wisun_lfn_params_t::connection

LFN connection parameters.

Definition at line 125 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

data_layer

sl_wisun_lfn_params_data_layer_t sl_wisun_lfn_params_t::data_layer

LFN data layer parameters.

Definition at line 127 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

sl_wisun_lfn_params_t

544/602

network

sl_wisun_lfn_params_network_t sl_wisun_lfn_params_t::network

LFN network parameters.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

power

sl_wisun_lfn_params_power_t sl_wisun_lfn_params_t::power

LFN power parameters.

Definition at line 131 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

Predefined FFN parameter sets

545/602

Predefined FFN parameter sets

Predefined FFN parameter sets
Predefined FFN parameter sets for sl_wisun_set_connection_parameters().

These parameter sets can be used either as-is or used as an initialization value for an application-specific parameter set.

Variables

const
sl_wisun_connecti

on_params_t

SL_WISUN_PARAMS_PROFILE_TEST
Profile for development (shorter connection time)

const
sl_wisun_connecti

on_params_t

SL_WISUN_PARAMS_PROFILE_CERTIF
Profile for certification testing.

const
sl_wisun_connecti

on_params_t

SL_WISUN_PARAMS_PROFILE_SMALL
Profile for a small network.

const
sl_wisun_connecti

on_params_t

SL_WISUN_PARAMS_PROFILE_MEDIUM
Profile for a medium network.

const
sl_wisun_connecti

on_params_t

SL_WISUN_PARAMS_PROFILE_LARGE
Profile for a large network.

Variable Documentation

SL_WISUN_PARAMS_PROFILE_TEST

const sl_wisun_connection_params_t SL_WISUN_PARAMS_PROFILE_TEST

Profile for development (shorter connection time)

Definition at line 218 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

SL_WISUN_PARAMS_PROFILE_CERTIF

const sl_wisun_connection_params_t SL_WISUN_PARAMS_PROFILE_CERTIF

Profile for certification testing.

Definition at line 295 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

SL_WISUN_PARAMS_PROFILE_SMALL

Predefined FFN parameter sets

546/602

const sl_wisun_connection_params_t SL_WISUN_PARAMS_PROFILE_SMALL

Profile for a small network.

Definition at line 372 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

SL_WISUN_PARAMS_PROFILE_MEDIUM

const sl_wisun_connection_params_t SL_WISUN_PARAMS_PROFILE_MEDIUM

Profile for a medium network.

Definition at line 449 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

SL_WISUN_PARAMS_PROFILE_LARGE

const sl_wisun_connection_params_t SL_WISUN_PARAMS_PROFILE_LARGE

Profile for a large network.

Definition at line 526 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_connection_params_api.h

Predefined LFN parameter sets

547/602

Predefined LFN parameter sets

Predefined LFN parameter sets
Predefined LFN parameter sets for sl_wisun_set_lfn_parameters().

These parameter sets can be used either as-is or used as an initialization value for an application-specific parameter set.

Variables

const
sl_wisun_lfn_para

ms_t

SL_WISUN_PARAMS_LFN_TEST
Profile for test usage , best performance but highest power consumption.

const
sl_wisun_lfn_para

ms_t

SL_WISUN_PARAMS_LFN_BALANCED
Profile providing balance between power consumption and performance .

const
sl_wisun_lfn_para

ms_t

SL_WISUN_PARAMS_LFN_ECO
Profile optimized for low power consumption.

Variable Documentation

SL_WISUN_PARAMS_LFN_TEST

const sl_wisun_lfn_params_t SL_WISUN_PARAMS_LFN_TEST

Profile for test usage, best performance but highest power consumption.

Definition at line 147 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

SL_WISUN_PARAMS_LFN_BALANCED

const sl_wisun_lfn_params_t SL_WISUN_PARAMS_LFN_BALANCED

Profile providing balance between power consumption and performance.

Definition at line 175 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

SL_WISUN_PARAMS_LFN_ECO

const sl_wisun_lfn_params_t SL_WISUN_PARAMS_LFN_ECO

Profile optimized for low power consumption.

Definition at line 203 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/sl_wisun_lfn_params_api.h

Socket API

548/602

Socket API

Socket API

Modules

sockaddr

in6_addr

sockaddr_ in6

Protocol levels used for socket_setsockopt.

#define SOL_SOCKET 0
Socket option level.

#define SOL_APPLICATION 1
Application socket option level.

#define IPPROTO_IPV6 41
IPV6 socket option level.

application level socket options

application level socket options summaryopt_name data type set/get sendmsg recvmsg SO_EVENT_MODE int16_t Set only

No Yes SO_NONBLOCK int16_t Set only Yes Yes

#define SO_EVENT_MODE 10

#define SOCKET_EVENT_MODE SO_EVENT_MODE

#define SO_NONBLOCK 11
Enable/disable nonblocking mode .

socket level options

socket level options summaryopt_name data type set/get sendmsg recvmsg SO_RCVBUF int32_t Set/Get No Yes

SO_SNDBUF int32_t Set/Get Yes No SO_SNDLOWAT int32_t Set/Get Yes No

#define SO_RCVBUF 1

#define SO_SNDBUF 2
Specify send buffer size in payload bytes.

#define SO_SNDLOWAT 4
Specify send low water mark in payload bytes.

IPv6 socket options

Socket API

549/602

IPv6 socket options summaryopt_name Data type set/getsockopt sendmsg recvmsg IPV6_UNICAST_HOPS int16_t Set/Get

Yes No IPV6_MULTICAST_HOPS int16_t Set/Get Yes No IPV6_JOIN_GROUP ns_ ipv6_mreq_t Set only Yes Yes

IPV6_LEAVE_GROUP ns_ ipv6_mreq_t Set only Yes Yes SO_EDFE_MODE uint32_t Set only Yes No

#define IPV6_UNICAST_HOPS 2

#define IPV6_MULTICAST_HOPS 3
Set the multicast hop limit for the socket.

#define IPV6_JOIN_GROUP 15
Jo in a multicast group.

#define IPV6_LEAVE_GROUP 16
Leave a multicast group.

#define SO_EDFE_MODE 0xfb
Experimental: Enable Extended Directed Frame Exchange mode .

#define SOCKET_EDFE_MODE SO_EDFE_MODE

Enumerations

enum sl_wisun_socket_event_mode_t {

SL_WISUN_SOCKET_EVENT_MODE_INDICATION = 0
SL_WISUN_SOCKET_EVENT_MODE_POLLING = 1

}
Enumerations for socket event mode .

enum socket_domain {

AF_INET6 = 0

}
Supported address families.

enum socket_type {

SOCK_STREAM = 1
SOCK_DGRAM = 2
SOCK_RAW = 3

}
Socket types.

enum socket_protocol {

IPPROTO_IP = 0
IPPROTO_ICMP = 1
IPPROTO_TCP = 2
IPPROTO_UDP = 3

}
IP protoco ls.

Typedefs

typedef uint32_t socklen_t
Socket address length type definition.

typedef int32_t sl_wisun_socket_id_t
Socket id.

Socket API

550/602

typedef enum
socket_domain

sl_socket_domain_t
Supported address families.

typedef enum
socket_type

sl_socket_type_t
Socket types.

typedef enum
socket_protocol

sl_socket_protocol_t
IP protoco ls.

typedef struct
in6_addr

in6_addr_t
IPv6 Internet address.

typedef struct
sockaddr_in6

sockaddr_in6_t
IPv6 address format.

Variables

const in6_addr_t in6addr_any
IPv6 wildcard address.

Functions

int32_t socket(int32_t domain, int32_t type, int32_t protocol)
Creates an endpo int for communication and returns an Id that refers to that endpo int.

int32_t close(int32_t sockid)
Close a socket.

int32_t bind(int32_t sockid, const struct sockaddr *addr, socklen_t addrlen)
Bind a name to a socket.

int32_t send(int32_t sockid, const void *buff, uint32_t len, int32_t flags)
Send a message on a socket.

int32_t sendto(int32_t sockid, const void *buff, uint32_t len, int32_t flags, const struct sockaddr *dest_addr,
socklen_t addr_len)
Send a message to a given address.

int32_t recvfrom(int32_t sockid, void *buf, uint32_t len, int32_t flags, struct sockaddr *src_addr, socklen_t *addrlen)
Receive messages from a socket.

int32_t recv(int32_t sockid, void *buf, uint32_t len, int32_t flags)
Receive a message from a socket.

int32_t accept(int32_t sockid, struct sockaddr *addr, socklen_t *addrlen)
Accept a connection on a socket.

int32_t connect(int32_t sockid, const struct sockaddr *addr, socklen_t addrlen)
Initiate a connection on a socket.

int32_t listen(int32_t sockid, int32_t backlog)
Listen for connections on a socket.

int32_t setsockopt(int32_t sockid, int32_t level, int32_t optname, const void *optval, socklen_t optlen)
Set socket option designated by optname at a given protoco l level to the value po inted by optval.

int32_t getsockopt(int32_t sockid, int32_t level, int32_t optname, void *optval, socklen_t *optlen)
Get socket option.

Socket API

551/602

__STATIC_INLINE
uint32_t

htonl(uint32_t hostlong)
Convert the long host byte order to network order.

__STATIC_INLINE
uint16_t

htons(uint16_t hostshort)
Convert the short host byte order to network order.

__STATIC_INLINE
uint32_t

ntohl(uint32_t netlong)
Convert the long network byte order to host byte order.

__STATIC_INLINE
uint16_t

ntohs(uint16_t netshort)
Convert the short network byte order to host byte order.

int32_t inet_pton(int32_t af, const char *src, void *dst)
Convert the IPv4 and IPv6 addresses from text to binary form.

const char * inet_ntop(int32_t af, const void *src, char *dst, socklen_t size)
Convert IPv6 addresses from binary to text form.

Macros

#define APP_LEVEL_SOCKET SOL_APPLICATION

#define IPV6_ADDR_SIZE 16
Size of an IPv6 address.

#define SOCK_NONBLOCK 0X00010000
When bitwise ored with socket's type , it sets the O_NONBLOCK status flag on the opened socket file description.

Protocol levels used for socket_setsockopt. Documentation

SOL_SOCKET

#define SOL_SOCKET

Value:

0

Socket option level.

Definition at line 61 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SOL_APPLICATION

#define SOL_APPLICATION

Value:

1

Application socket option level.

Definition at line 62 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

IPPROTO_IPV6

Socket API

552/602

#define IPPROTO_IPV6

Value:

41

IPV6 socket option level.

Definition at line 63 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

application level socket options Documentation

SO_EVENT_MODE

#define SO_EVENT_MODE

Value:

10

Specify event mode of a socket. When set, optval must point to an uint32_t.

Possible values are:

SL_WISUN_SOCKET_EVENT_MODE_INDICATION: received data is included in SL_WISUN_MSG_SOCKET_DATA_IND_ID

indication

SL_WISUN_SOCKET_EVENT_MODE_POLLING: only the amount of received data is included

SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID indication. recv() or recvfrom() shouldbe invoked after indication

reception to retrieve data

Definition at line 93 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SOCKET_EVENT_MODE

#define SOCKET_EVENT_MODE

Value:

SO_EVENT_MODE

Specify event mode of a socket. When set, optval must point to an uint32_t.

Possible values are:

SL_WISUN_SOCKET_EVENT_MODE_INDICATION: received data is included in SL_WISUN_MSG_SOCKET_DATA_IND_ID

indication

SL_WISUN_SOCKET_EVENT_MODE_POLLING: only the amount of received data is included

SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID indication. recv() or recvfrom() shouldbe invoked after indication

reception to retrieve data

Definition at line 94 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SO_NONBLOCK

Socket API

553/602

#define SO_NONBLOCK

Value:

11

Enable/disable nonblocking mode.

This option takes an uint32_t value.

Possible values are:

(1) enables nonblocking mode

(0) disables nonblocking mode

Definition at line 102 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

socket level options Documentation

SO_RCVBUF

#define SO_RCVBUF

Value:

1

Specify receive buffer size in payload bytes. When set, optval must point to an int32_t.

0 means unread data are dropped, unless read in data callback.

Definition at line 123 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SO_SNDBUF

#define SO_SNDBUF

Value:

2

Specify send buffer size in payload bytes.

When set, optval must point to an int32_t.

Used only for stream sockets.

Definition at line 129 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SO_SNDLOWAT

#define SO_SNDLOWAT

Value:

Socket API

554/602

4

Specify send low water mark in payload bytes.

When set, optval must point to an int32_t.

Definition at line 133 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

IPv6 socket options Documentation

IPV6_UNICAST_HOPS

#define IPV6_UNICAST_HOPS

Value:

2

Set the unicast hop limit for the socket. When set, optval must point to an int16_t.

-1 in the value means use the route default, otherwise it should be between 0 and 255.

Definition at line 157 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

IPV6_MULTICAST_HOPS

#define IPV6_MULTICAST_HOPS

Value:

3

Set the multicast hop limit for the socket.

When set, optval must point to an int16_t.

-1 in the value means use the route default, otherwise it should be between 0 and 255.

Definition at line 162 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

IPV6_JOIN_GROUP

#define IPV6_JOIN_GROUP

Value:

15

Join a multicast group.

When set, optval must point to an in6_addr_t.

Definition at line 165 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Socket API

555/602

IPV6_LEAVE_GROUP

#define IPV6_LEAVE_GROUP

Value:

16

Leave a multicast group.

When set, optval must point to an in6_addr_t.

Definition at line 168 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SO_EDFE_MODE

#define SO_EDFE_MODE

Value:

0xfb

Experimental: Enable Extended Directed Frame Exchange mode.

When set, optval must point to an uint32_t.

Definition at line 171 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SOCKET_EDFE_MODE

#define SOCKET_EDFE_MODE

Value:

SO_EDFE_MODE

Set the unicast hop limit for the socket. When set, optval must point to an int16_t.

-1 in the value means use the route default, otherwise it should be between 0 and 255.

Definition at line 172 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Enumeration Documentation

sl_wisun_socket_event_mode_t

sl_wisun_socket_event_mode_t

Enumerations for socket event mode.

Enumerator

SL_WISUN_SOCKET_EVENT_MODE_INDICATION SL_WISUN_MSG_SOCKET_DATA_IND_ID is sent to the app with the

packet contained in the indication.

Socket API

556/602

SL_WISUN_SOCKET_EVENT_MODE_POLLING SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID is sent to the app

indicating the amount of data received recv() or recvfrom() should be

invoked after indication reception to retrieve data This is the default

socket event mode option.

Definition at line 189 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

socket_domain

socket_domain

Supported address families.

Enumerator

AF_INET6 IP version 6.

Definition at line 199 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

socket_type

socket_type

Socket types.

Enumerator

SOCK_STREAM stream (connection) socket (TCP)

SOCK_DGRAM datagram (connectionless) socket (UDP)

SOCK_RAW raw socket

Definition at line 204 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

socket_protocol

socket_protocol

IP protocols.

Enumerator

IPPROTO_IP Dummy protocol.

IPPROTO_ICMP Internet Control Message Protocol.

IPPROTO_TCP Transmission Control Protocol.

IPPROTO_UDP User Datagram Protocol.

Definition at line 211 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Typedef Documentation

socklen_t

typedef uint32_t socklen_t

Socket API

557/602

Socket address length type definition.

Definition at line 183 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sl_wisun_socket_id_t

typedef int32_t sl_wisun_socket_id_t

Socket id.

Definition at line 186 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sl_socket_domain_t

typedef enum socket_domain sl_socket_domain_t

Supported address families.

Definition at line 201 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sl_socket_type_t

typedef enum socket_type sl_socket_type_t

Socket types.

Definition at line 208 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sl_socket_protocol_t

typedef enum socket_protocol sl_socket_protocol_t

IP protocols.

Definition at line 216 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

in6_addr_t

typedef struct in6_addr in6_addr_t

IPv6 Internet address.

Definition at line 227 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sockaddr_in6_t

typedef struct sockaddr_in6 sockaddr_in6_t

Socket API

558/602

IPv6 address format.

Definition at line 239 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Variable Documentation

in6addr_any

const in6_addr_t in6addr_any

IPv6 wildcard address.

Definition at line 230 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Function Documentation

socket

int32_t socket (int32_t domain, int32_t type, int32_t protocol)

Creates an endpoint for communication and returns an Id that refers to that endpoint.

Parameters

[in] domain Specifies a communication domain. It selects the protocol family which will be used for communication.

Must be set to AF_INET6 (IPv6 network socket)

[in] type The communication semantics It can be:

SOCK_STREAM - TCP stream socket type

SOCK_DGRAM - UDP datagram socket type

SOCK_RAW - Raw Socket type (ICMP)

[in] protocol Specifies the particular protocol to be used. It can be:

IPPROTO_ICMP - Ping

IPPROTO_IP and IPPROTO_TCP - TCP stream sockets

IPPROTO_IP and IPPROTO_UDP - UDP datagram sockets

Returns

The socket's id on success, (-1) on failure.

Definition at line 261 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

close

int32_t close (int32_t sockid)

Close a socket.

Parameters

[in] sockid socket id

Returns

Socket API

559/602

0 on success, -1 on failure.

Close a socket and remove from the socket handler storage.

Definition at line 277 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

bind

int32_t bind (int32_t sockid, const struct sockaddr *addr, socklen_t addrlen)

Bind a name to a socket.

Parameters

[in] sockid socket id

[in] addr address structure ptr

[in] addrlen address structure size

Returns

0 on success, -1 on failure.

Assigns the address to the socket, referred to by the socket ID, as specified by addr. It is normally necessary to assign a

local address using bind() before a SOCK_STREAM socket may receive connections.

Definition at line 291 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

send

int32_t send (int32_t sockid, const void *buff, uint32_t len, int32_t flags)

Send a message on a socket.

Parameters

[in] sockid socket descriptor.

[in] buff pointer to data buffer to send.

[in] len length of data buffer to send.

[in] flags flags to select send options. Ignored in our implementation.

Returns

The number of bytes sent on success, -1 if an error occurred.

Preferred with connection-oriented sockets (TCP).

Definition at line 304 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sendto

int32_t sendto (int32_t sockid, const void *buff, uint32_t len, int32_t flags, const struct sockaddr *dest_addr, socklen_t
addr_len)

Send a message to a given address.

Parameters

Socket API

560/602

[in] sockid socket descriptor.

[in] buff pointer to data buffer to send.

[in] len length of data buffer to send.

[in] flags flags to select send options. Ignored in our implementation.

[in] dest_addr pointer to destination address buffer; Required for datagram sockets.

[in] addr_len length of destination address buffer.

Returns

The number of bytes sent on success, -1 if an error occurred.

Preferred in datagram mode (UDP).

Definition at line 319 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

recvfrom

int32_t recvfrom (int32_t sockid, void *buf, uint32_t len, int32_t flags, struct sockaddr *src_addr, socklen_t *addrlen)

Receive messages from a socket.

Parameters

[in] sockid descriptor of socket to receive the message from.

[out] buf pointer to destination data buffer.

[in] len length of destination data buffer.

[in] flags flags to select type of message reception. Ignored in our implementation.

[in] src_addr pointer to a sockaddr structure in which the sending address is to be stored.

[in] addrlen length of the supplied sockaddr structure.

Returns

The number of bytes received on success, -1 if an error occurred.

Receives data on a socket whether or not it is connection-oriented.

Definition at line 337 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

recv

int32_t recv (int32_t sockid, void *buf, uint32_t len, int32_t flags)

Receive a message from a socket.

Parameters

[in] sockid descriptor of socket to receive the message from.

[out] buf pointer to destination data buffer.

[in] len length of destination data buffer.

[in] flags flags to select type of message reception. Ignored in our implementation.

Returns

The number of bytes received on success, -1 if an error occurred.

Socket API

561/602

Should be used for connection-oriented protocol (TCP)

Definition at line 352 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

accept

int32_t accept (int32_t sockid, struct sockaddr *addr, socklen_t *addrlen)

Accept a connection on a socket.

Parameters

[in] sockid socket descriptor

[inout] addr A pointer to sockaddr structure filled in with the address of the peer (remote) socket. When addr is

NULL, nothing is filled in; in this case, addrlen is not used, and should also be NULL.

[inout] addrlen The caller must initialize it to contain the size (in bytes) of the structure pointed to by addr. On return it

will contain the actual size of the peer address.

Returns

The socket id of the accepted socket on success, -1 if an error occurred.

Used with connection-based socket types (TCP). It extracts the first connection request on the queue of pending

connections for the listening socket.

Definition at line 372 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

connect

int32_t connect (int32_t sockid, const struct sockaddr *addr, socklen_t addrlen)

Initiate a connection on a socket.

Parameters

[in] sockid socket descriptor.

[in] addr If the socket sockid is of type SOCK_DGRAM, addr is the address to which datagrams are sent by default

and the only address from which datagrams are received. If the socket is of type SOCK_STREAM, this call

attempts to make a connection to the socket that is bound to the address specified by addr.

[in] addrlen length of the supplied sockaddr structure.

Returns

0 on connection or binding success, -1 if an error occurred.

Connects the socket referred to by the sockid to the address specified by address.

Definition at line 388 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

listen

int32_t listen (int32_t sockid, int32_t backlog)

Listen for connections on a socket.

Parameters

Socket API

562/602

[in] sockid socket id

[in] backlog Argument defines the maximum length to which the queue of pending connections for sockid may grow.

Not implemented for Wi-SUN, the connection queue size is always 1

Returns

0 on success, -1 if an error occurred.

Marks the socket referred to by sockid as a passive socket, that is, as a socket that will be used to accept incoming

connection requests using accept.

Definition at line 402 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

setsockopt

int32_t setsockopt (int32_t sockid, int32_t level, int32_t optname, const void *optval, socklen_t optlen)

Set socket option designated by optname at a given protocol level to the value pointed by optval.

Parameters

[in] sockid socket ID

[in] level protocol level at which the option resides. it could be:

SOL_SOCKET

IPPROTO_IPV6

SOL_APPLICATION

[in] optname option name. it could be:

for SOL_SOCKET level:

SO_RCVBUF

SO_SNDBUF

SO_SNDLOWAT

for IPPROTO_IPV6 level:

IPV6_UNICAST_HOPS

IPV6_MULTICAST_HOPS

IPV6_JOIN_GROUP

IPV6_LEAVE_GROUP

SO_EDFE_MODE

for SOL_APPLICATION:

SO_EVENT_MODE

SO_NONBLOCK

[in] optval Pointer to the socket option new value. The type of variable pointed by optval depends level and

optname values.

[in] optlen Must be the size of the symbol pointed by optval.

Returns

0 on success, -1 if an error occurred.

This function can set socket properties.

Definition at line 436 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

getsockopt

Socket API

563/602

int32_t getsockopt (int32_t sockid, int32_t level, int32_t optname, void *optval, socklen_t *optlen)

Get socket option.

Parameters

[in] sockid socket descriptor.

[in] level socket protocol level.

[in] optname Option name. Supported options:

for SOL_SOCKET level:

SO_RCVBUF

SO_SNDBUF

SO_SNDLOWAT

for IPPROTO_IPV6 level:

IPV6_UNICAST_HOPS

IPV6_MULTICAST_HOPS

[out] optval option value structure pointer.

[in] optlen size of the option value structure.

Returns

0 on success, -1 if an error occurred.

The function gets socket option by optname, and copies option data to optval ptr.

Definition at line 459 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

htonl

__STATIC_INLINE uint32_t htonl (uint32_t hostlong)

Convert the long host byte order to network order.

Parameters

[in] hostlong Long host integer

Returns

Long network integer

This function converts the unsigned integer hostlong from host byte order to network byte order. For Wi-SUN, the

conversion is not needed. Dummy implementation

Definition at line 471 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

htons

__STATIC_INLINE uint16_t htons (uint16_t hostshort)

Convert the short host byte order to network order.

Parameters

[in] hostshort Short host integer

Socket API

564/602

Returns

Short network integer

This function converts the unsigned short integer hostshort from host byte order to network byte order. For Wi-SUN, the

conversion is not needed. Dummy implementation

Definition at line 485 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

ntohl

__STATIC_INLINE uint32_t ntohl (uint32_t netlong)

Convert the long network byte order to host byte order.

Parameters

[in] netlong Long network integer

Returns

Long host integer

This function converts the unsigned integer netlong from network byte order to host byte order. For Wi-SUN, the

conversion is not needed. Dummy implementation

Definition at line 499 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

ntohs

__STATIC_INLINE uint16_t ntohs (uint16_t netshort)

Convert the short network byte order to host byte order.

Parameters

[in] netshort

Returns

Short host integer

This function converts the unsigned short integer netshort from the network byte order to host byte order.For Wi-SUN, the

conversion is not needed. Dummy implementation.

Definition at line 514 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

inet_pton

int32_t inet_pton (int32_t af, const char *src, void *dst)

Convert the IPv4 and IPv6 addresses from text to binary form.

Parameters

[in] af The address family. Only AF_INET6 is supported by our implementation.

[in] src Source string

Socket API

565/602

[out] dst Destination address pointer

Returns

1 on succes, -1 if an error occurred. (POSIX described the 0 value too)

This function converts the character string src into a network address structure in the af address family, then copies the

network address structure to dst. AF_INET (IPv4) case not supported.

Definition at line 531 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

inet_ntop

const char * inet_ntop (int32_t af, const void *src, char *dst, socklen_t size)

Convert IPv6 addresses from binary to text form.

Parameters

[in] af - Address family.

Only AF_INET6 is supported

[in] src Source address in byte form

[out] dst Destination buffer ptr

[in] size S ize of the destination buffer.

Returns

It returns a non-null pointer to dst. NULL if an error occurred.

Converts the network address structure src in the af address family into a character string. The resulting string is copied to

the buffer pointed to by dst, which must be a non-null pointer. The caller specifies the number of bytes available in this

buffer in the argument size. AF_INET (IPv4) case not supported.

Definition at line 549 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Macro Definition Documentation

APP_LEVEL_SOCKET

#define APP_LEVEL_SOCKET

Value:

SOL_APPLICATION

Definition at line 67 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

IPV6_ADDR_SIZE

#define IPV6_ADDR_SIZE

Value:

16

Socket API

566/602

S ize of an IPv6 address.

Definition at line 176 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

SOCK_NONBLOCK

#define SOCK_NONBLOCK

Value:

0X00010000

When bitwise ored with socket's type, it sets the O_NONBLOCK status flag on the opened socket file description.

Definition at line 180 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sockaddr

567/602

sockaddr

Socket address.

Public Attributes

uint16_t sa_family
address family, AF_XXXX

uint8_t sa_data
26 bytes of protoco l address (IPv6)

Public Attribute Documentation

sa_family

uint16_t sockaddr::sa_family

address family, AF_XXXX

Definition at line 220 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sa_data

uint8_t sockaddr::sa_data[26]

26 bytes of protocol address (IPv6)

Definition at line 221 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

in6_addr

568/602

in6_addr

IPv6 Internet address.

Public Attributes

uint8_t address
IPv6 address.

Public Attribute Documentation

address

uint8_t in6_addr::address[IPV6_ADDR_SIZE�

IPv6 address.

Definition at line 226 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sockaddr_ in6

569/602

sockaddr_in6

IPv6 address format.

Public Attributes

uint16_t sin6_family
AF_INET6.

uint16_t sin6_port
Transport layer port.

uint32_t sin6_flowinfo
IPv6 flow information.

in6_addr_t sin6_addr
IPv6 address.

uint32_t sin6_scope_id
Scope ID.

Public Attribute Documentation

sin6_family

uint16_t sockaddr_in6::sin6_family

AF_INET6.

Definition at line 234 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sin6_port

uint16_t sockaddr_in6::sin6_port

Transport layer port.

Definition at line 235 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sin6_flowinfo

uint32_t sockaddr_in6::sin6_flowinfo

IPv6 flow information.

Definition at line 236 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sin6_addr

sockaddr_ in6

570/602

in6_addr_t sockaddr_in6::sin6_addr

IPv6 address.

Definition at line 237 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

sin6_scope_id

uint32_t sockaddr_in6::sin6_scope_id

Scope ID.

Definition at line 238 of file /mnt/raid/workspaces/ws.Mae4JfP9d/overlay/gsdk/protocol/wisun/stack/inc/socket/socket.h

Wi-SUN Stack Release Note

571/602

Wi-SUN Stack Release Note

Wi-SUN Stack Release Note

Release 1.8
(release date 2023-12-13)

New Features and Improvements

added a new API sl_wisun_get_stack_version() that returns the stack version.

updated sl_wisun_ join() to support the customization of PHY configurations. Extended sl_wisun_phy_config_type_t and

sl_wisun_phy_config_t to allow the customization of OFDM, FSK and O-QPSK entries.

added support for LFN Timing Offset (LTO). Avoid LFN broadcast and unicast overlaps.

added support for LFN multicast reception.

added support for SUN DSSS-OQPSK.

added support for blocking sockets.

added support for the new Indian PHY configurations.

Bug Fixes

fixed an error causing an assert when a device connects to network and then later re-join with a different device type.

fixed an error causing an LFN parent to hard fault on an LFN disconnection.

fixed an invalid variable initialization that could cause a device frame counter to be set to 0 when using IAR.

fixed an invalid configuration preventing LFN to connect when using the Balanced or Eco modes.

fixed an invalid initialization in MPL that was causing a multicast packet to be considered as old after a router re-connection.

fixed an invalid time synchronization between an LFN and his FFN parent. It was causing significant drifts making downstream

communications instable after a while.

the Join Metric IE was not forwarded when the join state 1 was skipped.

fixed an error causing a LFN to be out-of-sync when no packet is exchanged for more than 1h10 (uint32 max us)

fixed an error causing MAC retries to be skipped on rare occasions.

fixed an error causing routers to stay on the wrong channel after performing asynchronous transmissions.

LFN are now send a Neighbor Solicitation with an EARO with a zero lifetime when disconnecting.

Wi-SUN OUI was coded with the wrong byte ordering.

maintained and restored the DHCP Identity Association ID (IAID) across reboots.

that stack performed a CSMA/CA on asynchronous frame transmissions. This behavior is specifically forbidden in the FAN

TPS.

the stack occasionally tried to send a Neighbor Advertisement (NA) as a reply to a received Neighbor Solicitation (NS) used

for Neighbor Unreachability Detection (NUD). This behavior is specifically forbidden in the FAN TPS.

Release 1.7.1
(release date 2023-10-10)

Bug Fixes

fixed an issue causing LFN LGTK and frame counter recovery from NVM after a reboot to be skipped.

fixed an invalid memory access when receiving a multicast packet with a full neighbor table.

Wi-SUN Stack Release Note

572/602

fixed LFN parent timeout. It was still partially relying on the FFN timeout mechanism.

fixed LFN address renewal.

fixed an invalid memory access in the RCP. It could either trigger an assert “ref_counter <= 0" or call free() on an invalid

memory section.

fixed an issue causing a mis-calculation of the ETX.

fixed an issue causing an invalid memory access when starting the SoC border router with an invalid PHY configuration

fixed an interoperability issue when using JP regulatory domain.

fixed a race between FHSS and ND causing an invalid memory access when disconnecting itself or an LFN child.

fixed FFN LGTK acquisition. FFN were performing a full 4-way handshake instead of a shorter 2-way handshake.

fixed an issue causing DHCP lease renewal to happen too often.

fixed an issue causing an invalid memory access when starting the stack without any certificate.

added missing Node Role KDE. Routers not supporting LFN parenting were missing the information element and were

considered as FAN1.0 devices by S ilicon Labs border routers.

Release 1.7
(release date 2023-06-07)

New Features and Improvements

LFN devices are now able to enter in Energy Mode 2 (EM2) if the application allows it.

added support for PAN-Wide IE.

adapted EDFE support for FAN 1.1.

adapted MPL support for FAN 1.1.

major refactoring of the stack internal timekeeping.

Bug Fixes

frame counters were not increased on retries.

fixed an issue causing UDP packets to be silently dropped. This was caused by an inappropriate management of fragmented

packets.

fixed an issue causing a suitable neighbor to be refused as a potential parent. Data packets missing a US-IE were refused

while they should have been accepted. The stack was not keeping track of the US-IE received during the authentication

process. This was causing interoperability issues with Nissin System routers.

fixed an improper stack initialization when used outside of a project generated with SLC.

fixed an issue causing a memory corruption when disconnecting an LFN.

Release 1.6
(release date 2023-06-07)

New Features and Improvements

added a new API sl_wisun_set_lfn_parameters() that configures all the LFN-specific settings.

added a new API sl_wisun_set_lfn_support() that sets the maximum number of LFNs that can be connected to a single FFN.

added a new API sl_wisun_set_mode_switch() that supersedes sl_wisun_set_mode_switch().The old API is still availa-ble but it

is recommended to move to the more recent one.

added a new API sl_wisun_set_pti_state() that enable the Packet Trace Interface (PTI). For more information about the PTI

in the context of Wi-SUN, refer to Wi-SUN’s Getting Started section on docs.silabs.com.

implemented LFN LGTK rotation

added support for a non-standard OFDM 64QAM PHY.

added support for EFR32FG28

optimized the reconnection of routers to an existing network: if configured to do so, the routers will now try to skip the

scanning and authenticated step of the joining procedure.

Wi-SUN Stack Release Note

573/602

Bug Fixes

fixed an issue that could cause acknowlges to be sent to the wrong channel.

fixed several issues that could cause an assert after a call to sl_wisun_disconnect().

fixed an issue that could cause a mutex to be kept for an undefined period of time. It was causing devices to be indefinitely

stalled.

Release 1.5.2
(release date 2023-04-19)

fixed an RNG error that could happen on EFR32xG12.

fixed an error causing LPA to be missed on PHY configurations using a lot of channels.

fixed an error causing a segmentation fault on congested networks.

Release 1.5.1
(release date 2023-03-08)

reduced the NS(EARO) retry period during the first connection. It reduces the time to connect in case of retransmission and

improves the process’s reliability.

unencrypted LPC are not accepted by LFN anymore.

fixed FEC support in Linux Border Router RCP.

Release 1.5.0
(release date 2023-02-01)

added a new SL_WISUN_SOCKET_OPTION_SEND_BUFFER_LIMIT socket option to configure the transmission buffer length.

added a new SL_WISUN_PHY_CONFIG_IDS option in sl_wisun_ join(). It allows the selection of a specific entry in the radio

configuration.

added LFN parent synchronization and time-out detection.

added LFN EAPOL accelerated listening schedule.

Bug Fixes

fixed a regression in the connection time.

Release 1.4.0
(release date 2022-12-14)

New Features and Improvements

added minimal support for FAN1.1 LFN (Limited Functional Node). LFN devices are able to connect and communicate but are

not using any of the EFR32 energy management mode. As such, they are not optimized for battery powered devices and

should only be used for evaluation and experimentation.

added a new API sl_wisun_set_device_type()that configures the role of device. It can be either a router (FFN – Full

Functional Node) or an end node (LFN)

added a new set of libraries supporting both LFN and FFN device types. Those libraries are used when the new “Stack

LFN Support” plugin is installed.

added support for FAN 1.1 PHY mode switch.

added a new API sl_wisun_set_mode_switch() that indicates if the device can mode switch with a given neighbor.

Wi-SUN Stack Release Note

574/602

added new APIs sl_wisun_set_pom_ ie()and sl_wisun_get_pom_ ie() that write or read the content of the POM-IE (PHY

Operating Mode Information Element). It contains the list of the PHY operating mode a node is willing to use for

communication.

added a new API sl_wisun_ join() that triggers a new connection. It can be used either with the old (1V08 – regulatory domain,

operating class, operating mode) or the new (1VA8 – regulatory domain, channel plan id, PHY mode if) nomenclature. That

new API is meant to replace sl_wisun_connect().

added a new API sl_wisun_set_connection_parameters() that extends the set of the configuration parameters. Used in pair

with sl_wisun_ join(), it replaces sl_wisun_connect() network size parameter.

added support for FSK FEC. FEC can be enable either by setting fec field of sl_wisun_phy_config_t structure or by using a

PHY mode id that explicity enables FEC.

added support of EFR32FG25. It supports all FAN1.1 OFDM modulation schemes and all FAN1.0 FSK configurations.

added support of EFF01

Deprecated Items

sl_wisun_connect() is replaced by sl_wisun_ join().

sl_wisun_set_channel_plan() is replaced by sl_wisun_ join().

sl_wisun_set_network_size() is replaced by sl_wisun_set_connection_parameters()

Release 1.3.2
(release date 2022-28-09)

Bug Fixes

fixed an invalid Path Control field configuration in RPL DAO packet.

Release 1.3.1
(release date 2022-06-08)

Net Features and Improvements

when ARIB radio regulation is selected, the stack refuses all EDFE initialization requests sending an EDFE final frame.

Bug Fixes

fixed PAN Advert and PAN Config Trickle timer configuration. Inconsistent transmissions were not correctly managed. It could

lead to suboptimal behavior in dense areas of a network.

fixed a performance issue that was causing Linux Border Router RCP to become unreachable when running throughput tests

with high-speed data rates. That issue was fixed by using DMA to collect UART data.

fixed an initialization issue that was causing PAN Advert and PAN Config asynchronous transmission requests to be dropped.

That issue was most likely to happen with TEST and SMALL network size configuration and could cause connection

durations to be significantly longer.

Release 1.3.0
(release date 2022-06-08)

New Features and Improvements

most of the stack crypto operations are now made through ARM PSA Crypo API.

Wi-SUN Stack Release Note

575/602

added a new API sl_wisun_set_device_private_key_ id() that indicates which PSA Crypto key handler contains the device

private key and has to be used by the stack. It is the application responsibility to create the key.

added a new API sl_wisun_set_regulation() that configures the regional regulation the stack must comply to. Refer to UG495

for more information about regional regulation in Wi-SUN Stack.

added a new event SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID that is fired when the transmission budget is cross-ing

one of the transmission budget threshold. The transmission budget is defined by the regional regulation. Refer to UG495 for

more information about regional regulation in Wi-SUN Stack.

added a new API sl_wisun_set_regulation_tx_thresholds() that configures the threshold used to fire

SL_WISUN_MSG_REGULATION_TX_LEVEL_IND_ID event.

added a new API sl_wisun_set_advert_fragment_duration() that configures the asynchronous transmission frag-ment duration.

It can be used to reduce the impact on the latency of long advertisement periods.

added a new API sl_wisun_set_unicast_tx_mode() that enables a high-reliability transmission mechanism for unicast

communication. It trades off unicast communication reliability for latency.

sl_wisun_set_channel_mask() channel filter is now applied to asynchronous transmissions and unicast listening schedule. The

function was renamed sl_wisun_set_allowed_channel_mask() to make it more self-explanatory.

Bug Fixes

Fixed an error that was causing radio calibrations to be skipped during Wi-SUN Stack initialization.

Release 1.2.3
(release date 2022-03-09)

Bug Fixes

Applied the PA configuration set in the application. It was previously ignored and the same configuration was always used.

Release 1.2.2
(release date 2022-02-21)

Bug Fixes

Fixed a recurrence of the error that could cause the stack to assert on a RAIL_StartCcaCsmaTx when trying to connect to a

network that cannot be reached.

Release 1.2.1
(release date 2022-01-26)

Bug Fixes

Fixed an error that could cause the stack to assert on a RAIL_StartCcaCsmaTx when trying to connect to a network that

cannot be reached.

Release 1.2
(release date 2021-10-13)

Wi-SUN Stack Release Note

576/602

New Features and Improvements

added release quality libraries. They provide the same Wi-SUN features but are not logging anything.

added a new API sl_wisun_reset_statistics that resets all the counters read by calling sl_wisun_get_statistics.

added new APIs sl_wisun_get_neighbor_count() and sl_wisun_get_neighbors() that indicate the neighbor count (parents and

children) and their MAC address.

added a new API sl_wisun_get_neighbor_ info() that returns information about a neighbor.

added a new API sl_wisun_set_unicast_settings() that configures the frequency hopping unicast dwell interval.

added a new API sl_wisun_set_trace_level() and sl_wisun_set_trace_filter() that configure the stack traces.

added support for mbedtls v3.0.

stack flash footprint reduction.

reworked Wi-SUN stack tasks priorities.

fixed the unicast channel filtering.

fixed an error causing the authentication waiting list to be broken.

Release 1.1.2
(release date 2021-10-13)

New Features and Improvements

fixed an issue causing a hard-fault during a parent information update.

Release 1.1.1
(release date 2021-09-08)

New Features and Improvements

fixed a drift in the frequency hopping mechanism that could lead to disconnections in quiet networks.

Release 1.1.0
(release date 2021-07-21)

New Features and Improvements

fixed an issue causing the event SL_WISUN_MSG_CONNECTED_IND_ID to be fired although no new connection was

established. It was fired after each network update.

fixed an issue causing connections to fail after an operating class update.

fixed an issue causing US-IE configuration to be invalid when excluding channels.

Release 1.0.1
(release date 2021-06-16)

New Features and Improvements

fixed an issue causing a parent to lose track of its child frequency hopping sequence. The child router was sending an

incorrect IFSU misleading the parent router and forcing it to be one frequency hop interval late.

Wi-SUN Stack Release Note

577/602

Release 1.0.0
(release date 2021-04-21)

New Features and Improvements

fixed memory leaks during the disconnection and reset processes.

added a new disconnected join state to sl_wisun_get_ join_state API.

miscellaneous API minor updates

Release 0.2.2
(release date 2021-04-21)

New Features and Improvements

fixed a bug causing connection with network_size 'Test' to be slower than it used to be.

added border router support for custom PHYs

added a new API for clearing credential cache

added a new API for MAC address management

Release 0.2.1
(release date 2021-04-07)

New Features and Improvements

fixed a bug causing unicasts to be sent on the wrong channel

updated a configuration that prevented multicast to be forwarded

Release 0.2.0
(release date 2021-01-25)

New Features and Improvements

added support for CMSIS RTOS API2

fixed UDP sockets corner cases.

Release 0.1.0
(release date 2020-12-10)

New Features and Improvements

added support for Gecko SDK v3.1

added support for operating mode 2a (100kbps) and 3 (150kbps)

added new APIs sl_wisun_allow_mac_address() and sl_wisun_deny_mac_address() that enable MAC filtering.

Wi-SUN Sockets

578/602

Wi-SUN Sockets

Wi-SUN Sockets
The Wi-SUN socket API is loosely modeled after the well-known BSD socket API, also known as POSIX socket API. Each

socket represents a handle for the local endpoint of a communication circuit.

v1.8 deprecates S ilicon Labs socket API. For a seamless compatibility, refer to the S ilicon Labs socket API

(deprecated) software component.

API Overview

BSD Function Former Wi-SUN API Function Description

socket() sl_wisun_open_socket() Creates an endpoint for communication and returns an Id that refers

to that endpoint.

bind() sl_wisun_bind_socket() Bind a name to a socket.

listen() sl_wisun_listen_on_socket() Listen for connections on a socket.

connect() sl_wisun_connect_socket() Initiate a connection on a socket.

accept() sl_wisun_accept_on_socket() Accept a connection on a socket.

send() sl_wisun_send_on_socket() Send a message on a socket.

sendto() sl_wisun_sendto_on_socket() Send a message to a given address.

recv() sl_wisun_receive_on_socket() Receive a message from a socket.

recvfrom() Not supported Receive messages from a socket.

close() sl_wisun_close_socket()

gethostbyname() Not supported

gethostbyaddr() Not supported

select() Not supported

poll() Not supported

getsockopt() sl_wisun_get_socket_option() Get socket option.

setsockopt() sl_wisun_set_socket_option() Set socket option designated by optname at a given protocol level to

the value pointed by optval.

Socket Life Cycle
In general, a socket is created by explicitly calling socket() and must be explicitly closed by calling close() . This both closes

the communication circuit and frees any resources allocated to the socket.

In certain protocols, the communication circuit may be closed by the remote peer. This is indicated with a

SL_WISUN_MSG_SOCKET_CLOSING_IND_ID event. Although the socket connection is closed, the system resources will not

be freed until the application calls close() .

Wi-SUN Sockets

579/602

Exchanging Data
Certain protocols require a socket in a connected state, meaning the underlying protocol must first establish a session with

the remote peer before data can be exchanged. It is also optionally possible on certain connectionless protocols. In either

case, connecting a socket creates a direct communication link with a remote peer, allowing the socket to be used only with

that particular peer.

To switch a socket into connected state, use connect() . See the table below for protocol details.

Protocol Unconnected Connected

IPPROTO_UDP MAY MAY

IPPROTO_TCP MUST NOT MUST

IPPROTO_ICMP MUST MUST NOT

Transmit

When a socket is in unconnected state, sendto() is used to transmit data. The function requires the application to specify

the remote peer address and port number on each call. When a socket is connected, send() is used instead. Because the

socket is "locked" into a single remote peer, address and port number are not needed.

Both functions are asynchronous. A successful return code indicates the socket has buffered the provided data and the

application may free the data resources. The application receives a SL_WISUN_MSG_SOCKET_DATA_SENT_IND_ID event

when a part or all buffered data has been sent.

Receive

To manage received socket data, the application has indication mode and polling mode. All sockets default to polling mode.

In this mode, the application will receive a SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID event on data reception.

The received data is stored in the socket buffer until the application reads it using recv() or recvfrom() ; Both recv() or

recvfrom() could be used only on the latter mode (Polling). A socket that generated a

SL_WISUN_MSG_SOCKET_DATA_AVAILABLE_IND_ID will never block. In indication mode, the received data is sent as a

SL_WISUN_MSG_SOCKET_DATA_IND_ID event as soon as it is received. The application must either handle the data

immediately or store it for later processing. Either way, the socket will not keep the data once the event handler returns.

Blocking operations
By default, socket operations block the RTOS task until its completion. Sockets can be configured as non-blocking or'ing

SOCK_NONBLOCK flag to the type parameter of socket() , or using the socket option #O_NONBLOCK. Our implementation

only supports one operation at a time.

Client

TCP Example

 Open a TCP socket using socket(AFINET_6, SOCK_STREAM, IPPROTO_TCP) .

 Initiate connection to the remote server using connect() .

 Wait for SL_WISUN_MSG_SOCKET_CONNECTED_IND_ID event.

 ... Exchange data with the remote server ...

 Close the socket using close() .

UDP Example

Wi-SUN Sockets

580/602

Open an UDP socket using socket(AFINET_6, SOCK_DGRAM, IPPROTO_UDP) .

 ... Exchange data with the remote server ...

 Close the socket using close() .

Server

TCP Example

 Open a TCP socket using socket(AFINET_6, SOCK_STREAM, IPPROTO_TCP) .

 Set the server socket port number using bind() .

 Set the server socket into listening state using listen() .

 Wait for SL_WISUN_MSG_SOCKET_CONNECTION_AVAILABLE_IND_ID event.

 Accept the client connection using accept() on the server socket.

 ... Exchange data with the remote client using the newly created client socket ...

 Close the client socket using close() .

 Go to 4.

UDP Example

 Open an UDP socket using socket(AFINET_6, SOCK_DGRAM, IPPROTO_UDP) .

 Set the socket port number using bind() .

 ... Exchange data with the remote client ...

Deprecated List

581/602

Deprecated List

Deprecated List
Global sl_wisun_accept_on_socket (sl_wisun_socket_ id_t socket_ id, sl_wisun_socket_ id_t *remote_socket_ id,

sl_wisun_ ip_address_t *remote_address, uint16_t *remote_port) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See accept() for a replacement.

Global sl_wisun_bind_socket (sl_wisun_socket_ id_t socket_ id, const sl_wisun_ ip_address_t * local_address, uint16_t local_port)

SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See bind() for a replacement.

Global sl_wisun_close_socket (sl_wisun_socket_ id_t socket_ id) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See close() for a replacement.

Global sl_wisun_connect_socket (sl_wisun_socket_ id_t socket_ id, const sl_wisun_ ip_address_t *remote_address, uint16_t

remote_port) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See connect() for a replacement.

Global sl_wisun_get_socket_option (sl_wisun_socket_ id_t socket_ id, sl_wisun_socket_option_t option,

sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See getsockopt() for a replacement.

Global sl_wisun_listen_on_socket (sl_wisun_socket_ id_t socket_ id) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See listen() for a replacement.

Global sl_wisun_open_socket (sl_wisun_socket_protocol_t protocol, sl_wisun_socket_ id_t *socket_ id)

SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See socket() for a replacement.

Global sl_wisun_receive_on_socket (sl_wisun_socket_ id_t socket_ id, sl_wisun_ ip_address_t *remote_address, uint16_t

*remote_port, uint16_t *data_length, uint8_t *data) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See recvfrom() for a replacement.

Global sl_wisun_send_on_socket (sl_wisun_socket_ id_t socket_ id, uint16_t data_length, const uint8_t *data)

SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See send() for a replacement.

Global sl_wisun_sendto_on_socket (sl_wisun_socket_ id_t socket_ id, const sl_wisun_ ip_address_t *remote_address, uint16_t

remote_port, uint16_t data_length, const uint8_t *data) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See sendto() for a replacement.

Global sl_wisun_set_socket_option (sl_wisun_socket_ id_t socket_ id, sl_wisun_socket_option_t option, const

sl_wisun_socket_option_data_t *option_data) SL_DEPRECATED_API_SDK_4_4

This function will be removed in the future versions of the Wi-SUN stack. See setsockopt() for a replacement.

Global sl_wisun_util_get_rf_settings (uint8_t *reg_domain, uint8_t *op_class, uint16_t *op_mode)

SL_DEPRECATED_API_SDK_4_2

This function will be removed in the future versions of the Wi-SUN stack. See sl_wisun_util_get_phy_config() for a

replacement.

Overview

582/602

Overview

Wi-SUN PHY
The content in this section is related to Wi-SUN PHY and system aspects provided by the Radio Configurator and RAIL. This

is particularly of interest for customers not using the S ilicon Labs stack. It explains how to configure the Wi-SUN PHY using

the Radio Configurator provided with S implicity Studio and how to use this using RAILtest commands.

Wi-SUN on EFR32FG25: Getting Started with RAILtest: Describes how to program EFR32FG25 devices to enable Wi-SUN

OFDM modulation and how to enable Wi-SUN FSK modulation.

Wi-SUN Mode Switch on EFR32FG25 with RAILtest: Explains how to program EFR32FG25 devices to enable the Wi-SUN

Mode Switch feature.

Wi-SUN Concurrent Detection on EFR32FG25 with RAILtest: Explains how to program EFR32FG25 devices to enable the Wi-

SUN concurrent detection feature.

https://docs.silabs.com/wisun/1.8.0/wisun-phy-quick-start
https://www.silabs.com/documents/public/application-notes/an1403-wi-sun-mode-switch-with-railtest.pdf
https://www.silabs.com/documents/public/application-notes/an1410-concurrent-mode-with-railtest.pdf

Getting Started with Wi-SUN PHY

583/602

Getting Started with Wi-SUN PHY

Getting Started with Wi-SUN PHY Configuration
This section is a quick start guide to configuring Wi-SUN PHYs and features using the Radio Configurator and RAILtest. It

describes:

How to configure Wi-SUN PHYs using the Radio Configurator

How to use Wi-SUN FSK or OFDM modulation through RAILtest

Known issues

Proprietary is supported on all EFR32FG devices, although OFDM modulation is available only on EFR32FG25 devices. In this
document, only the RAILtest example application is used.

How To Use Wi-SUN FAN 1.0 PHY

584/602

How To Use Wi-SUN FAN 1.0 PHY

How to Use Wi-SUN FAN 1.0 PHY
This section applies both to the EFR32FG25 and the EFR32MG12. It assumes that you have downloaded S implicity Studio 5

and the Gecko SDK (GSDK) and are familiar with creating a project. If not, see the Getting Started section in the S implicity

Studio v5 User’s Guide.

Set Up the Wi-SUN FAN 1.0 Configuration

Configure the Radio by a Radio Configurator-Generated Config

Create a project based on the RAILTest example. Once a new RAILtest project is created, the Radio Configurator opens

automatically.

 Select the Wi-SUN FAN 1.0 Profile.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/

How To Use Wi-SUN FAN 1.0 PHY

585/602

 Radio Configurator provides all Wi-SUN FSK PHYs (defined in Wi-SUN PHY specification 2V00) as part of the Wi-SUN FAN

1.0 profile. Select the PHY based on the applicable Wi-SUN Regulatory Domain (EU, NA, JP, CN, …) and Wi-SUN Operating

class and Modes according to Wi-SUN FAN 1.0. The channel parameters are set automatically.

How To Use Wi-SUN FAN 1.0 PHY

586/602

RF Frequency Planning in Multi-PHY Radio Configuration for Different Regions

If a Multi-PHY radio includes PHYs for different bands, you may need to select an RF Frequency planning band (see RF

Frequency Planning).

How To Use Wi-SUN FAN 1.1 On EFR32FG25

587/602

How To Use Wi-SUN FAN 1.1 On EFR32FG25

How to Use Wi-SUN FAN 1.1 on EFR32FG25
This section assumes that you have downloaded S implicity Studio 5 and the Gecko SDK (GSDK) and are familiar with

creating a project. If not, see the Getting Started section in the S implicity Studio v5 User’s Guide.

Set Up the Wi-SUN FAN 1.1 Configuration

For the best performance with EFR32FG25, use the following radio board:

BRD4270B revA04 for North America or Japan regions

BRD4271A revA04 for Europe region

Configure the Radio by a Radio Configurator-Generated Config

Create a project based on the RAILTest example. Once a new RAILtest project is created, the Radio Configurator opens

automatically. Here you can select the Wi-SUN FAN 1.1 Profile and browse among the available PHY definitions, including

both Frequency Shift Keying (FSK) and Orthogonal frequency-division multiplexing (OFDM) PHYs, as defined in Wi-SUN

PHY Technical specification amendment 2V00.

 For the Protocol Configuration, the Radio Configurator provides all Wi-SUN FAN 1.1 PHYs as part of the Wi-SUN FAN 1.1

profile. Select the Wi-SUN FAN 1.1 profile. For more information about the Radio Configurator see the section in the S implicity

Studio v5 User’s Guide .

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/proprietary-radio-configurator

How To Use Wi-SUN FAN 1.1 On EFR32FG25

588/602

 Select the Wi-SUN Regulatory Domain (EU, NA, JP, BZ).

How To Use Wi-SUN FAN 1.1 On EFR32FG25

589/602

 In Channel Group, select the Wi-SUN PHY Operating Mode ID according to Wi-SUN FAN 1.1 PhyModeID and the Wi-SUN

Channel Plan ID.

How To Use Wi-SUN FAN 1.1 On EFR32FG25

590/602

Note: For OFDM PHYs, only one PhyModeID is listed using the lowest Modulation and Coding Scheme (MCS) allowed. This

allows you to select the OFDM option (1, 2, 3 or 4). The MCS is selected through the RAILtest command set802154PHR as

described in Set Up PHR and TX FIFO.

 Select the Wi-SUN Channel Plan ID, which is available with the selected Wi-SUN PHY Operating Mode ID:

How To Use Wi-SUN FAN 1.1 On EFR32FG25

591/602

 Save the radio_settings.radioconf file and build the RAILtest project.

RF Frequency Planning in Multi-PHY Radio Configuration for Different Regions

RF Frequency Planning (RFFPLL) settings are optimized to provide the best performance for a given band. By default, the

Radio Configurator automatically selects these optimized settings when generating the PHYs. These settings are the same

for the 9xx MHz band and the 868 MHz band with a 39 MHz crystal oscillator used in BRD4270B and BRD4271A, but they

are different for the 470 MHz Band (not supported yet).

The RFFPLL is configured at boot time with the best settings depending on the board reference and its targeted band. Only

the PHYs generated with the same RFFPLL configuration can then be loaded. Otherwise, RAIL returns the following error:

RAIL_ASSERT_INVALID_RFFPLL_CONFIGURATION = 73. For instance, loading a 470 MHz PHY on a BRD4270B board would

fail and return that error.

To select the desired RF Frequency planning setting, turn on Customized and select the band, for example BAND_928 as

shown.

How To Use Wi-SUN FAN 1.1 On EFR32FG25

592/602

Note: If all PHYs are in the same band, S ilicon Labs does not recommend customizing the RF Frequency Planning settings.

The recommended usage for the RF Frequency Planning enumerate is as described below:

'BAND_928': for channels from 928MHz up to 960MHz

'BAND_9xx': for channels from 902MHz up to 928MHz

'BAND_896': for channels from 896MHz up to 901MHz

'BAND_863': for channels from 863MHz up to 870MHz

'BAND_780': for channels from 779MHz up to 787MHz

'BAND_470': for channels from 470MHz up to 510MHz

'BAND_450': for channels below 470MHz

Wi-SUN Configuration With RAILtest For EFR32FG25

593/602

Wi-SUN Configuration With RAILtest For EFR32FG25

Wi-SUN Configuration with RAILtest for EFR32FG25

Wi-SUN FSK Configuration

Set Up PHR and TX FIFO

Wi-SUN FSK PHYs are configured to variable length packet encoding. Also, other configurable parameters are stored in the

PHR field according to the standard. It might be difficult to set it up correctly. Therefore, a helper function – the

set802154PHR CLI command – has been implemented in the RAILtest project, which simplifies configuration of a valid PHR

field and the payload.

Using the RAILtest example, the transmitted packet length should be defined first with the setTxLength CLI command,

including the PHR's size (2 bytes). This command sets up the Tx FIFO's length and allocates memory for it.

The set802154PHR CLI command for the FSK case sets the FCS type, Whitening bit, and Length fields of the PHR:

 The first argument selects the PHR format (1, 2, 4 bytes). For FSK, this should be always set to 1, which selects 2 bytes.

 The second argument sets the FCS type (it should be 0 for Wi-SUN FAN for 4 bytes FCS and 1 for ECHONET/HAN).

 The third argument specifies the payload whitening (0 for payload whitening disabled and 1 for payload whitening enabled).

The payload whitening is mandatory for Wi-SUN, but some Wi-SUN conformance tests could require disabling it. The

whitening mode must also be set in the radio_setting.radioconf.

See an example use case in A Complete FSK Configuration Example.

The Frame Length field of the PHR is configured according to the length that previously was configured by the setTxLength

command. The payload will be padded by autogenerated data.

Warning: setTxLength must always precede the set802154PHR command when the Tx packet's length is changed.

Note: To comply with IEEE 802.15.4, the set802154PHR command should be used according to the configured PHY in the

Radio Configurator. The command only changes the PHR field in the Tx frames. No FSK modem configurations are made

through this command.

Configure PA for FSK

The FSK PA (RAIL_TX_POWER_MODE_SUBGIG_POWERSETTING_TABLE) is configured by the RAIL_ConfigTxPower() RAIL API.

This function is wrapped by the setPowerConfig CLI command.

A Complete FSK Configuration Example

In this section, a complete example is presented of how to transmit FSK-modulated packets with the EFR32FG25 radio

using the RAILtest application. It assumes the EFR32FG25 is flashed with an image with a Wi-SUN FSK configuration with

whitening enabled set with the Radio Configurator.

The following CLI commands are used:

Set up the radio to use the FSK PA (only needed when also using OFDM PA).

Set the desired PA level (check the maximum level depending on the radio board).

Set the transmitted packet's length to 250 (= framelength field in the PHR of 252 – 4-byte FCS + 2 bytes of PHR).

Configure the PHR.

Transmit 10 packets.

Wi-SUN Configuration With RAILtest For EFR32FG25

594/602

> rx 0

{{(rx)}{Rx:Disabled}{Idle:Enabled}{T ime:3295762881}}

> setpowerconfig RAIL_TX_POWER_MODE_SUBGIG_POWERSETTING_TABLE 3600 10

{{(setpowerconfig)}{success:true}{mode:RAIL_TX_POWER_MODE_SUBGIG_POWERSETTING_TABLE}{modeIndex:0}{voltage:3600}{rampT ime:7}}

> setpower 140

{{(setpower)}{powerLevel:72}{power:140}}

> setchannel 0

{{(setchannel)}{channel:0}}

> rx 1

{{(rx)}{Rx:Enabled}{Idle:Disabled}{T ime: 329573470724420}}

> setTxLength 250

{{(setTxLength)}{TxLength:250}{TxLength Written:250}}

> Set802154phr 1 0 1

{{(Set802154phr)}{PhrSize:2}{PHR: 0�3f10}}

{{(Set802154phr)}{len:250}{payload: 0�10 0�3f 0�11 0�22 0�33 0�44 0�55 0�0f 0�77 0�88 0�99 0xaa 0xbb 0xcc 0xdd 0xee

0�10 0�11 0�12 0�13 0�14 0�15 0�16 0�17 0�18 0�19 0�1a 0�1b 0�1c 0�1d 0�1e 0�1f 0�20 0�21 0�22 0�23 0�24 0�25 0�26

0�27 0�28 0�29 0�2a 0�2b 0�2c 0�2d 0�2e 0�2f 0�30 0�31 0�32 0�33 0�34 0�35 0�36 0�37 0�38 0�39 0�3a 0�3b 0�3c 0�3d

0�3e 0�3f 0�40 0�41 0�42 0�43 0�44 0�45 0�46 0�47 0�48 0�49 0�4a 0�4b 0�4c 0�4d 0�4e 0�4f 0�50 0�51 0�52 0�53 0�54

0�55 0�56 0�57 0�58 0�59 0�5a 0�5b 0�5c 0�5d 0�5e 0�5f 0�60 0�61 0�62 0�63 0�64 0�65 0�66 0�67 0�68 0�69 0�6a 0�6b

0�6c 0�6d 0�6e 0�6f 0�70 0�71 0�72 0�73 0�74 0�75 0�76 0�77 0�78 0�79 0�7a 0�7b 0�7c 0�7d 0�7e 0�7f 0�80 0�81 0�82

0�83 0�84 0�85 0�86 0�87 0�88 0�89 0�8a 0�8b 0�8c 0�8d 0�8e 0�8f 0�90 0�91 0�92 0�93 0�94 0�95 0�96 0�97 0�98 0�99

0�9a 0�9b 0�9c 0�9d 0�9e 0�9f 0xa0 0xa1 0xa2 0xa3 0xa4 0xa5 0xa6 0xa7 0xa8 0xa9 0xaa 0xab 0xac 0xad 0xae 0xaf 0xb0

0xb1 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7 0xb8 0xb9 0xba 0xbb 0xbc 0xbd 0xbe 0xbf 0xc0 0xc1 0xc2 0xc3 0xc4 0xc5 0xc6 0xc7

0xc8 0xc9 0xca 0xcb 0xcc 0xcd 0xce 0xcf 0xd0 0xd1 0xd2 0xd3 0xd4 0xd5 0xd6 0xd7 0xd8 0xd9 0xda 0xdb 0xdc 0xdd 0xde

0xdf 0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8 0xe9 0xea 0xeb 0xec 0xed 0xee 0xef 0xf0 0xf1 0xf2 0xf3 0xf4 0xf5

0xf6 0xf7 0xf8 0xf9}}

> tx 10

{{(tx)}{PacketTx:Enabled}{None:Disabled}{T ime:3294056593}}

{{(appMode)}{None:Enabled}{PacketTx:Disabled}{T ime:3296735316}}

{{(txEnd)}{txStatus:Complete}{transmitted:10}{lastTxT ime:3296735238}{timePos:6}{lastTxStart:3296692963}{ccaSuccess:0}{failed:0}

{lastTxStatus:0�000000000}{txRemain:0}{isAck:False}}

Notes:

The maximum framelength value in the PHR is 2047. Therefore, in Wi-SUN FSK, this provides a setTxLength RAILtest

command of 2045 (= 2047 – 4 bytes FCS + 2 bytes of PHR).

Use setConfigIndex to select the appropriate Wi-SUN FSK mode available in the radio_settings.radioconf.

Use the help command for a full list of CLI command options.

Diagnostic Signals

Both stream mode (PN9) and CW signal generation are supported.

PN9 stream mode also requires setting up PHR (with the set802154PHR command).

As an example, the following CLI commands configure and enable the PN9 stream transmission mode on the radio.

> set802154Phr 1 0 1

> setTxStream 1

Example:

> set802154Phr 1 0 1

{{(set802154Phr)}{PhrSize:2}{PHR:0�6010}}

{{(set802154Phr)}{len:4}{payload: 0�10 0�60 0�00 0�00}}

> setTxStream 1

{{(setTxStream)}{Stream:Enabled}{StreamMode:PN9}{T ime:2158238801}}

Use the following command to send a tone at the carrier frequency.

> setTxTone 1

Wi-SUN Configuration With RAILtest For EFR32FG25

595/602

Examples:

 # To Start the tone

> setTxTone 1

{{(setTxTone)}{Stream:Enabled}{None:Disabled}{StreamMode:Tone}{T ime:1293513244}}

 # To Stop the tone

> setTxTone 0

{{(setTxTone)}{None:Enabled}{Stream:Disabled}{T ime:1298384979}}

Wi-SUN OFDM Configuration

Set Up PHR and TX FIFO

Wi-SUN OFDM PHYs are configured to variable packet length encoding. Also, other configurable parameters are stored in

the PHR field according to the standard 802.15.4-2020 (detailed in section 20.2.4). It might be difficult to set it up correctly.

Therefore, a helper function – the set802154PHR CLI command – has been implemented in the RAILtest project, which

simplifies configuration of a valid PHR field and the payload.

Using the RAILtest example, first the transmitted packet’s length should be defined with the setTxLength CLI command,

including the PHR’s size (4 bytes). This command sets up the TX FIFO’s length and allocates memory for it.

The set802154PHR CLI command sets the Rate, Scrambler, and Length fields of the PHR:

 The first argument selects the PHR format (1, 2, 4 bytes). For OFDM, this should be always set to 2, selecting 4 bytes.

 The second argument sets the data Rate (“the numerical value of the MCS” as described in the standard in section 20.4).

 The third argument specifies the scrambling seed (both MSB and LSB bits), according to table 20-20 in the standard.

See an example use case in A Complete OFDM Configuration Example.

The Frame Length field of the PHR is configured according to the length that previously was configured by the setTxLength

command. The payload will be padded by autogenerated data.

Note:

setTxLength must always precede the set802154PHR command when the TX packet’s length is changed.

Use the help command for a full listing of the CLI command options.

To comply with IEEE 802.15.4, the set802154PHR command should be used according to the configured OFDM option set in

the Radio Configurator. The command changes the PHR field in the TX packet and for OFDM PHY selects the used MCS in

TX.

Configure OFDM PA

OFDM modulation uses a separate PA (Power Amplifier), which should be selected manually before the transmission.

The OFDM PA (RAIL_TX_POWER_MODE_SUBGIG_POWERSETTING_TABLE) is configured by the RAIL_ConfigTxPower() RAIL

API. This function is wrapped by the setPowerConfig CLI command.

This configuration is useful only when changing from FSK modulation to OFDM modulation. It only needs to be done once

at initialization.

For an example Multi-PHY configuration with FSK (channel 512) and OFDM (channel 21504), the recommended PA

configuration with IR calibration (see IR Calibration Initialization for FSK or OFDM) is:

Wi-SUN Configuration With RAILtest For EFR32FG25

596/602

> rx 0

> setchannel 512

> rx 1

> rx 0

> setpowerconfig RAIL_TX_POWER_MODE_SUBGIG_POWERSETTING_TABLE 3600 10

> setpower 100

> setchannel 512

> rx 1

> rx 0

> setchannel 21504

> rx 1

> rx 0

> setpowerconfig RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE 3600 10

> setpower 100

> setchannel 21504

> rx 1

A Complete OFDM Configuration Example

This section contains a complete example of how to transmit OFDM modulated packets with the EFR32FG25 radio using

the RAILtest application. It assumes the EFR32FG25 is flashed with an image with a Wi-SUN OFDM configuration set with

the Radio Configurator.

The following CLI commands are used:

Set up the radio to use the OFDM PA (only done once when starting to use OFDM modulation).

Set the recommended PA level (check the maximum level depending on the radio board, 16 dBm for EFR32FG25).

Set the transmitted packet’s length to 250 (=246-byte payload including the 4-byte FCS field plus 4-byte PHR field).

Configure the PHR with MCS 6 with OFDM Option depending on the radio_settings.radioconf and using Wi-SUN 0b00010111

scrambling seed (value 0 in the PHR field).

Transmit 10 packets.

> rx 0

{{(rx)}{Rx:Disabled}{Idle:Enabled}{T ime:3470713331}}

> setpowerconfig RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE 3600 10

{{(setpowerconfig)}{success:true}{mode:RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE}{modeIndex:2}{voltage:3600}{rampT ime:7}}

> setpower 140

{{(setPower)}{powerLevel:151}{power:140}}

> setchannel 0

{{(setchannel)}{channel:0}}

> rx 1

{{(rx)}{Rx:Enabled}{Idle:Disabled}{T ime: 3470724420}}

> setTxLength 250

{{(setTxLength)}{TxLength:250}{TxLength Written:250}}

> Set802154phr 2 6 0

{{(Set802154phr)}{PhrSize:4}{PHR:0xde0c00}}

{{(Set802154phr)}{len:250}{payload: 0�00 0�0c 0xde 0�00 0�33 0�44 0�55 0�0f 0�77 0�88 0�99 0xaa 0xbb 0xcc 0xdd 0xee

0�10 0�11 0�12 0�13 0�14 0�15 0�16 0�17 0�18 0�19 0�1a 0�1b 0�1c 0�1d 0�1e 0�1f 0�20 0�21 0�22 0�23 0�24 0�25 0�26

0�27 0�28 0�29 0�2a 0�2b 0�2c 0�2d 0�2e 0�2f 0�30 0�31 0�32 0�33 0�34 0�35 0�36 0�37 0�38 0�39 0�3a 0�3b 0�3c 0�3d

0�3e 0�3f 0�40 0�41 0�42 0�43 0�44 0�45 0�46 0�47 0�48 0�49 0�4a 0�4b 0�4c 0�4d 0�4e 0�4f 0�50 0�51 0�52 0�53 0�54

0�55 0�56 0�57 0�58 0�59 0�5a 0�5b 0�5c 0�5d 0�5e 0�5f 0�60 0�61 0�62 0�63 0�64 0�65 0�66 0�67 0�68 0�69 0�6a 0�6b

0�6c 0�6d 0�6e 0�6f 0�70 0�71 0�72 0�73 0�74 0�75 0�76 0�77 0�78 0�79 0�7a 0�7b 0�7c 0�7d 0�7e 0�7f 0�80 0�81 0�82

0�83 0�84 0�85 0�86 0�87 0�88 0�89 0�8a 0�8b 0�8c 0�8d 0�8e 0�8f 0�90 0�91 0�92 0�93 0�94 0�95 0�96 0�97 0�98 0�99

0�9a 0�9b 0�9c 0�9d 0�9e 0�9f 0xa0 0xa1 0xa2 0xa3 0xa4 0xa5 0xa6 0xa7 0xa8 0xa9 0xaa 0xab 0xac 0xad 0xae 0xaf 0xb0

0xb1 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7 0xb8 0xb9 0xba 0xbb 0xbc 0xbd 0xbe 0xbf 0xc0 0xc1 0xc2 0xc3 0xc4 0xc5 0xc6 0xc7

0xc8 0xc9 0xca 0xcb 0xcc 0xcd 0xce 0xcf 0xd0 0xd1 0xd2 0xd3 0xd4 0xd5 0xd6 0xd7 0xd8 0xd9 0xda 0xdb 0xdc 0xdd 0xde

0xdf 0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8 0xe9 0xea 0xeb 0xec 0xed 0xee 0xef 0xf0 0xf1 0xf2 0xf3 0xf4 0xf5

0xf6 0xf7 0xf8 0xf9}}

> tx 10

{{(tx)}{PacketTx:Enabled}{None:Disabled}{T ime:3116912126}}

{{(appMode)}{None:Enabled}{PacketTx:Disabled}{T ime:3117028916}}

{{(txEnd)}{txStatus:Complete}{transmitted:10}{lastTxT ime:3117028845}{timePos:6}{lastTxStart:3117026790}{ccaSuccess:0}{failed:0}

{lastTxStatus:0�000000000}{txRemain:0}{isAck:False}}

Wi-SUN Configuration With RAILtest For EFR32FG25

597/602

Notes:

setConfigIndex can be used to select the appropriate OFDM option available in the radio_settings.radioconf.

For Wi-SUN, the maximum framelength value in the PHR is 2047. So, in Wi-SUN OFDM, this provides a setTxLength RAILtest

command of 2051 (= 2047 bytes including the 4 bytes FCS field + 4 bytes of PHR).

After set802154phr , the 4-byte FCS is not added in the packet payload replacing the 4 trailing bytes, but it will be added in

the transmitted packet. At the receiving side, the Rx frame has the 4-byte FCS removed.

> {{(rxPacket)}{len:246}{timeUs:48492691}{timePos:5}{crc:Pass}{filterMask:0�0}{rssi:-97}{lqi:197}{phy:6}{isAck:False}

{syncWordId:0}{antenna:0}{channelHopIdx:254}{payload: 0�03 0�0c 0xde 0�00 0�33 0�44 0�55 0�0f 0�77 0�88 0�99 0xaa 0xbb

0xcc 0xdd 0xee 0�10 0�11 0�12 0�13 0�14 0�15 0�16 0�17 0�18 0�19 0�1a 0�1b 0�1c 0�1d 0�1e 0�1f 0�20 0�21 0�22 0�23 0�24

0�25 0�26 0�27 0�28 0�29 0�2a 0�2b 0�2c 0�2d 0�2e 0�2f 0�30 0�31 0�32 0�33 0�34 0�35 0�36 0�37 0�38 0�39 0�3a 0�3b 0�3c

0�3d 0�3e 0�3f 0�40 0�41 0�42 0�43 0�44 0�45 0�46 0�47 0�48 0�49 0�4a 0�4b 0�4c 0�4d 0�4e 0�4f 0�50 0�51 0�52 0�53 0�54

0�55 0�56 0�57 0�58 0�59 0�5a 0�5b 0�5c 0�5d 0�5e 0�5f 0�60 0�61 0�62 0�63 0�64 0�65 0�66 0�67 0�68 0�69 0�6a 0�6b 0�6c

0�6d 0�6e 0�6f 0�70 0�71 0�72 0�73 0�74 0�75 0�76 0�77 0�78 0�79 0�7a 0�7b 0�7c 0�7d 0�7e 0�7f 0�80 0�81 0�82 0�83 0�84

0�85 0�86 0�87 0�88 0�89 0�8a 0�8b 0�8c 0�8d 0�8e 0�8f 0�90 0�91 0�92 0�93 0�94 0�95 0�96 0�97 0�98 0�99 0�9a 0�9b 0�9c

0�9d 0�9e 0�9f 0xa0 0xa1 0xa2 0xa3 0xa4 0xa5 0xa6 0xa7 0xa8 0xa9 0xaa 0xab 0xac 0xad 0xae 0xaf 0xb0 0xb1 0xb2 0xb3 0xb4

0xb5 0xb6 0xb7 0xb8 0xb9 0xba 0xbb 0xbc 0xbd 0xbe 0xbf 0xc0 0xc1 0xc2 0xc3 0xc4 0xc5 0xc6 0xc7 0xc8 0xc9 0xca 0xcb 0xcc

0xcd 0xce 0xcf 0xd0 0xd1 0xd2 0xd3 0xd4 0xd5 0xd6 0xd7 0xd8 0xd9 0xda 0xdb 0xdc 0xdd 0xde 0xdf 0xe0 0xe1 0xe2 0xe3 0xe4

0xe5 0xe6 0xe7 0xe8 0xe9 0xea 0xeb 0xec 0xed 0xee 0xef 0xf0 0xf1 0xf2 0xf3 0xf4 0xf5}}

Diagnostic Signals

With OFDM modulation configured, both stream mode (PN9) and CW signal generation are supported.

PN9 stream mode also requires setting up PHR (with the set802154PHR command) to select the MCS Level. It is also

mandatory to configure the frame length field to 4 before the transmission, to set up the infinite stream needed for PN9.

As an example, the following CLI commands configure and enable the PN9 stream transmission mode on the radio in OFDM

option 1 MCS4 at configindex 1.

> setconfigindex 1

> rx 0

> setpowerconfig RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE 3600 10

> setpower 140

> rx 1

> setTxLength 4

> set802154Phr 2 4 0

> setTxStream 1

Example:

> setconfigindex 1

{{(setconfigindex)}{configIndex:1}{firstAvailableChannel:0}}

> setpowerconfig RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE 3600 10

{{(setpowerconfig)}{success:true}{mode:RAIL_TX_POWER_MODE_OFDM_PA_POWERSETTING_TABLE}{modeIndex:2}{voltage:3600}{rampT ime:7}}

> setpower 140

{{(setpower)}{powerLevel:151}{power:140}}

> setTxLength 4

{{(setTxLength)}{TxLength:4}{TxLength Written:4}}

> set802154Phr 2 4 0

{{(set802154Phr)}{PhrSize:4}{PHR:0�400}}

{{(set802154Phr)}{len:4}{payload: 0�00 0�04 0�00 0�00}}

> setTxStream 1

{{(setTxStream)}{Stream:Enabled}{None:Disabled}{StreamMode:PN9}{T ime:1737513509}}

Use the following command to send a tone at the carrier frequency.

> setTxTone 1

Examples:

Wi-SUN Configuration With RAILtest For EFR32FG25

598/602

 # To Start the tone

> setTxTone 1

{{(setTxTone)}{Stream:Enabled}{None:Disabled}{StreamMode:Tone}{T ime:1293513244}}

 # To Stop the tone

> setTxTone 0

{{(setTxTone)}{None:Enabled}{Stream:Disabled}{T ime:1298384979}}

It is equivalent to:

> setTxStream 1 0

IR Calibration Initialization for FSK or OFDM

For FSK or OFDM PHY (during initialization), after a setchannel on the corresponding PHY, a rx 1 or tx 1 is required to

perform the calibration.

When using multiple PHYs including an OFDM PhyModeID, an IR calibration for OFDM must be performed. S ilicon Labs

strongly recommends loading one OFDM PHY (during initialization) using the setchannel on the corresponding OFDM

channel and a rx 1 RAILtest CLI command to perform the calibration. Once image rejection calibration has been performed

with a Wi-SUN OFDM PHY, you do not need to do it with a Wi-SUN FSK PHY.

Known Issues With EFRFG25

599/602

Known Issues With EFRFG25

Known Issues with EFRFG25

Board-Specific Limitations

Board Support Limitations

When using the mainboard’s LCD, S ilicon Labs recommends resetting the mainboard using either the reset button or the CLI

reset command.

Missing CTune Calibration

Officially released S ilicon Labs EFR32 radio boards equipped with HFXO (High-frequency Crystal Oscillator) are

manufacturer-calibrated, and the calibrated CTune value is stored in the radio board's EEPROM memory. This value is then

accessible (can be read and written) by S implicity Commander.

However, the EFR32FG25 radio boards have no calibrated CTune value stored in the EEPROM memory.

The CTune value can be calibrated and retrieved at runtime by setCTune and getCTune RAILtest CLI commands

respectively, or by using the RAIL_SetTune() and RAIL_GetTune() RAIL APIs. The calibration value can be stored using

S implicity Commander or through the S implicity Studio Device Configuration menu.

Missing Notch on the Radio Board

S ilicon Labs radio boards have little notches at the board connectors that prevent the user from connecting the radio

board in a reversed orientation onto a WSTK.

For the correct orientation, see the following figure.

Known Issues With EFRFG25

600/602

Warning: Incorrect placement of the radio board might cause serious damage on the mainboard. Make sure that the radio

board is connected with the correct orientation before supplying power to the mainboard!

OFDM PA Limitations

OFDM modulation is designed to use a separate PA from that being used with different modulation types (2/4(G)FSK, MSK,

OOK).

For all PA selected in a multi-PHY configuration, the PA initialization should be done. This is required only once, at

initialization, and FSK must be done before OFDM:

Set up the PA configuration

Set the recommended PA level (check the max level depending on the radio board, 16 dBm for EFR32FG25)

Clocking

Switching PHYs while using the RFPLL as a clock source will incur a clock frequency shift.

DC/DC is On by Default

The sensitivity might be slightly degraded when the DC/DC is enabled. For best sensitivity, S ilicon Labs recommends setting

DC/DC to bypass mode. In the Device Init: DC-DC component, toggle Enable DC/DC Converter to off, and toggle Set

DC/DC Converter in Bypass Mode to on, as shown in the following figures.

Miscellaneous Issues

Known Issues With EFRFG25

601/602

RAIL timings are not accurate in comparison with on-air timing for Rx or TX frames. Manual tuning might be required.

The 802.15.4 MAC address filtering with OFDM PHY for small frame size is not done correctly and then the frame is always

received.

Other information

S ilicon Labs recommends using the BRD4270B, BRD4271A, or BRD4272A radio board for best performance:

BRD4270B revA06 radio board RF matching network is tuned for 915 MHz and 920 MHz bands.

BRD4271A revA06 radio board RF matching network is tuned for 868 MHz bands.

BRD4272A revA03 radio board RF matching network is tuned for 470 MHz bands.

Mode Switch mechanism is available and is documented separately in AN1403: Wi-SUN Mode Switch on EFR32FG25 with

RAILtest.

https://www.silabs.com/documents/public/application-notes/an1403-wi-sun-mode-switch-with-railtest.pdf

Known Issues With EFRFG25

602/602

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Developing with Wi-SUN
	Quick Start Guide
	Introduction
	Getting Started
	Wi-SUN Sample Applications
	Create a Wi-SUN Network

	Going Further

	Development Walkthrough
	Overview
	Build and Connect
	API Calls to Connect
	Add a Custom Application
	Timestamping
	Custom Callback
	JSON Connection Strings
	Send Status Strings
	Add CoAP Resources
	Retrieve UDP Notifications
	Retrieve Device Information

	OTA DFU

	Wi-SUN Node
	Overview
	Wi-SUN Configurator
	FAN 1.0 Node Certification
	Wi-SUN Limited Function Nodes (LFN)

	Platform Resources
	Overview
	Bootloading
	Overview

	Non-Volatile Memory Use
	Overview

	Security
	Overview
	Security Concepts and Design Considerations

	Wi-SUN Border Router
	Overview
	Network Configuration
	Wi-SUN SoC Border Router
	Wi-SUN Linux Border Router
	CPCD and wsbrd
	External Servers

	IP Communication
	Ping and UDP
	CoAP
	Multicast

	Border Router GUI

	Network Performance
	Overview

	API Reference
	Wi-SUN Overview
	Wi-SUN Services
	Util Functions
	Application Core
	Application Core API type definitions
	current_addr
	regulation_thresholds
	app_core_time_stat

	CoAP
	CoAP type definitions
	sl_wisun_coap

	Ping
	Ping API type definitions
	sl_wisun_ping_echo_request
	sl_wisun_ping_info
	sl_wisun_ping_stat

	iPerf
	iPerf type definitions
	sl_iperf_opt
	sl_iperf_stats
	sl_iperf_conn
	sl_iperf_log_str_buff
	sl_iperf_log
	sl_iperf_test
	sl_iperf_udp_datagram
	sl_iperf_udp_srv_hdr
	sl_iperf_udp_clnt_hdr_v1
	sl_iperf_clnt_hdr_ext
	sl_iperf_clnt_hdr_isoch_payload
	sl_iperf_clnt_hdr_ext_starttime_fq
	sl_iperf_clnt_hdr_ext_isoch_settings
	sl_iperf_udp_clnt_hdr

	Over-The-Air Device Firmware Upgrade (Alpha)
	Type definitions
	sl_wisun_ota_dfu_error_ctx_fw_download
	sl_wisun_ota_dfu_error_ctx_btl_fw_verify
	sl_wisun_ota_dfu_error_ctx_btl_fw_set
	sl_wisun_ota_dfu_error_ctx

	Silicon Labs socket API (deprecated)

	Wi-SUN Stack Plugin
	Stack Trace and Debug
	RF Test

	Wi-SUN Stack API
	Wi-SUN API events
	sl_wisun_evt_t
	sl_wisun_msg_connected_ind
	sl_wisun_msg_connected_ind_body_t
	sl_wisun_msg_connected_ind_t

	sl_wisun_msg_network_update_ind
	sl_wisun_msg_network_update_ind_body_t
	sl_wisun_msg_network_update_ind_t

	sl_wisun_msg_socket_data_ind
	sl_wisun_msg_socket_data_ind_body_t
	sl_wisun_msg_socket_data_ind_t

	sl_wisun_msg_socket_data_available_ind
	sl_wisun_msg_socket_data_available_ind_body_t
	sl_wisun_msg_socket_data_available_ind_t

	sl_wisun_msg_socket_connected_ind
	sl_wisun_msg_socket_connected_ind_body_t
	sl_wisun_msg_socket_connected_ind_t

	sl_wisun_msg_socket_connection_available_ind
	sl_wisun_msg_socket_connection_available_ind_body_t
	sl_wisun_msg_socket_connection_available_ind_t

	sl_wisun_msg_socket_closing_ind
	sl_wisun_msg_socket_closing_ind_body_t
	sl_wisun_msg_socket_closing_ind_t

	sl_wisun_msg_disconnected_ind
	sl_wisun_msg_disconnected_ind_body_t
	sl_wisun_msg_disconnected_ind_t

	sl_wisun_msg_connection_lost_ind
	sl_wisun_msg_connection_lost_ind_body_t
	sl_wisun_msg_connection_lost_ind_t

	sl_wisun_msg_socket_data_sent_ind
	sl_wisun_msg_socket_data_sent_ind_body_t
	sl_wisun_msg_socket_data_sent_ind_t

	sl_wisun_msg_error_ind
	sl_wisun_msg_error_ind_body_t
	sl_wisun_msg_error_ind_t

	sl_wisun_msg_join_state_ind
	sl_wisun_msg_join_state_ind_body_t
	sl_wisun_msg_join_state_ind_t

	sl_wisun_msg_regulation_tx_level_ind
	sl_wisun_msg_regulation_tx_level_ind_body_t
	sl_wisun_msg_regulation_tx_level_ind_t

	sl_wisun_mode_switch_fallback_level_ind
	sl_wisun_msg_mode_switch_fallback_ind_body_t
	sl_wisun_msg_mode_switch_fallback_ind_t

	sl_wisun_msg_rx_frame_ind
	sl_wisun_msg_rx_frame_ind_body_t
	sl_wisun_msg_rx_frame_ind_t

	sl_wisun_msg_lfn_wake_up_ind
	sl_wisun_msg_lfn_wake_up_ind_body_t
	sl_wisun_msg_lfn_wake_up_ind_t

	sl_wisun_msg_lfn_multicast_reg_ind
	sl_wisun_msg_lfn_multicast_reg_ind_body_t
	sl_wisun_msg_lfn_multicast_reg_ind_t

	Wi-SUN API type definitions
	sl_wisun_msg_header_t
	sl_wisun_statistics_phy_t
	sl_wisun_statistics_mac_t
	sl_wisun_statistics_fhss_t
	sl_wisun_statistics_wisun_t
	sl_wisun_statistics_network_t
	sl_wisun_statistics_arib_regulation_t
	sl_wisun_statistics_regulation_t
	sl_wisun_statistics_heap_t
	sl_wisun_statistics_t
	sl_wisun_phy_config_fan10_t
	sl_wisun_phy_config_fan11_t
	sl_wisun_phy_config_explicit_t
	sl_wisun_phy_config_ids_t
	sl_wisun_phy_config_custom_fsk_t
	sl_wisun_phy_config_custom_ofdm_t
	sl_wisun_phy_config_custom_oqpsk_t
	sl_wisun_phy_config_t
	sl_wisun_mac_address_t
	sl_wisun_channel_mask_t
	sl_wisun_socket_option_event_mode_t
	sl_wisun_socket_option_multicast_group_t
	sl_wisun_socket_option_send_buffer_limit_t
	sl_wisun_socket_option_edfe_mode_t
	sl_wisun_socket_option_unicast_hop_limit
	sl_wisun_socket_option_multicast_hop_limit
	sl_wisun_socket_option_data_t
	sl_wisun_neighbor_info_t
	sl_wisun_trace_group_config_t
	sl_wisun_network_info_t
	sl_wisun_rpl_info_t
	sl_wisun_trickle_params_t
	sl_wisun_params_discovery
	sl_wisun_params_eapol
	sl_wisun_params_configuration
	sl_wisun_params_rpl
	sl_wisun_params_mpl
	sl_wisun_params_misc
	sl_wisun_connection_params_t
	sl_wisun_lfn_params_connection_t
	sl_wisun_lfn_params_data_layer_t
	sl_wisun_lfn_params_network_t
	sl_wisun_lfn_params_power_t
	sl_wisun_lfn_params_t
	Predefined FFN parameter sets
	Predefined LFN parameter sets

	Socket API
	sockaddr
	in6_addr
	sockaddr_in6

	Wi-SUN Stack Release Note
	Wi-SUN Sockets
	Deprecated List

	Wi-SUN PHY
	Overview
	Getting Started with Wi-SUN PHY
	How To Use Wi-SUN FAN 1.0 PHY
	How To Use Wi-SUN FAN 1.1 On EFR32FG25
	Wi-SUN Configuration With RAILtest For EFR32FG25
	Known Issues With EFRFG25

