

silabs.com | Building a more connected world. Rev. 1.2

KEY POINTS

• Product overview
• Setting up your development environment
• Discovering your SDK
• Working with example applications.
• Using the Hardware Configurator

QSG138: Proprietary Flex SDK v2.x Quick
Start Guide

This quick start guide provides basic information on configuring,
building, and installing applications for the EFR32 using the
Silicon Labs Flex SDK (Software Development Kit). The Flex
SDK provides two paths to application development. The first
uses Silicon Labs Connect, which provides a fully-featured,
easily-customizable wireless networking solution optimized for
devices that require low power consumption and are used in a
simple network topology. The second begins with Silicon Labs
RAIL (Radio Abstraction Interface Layer), which provides an
intuitive, easily-customizable radio interface layer that is designed
to support proprietary or standards-based wireless protocols.

This guide is designed for developers who are new to the Silicon Labs Flex SDK, the
Simplicity Studio development environment, and Silicon Labs development hardware. It
provides instructions to get started using both the Connect and RAIL examples provided
with the Flex SDK used on the EFR32.

Proprietary is supported on all EFR32FG devices. For others, check the device's data
sheet under Ordering Information > Protocol Stack to see if Proprietary is supported. In
Proprietary SDK version 2.7.n, Connect is not supported on EFR32xG22.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Flex SDK Product Overview

silabs.com | Building a more connected world. Rev. 1.2 | 2

1 Flex SDK Product Overview

The Silicon Labs Flex SDK supports developers who wish to take advantage of configurable protocol functionality provided in Silicon
Labs Connect and the underlying RAIL library, as well as those who wish to start application development on top of RAIL but develop
custom lower-level radio and network protocols.

This section covers:
• Background information on RAIL, Connect, and the example applications included with the Flex SDK
• Background information on the Gecko Bootloader
• Prerequisites for application development using the Flex SDK
• Support
• Documentation

1.1 About Connect and RAIL

The Flex SDK provides two paths to application development. The first uses Silicon Labs Connect, which provides a fully-featured,
easily-customizable wireless networking solution optimized for devices that require low power consumption and are used in a simple
network topology. Connect example functionality is provided through easily-configurable plugins that can be turned on or off as desired.
The second begins with Silicon Labs RAIL (Radio Abstraction Interface Layer), which provides an intuitive, easily-customizable radio
interface layer that is designed to support proprietary or standards-based wireless protocols.

Whether you begin development with Connect or RAIL is determined by the example application you select as a starting point in Sim-
plicity Studio. Silicon Labs recommends that you start from a Connect example if you want to include the following functions without
further development:
• MAC layer functionality including frequency hopping and security
• Network formation and, for star networks, routing support
• Application-level functionality, including diagnostics, I/O, mailbox, and sleepy end device management
• Bootloading, including serial and Broadcast or Unicast OTA (over-the-air)
• Host and NCP mode

The following sections provide additional detail on Connect and RAIL, including brief descriptions of the example applications. When
you create a project based on an example, the description on the Simplicity Studio IDE General tab provides additional detail about the
example and interfacing with it.

1.1.1 Silicon Labs Connect

Silicon Labs Connect functionality for the EFR32 is implemented on top of the RAIL library. Silicon Labs Connect supports many com-
binations of radio modulation, frequency and data rates. The stack includes all MAC layer functions such as scanning and joining, set-
ting up of a point-to-point or star network, device types such as sleepy end nodes, routers or coordinators, radio configuration, frequen-
cy hopping and LBT (Listen Before Talk) protocols required for regulatory compliance in each geographical region, and PHY configura-
tion for each of these regions. With all this functionality already implemented in the stack, developers can focus on their application
development and not worry about the lower level radio and network details.

The Flex SDK includes the following Connect example applications. Not all examples are accessible through the list on the Launcher
perspective. Specifically, most host examples are only accessible through the New Project project flow.

Connect (SoC): Empty Example: A minimal Connect project structure, used as a starting point for custom applications.

Connect (SoC): Empty Example - BLE: A dynamic multiprotocol minimal project structure, used as a starting point for custom applica-
tions that run both Connect and Bluetooth protocols.

Connect (SoC): Commissioned Device: Demonstrates direct communication between nodes in range. The network parameters are
commissioned by the application.

Connect (SoC): Demo Connect Light: Demonstrates a light application that can be turned on/off by a switch application. This exam-
ple is part of the Connect Light/Switch dynamic multiprotocol demo setup. See AN1209: Dynamic Multiprotocol Development with Blue-
tooth and Connect for more information on working with the Dynamic Multiprotocol examples.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Flex SDK Product Overview

silabs.com | Building a more connected world. Rev. 1.2 | 3

Connect (SoC): Demo DMP Connect Switch: Demonstrates a switch application using dynamic multiprotocol (Connect + Bluetooth).
This example is part of the Connect Light/Switch dynamic multiprotocol demo setup.

Connect (SoC): MAC Mode Device: Demonstrates direct MAC mode communication between nodes in range.

Connect (SoC): Sensor and Connect (SoC): Sink: The sensor and sink applications demonstrate how to set up a star network topol-
ogy in which communication occurs in both directions between the sink and the sensor(s) nodes.

Connect (SoC): Wire-Replacement: Demonstrates point-to-point bi-directional direct or indirect communication between two nodes.

Connect (Host): Commissioned Direct Device: Demonstrates direct communication between nodes in range. The network parame-
ters are commissioned by the application. It runs on Unix UART Host, with EFR32 NCP.

Connect (Host): Empty Example: A minimal Connect project structure, used as a starting point for custom applications. It runs on
Unix UART Host, with EFR32 NCP.

Connect (Host): MAC Mode Device: Demonstrates direct MAC mode communication between nodes in range. It runs on the Unix
UART host, with EFR32 NCP.

Connect (Host): Sensor and Connect (Host): Sink: Demonstrates a star network topology setup. Bi-directional communication is
possible between the sensor(s) and the sink nodes. It runs on Unix UART Host, with EFR32 NCP.

Connect (Host): Wire-Replacement: Demonstrates point to point bi-directional direct or indirect communication between two nodes. It
runs on Unix UART Host, with EFR32 NCP.

Connect (NCP): UART HW (Hardware Flow Control): This network coprocessor (NCP) application supports communication with a
host application over a UART interface with hardware flow control. It runs on an EFR32.

Connect (NCP) UART SW (Software Flow Control): This network coprocessor (NCP) application supports communication with a host
application over a UART interface with software flow control. It runs on an EFR32. For more information about XON/XOFF software
flow control, see AN844: Guide to Host/Network Co-Processor Communications Using Silicon Labs Thread and Connect.

1.1.2 Silicon Labs RAIL

Silicon Labs RAIL provides an intuitive, easily-customizable radio interface layer designed to support proprietary or standards-based
wireless protocols. RAIL is delivered as a library that you can link to your applications. A description of library functions is provided in
the development environment. The RAIL API is documented in an online API reference available through Simplicity Studio.

RAIL:
• Implements commonly-used radio functionality, so that it does not have to be written in the application or stack.
• Eliminates the need for developers to become expert in RF register details of complex wireless SoCs.
• Simplifies code migration to new wireless ICs and the development of new stacks by providing a common radio interface layer.
• Allows lab evaluation in addition to application code development.

The RAIL library supports APIs for:
• General Radio Operation
• Channel definition and selection
• Output power configuration
• Transmit
• Clear Channel Assessment before Transmit
• Scheduled Transmit
• Energy Detection
• Receive
• Packet Filtering
• Calibration
• CW (Carrier Wave) Transmission
• Modulated Transmission
• RFSense configuration as wake source

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Flex SDK Product Overview

silabs.com | Building a more connected world. Rev. 1.2 | 4

The Flex SDK includes example RAIL application code to demonstrate the capabilities of the device and the RAIL library. These exam-
ples are provided as source code to offer a starting point for application development. The following examples are included in the cur-
rent release.

RAIL: RAILTEST

RAILtest is a general test tool for the RAIL library. RAILtest is developed by the core engineering team working on the RAIL library. As
each RAIL library feature is implemented, a RAILtest serial command is added to allow scripted testing and ad hoc experimentation.
Many of the RAILtest serial commands can be used for lab evaluation.

RAILtest includes commands to:
• Transmit and receive packets.
• Schedule transmits at a specific time in the RAIL timebase.
• Configure RAIL address filtering to receive only specific packets.
• Enable CCA mechanisms (CSMA/LBT) to validate that a channel is clear before transmit.
• Set a timer callback in the RAIL timebase to see how the RAIL timer API works.
• Change the transmit channel within the current configuration's band.
• Change the transmit power level.
• Enable RF energy sensing of specified duration across the 2.4 GHz and/or Sub-GHz bands, and sleep to wake on this event.
• Output a continuous unmodulated tone for debugging.
• Output a continuous modulated PN9 stream for debugging.
• Enter into direct mode where data can be sent and received using asynchronous GPIOs as input and output.

RAIL:Range Test

The Range Test examples enable over-the-air range testing between two devices customized with user-defined parameters. Range
Test is designed to be run on the Silicon Labs WSTK hardware without the need for commands from a host computer. This capability
allows for mobility during range testing activities.

RAIL: Switch: Demonstrates the simplest exchange of transmit and receive operation between a light and a switch. May be used with
the Bluetooth Light application in the Bluetooth/RAIL multiprotocol example, as described in QSG155: Using the Silicon Labs Dynamic
Multiprotocol Demonstrations. A precompiled binary demo of this example is also available for some platforms.

RAIL: Light: Demonstrates the simplest exchange of transmit and receive operation between a RAIL light and a RAIL switch. The light
is capable of periodically and on change reporting its status back to the switch. This is not the dynamic multiprotocol light example
application.

RAIL: Simple TRX Multi-PHY: Demonstrates the use of multiple PHYs selectable by channels. By default, channel 0 is configured to
2.4 GHz, 250 kbps, and channel 1 is configured to 915 MHz, 500 kbps (both packets are receivable by a single-PHY application using
the correct pre-configured PHY). For details see AN971: EFR32 Radio Configurator Guide.

RAIL: Simple TRX: Demonstrates the simplest transmit and receive functions based on RAIL.

RAIL Simple TRX with ACK (Software): Demonstrates the simplest exchange transmit and ack operation between two nodes, based
on RAIL.

RAIL Simple TRX with FIFO (Long Packet): Demonstrates the simplest FIFO data transmission operation between two nodes, based
on RAIL.

RAIL: Connected Motion for EFR32 Thunderboard: Demonstrates communication between nodes where lost packets is of no con-
cern. In this demonstration, each node has a different color and lights up when it becomes active via motion detection. The active node
propagates its color to nearby nodes. When all nodes are stationary, a master node coordinates a green light fading from board to
board.

RAIL: Duty Cycle: Includes three modes of operation (Duty Cycle (both nodes are in the same mode), Master, and Slave) and demon-
strates low power applications using the EFR32.

RAIL: Energy Mode: Demonstrates the low power modes (EM0-Active, EM1-Sleep, EM2-Deep Sleep). of the EFR32.

RAIL: Simple RAIL with HAL: Simple RAIL with HAL example.

RAIL: Simple RAIL without HAL: Simple RAIL without HAL example.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Flex SDK Product Overview

silabs.com | Building a more connected world. Rev. 1.2 | 5

RAIL WMBus Meter: Implements a Wireless M-Bus meter application. For details, see AN1119: Using RAIL for Wireless M-Bus Appli-
cations with EFR32. Uses the multi-PHY configurator and is capable of limited multi-PHY features, like asymmetric bidirectional modes.
For details see AN971: EFR32 Radio Configurator Guide.

RAIL WMBus Collector: Implements a Wireless M-Bus collector application. For details, see AN1119: Using RAIL for Wireless M-Bus
Applications with EFR32. Uses the multi-PHY configurator. For details see AN971: EFR32 Radio Configurator Guide.

1.2 The Gecko Bootloader

A bootloader is a program stored in reserved flash memory that can initialize a device, update firmware images, and possibly perform
some integrity checks. Silicon Labs networking devices use bootloaders that perform firmware updates in two different modes:
standalone (also called standalone bootloaders) and application (also called application bootloaders). An application bootloader per-
forms a firmware image update by reprogramming the flash with an update image stored in internal or external memory. Silicon Labs
recommends that you always flash a bootloader image along with your application, so that flash memory usage is appropriately allocat-
ed from the beginning. For more information about bootloaders see UG103.6: Bootloader Fundamentals.

In March of 2017, Silicon Labs introduced the Gecko Bootloader, a code library configurable through Simplicity Studio’s IDE to generate
bootloaders that can be used with a variety of Silicon Labs protocol stacks. The Gecko Bootloader can be used with
EFR32MG1/EFR32BG1 (EFR32xG1) however, beginning with the EFR32MG12/ EFR32BG12/ EFR32FG12 (EFR32xG12) platform, it
and all future EFR32MG, EFR32FG, and EFR32BG releases will use the Gecko Bootloader only. Legacy Ember bootloader applica-
tions for use with specific protocols such as Silicon Labs Thread and platforms including the EM3x will continue to be provided for use
with those platforms.

The bootloaders work with specialized firmware update image formats. The legacy Ember bootloader update images end in extension
.ebl; Gecko Bootloader update images end in extension .gbl. When you build an application both .s37 and update image files are gen-
erated. The update image file format depends on the hardware you selected. EBL files are generated for EM3x and EFR32xG1. GBL
files are generated for EFR32xG12 and later devices. If you want to use the Gecko Bootloader on EFR32xG1 devices, you must con-
vert the .S37 file using Simplicity Commander, as described in UG162: Simplicity Commander User Guide.

Examples provided for the EFR32xG12 and newer parts include Silicon Labs Gecko Bootloader examples. Examples are provided for
all compatible Simplicity Studio SDKs. For more information on using the Gecko Bootloader see UG266: Silicon Labs Gecko Bootloader
User Guide.

Note: When working with the Gecko Bootloader, you must use Simplicity Commander to enable some configuration options such as
security features.

1.3 Gecko Platform

The Gecko Platform is a set of drivers and other lower layer features that interact directly with Silicon Labs chips and modules. Gecko
Platform components include EMLIB, EMDRV, NVM3, and mbedTLS. The RAIL library, accessed through the RAIL example applica-
tions included in this SDK, is also considered part of the Gecko Platform. For more information see the Gecko Platform release notes
found in Simplicity Studio’s Launcher Perspective under SDK Documentation > Flex SDK 6.6.n.n > Release Notes.

1.4 Prerequisites

Before following the procedures in this guide you must have
• Purchased one of the Wireless Gecko (EFR32) Portfolio Wireless Kits (As of this writing, all EFR32FG kits and EFR32MG

434/868/915 are supported), although some features may only function on a subset of these.
• Downloaded the required software components. A card included in your development hardware kit contains a link to a Getting

Started page, which will direct you to links for the Silicon Labs software products. See the Flex SDK release notes for version re-
strictions and compatibility constraints for Connect and RAIL and these components. To develop Silicon Labs Connect- or RAIL-
based applications, you will need the following software components. See section 2 Setting Up Your Development Environment for
details.
• The Simplicity Studio v4 development environment, which incorporates AppBuilder. AppBuilder is an interactive GUI tool that al-

lows you to configure a body of Silicon Labs-supplied code to implement applications. Online help for AppBuilder and other
Simplicity Studio modules is provided.

• The Silicon Labs Flex SDK, installed through Simplicity Studio.
• (optional) IAR Embedded Workbench for ARM (IAR EWARM). See the Release Notes for the IAR version supported by this ver-

sion of the Flex SDK. This can be used as a compiler in the Simplicity Studio development environment as an alternative to

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Flex SDK Product Overview

silabs.com | Building a more connected world. Rev. 1.2 | 6

GCC (The GNU Compiler Collection), which is provided with Simplicity Studio. Download the supported version from the Silicon
Labs Support Portal, as described at the end of section 2.2 Install Simplicity Studio and the Flex SDK. Refer to the “QuickStart
Installation Information” section of the IAR installer for additional information about the installation process and how to configure
your license.

• Simplicity Commander, installed along with Simplicity Studio. A GUI with limited functionality can be accessed through Simplicity
Studio’s Tools menu. Most functions are accessible through a CLI invoked by opening a command prompt in the Simplicity Com-
mander directory (\SiliconLabs\SimplicityStudio\v4\developer\adapter_packs\commander). See UG162: Simplicity Commander Ref-
erence Guide for more information.

While Simplicity Studio and Simplicity Commander can be run on a Mac OS or Linux machine, these instructions assume you are work-
ing with a Microsoft Windows-based PC. If you are using a non-Windows system and using IAR-EWARM, IAR-EWARM must be run via
WINE or some other form of emulator or virtual machine.

1.5 Support

You can access the Silicon Labs support portal at https://www.silabs.com/support through Simplicity Studio’s Resources tab, as de-
scribed in section 3.4 Accessing Documentation and Other Resources Use the support portal to contact Customer Support for any
questions you might have during the development process.

1.6 Documentation

Flex SDK documentation is accessed through Simplicity Studio, as described in section 3.4 Accessing Documentation and Other Re-
sources. See section 6 Document Summary for Connect and the RAIL API for a review of related documentation. Simplicity Studio also
provides links to hardware documentation and other application notes. See the release notes for details on other documentation availa-
ble.

https://www.silabs.com/support

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 7

2 Setting Up Your Development Environment

2.1 Connect your Hardware

Connect your WSTK, with radio board mounted, to the PC on which you will install Simplicity Studio. By having it connected when Sim-
plicity Studio installs, Simplicity Studio will automatically obtain the relevant additional resources it needs.

Note: For best performance in Simplicity Studio, be sure that the power switch on your WSTK is in the Advanced Energy Monitoring or
“AEM” position, as shown in the following figure.

Figure 1. EFR32MG on a WSTK

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 8

2.2 Install Simplicity Studio and the Flex SDK

1. Run the Simplicity Studio installation application.
2. When the Simplicity Studio installer first launches, it presents a License Agreement dialog. Accept the terms of the agreement and

click Next >.

3. Choose a destination location, click Next > and then click Install.
4. When the application launches, you are invited to log in. log in using your support account username and password. Although you

can skip log in here, you must log in later to download the Flex SDK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 9

5. After login, Simplicity Studio adds software information. Once initial software installation is complete, Simplicity Studio checks for
connected hardware. If you have the WSTK connected by USB cable, Simplicity Studio will detect the USB cable and prompt you to
download a Device Inspector. Click Yes.

6. After some additional items are installed, you are offered the option of installing by device (steps 8 and 9) or installing by product

group (step 7).

Throughout these procedures at any time you can click Home () to return to this dialog.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 10

7. If you click Install by Product Group you are offered a list of product groups. Click the SDKs you want to install (Proprietary in-
stalls the Flex SDK), or click Wireless & RF to check all. Click Next and go to step 9.

8. If you click Install by Device, an Install Device Support dialog appears. After a short delay, it shows your connected device. If the

connected device does not show, click Refresh. Select either a connected device, or search for a product and select it. When a
product is selected click >> to add it to the Selected Device pane. Simplicity Studio calculates available space required for installa-
tion. You can also click a selected device and click << to remove it. Click Next to continue.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 11

9. The next dialog varies depending on whether you have signed in. If you have not signed in, you have no access to restricted con-
tent and must sign in first.

When you have access to the Flex SDK, click Next.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 12

10. The Installation Options dialog shows the tools and software packages that can be installed (your versions may be different). The
following shows Installation options after selecting the Proprietary product group (a), and after selecting an EFR32MG device (b). In
both views you can uncheck anything you don’t want to install. If you have installed by Product Group, the selection is filtered more
specifically to your needs than if you have installed by device, and installing all checked options is recommended. If you have in-
stalled by device and are unchecking items, note that if you plan to use GCC as your compiler, be sure to leave the GNU ARM
Toolkit checked. You can also install it later through the Upgrade Manager interface, Tools tab. Click Next >.

a) b)

Note: Previous stack versions are shown under Other Options.
11. Studio displays a Review Licenses dialog. Accept the licenses shown and click Finish. Note that this dialog will present again if in

the future you install a component with a separate license.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 13

Installation takes several minutes. During installation, Simplicity Studio offers you viewing and reading options to learn more about
the environment.

12. After installation is complete, restart Simplicity Studio.
13. When Simplicity Studio restarts, you are invited to take a tour. To clear this option now or at any time during or after the tour, click

Exit tour.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 14

14. The Launcher perspective opens, but it is not yet fully populated. Click one of the devices in the Devices tab or find and select a part
in the Solutions tab. Note that USB-connected WSTK devices are identified as J-Link devices as shown.

15. The Launcher perspective then is populated with the software components and functionality associated with your hardware and

stack. Update your device firmware as described in section 3.3 Updating Adapter Firmware.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Setting Up Your Development Environment

silabs.com | Building a more connected world. Rev. 1.2 | 15

Finally, if you plan to use IAR as your compiler, find the Release Notes on the SDK Documentation list and check for software version
requirements, in particular for IAR-EWARM. To install IAR-EWARM:
1. On the Launcher page’s Resources tab, click Technical Support.
2. Scroll down to the bottom of the page, and click Contact Support.
3. If you are not already signed in, sign in.
4. Click the Software Releases tab, and In the View list select _Latest EmberZNet Software. In the results is a link to the appropriate

IAR-EWARM version.
5. Download the IAR package (takes approximately 1 hour).
6. Install IAR.
7. In the IAR License Wizard, click Register with IAR Systems to get an evaluation license.
8. Complete the registration and IAR will provide a 30-day evaluation license.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Functionality in the Launcher Perspective

silabs.com | Building a more connected world. Rev. 1.2 | 16

3 Functionality in the Launcher Perspective

Perspectives are made up of a number of tiles or panes, called views, as well as the content in those views. You can perform a number
of functions in the Launcher Perspective, shown in the following figure. Additional information on some of these is provided later in the
section. Note: Your installed version may be different than the version shown in the graphics in this section.

On the toolbar (1) you can:
• Sign in or out

• Open application settings ()

• Update your software and firmware (, see section 3.1 Downloading Updates or Installing Additional Components for more in-
formation)

• Open the Tools menu () to access tools such as Simplicity Commander or Energy Profiler.
• Search for information on line, including entries in the Community forums.
• Change perspectives (2). As you open the Simplicity IDE or other tools, buttons for their perspectives are displayed in the upper

right. Use those buttons to easily navigate back to the Launcher perspective or to other perspectives. You can change the layouts of
various perspectives by expanding or relocating views, or adding or removing views. To return to the default layout, right-click the
perspective button in the upper right and select Reset.

In the main view you can:
• Change your preferred SDK (3, see section 3.2 Changing the Preferred SDK for more information - legacy functionality, rarely

needed).
• Change debug mode (4).
• Update adapter firmware (5, see section 3.3 Updating Adapter Firmware for more information).
• Create solutions of multiple parts (6). If you developing for complex networks with a number of different parts involved, you can add

them all to the solution and then select the one you are working on from the list. You do not need to have the hardware connected
to your computer.

• Access demos, examples, documentation, and other resources from the Getting Started and other tabs (7).

Use these controls to manage groups of items (Collapse All, Expand All, Customize, and Show All, respectively). See
section 3.4 Accessing Documentation and Other Resources for more information.

1 2

3

4
5

6

7

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Functionality in the Launcher Perspective

silabs.com | Building a more connected world. Rev. 1.2 | 17

3.1 Downloading Updates or Installing Additional Components

The Update Software icon will be red if updates to installed components are available. If Simplicity Studio detects an available update,
and you are in another perspective, you will be notified that an update is available.

To download a new or updated component, click the Update Software icon. Click Package Manager. Note: If you are installing based
on a new device, or want to install a new product group, you can do so through this dialog as well. In subsequent dialogs, click Home (

) to return to this dialog. Note that Studio does not show you options, such as the GNU ARM Toolchain, that have already been in-
stalled.

Simplicity Studio shows you available updates or SDKs in the Package Manager dialog. You can update all or select individual updates
for installation. Click the tabs in the Package Manager dialog to see other components available for installation. Use the filters to reduce
long lists.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Functionality in the Launcher Perspective

silabs.com | Building a more connected world. Rev. 1.2 | 18

3.2 Changing the Preferred SDK

Use this function if on startup Simplicity Studio defaults to Stackless applications. Otherwise, most Silicon Labs protocol stack users will
have one SDK available to them, the Gecko SDK Suite.

Within that suite you can have multiple protocols installed. The protocol used in any given instance is controlled either by the example
you select, or the stack you select if you go through the ‘New Project’ interface. In general, you should add or remove protocol stacks
through the Simplicity Studio update manager. If you need to install a stack or the Gecko SDK Suite outside of the normal installation
process, you will receive separate instructions.

3.3 Updating Adapter Firmware

Initially the Launcher perspective may display “No local adapter firmware available.” Click Download to download any updates.

If an update is available, click Install to install the firmware.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Functionality in the Launcher Perspective

silabs.com | Building a more connected world. Rev. 1.2 | 19

3.4 Accessing Documentation and Other Resources

The Getting Started tab provides access to demos, example applications, and stack-related documentation. To show/hide specific

categories, click . Select or deselect categories, then click OK.

The Documentation tab combines documentation about the stack and the hardware on the right, and documents you select as favor-
ites on the left. Click the star icon on any document to move it to the My Favorite Documents list.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Functionality in the Launcher Perspective

silabs.com | Building a more connected world. Rev. 1.2 | 20

The Compatible Tools tab is an alternative way to access the tools available through the Tools dropdown.

The Resources tab provides access to support, marketing collateral, and the Silicon Labs community.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 21

4 Working with Example Applications

This chapter offers instructions on working with several types of examples.
• Working with Connect SoC Examples
• Working with Connect Host/NCP Examples
• Working with RAIL Examples
• Starting with a Blank Application

In the SoC (System on Chip) model the entire system (stack and application) resides on a single wireless device, whereas in the
Host/NCP (Network Co-Processor) model the stack processing is done on the device and the application runs on a separate host mi-
crocontroller.

Simplicity Studio offers a variety of ways to begin a project using an example application. The easiest when you are getting started is
through the Launcher page. Section 4.1 Working with Connect SoC Examples and 4.3 Working with RAIL Examples both use this
method. As you get into development you may want to begin projects without leaving the Simplicity IDE (also known as AppBuilder).
The instructions for section 4.2 Working with Connect Host/NCP Examples starts new projects from the File menu.

Regardless of how you begin, when working with example applications in Simplicity Studio, you will execute the following steps:
1. Select an example application.
2. Generate application files.
3. Compile and flash the application to the radio board.

These steps are described in detail in the following sections. Note: Your SDK version may be later than the version shown in the pro-
cedure illustrations.

Finally, although Silicon Labs strongly recommends against it, you can start with a blank application, as described in section 4.4 Start-
ing with a Blank Application.

Note: SDK version 2.0.0 and later contain a number of changes to the way hardware peripherals are configured and managed. You
may see the following dialog when you open an example or generate code. Always click Yes.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 22

4.1 Working with Connect SoC Examples

4.1.1 Selecting a Connect Example Application

1. In the Launcher perspective, expand the Silicon Labs Flex SDK list and click on an example application, in this case the Connect
(SoC): Wire Replacement example.

2. You are asked if you want to switch to the Simplicity IDE. Click Yes.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 23

3. Simplicity IDE opens with the new project in AppBuilder view and the focus on the General tab.

Note: You now have a Simplicity IDE button next to the Launcher button in the upper right.

Make sure the toolchain shown is the one you want to use. If you have both toolchains installed and enabled in Preferences, GCC is
the default.

4. To change the toolchain click Edit Architecture. In the resulting dialog, select the desired toolchain and click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 24

5. Check settings in the Radio Configuration tab to make sure that they are correctly configured for the selected board.

The Plugins tab displays the various plugins that are preselected to enable the example’s functionality. Click on a plugin to see its con-
figurable options (if any), along with more information about the plugin.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 25

4.1.2 Generating Connect Application Files

1. In the General tab, the Information Configuration block provides details about application setup and functionality (you may need to
scroll down to see it). When you are ready to generate the sample project code, click Generate.

2. When asked about overwriting files, as long as you are working with examples do not check connect-callbacks.c. Only overwrite

before starting your own coding, to create a file populated with stub callbacks for those you have indicated. Once you have made
modifications to the callbacks in the file, be careful not to overwrite again.

If you get the following overwrite warning, click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 26

3. Once generation is complete, a dialog reporting results is displayed. Click OK.

4.1.3 Compiling and Flashing the Connect Application

You can either compile and flash the application automatically, or manually compile it and then flash it.

Automatically Compile and Flash
1. You can automatically compile and flash the application to your connected development hardware in the Simplicity IDE. After you

click OK on the Generation Confirmation dialog, the Simplicity IDE returns. Click the Debug control.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 27

2. Progress is displayed in the lower left. Wait until flashing has completed and a Debug perspective is displayed. Click the Resume
control to start the application running on the WSTK.

Next to the Resume control are Suspend, Disconnect, Reconnect, and stepping controls. Click the Disconnect control when you
are ready to exit Debug mode.

Manually Compile and Flash

After you generate your project files, instead of clicking Debug in the Simplicity IDE, click the Build control in the top tool bar.

Your sample application will compile based on its build configuration. You can change the build configuration at any time by right click-
ing on the project and going to Build Configurations > Set Active.

You can also build your application directly in IAR-EWARM by opening IAR-EWARM and opening the generated project file inside IAR.
1. Open IAR-EWARM.
2. Select File > Open > Workspace and navigate to the location you selected for your sample application.
3. Select the application .eww file and click [Open].
4. Select Project > Make or press F7. If the application builds without errors, you are ready to install the image on a device.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 28

You can load the binary image through the Devices view in the Simplicity IDE perspective.
1. Files are generated into the folder on the General tab.

1. In the Devices view, right-click on the J-Link device and select Upload Application. The Select Binary Image dialog is displayed.

2. Navigate to the .s37, .bin or .hex image you wish to upload. Files are located under the project folder on the General tab:

If you compiled the image with GCC, the files are in <folder on General tab>\GNU ARM vn.n.n - Default
If you compiled the image with IAR EWARM, the files are in <folder on General tab>\IAR ARM - Default

3. Optionally, check Erase Chip, to make sure that any previous bootloader or other non-volatile data is erased before your new im-
age is uploaded. New users will typically check this.

4. The After Load options are Run (begin executing the code immediately) and Reset (wait for an event, such as a debugger to con-
nect or manual initiation of a boot sequence). During initial development you will typically leave this set to Run.

5. Click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 29

4.1.4 Interacting with Connect Examples

Depending on the example application, you may be able to interact with it through your development environment’s Console interface
using a CLI (command line interpreter). The console interface allows you to form a network and send data.

To launch the Console interface, in the Simplicity IDE perspective right-click on your J-Link device in the Devices View. Choose
Launch Console. Alternatively, from the Tools drop-down in the Launcher perspective select Device Console. To get a prompt on the
Console Serial 1 tab, press Enter.

To create the network on the wire-replacement example (comments in parentheses), repeat the procedures in section 4.1.1 Selecting a
Connect Example Application through section 4.1.3 Compiling and Flashing the Connect Application to compile and load the Wire Re-
placement example on a second device.

Then use the following procedure.
1. On Device A, enter start-master 0 (where 0 is the channel number. You should see Network Up.
2. On Device B, enter start-slave 0 (where 0 is the channel number). You should see:

From Device B: Network Up
From Device A: Slave 0x0001 joined as end device from device A

3. On device B, enter data {AA BB CC}
From Device B: TX: Data to 0x0000:{AA BB CC }: status=0x00
From Device A: RX: Data from 0x0001: AA BB CC

4. On Device A enter data {DD EE FF}
From Device A: TX: Data to 0x0001:{DD EE FF }: status=0x00
From Device B: RX: Data from 0x0000: DD EE FF

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 30

The following figure shows the console at the end of the procedure.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 31

4.2 Working with Connect Host/NCP Examples

As well as describing how to work with Host/NCP applications, this section also illustrates how to create a new project without leaving
the Simplicity IDE.

4.2.1 The NCP Application

1. In the Simplicity IDE (AppBuilder), select File > New > Project.
2. Select Silicon Labs AppBuilder Project, and click Next.

3. Select Silicon Labs Flex SDK and click Next.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 32

4. Select either Connect NCP: UART HW Flow Control or Connect NCP: UART SW Flow Control example application and click
Next.

5. (optional) Edit the project name and/or location, then click Next.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 33

6. Verify that the board and parts are correct (if you have one connected it should be displayed). Select a toolchain if you have more
than one. Click Finish.

7. Check settings in the Radio Configuration tab to make sure that they are correctly configured for the selected board.

8. Click Generate to generate project files, then click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 34

9. Click the target device in the Devices view and click build .
10. Both NCP examples require a standalone bootloader. To load the application and the bootloader images, first make sure your

hardware is displayed in the Device perspective. Expand the radio board to show the part number, as you will need that along with
the board number to find the correct bootloader file. Note that the folder in which the example was generated is displayed on the
General tab.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 35

11. In the Devices view, right-click on the J-Link target device and select Upload Application. The Select Binary Image dialog is dis-
played.

12. Browse to the folder with your compiled application and select the .gbl file (see section 1.2 The Gecko Bootloader for more infor-

mation).
If you compiled the image with GCC, the files are in <folder on General tab>\GNU ARM vn.n.n - Default
If you compiled the image with IAR EWARM, the files are in <folder on General tab>\IAR ARM - Default

13. If you have not already loaded a bootloader, check Bootloader image, then browse to the folder containing a prebuilt bootloader
image. Images are located in the Simplicity Studio platform bootloader folder under sample apps. In this case open the ‘bootloader-
uart-xmodem’ folder, for example:
C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\<version>\platform\bo
otloader\sample-apps\bootloader-uart-xmodem).

Open the folder that corresponds to your board and part number and select the .s37 file, for example:

\efr32mg12p332f1024gl125-brd4162a\bootloader-uart-xmodem-combined.s37.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 36

14. Check Erase Chip, to make sure that the main flash block is erased before your new image is uploaded. New users will typically
always check this.
• The After uploading options are Run (begin executing the code immediately) and Halt (wait for an event, such as a debugger

to connect or manual initiation of a boot sequence). During initial development you will typically leave this set to Run.
• The Flash options determine the storage location, and are Internal and External SPI. Leave the option set to Internal.
Your completed dialog should resemble the following:

15. Click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 37

4.2.2 The Host Application

The process to build the host application is similar to the process to build the target NCP application.
1. In AppBuilder, select File > New > Project > Silicon Labs AppBuilder Project to create a new application. Select a Host sample

application and click Next.

2. (optional) Edit the project name and/or location, then click Next.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 38

3. Verify that Boards and Part are not selected, then click Finish to start building your application.

4. Click Generate.
5. Compile the generated Host Makefile with GCC or Clang, by executing the following command in your generation directory:

make -f wire-replacement-host.mak

6. Before executing the host application, identify your USB TTY driver device, which is connected to your NCP. The TTY driver device
is usually /dev/ttyUSB0.

7. Run the application with the following command:

sudo build-wire-replacement-host/wire-replacement-host-unix-host-app -u /dev/ttyUSB0

The terminal acts as the platform through which you execute CLI commands.

4.2.3 Testing your Setup

The bootstrap test verifies that the application can perform an initial handshake between the host and NCP. The text ‘ASHv3 is up’ will
be displayed when ASHv3 successfully performs an initialization handshake, and then the application will quit.

In order to run the test, execute the following command:

sudo build-wire-replacement-host/wire-replacement-host-unix-host-app -u /dev/ttyUSB0 --test-
bootstrap

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 39

4.3 Working with RAIL Examples

4.3.1 Selecting a RAIL Example Application

1. In the Launcher perspective, expand the Silicon Labs Flex SDK list and click on an example application. RF engineers may wish to
start with RAIL: RAILTEST. Firmware engineers may wish to start with the RAIL: Simple TRX example. This section uses the
RAIL: Simple TRX example. In the Launcher perspective, click on that example.

2. You are asked if you want to switch to the Simplicity IDE. Click Yes.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 40

3. Simplicity IDE opens with the new project in AppBuilder view, and the focus on the General tab. Make sure the toolchain shown is
the one you want to use. If you have both IAR and GCC installed, GCC is the default.

Note: You now have a Simplicity IDE button next to the Launcher button in the upper right.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 41

4. To change the toolchain click Edit Architecture. In the resulting dialog, select the desired toolchain and click OK.

Compare the plugins tab for a RAIL application with the one shown for Connect. Only RAIL plugins are selected. Note that, in order to
see information about the plugin, you either need to scroll up, or collapse the Connect plugins

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 42

The RAIL application framework allows you to modify the PHY configuration for the application. Click the Radio Configuration tab, then
click Protocol Configuration in the top left. You can then select a radio profile, and a pre-defined radio PHY of the selected profile.
You can then customize the PHY by selecting the "Custom settings" in the PHY list. See AN971: EFR32 Radio Configurator Guide for
more information on using the radio configurator.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 43

4.3.2 Generating the RAIL Application

1. In the General tab, the Information Configuration block provides details about application setup and functionality (you may need to
scroll down to see it). When you are ready to generate the sample project code, click Generate.

If you get the following overwrite warning, click OK.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 44

2. Once generation is complete, a dialog reporting results is displayed. Click OK.

4.3.3 Compiling and Flashing the RAIL Example

You can either compile and flash the application automatically, or manually compile it and then flash it.

Automatically Compile and Flash
1. You can automatically compile and flash the application to your connected development hardware in the Simplicity IDE. After you

click OK on the Generation Confirmation dialog, the Simplicity IDE returns. Click the Debug control.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 45

2. Progress is displayed in the lower left. Wait until flashing has completed and a Debug perspective is displayed. Click the Resume
control to start the application running on the WSTK.

Next to the Resume control are Suspend, Disconnect, Reconnect, and stepping controls. Click the Disconnect control when you
are ready to exit Debug mode.

Manually Compile and Flash

After you generate your project files, instead of clicking Debug in the Simplicity IDE, click the Build control in the top tool bar.

Your sample application will compile based on its build configuration. You can change the build configuration at any time by right click-
ing on the project and going to Build Configurations > Set Active.

You can also build your application directly in IAR-EWARM by opening IAR-EWARM and opening the generated project file inside IAR.
1. Open IAR-EWARM.
2. Select File > Open > Workspace and navigate to the location you selected for your sample application.
3. Select the application .eww file and click [Open].
4. Select Project > Make or press F7. If the application builds without errors, you are ready to install the image on a device.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 46

You can load the binary image through the Devices view in the Simplicity IDE perspective.
1. Files are generated into the folder on the General tab.

2. In the Devices view, right-click on the J-Link device and select Upload Application. The Select Binary Image dialog is displayed.

3. Navigate to the .s37, .bin or .hex image you wish to upload. Files are located under the project folder on the General tab:

If you compiled the image with GCC, the files are in <folder on General tab>\GNU ARM vn.n.n - Default
If you compiled the image with IAR EWARM, the files are in <folder on General tab>\IAR ARM - Default

4. Optionally, check Erase Chip, to make sure that any previous bootloader or other non-volatile data is erased before your new im-
age is uploaded. New users will typically check this.

5. The After Load options are Run (begin executing the code immediately) and Reset (wait for an event, such as a debugger to con-
nect or manual initiation of a boot sequence). During initial development you will typically leave this set to Run.

6. Click OK.

4.3.4 Interacting with the RAIL Example

Interaction in the simple TRX example is through buttons on the WSTK.

Repeat the procedures in section 4.3.1 Selecting a RAIL Example Application through section 4.3.3 Compiling and Flashing the RAIL
Example to compile and load the simple TRX example on a second device.

Press either button on either device to send a message. On transmission, LED0 on the transmitting device toggles on, and on recep-
tion, LED1 on the receiving device toggles on.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Working with Example Applications

silabs.com | Building a more connected world. Rev. 1.2 | 47

4.4 Starting with a Blank Application

While Silicon Labs strongly recommends starting development from one of the example applications, if you want to start with a blank
Connect application you can.
1. On the launcher page click New Project.
2. Click Silicon Labs Flex SDK, and click Next.
3. Check Start with a blank application, and click Next.
4. Name your application, and click Next.
5. Click Finish. The Simplicity IDE opens, but nothing is configured. The project will not build until it has been configured.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Next Steps

silabs.com | Building a more connected world. Rev. 1.2 | 48

5 Next Steps

Explore configuring the example application to meet your needs. Much of the software configuration can be done through plugins. Se-
lect a plugin to see more information about it and its configuration options, if any.

Simplicity Studio offers a Hardware Configurator tool that allows you to easily configure new peripherals or change the properties of
existing ones. Hardware Configurator options are available on many of the HAL and I/O plugins.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Next Steps

silabs.com | Building a more connected world. Rev. 1.2 | 49

Note: If you change hardware configuration options your changes are saved to a temporary file. In order to have the changes includ-
ed in the project, you must check the Overwrite checkbox in the following dialog, displayed at the end of file generation.

You can also open the Hardware Configurator tool by double-clicking the .hwconf file that was generated along with your other project
files, or by clicking Open Hardware Configurator on the HAL tab. Some configuration options are only available through the Hardware
Configurator tool. Click DefaultMode Peripherals under the pin graphic to change to a peripherals view.

See AN1115: Configuring Peripherals for 32-Bit Devices in Simplicity Studio for more information about the Hardware Configurator both
within the Simplicity IDE and as a separate tool.

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Connect and RAIL API Documentation

silabs.com | Building a more connected world. Rev. 1.2 | 50

6 Connect and RAIL API Documentation

The following is a collection of in-depth documents that cover different aspects of development with RAIL and Connect.
• QSG138: Proprietary Flex SDK v2.x Quick Start Guide (This document.)
• Proprietary wireless (Connect and RAIL) training series. Collection of most up-to-date training resources.

The Silicon Labs Fundamentals series can be used as an introduction to developing wireless networking applications with the Silicon
Labs EFR32 chips and development tools.
• UG103.1: Wireless Networking Application Development Fundamentals
• UG103.4: HAL Fundamentals
• UG103.6: Bootloading Fundamentals
• UG103.7: Non-Volatile Data Storage Fundamentals
• UG103.12: Silicon Labs Connect Fundamentals
• UG103.13: RAIL Fundamentals
• UG103.16: Multiprotocol Fundamentals

RAIL and Device Configuration Documentation
• RAIL API Reference Documentation https://docs.silabs.com/rail/latest/
• RAIL Test User Guide (available in Simplicity Studio)
• AN1115: Configuring Peripherals for 32-Bit Devices in Simplicity Studio
• AN1119: Using RAIL for Wireless M-Bus Applications with EFR32
• AN1127: Power Amplifier Power Conversion Functions in RAIL 2.x
• AN971: EFR32 Radio Configurator Guide for RAIL in Simplicity Studio v4

Non-Volatile Data Storage
• AN1154: Using Tokens for Non-Volatile Data Storage
• AN961: Bringing Up Custom Devices for the EFR32MG and EFR32FG Families
• AN703: Using Simulated EEPROM Version 1 and Version 2 for the EM35x and EFR32 SoC Platforms

Dynamic Multiprotocol
• UG305: Dynamic Multiprotocol User's Guide
• AN1209: Dynamic Multiprotocol Development with Bluetooth and Connect
• AN1135: Using Third Generation Non-Volatile Memory (NVM3) Data Storage

The Connect User’s Guide is a series of documents that provides in-depth information for developers who are using the Silicon Labs
Connect Stack for their application development.
• UG235.01: Developing Code with Silicon Labs Connect v2.x

General overview of the code development process and supporting tools for Connect-based applications.
• UG235.02: Using IEEE 802.15.4 with Silicon Labs Connect v2.x

Short introduction to the IEEE 802.15.4 features that are used in Connect.
• UG235.03: Architecture of the Silicon Labs Connect Stack v2.x

Complete review of the Connect stack architecture, capabilities and features.
• UG235.04: Customizing Applications with Silicon Labs Connect v2.x

Describes the plugins and callbacks implemented in the Silicon Labs Application Builder for Connect applications.
• UG235.05: Using Micrium OS (RTOS) with Silicon Labs Connect v2.x

Describes the process of implementing a Connect-based application on top of the Micrium OS. (Replaces AN1153.)
• UG235.06: Bootloading and OTA with Silicon Labs Connect v2.x

Details the bootloader options available for Connect-based applications.
• UG235.07: Energy Saving with Silicon Labs Connect v2.x

Provides techniques to realize low-energy consumption in Connect-based applications.
• UG235.08: Using the Command Line Interface with Silicon Labs Connect v2.x

Describes how to use the CLI with Connect and how to add a CLI command.

https://www.silabs.com/documents/public/quick-start-guides/qsg138-flex-efr32.pdf
https://www.silabs.com/support/training/rail
https://www.silabs.com/documents/public/user-guides/ug103-01-fundamentals-wireless-network.pdf
https://www.silabs.com/documents/public/user-guides/UG103-04-AppDevFundamentals-HAL.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug103-12-fundamentals-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug103-13-fundamentals-rail.pdf
https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://docs.silabs.com/rail/latest/
https://www.silabs.com/documents/public/application-notes/an1115-32-bit-device-peripheral-configuration-in-simplicity-studio.pdf
https://www.silabs.com/documents/public/application-notes/an1119-rail-wmbus.pdf
https://www.silabs.com/documents/public/application-notes/an1127-power-amplifier-power-conversion-functions.pdf
https://www.silabs.com/documents/public/application-notes/an971-efr32-radio-configurator-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1154-tokens-for-non-volatile-storage.pdf
https://www.silabs.com/documents/public/application-notes/an961-custom-nodes-efr32.pdf
https://www.silabs.com/documents/public/application-notes/an703-simulated-eeprom.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1209-dynamic-multiprotocol-connect-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/user-guides/ug235-01-developing-code-with-connect.pdf
https://www.silabs.com/documents/public/ug235-02-using-connect-with-ieee-802-15-4.pdf
https://www.silabs.com/documents/public/user-guides/ug235-03-architecture-of-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug235-04-customizing-applications-with-connect.pdf
https://www.silabs.com/documents/public/user-guides/ug235-05-using-micrium-with-connect.pdf
https://www.silabs.com/documents/public/ug235-06-bootloading-and-ota-with-connect.pdf
https://www.silabs.com/documents/public/ug235-07-energy-savings-with-connect.pdf
https://www.silabs.com/documents/public/application-notes/ug235-08-using-cli-with-connect.pdf

 QSG138: Proprietary Flex SDK v2.x Quick Start Guide
 Connect and RAIL API Documentation

silabs.com | Building a more connected world. Rev. 1.2 | 51

• UG235.09: Using NCP with Silicon Labs Connect v2.x
Discusses the implementation of a Network Coprocessor (NCP) application, based on the Connect stack.

Other Connect Documentation
• Connect Stack API Reference Documentation, https://docs.silabs.com/connect-stack/latest
• AN844: Guide to Host/Network Co-Processor Communications Using Silicon Labs Thread and Connect
• AN902: Building Low Power Networks with the Silicon Labs Connect Stack v2.x
• UG266: Gecko Bootloader User's Guide
• AN1085: Using the Gecko Bootloader with Silicon Labs Connect

https://www.silabs.com/documents/public/application-notes/ug235-09-developing-ncp-apps-with-connect.pdf
https://docs.silabs.com/connect-stack/latest
https://www.silabs.com/documents/public/application-notes/an844-ashv3-host-uart-interface-guide.pdf
https://www.silabs.com/documents/public/application-notes/an902-connect-low-power-networks.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1085-gecko-bootloader-connect.pdf

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the
performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant
any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket
approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or
health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon
Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri
DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.
Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective
holders.

	1 Flex SDK Product Overview
	1.1 About Connect and RAIL
	1.1.1 Silicon Labs Connect
	1.1.2 Silicon Labs RAIL

	1.2 The Gecko Bootloader
	1.3 Gecko Platform
	1.4 Prerequisites
	1.5 Support
	1.6 Documentation

	2 Setting Up Your Development Environment
	2.1 Connect your Hardware
	2.2 Install Simplicity Studio and the Flex SDK

	3 Functionality in the Launcher Perspective
	3.1 Downloading Updates or Installing Additional Components
	3.2 Changing the Preferred SDK
	3.3 Updating Adapter Firmware
	3.4 Accessing Documentation and Other Resources

	4 Working with Example Applications
	4.1 Working with Connect SoC Examples
	4.1.1 Selecting a Connect Example Application
	4.1.2 Generating Connect Application Files
	4.1.3 Compiling and Flashing the Connect Application
	4.1.4 Interacting with Connect Examples

	4.2 Working with Connect Host/NCP Examples
	4.2.1 The NCP Application
	4.2.2 The Host Application
	4.2.3 Testing your Setup

	4.3 Working with RAIL Examples
	4.3.1 Selecting a RAIL Example Application
	4.3.2 Generating the RAIL Application
	4.3.3 Compiling and Flashing the RAIL Example
	4.3.4 Interacting with the RAIL Example

	4.4 Starting with a Blank Application

	5 Next Steps
	6 Connect and RAIL API Documentation

